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Abstract— Dexterous robotic hands offer unparalleled po-
tential for high-precision, contact-rich manipulation, but their
control remains a formidable challenge due to high-dimensional
action spaces and diverse object-hand interactions. In this
paper, we propose a novel framework for dexterous grasping
based on multi-agent deep reinforcement learning (MADRL)
and multi-stream embedding fusion. Each component of the
robotic hand, fingers, wrist, and arm, is modeled as an inde-
pendent agent that learns cooperative control strategies guided
by multi-stream embedding fusion. By leveraging high-quality
static grasp data from the MultiDex dataset as reference targets,
our method eliminates the need for human demonstrations
or generative sampling during training. Experimental results
demonstrate that our method achieves stable, compliant, and
generalizable grasps across diverse objects and hand configu-
rations, outperforming traditional single-agent baselines.

I. INTRODUCTION

Dexterous robotic manipulation is a cornerstone of human-
level autonomy in unstructured environments [1]. Unlike
simple parallel-jaw grippers, multi-fingered robotic hands
can achieve complex and adaptive interactions with objects
of varying shapes, sizes, and functionalities [2]. However,
the high degrees of freedom (DoF), intricate hand-object
dynamics, and multi-modal sensory feedback significantly
complicate control and policy learning for such systems [3].

While recent works have explored imitation learning and
reinforcement learning for dexterous manipulation, most
methods are constrained by reliance on either simplified
hands or limited sensory feedback [4]. Visual input alone
often proves insufficient when fine-grained force adjustments
or occluded contact cues are required [5]. Tactile sensors,
though essential, produce sparse and noisy data [6]. To
address these challenges, we propose a novel framework
that models each joint group of the robotic hand, fingers,
wrist, and arm, as a separate agent in a multi-agent deep
reinforcement learning (MADRL) setup by fusion of multi-
stream embedding. Our approach incorporates high-quality
static reference grasps extracted from the MultiDex dataset
[7], which provides physically plausible grasp poses across
multiple dexterous hand types. These reference configura-
tions serve as supervisory targets during training, avoiding
the need for simulation generation or full demonstrations.

A central component of our method is a multi-stream
embedding fusion mechanism. Each agent’s policy network
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processes multi-stream embedding data through a dual-
attention pipeline, first extracting modality-specific features
using self-attention [8], then merging them through cross-
attention [9]. This design emulates multi-stream integration
in the human approach, enabling robust and precise grasp
behavior. We demonstrate that this framework achieves stable
and functional grasp poses under various conditions, while
maintaining generalization across multiple hand morpholo-
gies. Our contributions are threefold:

• We introduce a novel multi-agent reinforcement learn-
ing framework tailored for dexterous robotic hands
using static reference grasp data.

• We develop a multi-stream attention-based fusion net-
work that effectively integrates multi-stream embedding
for precise manipulation.

• We validate our method on diverse object-hand scenar-
ios using MultiDex dataset [7], outperforming baseline
and ablated models in grasp success rate and stability.

II. RELATED WORK

Reinforcement learning (RL) has been increasingly
adopted for dexterous grasping tasks due to its capacity
to learn control policies without explicit modeling of dy-
namics. Works such as DAPG [10] and PPO-based ap-
proaches [11] have demonstrated success in learning high-
DoF manipulation strategies. However, these methods often
require extensive human demonstrations, collected using VR
or motion tracking systems, which are costly and difficult
to generalize. To mitigate the complexity of full-hand con-
trol, Jia et al. [12] proposed decomposing the hand into
finger-level agents, each learning its own subtask. Their
Visuo-Tactile Multi-Agent Grasping framework introduced
a hierarchical structure for training the wrist, arm, and
fingers separately via MADRL. However, their policy relied
heavily on demonstration-free end-to-end learning and lacked
diverse training grasps. Recent advancements in generative
modeling have enabled grasp synthesis across varied hand
types. [13], [14] proposed a diffusion-based grasp synthesis
pipeline for multiple dexterous hands guided by affordance-
aware discriminators. While their approach excels in gen-
erating diverse and functional grasp candidates, it focuses
primarily on generation, not on closed-loop control or policy
learning. In addition, integrating vision and touch is critical
for robust grasping, especially under partial observability
or environmental uncertainty. Prior methods have explored
concatenation [15] or late fusion of sensor modalities. Our
multi-stream attention network processes each modality with
self-attention and then fuses them using cross-attention,



enhancing responsiveness to contact events and visual cues
simultaneously.

