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ABSTRACT

Uncertainty estimation is critical for deploying deep learning models in high-
stakes applications such as autonomy and decision-making. While prior works on
data uncertainty modeling estimate aleatoric uncertainty by minimizing the nega-
tive log-likelihood (NLL) loss, they often fail in the presence of outliers. To ad-
dress this limitation, we introduce Robust-NLL, a drop-in replacement for vanilla
NLL that filters noisy or adversarial samples. Robust-NLL learns robust uncer-
tainty estimates in neural networks through a Boltzmann-weighted NLL loss that
requires no architectural changes, additional parameters, or iterative procedures,
and acts as a plug-and-play loss function that maintains full differentiability and
mini-batch compatibility. We evaluate our approach on synthetic regression tasks
and real-world visual localization benchmarks with injected outliers. Experimen-
tal results demonstrate that simply replacing NLL with Robust-NLL consistently
improves both prediction accuracy and reliability of uncertainty estimates, achiev-
ing substantial performance gains across diverse tasks and architectures.

1 INTRODUCTION

Uncertainty estimation plays a crucial role in deep learning methods, especially in high-stakes ap-
plications such as autonomous navigation and medical decision-making. In these domains, it is not
sufficient for a model to simply make accurate predictions; it must also quantify how confident it is
in those predictions. A well-calibrated uncertainty estimate allows the system to detect ambiguous,
noisy, or out-of-distribution inputs, enabling failure detection and more trustworthy decisions, which
are essential for robust deployment in real-world environments.

Recent work, such as the uncertainty-aware regression framework by Kendall & Gal (2017), has
made progress in modeling data uncertainty by minimizing a negative log-likelihood (NLL) loss.
However, such methods remain vulnerable to outliers in training data (Detlefsen et al., 2019; Seitzer
et al., 2022), which can severely distort both predictive outputs and associated uncertainty estimates.
When supervised with noisy labels, these models often produce overconfident and inaccurate uncer-
tainty estimates, limiting their practical reliability.

Despite many visual localization pipelines having adopted uncertainty-aware learning (Kendall &
Cipolla, 2017; Brahmbhatt et al., 2018; Wang et al., 2020; Qiao et al., 2023; Xiao et al., 2024),
existing state-of-the-art models such as marepo (Chen et al., 2024b) do not model uncertainty at
all. In principle, adding uncertainty modeling on top of these systems should improve robustness
to corrupted supervision and enhance reliability. However, we observed that using vanilla NLL loss
often degrades performance in the presence of outliers (Detlefsen et al., 2019; Seitzer et al., 2022).
See Figure 1 for an illustrative example.

This motivates the need for a robust uncertainty-aware learning framework that is compatible with
existing architectures and improves both prediction accuracy and uncertainty quality under noisy
supervision. Despite various methods being proposed for robust learning models (Barron, 2019;
Shen & Sanghavi, 2019; Li et al., 2020; Menon et al., 2020; Song et al., 2023; Talak et al., 2025),
robust uncertainty-aware learning remains an open research problem. Our goal is to build such a
framework that can be seamlessly integrated into state-of-the-art models without any implementation
changes while addressing their vulnerability to outlier corruption.
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Figure 1: Comparison between uncertainty-aware methods, where the bottom row includes 25%
outliers. Dotted black line denotes the ground truth; blue line and shaded area represent the predic-
tive mean µθ(x) and its 95% confidence interval ±2σθ(x), respectively. Our proposed Robust-NLL
is the only method that remains robust to outliers, producing reliable predictions and calibrated un-
certainty estimates (see Section 4.2).

