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Abstract

The quantitative analysis of information structure through a deep neural network1

(DNN) can unveil new insights into the theoretical performance of DNN architec-2

tures. Two very promising avenues of research towards quantitative information3

structure analysis are: 1) layer similarity (LS) strategies focused on the inter-layer4

feature similarity, and 2) intrinsic dimensionality (ID) strategies focused on layer-5

wise data dimensionality using pairwise information. Inspired by both LS and ID6

strategies for quantitative information structure analysis, we introduce two novel7

complimentary methods for inter-layer information similarity assessment premised8

on the interesting idea of studying a data sample’s neighbourhood dynamics as it9

traverses through a DNN. More specifically, we introduce the concept of Near-10

est Neighbour Topological Similarity (NNTS) for quantifying the information11

topology similarity between layers of a DNN. Furthermore, we introduce the con-12

cept of Nearest Neighbour Topological Persistence (NNTP) for quantifying the13

inter-layer persistence of data neighbourhood relationships throughout a DNN.14

The proposed strategies facilitates the efficient inter-layer information similarity15

assessment by leveraging only local topological information, and we demonstrate16

their efficacy in this study by performing analysis on a deep convolutional neural17

network architecture on image data to study the insights that can be gained with18

respect to the theoretical performance of a DNN.19

1 Introduction20

Deep neural networks (DNNs) are functions that map information from one domain to another [1].21

These maps often consist of hundreds of sub-maps in the form of element-wise non-linear functions,22

matrix multiplications, convolutions, etc. [1]. Each one of these sub-maps gradually warps the23

underlying manifold of a dataset. Studying the properties of these sub-maps and the effects on a24

dataset’s manifold across a DNN at a micro and macro level can lead to a better understanding of a25

DNN’s internal workings and can potentially guide improvement to their design.26

At the micro level, intrinsic dimensionality (ID) methods [2, 3] allow for approximations of a mani-27

fold’s dimensionality. Lacking from ID analysis is a notation of distance between layers. Knowing28

the number of dimensions required to represent a manifold does not illuminate the manifold’s internal29

characteristics, and directly comparing the magnitude of the ID between layers provides limited30

actionable information. On the macro level layer similarity (LS) measures [4, 5, 6, 7] are designed31

to compare the similarity of information representations between layers. LS measures work by32

comparing the features of one layer to all the other features of another layer across a set of input data.33

As such, measuring how a local region of the dataset manifold changes is not possible.34
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Figure 1: The Nearest Neighbour Topological Similarity between layers in a LeNet-5 model trained on the
MNIST dataset for a different number of k nearest neighbours.

We propose a data centric approach to study the effects a DNN has on the local topological structure35

of a dataset’s manifold by taking inspiration from ID and LS methods. First we construct a nearest36

neighbour graph (NNG) to capture the topological structure of a dataset’s representation for each37

layer in a DNN. Then we compare each layers’ NNG using two novel forms of analysis, Nearest38

Neighbour Topological Similarity (NNTS) to measure the local topological similarity between39

layers, and Nearest Neighbour Topological Persistence (NNTP) to investigate inter-layer interacts40

on a pairwise data sample basis. These two proposed approaches open the door for fine-grained41

analysis of the complex dynamics present within a DNN. At a high level these methods compare the42

first degree relations between dataset samples within a layer to such relations in another layer.43

2 Nearest Neighbour Topological Similarity44

Below is a brief definition of the nearest neighbour graph (NNG) used within this work to capture45

properties of a dataset’s topological structure. See Appendix A for the motivation behind the graph’s46

design choices. Let xi ∈ X be a set of input samples, and let G represent a DNN. Let the output of47

some sub-function vv for the xi sample be defined as yvi = vv(xi;Gv), where Gv ⊆ G contains all48

required sub-functions, edges, and weights to calculate yvi. The main idea behind our approach is to49

use a graph of neighbours to capture the local structure between samples within a layer. For a given50

layer vv with a set of outputs Yv , let Hv = (Yv, Dv) be the graph of neighbours for layer vv , where51

Yv = vv(X;Gv) are the vertices of the graph, and Dv are the edges between two given samples52

yvi, yvj ∈ Yv . Let Kvi ⊆ Yv be an ordered set of nearest neighbours of sample yvi. Directed edges53

are used for NNG construction.54

LetQ(Ha, Hb) = qab measure the Nearest Neighbour Topological Similarity (NNTS) between layers55

va and vb where yai and ybi are sample xi’s representation in layers va and vb, respectively. To56

compare a single sample across layers we propose a sample-wise similarity function Qs(yai, ybi)57

where Q(·) is a function of all Qs(·). Let Q(Ha, Hb) be defined as58

Q(Ha, Hb) =
1

n

n∑
i

Qs(yai, ybi) (1)