we treat the high-quality grasp poses as static supervision
for RL-based learning. This allows our system to benefit
from the grasp diversity and quality without inheriting the
computational complexity of generative models. Compared
to earlier tactile-aware methods limited to two-finger grip-
pers [16], our model supports variable dexterous hands and
leverages agent-level fusion for more localized decision-
making. This structure improves compliance, stability, and
coordination across all DoF during grasp execution.

III. METHOD

Our objective is to achieve stable and generalizable dex-
terous manipulation using multi-agent deep reinforcement
learning (MADRL), leveraging a shared dataset [7] of func-
tional grasp poses. We propose a modular learning frame-
work that models each component of a robotic hand (fingers,
wrist, arm) as an independent agent, trained via MADRL,
with a focus on multi-stream sensor fusion for enhanced
robustness and adaptability.

A. Problem Formulation

Given an object represented by a 3D point cloud O ∈
RN×3, and a reference grasp pose h∗ = (t∗, θ∗) sampled
from a MultiDex dataset [7], where t∗ ∈ R3 is the target
position and θ∗ ∈ Rk is the joint configuration for a hand
with k degrees of freedom, the goal is to train an agent-
based control policy that achieves this grasp in a physically
plausible, compliant, and robust manner. We define the
system as a team of M agents, each controlling a subset
of joints in the hand-arm system. The joint action at time t
is at = [a1t , . . . ,a

M
t ], with each ait representing the torque

control signal for agent i. Each agent Ai receives a local
observation sit, and the overall state st = [s1t , . . . , s

M
t ] is

used for centralized training.

B. Multi-Stream Embedding Fusion

To robustly perceive and react to condition of objects,
each agent’s policy network uses a multi-stream feature
embedding. Let vi,j

t denotes the features for agent i at time t
in stream j. These are passed through separate self-attention
modules to obtain unimodal features:

ϕi.jv = SelfAttnv(v
i,j
t ), (1)

(2)

The fused representation ψi is produced via a cross-
attention mechanism:

ψi = CrossAttn(ϕiv, ϕ
i
u), (3)

which is then passed through a fully connected network to
output the action:

ait = πθi(ψ
i). (4)

C. Reinforcement Learning with Centralized Critic

Training is performed using Multi-Agent Deep Deter-
ministic Policy Gradient (MADDPG) algorithm [17]. Each
agent’s actor πθi is updated to maximize the Q-value esti-
mated by a shared critic Qi(st,at):

∇θiJ(θi) = E
[
∇θiπθi(s

i
t)∇ai

t
Qi(st,at)

]
. (5)

The critic is updated using the Bellman target [18]:

yit = rit + γQi(st+1,at+1), (6)

and minimizing the loss:

Li = E
[(
Qi(st,at)− yit

)2]
. (7)

D. Reward Design

Each agent receives a dense reward tailored to its role in
achieving a stable and functional grasp. For finger agents
(i = 1, . . . , 5), the reward encourages convergence to the
reference fingertip positions:

rit = −∥fi(t)− f∗i ∥2. (8)

For arm and wrist agents, the reward promotes object lift
and pose alignment:

rjt = −λ∥ppalm(t)− pref∥2 + µh(t), (9)

where h(t) denotes the object’s elevation and λ, µ are
weighting factors.