To this end, we propose Robust-NLL, a fully differentiable Boltzmann-weighted NLL that im-
proves robustness to outliers during training. Instead of treating all samples equally, our approach
applies a smooth, differentiable sample-wise weight for each NLL loss. This ensures that Robust-
NLL integrates naturally into gradient-based optimization and is compatible with mini-batch train-
ing regimes. Intuitively, samples with abnormally large losses, which often correspond to outliers,
are down-weighted through a temperature-controlled Boltzmann weight, thereby reducing their in-
fluence on gradient updates. We evaluate Robust-NLL on both synthetic regression tasks and a
real-world visual localization benchmark. In both cases, simply replacing vanilla NLL with our
method consistently improves prediction accuracy and uncertainty calibration under label corrup-
tion, outperforming standard NLL baselines. Our main contributions are summarized as follows:

• We propose Robust-NLL, a simple yet effective robust loss formulation that is fully com-
patible with existing uncertainty-aware learning models.

• A theoretical connection between Robust-NLL and robust estimation is established, show-
ing that the Boltzmann-weighting allows the method to adjust its robustness to varying
outlier rates.

• Experimental results demonstrate that Robust-NLL improves both accuracy and uncertainty
reliability under noisy supervision, without requiring architectural changes or additional
model complexity.

2 RELATED WORK

2.1 UNCERTAINTY-AWARE LEARNING

Uncertainty is typically divided into two types: epistemic uncertainty and aleatoric uncertainty (Ki-
ureghian & Ditlevsen, 2009). Epistemic uncertainty represents model uncertainty, which is reducible
given enough training data. Common methods include MC-dropout (Gal & Ghahramani, 2016;
Kendall & Gal, 2017) and ensembling (Lakshminarayanan et al., 2017), both of which require mul-
tiple forward passes to approximate the posterior distribution over model parameters. Aleatoric un-
certainty, on the other hand, represents data uncertainty and is irreducible regardless of the amount
of training data. The standard approach fits a Gaussian model by minimizing the negative log-
likelihood (NLL) (Nix & Weigend, 1994; Kendall & Gal, 2017). However, this formulation can lead
to overconfident uncertainty estimates (Guo et al., 2017; Detlefsen et al., 2019). To address this,
Seitzer et al. (2022) proposed β-NLL, introducing a surrogate parameter that regularizes predic-
tive uncertainty. Stirn et al. (2023) proposed a faithful constraint to ensure performance guarantees
by modifying the gradient calculation. Immer et al. (2023) learns natural parameters instead of
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mean and variance, which improves numerical stability during training. Despite these advances in
uncertainty-aware learning, uncertainty estimation under noisy supervision remains understudied.
In this work, we focus on modeling aleatoric uncertainty, with comparisons primarily against NLL
and its variants.

2.2 ROBUST LEARNING

Robust estimation has been widely studied and applied to various tasks in computer vision (Fitzgib-
bon, 2003; Yang et al., 2020a) and robotics (Yang et al., 2021; Chen et al., 2024a). In general,
robust estimation is often solved by iterative reweighted least squares (IRLS) (Aftab & Hartley,
2015; MacTavish & Barfoot, 2015; Ochs et al., 2015), a method that can be traced back to Weiszfeld
(1937). Variants such as graduated non-convexity (Blake & Zisserman, 1987; Yang et al., 2020a;
Peng et al., 2023) leverage homotopy optimization, which introduces a surrogate parameter into the
IRLS scheme to address the non-convexity and initialization issue in robust estimation. For learning-
based models, Shen & Sanghavi (2019) proposed a truncated robust loss with an iterative training
scheme, while Barron (2019) presented a generalized loss for various robust functions. Recently,
Talak et al. (2025) integrates the IRLS procedure into learning-based models and can be applied to a
variety of robust functions. Other robust training strategies include gradient clipping (Menon et al.,
2020; Mai & Johansson, 2021), which mitigates the influence of outlier-induced exploding gradi-
ents. Li et al. (2020) proposed a semi-supervised approach by fitting a Gaussian mixture model, as
the mixture model can also be viewed as a robustified function (Olson & Agarwal, 2013) to distin-
guish clean and noisy samples. However, these approaches typically require iterative schemes that
complicate integration into standard training pipelines. We provide a simple, differentiable robust
method that can be seamlessly adopted without modifying existing optimization procedures.