Then for a given sample xi for layers a and b we get neighbour sets Kai and Kbi, respectively, for59

some given k. Let the per-sample inter-layer similarity function be defined as the IOU between layers.60

Note that this formulation also allows a sample to have different neighbour between layers.61

Qs(yai, ybi) =
|Kai ∩Kbi|
|Kai ∪Kbi|

(2)

Q(·) uses local information through first degree relations of a sample within a layer, and compares62

samples between layers by comparing the local characteristics of different representations of a sample.63

We apply the notion of Nearest Neighbour Topological Similarity (NNTS) to a LeNet-5 [8] architec-64

ture trained on the MNIST [9] dataset to see how the local topological structure of a dataset changes65

across the model. Since LeNet-5 is a small architecture we break up what is normally considered66

a layer into their respective atomic operations before applying NNTS. We measure the NNNTS67

between all pairs of operations in the LeNet-5 model. The results for NNTS analysis are shown in68

Figure 1. We show the NNTS matrix for four different values of k, 15, 100, 6000, and 12000. The69

table headers along the top and left indicate the operation with the LeNet-5 model. The operations70

are causally aligned moving from left to right along the top, and top to bottom on the left. I stands71

for the input layer, C for convolutional operations, R for ReLU activation, P for max-pooling, M for72

matrix multiplication, and O for output (note that O is also a matrix multiplication operation). The73

number following the operation identifier indicates the layer number.74
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Each of the NNTS matrices are symmetric about the diagonal. The diagonal in each plot all have75

values of 1 since layers are all self similar. Notice the block-like pattern staggered both vertically76

and horizontally in all four plots every time the layer number changes (e.g., moving from P0 to77

C1, or from R3 to O). This is a clear indication that sequences of operations which are normally78

considered layers (within LeNet-5) are not arbitrary since internal representations within a layer are79

more similar to one another than to operations outside the layer. The inter-layer similarity pattern80

even persists when comparing the first operation in a layer to the first operation in the following layer.81

This observation could be used to study other standard layer designs (e.g., a layer designed with82

batchnorm) to determine if such designs follow the same inter-layer similarity pattern. Notice that83

the similarity between P1 and M3 is marginally smaller (about 0.05) when compared the similarity84

between R2 and M3. The marginal difference is a good indication that removing layer 3 will have85

little effect on network performance. The drastic change in plots k = 6000 and k = 12000 is less86

obvious due to each neighbour being connected to 10% and 20% of the whole dataset, respectively.87

As the number of k nearest neighbours increases from k = 5 to k = 6000 there is a gradual increase88

in the similarity between all layer pairs. The transition between from k = 6000 to k = 12000 sees89

a decrease in similarity, and most noticeably between the last couple of operations (bottom right90

hand corner), in the LeNet-5 model. This decrease is to be expected considering that MNIST has91

ten classes with approximately 6000 samples per class. Near the end of the network samples from92

the same class should be clustered near one another. At a k = 6000 a sample’s connections will93

mostly consist of all samples from within the class. Any operation performed on samples from the94

same class would likely have the same effect and thus not effect the inter-layer neighbour relations.95

But when k = 12000 half a sample’s neighbours will be from other classes. While operations are96

unlikely to effect intra-class neighbours, they can still effect inter-class neighbours, and thus resulting97

in the decrease in similarity from k = 6000 to k = 12000. It is expected that the inter-layer similarity98

converges to 1 as the number of connections approaches the number of samples in the dataset.99

3 Nearest Neighbour Topological Persistence100

Reducing the similarity between two layers to a single value provides a useful measure for high level101

measure for topological similarity. On the other hand, such reduction also removes most of the local102

inter-sample relationship information, thereby reducing one’s ability to study the complex interactions103

between layers throughout a network. In this section we introduce an approach from which higher104

order analysis can be performed. Specially, we investigate when pairs of samples become neighbours105

in a DNN, properties of the pairs while they are neighbours, and when pairs of samples are no longer106

neighbours. We call such analysis Nearest Neighbour Topological Persistence (NNTP).107