E. Dataset

We utilize reference grasps from the MultiDex dataset [7],
which provides diverse object-grasp pairs for multiple dexter-
ous hands. These reference poses serve as static supervision
signals for target configuration learning. Our framework
integrates rich sensory fusion, agent-level specialization, and
centralized training into a coherent architecture that enables
robust dexterous grasping. By leveraging high-quality real-
world-inspired grasp data, we demonstrate that our model
can achieve generalizable, compliant, and functionally ap-
propriate grasps across multiple hand configurations.

IV. RESULTS AND DISCUSSION

We evaluate our proposed multi-agent reinforcement learn-
ing framework with multi-stream fusion on four dexterous
robotic hands and multiple object categories. The primary
objective is to assess generalization and control fidelity
under variations in hand morphology and grasp complexity.
Performance is measured by success rate (%), averaged over
10 test objects, using the static grasp pose from the MultiDex
dataset as the goal configuration.



Fig. 1. An overview of the proposed method.

A. Baseline Comparisons

We compare our method with four learning-based base-
lines:

• SAPG (Single-Agent Policy Gradient): A modified
DAPG [10] trained using only static grasp references.

• Single-Agent PPO: An end-to-end control baseline
using Proximal Policy Optimization with global obser-
vation [19].

• SAC: A single-policy variant using the Soft Actor-Critic
algorithm, known for sample efficiency [20].

• A2C: Advantage Actor-Critic with discrete-time actor
updates and centralized reward signals [21].

All models are trained with identical object-hand combina-
tions, using the same reward shaping and static grasp target
configuration as supervision.

TABLE I
SUCCESS RATE (%) COMPARISON ACROSS ROBOTIC HANDS AND

CONTROL STRATEGIES.

Method EZGripper Barrett Allegro ShadowHand
A2C 21.7 15.2 22.4 33.6
SAC 26.9 18.5 27.1 42.8
Single-Agent PPO 29.8 20.6 31.4 50.3
SAPG (DAPG-style) 33.5 22.9 33.2 56.4
Ours (MADRL + Fusion) 49.2 25.8 35.9 67.9

B. Analysis by Hand Morphology

EZGripper (Low DoF): Our method achieves 49.2%
success, outperforming the SAPG baseline by over 15%. This
is significant for underactuated hands where fine control is
limited. Multi-agent coordination allows individual fingers
to adaptively adjust force distribution, while tactile fusion
informs the agent about object displacement and resistance,
a key advantage over model-free single-agent controllers.

Barrett (Symmetric Tri-finger): The gain here is more
modest (25.8% vs. 22.9%), as the symmetric topology sim-
plifies control. However, our method still excels on asymmet-

Fig. 2. An overview of failure cases wherein the model endeavors to
grasp an object with two fingers while extending another finger toward the
opposing end.

ric objects like hammers or flashlights, where task-relevant
force redirection is needed. Notably, SAC and A2C failed to
generalize grasp patterns when object poses varied.

Allegro (Moderate DoF): Our MADRL system yields a
35.9% success rate. The gain over SAPG (+2.7%) and PPO
(+4.5%) highlights the value of agent-level specialization.
In several cases, the thumb and index fingers coordinated
in power-wraps while other fingers stabilized the base. This
behavior was rarely seen in flat policy baselines.

ShadowHand (High DoF): Here, the largest absolute
gain is observed. Our method achieves 67.9% success versus
56.4% for SAPG and 50.3% for PPO. This shows that agent-
level policy modularity and sensory fusion are essential when
joint control complexity increases. With fusion, local tactile
signals drive rapid reconfiguration after partial object contact,
an ability not learned in vanilla policy gradients.

Also, for our qualitative results, Fig. 3 demonstrates the
successful grasping sequences across various objects using
different finger configurations, while Fig. 2 illustrates com-
mon failure cases where the system struggled with highly
reflective surfaces and complex geometric features.