2.3 VISUAL LOCALIZATION

There are two main modeling approaches for visual localization: relative pose regression (RPR) and
absolute pose regression (APR). Early RPR methods (Wang et al., 2017; Li et al., 2018; Yang et al.,
2020b) predict the relative pose (odometry) between two images but suffer from accumulated drift-
ing errors. Recent RPR approaches (Teed & Deng, 2021; Teed et al., 2023) improve performance by
learning optical flows and incorporating differentiable bundle adjustment layers. In contrast, APR
methods (Kendall & Cipolla, 2017; Brahmbhatt et al., 2018) directly learn the absolute pose of a
specific scene. Although efficient, APR methods lack generalization to unseen views, and multi-
scene APR models (Shavit et al., 2021; Lee et al., 2024) extend this paradigm to handle multiple
environments by training shared networks across environments. The performance of APR methods
has further improved with the rise of attention mechanisms (Wang et al., 2020; Qiao et al., 2023).
Another approach to improve APR performance has become prominent by learning scene repre-
sentations (Moreau et al., 2021; Chen et al., 2022; Brachmann & Rother, 2022), but they typically
require significant computational resources. Recent developments (Brachmann et al., 2023; Chen
et al., 2024b) have significantly reduced training time while maintaining benchmark performance.
Despite these advances, most state-of-the-art visual localization methods lack uncertainty quantifi-
cation, limiting their reliability in safety-critical applications where failure detection is essential.

3 ROBUST UNCERTAINTY-AWARE LEARNING

Given a dataset with input x = {xi ∈ Rd}Ni=1 and target y = {yi ∈ R}Ni=1, we assume that the
targets yi are conditionally Gaussian with the density p(y | x) = N (y;µ(x), σ2(x)). The functions
µ : Rd → R and σ2 : Rd → R represent the mean and variance, respectively. We estimate µ(x) and
σ2(x) by µθ(x) and σ2

θ(x) with some neural network fθ parameterized by θ. The model parameters
are then learned via maximum likelihood estimation by minimizing a NLL loss (Nix & Weigend,
1994; Kendall & Gal, 2017):

LNLL(θ) =
1

N

N∑
i=1

1

2
log(σ2

θ(xi)) +
∥µθ(xi)− yi∥2

2σ2
θ(xi)︸ ︷︷ ︸

L(i)
NLL(θ)

. (1)

3
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This is the most common approach for uncertainty-aware regression. The first term penalizes high
uncertainty, while the second encourages accuracy scaled by predictive variance. However, much
like the mean square error is sensitive to outliers in normal regression, Equation 1 is vulnerable to
outliers (Detlefsen et al., 2019; Seitzer et al., 2022). Therefore, we next introduce a robust weighting
scheme for the NLL loss that serves as a drop-in replacement for Equation 1.

3.1 BOLTZMANN-WEIGHTED NLL

A natural way to improve robustness is to reduce the influence of high-loss samples during training.
Inspired by max-mixtures (Olson & Agarwal, 2013), we initially considered a max operator that
acts as a selector to filter high-NLL components. While this hardmax strategy completely removes
the effect of large-loss outliers, it tends to be overly aggressive and rejects a large portion of the
dataset. To address this, we replace hardmax with a smooth, differentiable softmax to re-weight
over samples:

LRobust-NLL(θ) =

N∑
i=1

wi(θ)L(i)
NLL(θ)︸ ︷︷ ︸

L(i)
Robust-NLL(θ)

, (2)

wi(θ) =
exp(−L(i)

NLL(θ)/T )∑N
j=1 exp(−L(j)

NLL(θ)/T )
. (3)