Consider a network where layers follow a sequential design vin > · · · > va > · · · > vb > · · · >108

vout ∈ V , where layer vin is the input layer and vout is the output layer of a DNN. Let eij be an109

abstract un-directed connection between samples (xi, xj), and let evij be the un-directed connection110

between samples (xi, xj) in layer v. Let evij ∈ Hv iff either of the corresponding directional111

connections are in Hv , where Hv is the NNG of layer v.112

Let eij be α-persistent between two layers va and vb if there exists no more than α contiguous113

layers in the chain of layers va > · · · > vb where evij /∈ Hv for all v’s within the chain of layers.114

α-persistent is a whole family of measures. In this work we only investigate 0-persistent sample115

pairs. 0-persistent can be interpreted as a measure for local network stability. If a connection persists116

across a series of layers then it is reasonable to assume that the pair is located in a local region of the117

dataset’s manifold that share specific features. Analysing when samples are no longer neighbours118

may help illuminate what specific features a given network layer is detecting. When considering the119

entire dataset using this approach one can see the interactions between layers. For example, aspects120

of a network like connection-cancellation would become evident (i.e., if one layer moves a lot of121

samples near each other and a down stream layer moves those samples apart). By studying how122

layers interact with each other on a more granular level (when compared to scalar LS measures) one123

can tailor a DNN’s design at both a macro-architecture resolution and a micro-architecture resolution.124

We apply the notion of persistence to a LeNet-5 architecture trained on the MNIST dataset. We break125

the LeNet-5 model into the same atomic operations as done in the previous section. For 0-persistent126

analysis we count how many pair-wise nearest neighbour connections are 0-persistent between all127

pairs of layers in the LeNet-5 model. The results for 0-persistent analysis are shown in Table 1.128

The headers along the top and left indicate the operation with the LeNet-5 model. The operations are129
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Table 1: LeNet-5 0-persistent matrix. Each operation pair (vfirst, vlast) counts the number of
0-persistent pairwise samples (in the thousands) that start at operation vfirst and last appear at
operation vlast.

Layer of 0-persistent end

L
ay

er
of

0
-p
er
si
st
en

t
be

gi
nn

in
g I C0 R0 P0 C1 R1 P1 C2 R2 M3 R3 O

I 455 122 6.99 5.95 2.51 3.02 36.0 0.99 0.59 3.94 0.32 28.7

C0 427 2.94 5.30 0.65 0.52 2.27 1.23 0.06 0.18 0.01 0.62
R0 550 2.72 0.57 0.61 10.2 0.13 0.02 0.09 0.01 0.46
P0 494 19.0 22.1 6.08 0.54 0.35 2.50 0.42 0.53

C1 110 114 286 1.71 0.17 0.82 0.10 2.83
R1 67.2 57.7 1.33 0.23 0.29 0.04 0.39
P1 205 4.53 2.54 0.57 0.12 0.55

C2 528 36.3 8.79 0.57 0.46
R2 291 104 10.4 168

M3 170 19.1 141
R3 149 128

O 180

causally aligned when moving from left to right a long the top, and top to bottom on the left. We use130

k = 15 for the number of neighbours each sample has.131

Notice the large number of connections present along the diagonal. These connections only sequen-132

tially exist for one layer (note that they may reappear in other layers). Let connections along the133

diagonal be called transient connections. Many layers in the LeNet-5 model have a plurality of their134

pairwise sample connections existing as transient connections, with the first layer (i.e. layer 0) being135

especially transient heavy. This may indicate that the first couple of operations are mainly responsible136

for placing the samples in approximately their final location in the data’s manifold for classification,137

with the rest of the layers being responsible for fine tuning.138

Another interesting observation is the number of connections present in the top right layer pair (I,O).139

These connections persist throughout all operations in the LeNet-5 model, indicating that they are140

likely to be true neighbours on the data’s intrinsic manifold. Studying the relationship between such141

neighbours would be useful in a number of areas including building more robust datasets, tracking142

clusters of strongly persistent neighbours (i.e., connections that are persistent across many layers),143

and training a model on a reduced number of samples.144

From this matrix one can see that C2 and R2 seem to have little effect on the data manifold as145

they largely add persistent connections while allowing most other connections to pass though. For146

applications like layer reduction, C2 and R2 are potentially strong candidates for layer removal,147

and even more so considering that C2 has the largest number of parameters when compared to the148

other convolutional operations. One anomaly with C2 is that it largely kills connections created by149