V. ABLATION ANALYSIS

To evaluate the contribution of each architectural com-
ponent in our proposed framework, we conduct a detailed
ablation study on the MultiDex dataset, focusing on the



Fig. 3. An overview of qualitative result that unseen object is demonstrated
with orange text.

ShadowHand due to its complex kinematic structure and
high number of degrees of freedom (DoF). The follow-
ing components are ablated individually while keeping all
other parts fixed: (1) multi-agent policy design, (2) tactile
and visual sensory inputs, and (3) attention-based fusion
mechanisms. We report success rate, grasp diversity (as the
standard deviation across successful joint configurations),
and collision depth (mm) as our evaluation metrics.

TABLE II
ABLATION STUDY RESULTS USING THE SHADOWHAND.

Configuration Success (%) Diversity (rad) Collision (mm)
Full model (Ours) 67.9 0.228 15.8
w/o Multi-Agent (single actor) 53.1 0.182 18.4
w/o Cross-Attention (early fusion) 57.5 0.191 18.0
w/o Self-Attention (MLP only) 50.4 0.176 19.5

A. Effect of Multi-Agent Policy Decomposition

Disabling the multi-agent structure and reverting to a sin-
gle shared policy across all joints led to a 14.8% reduction
in grasp success and a noticeable drop in diversity. This
performance degradation reflects the inability of a monolithic
policy to coordinate localized control actions effectively. The
decentralized design enables finer motion primitives at the
joint level and allows specialization for different roles, wrist
orientation control versus fingertip positioning, which are
especially critical in high-DoF hands like the ShadowHand.

B. Impact of Attention-Based Fusion Architecture

When we replaced the cross-attention fusion module with
early fusion (simple concatenation of visual and tactile fea-
tures), performance dropped to 57.5% success. This demon-
strates the limitations of naive integration strategies. Cross-
attention allows the network to model interactions between
modalities contextually, learning dependencies between vi-
sual cues (e.g., object geometry) and tactile feedback (e.g.,
contact force).

The most significant degradation occurred when both self-
attention and cross-attention were removed, replaced with
standard MLP layers. Success dropped to 50.4%, with the
worst grasp diversity and the highest average collision depth.
This highlights the role of attention in modeling spatial local-
ity, contact semantics, and coordinated motion across fingers.
Without attention, the network failed to assign appropriate
importance to contact-rich regions, leading to aggressive or
unbalanced grasps.

VI. CONCLUSION

In this work, we introduced a novel framework for
dexterous robotic grasping that integrates multi-agent deep
reinforcement learning with multi-stream fusion. Unlike prior
approaches that rely on hand-specific generative models or
demonstration-driven policy learning, our method uses static
reference grasp data as supervision to train decentralized
agents, each specialized for a subset of joints in the robotic
hand. This modular design enables precise, compliant, and
generalizable grasp execution across a diverse set of high-
DoF robotic hands.

We demonstrated that our architecture significantly out-
performs conventional single-agent reinforcement learning
algorithms, including PPO, SAC, A2C, and a demonstration-
free adaptation of DAPG,on both success rate and grasp
diversity metrics. Furthermore, ablation analysis revealed the
essential roles of multi-agent decomposition, dual-modality
fusion, and attention-based encoders in achieving robust
grasp performance and contact-safe behavior. Our method
achieved high grasp success rates across object types and
hand morphologies, with particularly strong results on an-
thropomorphic hands such as ShadowHand and Allegro. The
combination of localized control and context-aware sensory
fusion allowed the system to adapt to complex object ge-
ometries, unexpected contacts, and asymmetrical affordance
regions.

For future work, we aim to extend the framework to in-the-
wild robotic grasping tasks involving real sensor inputs and
actuation noise. Additionally, integrating open-vocabulary
affordance reasoning with online policy adaptation may
further enhance functionality in task-oriented scenarios, such
as tool use or human-object handovers. We believe our
work takes an important step toward scalable, interpretable,
and generalizable dexterous manipulation in unstructured
environments.
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