We further introduce a surrogate parameter T that controls the inlier region. Figure 2 shows the
weight function with respect to different surrogate T . As T → 0, the weight function emphasizes
the lowest NLL (with a smaller inlier region), which approximates a hardmax. On the other hand,
as T → ∞, all weights are nearly uniform (with a larger inlier region), reducing the loss to vanilla
NLL. In particular, wi is the softmax given T = 1. Thus, T serves as a robustness knob between
uniform weighting and aggressive outlier rejection, giving us a flexible way to adapt the robustness
of the method to different noise levels in the data. This idea is naturally connected to the Boltzmann
distribution: the loss function LNLL can be viewed as an energy function over data points, where the
probability of an energy state is in the form wi(θ) ∝ exp(−L(i)

NLL(θ)/T ), and T is the temperature
parameter that controls the sharpness of this probability. Our proposed robust loss is then defined as
the expectation Lrobust-NLL(θ) := E[LNLL(θ)].

Negative Log-Likelihood
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T =10
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Figure 2: Example of Boltzmann distributed weight functions. The inlier (shaded) region gets larger
as the surrogate parameter T increases.

This formulation resembles a robust estimation of the NLL loss, where samples with higher NLL
receive exponentially smaller weight. Unlike hard thresholding or clipping, this allows for smooth
filtering that is fully differentiable and compatible to mini-batch settings. In contrast to many ro-
bust learning methods that rely on iterative scheme (Shen & Sanghavi, 2019; Talak et al., 2025)
(e.g., an inner iteration for model fitting and an outer iteration for robust estimation), our method
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integrates seamlessly into standard gradient-based training without requiring additional computation
or iterative procedures. In practice, one can simply replace LNLL by LRobust-NLL without any other
modifications, making it efficient, scalable, and easy to adopt.

3.2 THEORETICAL ANALYSIS

While standard NLL-based uncertainty-aware regression corresponds to the MLE solution, our
method adapts the likelihood aggregation by applying a Boltzmann-weighted filter over batch NLLs.
This shifts the optimization toward the inlier region in each batch, effectively reducing the influence
of outliers without requiring explicit detection or hard truncation. The resulting surrogate objective
remains differentiable and is compatible with gradient-based optimization.

We first write the partial derivatives of L(i)
NLL with respect to mean and variance:

∇µL(i)
NLL(θ) =

µθ(xi)− yi
σ2
θ(xi)

, (4)

∇σ2L(i)
NLL(θ) =

σ2
θ(xi)− ∥µθ(xi)− yi∥2

2σ4
θ(xi)

. (5)

The derivatives of LNLL with respect to θ is then obtained by applying standard backpropagation
through the network:

∇θL(i)
NLL(θ) = ∇µL(i)

NLL(θ)∇θµθ(xi) +∇σ2L(i)
NLL(θ)∇θσ

2
θ(xi).

Note that the derivatives of the weights wi with respect to θ are:

∇θwi(θ) =
1

T

N∑
j=1

wi(θ)(wj(θ)− δij)∇θL(j)
NLL(θ),

we have the derivative of LRobust-NLL with respect to θ

∇θLRobust-NLL(θ) =

N∑
i=1

(
wi(θ)∇θL(i)

NLL(θ) + L(i)
NLL(θ)∇θwi(θ)

)
=

N∑
i=1

wi(θ)∇θL(i)
NLL(θ) +

1

T

N∑
i=1

wi(θ)L(i)
NLL(θ)

( N∑
j=1

(wj(θ)− δij)∇θL(j)
NLL(θ)

)

=

N∑
j=1

wj(θ)∇θL(j)
NLL(θ) +

N∑
j=1

( 1

T

N∑
i=1

wi(θ)(wj(θ)− δij)L(i)
NLL(θ)

)
∇θL(j)

NLL(θ)

=

N∑
j=1

(
wj(θ) +

1

T

N∑
i=1

wi(θ)(wj(θ)− δij)L(i)
NLL(θ)

)
∇θL(j)

NLL(θ). (6)

Since Lrobust-NLL is fully differentiable, we follow the standard non-convex convergence analysis of
mini-batch SGD (Bottou et al., 2018; Ghadimi & Lan, 2013).
Lemma 1. Assume that Lrobust-NLL is bounded below, and the stochastic gradient is an unbi-
ased estimator of ∇θLrobust-NLL with bounded variance. If Lrobust-NLL is continuously differentiable,
∇θLrobust-NLL is Lipschitz continuous, then with diminishing stepsizes (learning rates),

lim inf
t→∞

E[∥∇θLRobust-NLL(θ)∥2] = 0.