C1 as indicated by the operation pair (C1, P1) of 286000. Notice that 286000 is by far the largest150

non-transient group of connections in Table 1. In a sense, C2 is undoing the alterations to the data151

manifold made by C1. In addition, such a relationship does not exist between C0 and C1, or C0 and152

C2. Further research is required to understand such behavior.153

4 Conclusion and Future Work154

We propose two complementary data centric analytic methods for studying the complex dynamics155

of a dataset’s manifold as it moves through a DNN using a set nearest neighbour graphs. The first156

proposed approach, Nearest Neighbour Topological Similarity, measures the local similarity between157

two NNGs, and second proposed approach Nearest Neighbour Topological Persistence captures the158

complex local interactions between layers. We demonstrate that both these approaches have the159

potential for providing a better understanding interactions between layers on a local topological level,160

and how such insights can be used to built better DNNs. Future directions of research include, but not161

limited to, using the proposed approach to study local clusters of data throughout a DNN, studying162

how a family of operations (e.g., activation functions) effects local characteristics of a dataset’s163

manifold, and measuring how a manifold changes throughout training a DNN.164
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A Nearest Neighbour Graph183

Let xi ∈ X be a set of input samples of shape n× d, and let G = (V,E,W ), represent a DNN, where184

V = {v} is a set of sub-functions, E = {e} is a set of edges that represent the sub-function’s i/o185

relationships, and W = {w} is a set of weights that parameterize the sub-functions. Let the output of186

some sub-function vv for the xi sample be defined as yvi = vv(xi;Gv), where Gv ⊆ G contains all187

required sub-functions, edges, and weights to calculate yvi.188

The main idea behind our approach is to use a graph of neighbours to capture the local structure189

between samples within a layer. More formally, let Yv = vv(X;Gv) be a one-to-one mapping of190

samples from the input space to the space of layer vv of a DNN. For a given layer vv with a set of191

outputs Yv, let Hv = (Yv, Dv) be the graph of neighbours for layer vv, where Yv are the vertices192

of the graph, and Dv are the edges between two given samples yvi, yvj ∈ Yv. Let Kvi ⊆ Yv be an193

ordered set of nearest neighbours of sample yvi.194

The goal of the graph is to represent localized information from the samples. As such, a metric195

for measuring distance between two samples in a given layer is required. In general there are two196

common methods used. The first approach uses a distance threshold to find all samples yvj ∈ Kvi197

that are within some fixed radius rv of sample yvi, where rv is constant for the entire graph. Note that198

each set Kvi for a single layer vv can contain a variable number of neighbours. The second approach199

uses a variable radius but a fixed number of samples k in Kvi for each sample yvi. Such an approach200

is called a k nearest neighbour (k-nn) graph. For this work a k-nn based approach is used to ensure201

that each sample yvj ∈ Yv has a neighbour (i.e., |Kvi| > 0). Note that it would be possible to find202

the smallest radius such that every sample has at least one neighbour, but this would also allow for203

samples to be connected to the entire graph (e.g., when there is one extreme outlier).204

To build a k-nn graph one must choose if connections are directed or un-directed, what distance metric205

to use, and the number of neighbours. One of the features a distance metric requires is that the metric206

be commutative (i.e., 〈x, y〉 = 〈y, x〉). From a k-nn graph’s perspective this requires that connections207

between samples be un-directed. That is, if sample yvi is a neighbour of yvj , then yvj must also be a208

neighbour of yvi. However, the un-directed nature of connections would require a loosening of the209

fixed number of neighbours inherent to k-nn graphs as a k-nn graph with k un-directed edges per210

sample may not exist.211

One way to loosen the neighbourhood criteria is to perform an intersection where by two samples212

are un-directed neighbours iff both samples are directed neighbours of each other; this effectively213

sets an upper bound to the number of neighbours to k. Such an approach undermines the choice of214

a k-nn graph in that some samples might not have neighbours. Another way to solve the issue is215

to perform a union where by two samples are un-directed neighbours iff either sample is a directed216

neighbour of one another; effectively setting k as the lower bound to the number of neighbours. This217

approach can result in some samples having orders of magnitude more neighbours then other samples.218

A third option to loosen the neighbourhood criteria is to just use directed edges, thereby ensuring219

every sample has the same number of neighbours. In this proposal directed edges are used for nearest220

neighbour graph (NNG) construction, other graph representations will be studied in the future work.221

For this work a euclidean based distance metric is used.222
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