In other words, let {θtk}∞k=1 be a subsequence of iterates {θt}∞t=1 produced by mini-batch SGD with
the loss LRobust-NLL, the subsequence converges to a stationary point in expectation.

3.3 WEIGHTING GRADIENTS OF NLL

One problem of training with vanilla NLL is that the gradients are highly dependent on the predic-
tive variance (the denominators of Equation 4 and Equation 5). Seitzer et al. (2022) introduced a
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variance-weighting to regularize the predictive variance during training. As shown in Equation 6,
our Robust-NLL introduces a similar but more general weighting factor:

αj := wj(θ) +
1

T

N∑
i=1

wi(θ)(wj(θ)− δij)L(i)
NLL(θ), (7)

such that the partial derivatives with respect to mean and variance are scaled by αj :

∇µL(j)
Robust-NLL(θ) = αj ·

µθ(xj)− yj
σ2
θ(xj)

, (8)

∇σ2L(j)
Robust-NLL(θ) = αj ·

σ2
θ(xj)− ∥µθ(xj)− yj∥2

2σ4
θ(xj)

. (9)

Uniform weighting When T → ∞, the second term of Equation 7 vanishes, thus αj → 1/N since
wj → 1/N as T → ∞. This reduces Equation 8 and Equation 9 to Equation 4 and Equation 5 up to
a constant, respectively. In this regime, our Robust-NLL degenerates to vanilla NLL.

Softmax weighting When T = 1, the weighting factor becomes

αj = wj(θ)
(
1 +

N∑
i=1

wi(θ)L(i)
NLL(θ)− L(j)

NLL(θ)
)
.

Here, the expectation value
∑

i wiL(i) serves as a threshold: if L(j) <
∑

i wiL(i) (likely inliers),
the weighting term αj > wj is amplified; and if L(j) >

∑
i wiL(i) (likely outliers), the weighting

term αj < wj is suppressed.

Hardmax weighting When T → 0, let j∗ = argminj L(j)
NLL(θ), then wj∗ → 1 and all other wj → 0

exponentially fast. In this limit, the second term of Equation 7 also vanishes; therefore αj → 1 if
j = j∗, otherwise αj → 0. This corresponds to a hardmax behavior in which only the smallest loss
contributes to the gradient.

These analyses align with the intuition behind our formulation: wi acts as the weight applied to each
loss component, while αi can be interpreted as the weight on the gradient of each loss component.
As T decreases, wi concentrates on fewer samples, and αi correspondingly focuses gradient contri-
butions on fewer samples, shrinking the inlier region. As T increases, both wi and αi spread more
evenly across the dataset, enlarging the inlier region. Choosing an optimal surrogate parameter re-
mains an open question, since both outlier ratio and batch size N are involved in determining T . In
practice, we recommend starting with a relatively large T (which reduces our Robust-NLL to vanilla
NLL and guarantees baseline performance), then gradually decrease T to enhance robustness.

3.4 ROBUSTNESS BEYOND NLL

While our method is primarily motivated by improving robustness in uncertainty-aware learning via
NLL, the core idea of weighting per-sample losses using a Boltzmann distribution is not restricted
to NLL-based objectives. In fact, this formulation can be applied to any differentiable loss function
where individual loss values can be computed. Since the Boltzmann-weighted formulation preserves
differentiability and is fully compatible with gradient-based optimization, our robust technique is a
plug-and-play mechanism for robustifying a wide range of learning objectives. This approach al-
lows us to transform any existing loss into a robust version by down-weighting high-loss (potentially
outlier) samples during optimization. For example, it can be naturally combined with standard re-
gression losses such as mean squared error (MSE), or uncertainty-aware losses like β-NLL, without
requiring any change to the model architecture or training procedure. We demonstrate this flexibility
in Section 4.1, validating its general applicability beyond vanilla NLL.

4 EXPERIMENTS

4.1 LINEAR REGRESSION

We first consider a simple linear regression example y = w⊤x+ϵ+o from Talak et al. (2025), where
w ∼ N (0, 1) is the weight, ϵ ∼ N (0, 0.1) is a noise term, o ∼ N (0, 10) is an outlier term, and x is

6
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uniformly sampled from (0, 1]. Each network directly predicts the output mean (and variance) with
a single fully connected layer, trained with 104 iterations and the SGD optimizer with learning rate
10−4 and batch size 16. We evaluate the mean squared error between the estimated weight ŵ and
ground truth weight w, with outlier rates ranging from 10% to 90%. The results are averaged over
20 Monte Carlo runs.

10 20 30 40 50 60 70 80 90
Outlier Rate (%)

0.0

0.5

1.0

1.5

E
rr

or

MSE
NLL
β -NLL
Closed-form

Robust-MSE
Robust-NLL
Robust-β -NLL

Figure 3: Evaluation of weight estimation error under increasing outlier ratios (10%–90%). We
compare different losses and their robust counterparts using our proposed Boltzmann-weighted for-
mulation. The robust versions consistently improve performance, reducing the impact of outliers.

We compare the following solutions in Figure 3: closed-form solution ŵ = (X⊤X)−1X⊤Y , MSE
loss, NLL loss (Nix & Weigend, 1994; Kendall & Gal, 2017), β-NLL loss (Seitzer et al., 2022), and
our proposed robust scheme applied to each of these losses with the surrogate parameter T = 1,
respectively. For fair comparison, we initialize the weight parameters of each network as the closed-
form solution. This corresponds to the common warm-up strategy in uncertainty-aware learning:
first train a mean-only network by freezing the parameters that do not affect µθ, then jointly opti-
mize mean and variance (i.e., full parameter space θ) together. The results show that MSE strug-
gles with outliers and converges to some local point since the MSE loss is vulnerable against out-
liers. In contrast, our Boltzmann-weighting technique consistently improves performance across
all losses: Robust-MSE, Robust-NLL, and Robust-β-NLL has an average relative improvement of
55.4%, 80.5%, 71.1% compared with MSE, NLL, and β-NLL, respectively. Since the vanilla NLL
is widely used in the literature (as discussed in Section 2), we focus on Robust-NLL in the remainder
of our experiments. Nevertheless, we reiterate that our robust training framework is loss-agnostic
and can be applied to a broad class of differentiable loss functions beyond NLL.

4.2 SINUSOIDAL REGRESSION

We compare uncertainty-aware learning methods on the sinusoidal example from Detlefsen et al.
(2019), a sine curve with an increasing amplitude of noise (Figure 1):

y = x sin(x) + 0.3ϵ1 + 0.3xϵ2, (10)

where ϵ1, ϵ2 ∼ N (0, 1) and x are uniformly sampled from (0, 10]. The first additive term ϵ1 ac-
counts for homoscedastic (data-independent) uncertainty, while the second term ϵ2 accounts for
heteroscedastic (data-dependent) uncertainty since the term increases for larger x. All networks
consist of a single hidden layer with 50 neurons with the ReLU activation function, trained with 105

iterations and the Adam optimizer with a learning rate of 0.01 and batch size 256. These settings are
identical to (Detlefsen et al., 2019).

The top row of Figure 1 compares the predictive mean and variance of NLL (Nix & Weigend, 1994;
Kendall & Gal, 2017), β-NLL (Seitzer et al., 2022), Faithful (Stirn et al., 2023), and our Robust-NLL
with the surrogate parameter T = 64. We use a larger T in this setting because the data contains
no explicit outliers; a small T would make the weight function emphasize few data, degrading the
performance. Note that as T → ∞, Robust-NLL should have the same result as vanilla NLL. The
bottom row introduces 25% of outliers by adding a noise o ∼ N (0, 10) to Equation 10. We reduce
the surrogate parameter to T = 16 in this case, and our Robust-NLL is the only one that remains
truly robust to outliers.
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4.3 7-SCENES VISUAL LOCALIZATION

We evaluate our proposed Robust-NLL on the 7-Scenes (Shotton et al., 2013) indoor benchmark
dataset using marepo (Chen et al., 2024b) as our backbone model with an additional uncertainty
head1. We initialize the network with the pretrained weights provided by the authors, which serve as
a warm-up strategy for the mean-only network. We adopt a two-step training procedure: first train
the uncertainty head using vanilla NLL loss for 100 epochs while fixing the mean-only network; then
jointly finetune the entire model using our Robust-NLL loss for another 100 epochs. In addition,
we apply online data augmentation by applying random rotation and scaling up to 15◦ and 1.5
times to the images and their corresponding poses, respectively. We also apply random rotation
and translation up to 15◦ and 1 meter to the predicted scene coordinates and their corresponding
poses, respectively. Please refer to Chen et al. (2024b) for more details on data augmentation. The
surrogate parameter is set to T = 1 in all scenes.

Table 1: Comparison between APR methods on 7-Scenes, reported as median error (deg/cm).

Method Chess Fire Heads Office Pumpkin Kitchen Stairs Average

PoseNet 4.48/13 11.3/27 13.0/17 5.55/19 4.75/26 5.35/23 12.4/35 8.12/22
MapNet 3.25/8 11.7/27 13.3/18 5.15/17 4.02/22 4.93/23 12.1/30 7.78/20
AtLoc 4.07/10 11.4/25 11.8/16 5.34/17 4.37/21 5.42/23 10.5/26 7.56/20
MST 4.66/11 9.6/20 12.2/14 5.66/17 4.44/18 5.94/17 8.45/26 7.28/18
ActMST 4.15/10 8.79/24 11.6/14 5.28/17 3.48/17 5.62/17 7.58/22 6.64/17
TransAPR 3.4/8 8.41/21 9.51/14 5.52/17 4.07/18 4.65/19 8.45/23 6.29/17
LENS 1.3/3 3.7/10 5.8/7 1.9/7 2.2/8 2.2/9 3.6/14 3.0/8
DFNet 1.48/4 2.16/4 1.82/3 2.01/7 2.26/9 2.42/9 3.31/14 2.21/7

marepo 1.35/2.6 1.42/2.5 2.21/2.3 1.44/3.6 1.55/4.2 1.99/5.1 1.83/6.7 1.68/3.9
marepoS 1.24/2.1 1.39/2.3 2.03/1.8 1.26/2.8 1.48/3.5 1.71/4.2 1.67/5.6 1.54/3.2
Robust-NLL 1.11/1.9 1.36/2.4 1.95/1.5 1.22/2.8 1.39/3.5 1.60/3.5 1.63/4.9 1.46/2.9

Table 1 summarizes our result compared to APR methods: PoseNet (2017), MapNet (2018), At-
Loc (2020), and TransAPR (2023); multi-scene APR methods: MST (2021) and ActMST (2024);
scene-enhanced APR methods: LENS (2021), DFNet (2022), and marepo (2024b). Note that
marepo is trained without 7-Scenes, while marepoS and our Robust-NLL are finetuned with 7-
Scenes. Despite using the same architecture and finetune process, our method not only provides
aleatoric uncertainty estimates but also reduces the average rotation and translation error by 5.19%
and 9.38%, respectively. This demonstrates the ability to improve state-of-the-art model solely by
modifying the loss function, showcasing the plug-and-play nature of our approach.
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Figure 4: Example of predicted trajectory (mean), pose errors, and predicted uncertainty (variance).
Robust-NLL produces uncertainty estimates that better align with actual errors.

1Code available at: https://anonymous.4open.science/r/marepo-robust.

8

https://anonymous.4open.science/r/marepo-robust


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

To further validate robustness under challenging conditions, we evaluate our method in the pres-
ence of outlier labels by randomly replacing 50% of the training poses with incorrect poses. The
test set remains unchanged to evaluate generalization. We compare uncertainty-aware methods with
the same two-step training procedure, varying only the loss function used in the second stage. Fig-
ure 4 visualizes the predicted variance and error comparison for the scene Fire Seq-04. Notably, our
Robust-NLL produces more reliable uncertainty estimates that better align with actual prediction
errors compared to vanilla NLL. As shown in Table 2, all baselines suffer from significant perfor-
mance degradation due to outlier corruption. In contrast, our Robust-NLL consistently outperforms
the baselines across all scenes, with substantial improvements of 17.3% and 28.9% in average rota-
tion and translation error compared to vanilla NLL. Remarkably, our Robust-NLL finetuned on the
outlier-corrupted data even surpasses marepoS finetuned on clean data (Table 1), demonstrating the
strong outlier tolerance of our robust formulation. These results highlight the practical utility of our
robust loss formulation in real-world scenarios, where noisy supervisions are often unavoidable.

Table 2: Comparison between uncertainty-aware methods on 7-Scenes with injected 50% outliers.

Method Error Chess Fire Heads Office Pumpkin Kitchen Stairs Average

NLL Rotation (deg) 1.261 1.435 2.293 1.401 2.661 1.753 1.738 1.792
Translation (m) 0.026 0.025 0.025 0.032 0.104 0.044 0.057 0.045

β-NLL (2022) Rotation (deg) 1.266 1.441 2.228 1.393 1.747 1.756 1.739 1.652
Translation (m) 0.026 0.025 0.024 0.031 0.121 0.043 0.056 0.047

Faithful (2023) Rotation (deg) 1.242 1.439 2.219 1.333 2.273 1.697 1.754 1.708
Translation (m) 0.022 0.026 0.022 0.032 0.082 0.043 0.055 0.040

Robust-NLL Rotation (deg) 1.154 1.312 1.998 1.242 1.426 1.651 1.590 1.482
Translation (m) 0.020 0.024 0.016 0.029 0.040 0.038 0.054 0.032

4.4 LIMITATION AND FUTURE WORK

While Robust-NLL improves both prediction accuracy and uncertainty calibration under noisy su-
pervision, it still requires careful tuning of the surrogate parameter T . Selecting an appropriate T
can be dataset-specific and requires extensive validation, especially in real-world settings where out-
lier rates are often unknown. In addition, our current formulation operates at the mini-batch level,
which also makes T sensitive to batch size. This may limit the method’s stability under small-batch
or streaming scenarios. We plan to investigate adaptive strategies for learning T during training such
as utilizing homotopy optimization, gradually adjusting T over the course of training. Finally, while
we demonstrate our approach on regression tasks, future work could explore extending Robust-NLL
to classification settings. Evaluation on larger and more diverse real-world datasets would further
validate the method’s robustness and generalization.

5 CONCLUSION

We presented Robust-NLL, a simple yet effective loss formulation for robust uncertainty-aware
learning. By applying a Boltzmann-distributed weight to per-sample NLL values within each mini-
batch, our method dynamically downweights outliers during training without requiring architectural
changes or additional supervision. Robust-NLL is fully differentiable and integrates naturally into
standard gradient-based optimization pipelines. Through experiments on both synthetic regression
and visual localization benchmarks, we demonstrated that Robust-NLL consistently improves both
prediction accuracy and uncertainty calibration under noisy supervision. We believe this frame-
work offers a practical and flexible tool for improving the reliability of uncertainty-aware models in
real-world settings.

1The authors used large language model (Claude) to help polish the writing. All content was reviewed and
approved by the authors.
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