Under review as a conference paper at ICLR 2026

ADVISER-ACTOR-CRITIC: REDUCING STEADY-STATE
ERROR IN REINFORCEMENT LEARNING FOR ROBOTICS
CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

High-precision control tasks present substantial challenges for reinforcement learn-
ing (RL) algorithms, frequently resulting in suboptimal performance attributed to
network approximation inaccuracies and inadequate sample quality. While existing
RL frameworks can achieve task completion at coarse precision levels, steady-state
tracking errors remain a critical limitation that prevents achieving sub-hardware-
level precision. We introduce Adviser-Actor-Critic (AAC), designed to address
this precision control dilemma by combining the precision of feedback control
theory with the adaptive learning capability of RL and featuring an Adviser that
mentors the actor to refine control actions, thereby enhancing the precision of goal
attainment. Through extensive benchmark environments from gymnasium-robotics,
coupled with real-world quadcopter attitude control, AAC significantly outperforms
standard RL algorithms in precision-critical tasks while demonstrating an average
> 80% steady-state error reduction compared to baseline methods.

1 INTRODUCTION

Robotic systems like dexterous hands and precision manipulators face critical control challenges in
sub-millimeter accuracy tasks due to nonlinear dynamics, high-dimensional states, and parametric
uncertainty sensitivity. Classical PID controllers (Li et al., [2006; Borase et al.,|2021) demonstrate
robustness in linear regimes but fail in nonlinear multipe-input-multiple-output (MIMO) systems
owing to fixed gains and linearized models. While adaptive control (Nguyen & Dankowicz, 2015}
Qu et al.,|[2025) and robust control (Kaloust & Qu}|1997; Zheng et al., 2025) handle bounded distur-
bances, their performance degrades under strong nonlinearities or unstructured uncertainties. Modern
approaches include model predictive control (MPC) (Darby & Nikolaou, |2012)), which employs
receding-horizon optimization for constrained MIMO systems but demands precise identification
and intensive computation. Geometric nonlinear methods like sliding mode control (SMC) (Utkin,
1977;|Gonzalez et al.l 2012)) offer disturbance rejection through discontinuous control at the cost of
chattering, while backstepping (Qu et al., 2024a}; |Swaroop et al., [2000) provides Lyapunov-stable
design for strict-feedback systems but suffers from ”complexity explosion” in high dimensions.

The inherent limitations of classical control paradigms, particularly in reconciling model fidelity with
real-time adaptability for high-dimensional nonlinear systems, have driven interest in data-driven
methodologies. This shift addresses fundamental trade-offs where rigorous model identification
becomes computationally prohibitive, while purely model-free strategies often lack structural guaran-
tees. Reinforcement learning (RL) emerges as a promising alternative, enabling direct policy learning
through interaction data without requiring explicit system models. Model-free RL algorithms, such
as Soft Actor-Critic (SAC) (Haarnoja et al.| 2018)), Proximal Policy Optimization (PPO) (Schulman
et al.,|2017), and Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.,2019), demonstrate
superior adaptability in complex domains like contact-rich manipulation and dynamic locomotion.
However, despite their adaptability, challenges like sparse rewards and function approximation errors
often lead to suboptimal convergence and precision limitations, hindering industrial deployment that
demands consistent performance (Pathak et al.| | 2017; Ramakrishnan et al., 2018} |Kiran et al., 2021).
These issues necessitate strategies that enhance control accuracy while preserving RL’s adaptability
advantages.

Under review as a conference paper at ICLR 2026

Conversely, model-based control frameworks offer systematic precision by leveraging learned dy-

namics models f9(3t+1 |st, at) to enable receding-horizon trajectory optimization. Techniques such
as Guided Policy Search (GPS) (Levine & Koltun, [2014), Temporal Difference Model Predictive
Control (TD-MPC) (Hansen et al.,[2024), and Probabilistic Inference for Learning Control (PILCO)
(Deisenroth & Rasmussen| 2011)) achieve high accuracy through probabilistic inference or deep
neural dynamics modeling. However, their reliance on high-fidelity system identification often incurs
significant computational costs and limits real-time applicability, as highlighted by methods like
Model-Based Policy Optimization (MBPO) (Janner et al.l 2019) which illustrate the inherent tension
between sample efficiency and planning accuracy. This fundamental trade-off between adaptability
and precision in RL for control systems has motivated the development of hybrid architectures inte-
grating planning with policy learning (Zhuang et al.2020). Recent advances in RL-control hybrids
have begun addressing these limitations. Many of these approaches leverage RL for parameter tuning
of classical controllers (e.g., autotuning PID control using Actor-Critic RL (Veldhuizen| [2022)) or
for integrating safety constraints (e.g., PID Lagrangian methods for responsive safety (Stooke et al.|
2020)). While others explore RL for direct policy learning (e.g., quadrotor control (Hwangbo et al.,
2017)), these methods often still rely heavily on a well-designed classical control structure or a
foundational understanding of system dynamics for stability and refinement. Consequently, while
valuable for enhancing robustness or optimizing existing controllers, they primarily focus on safety
and parameter optimization, potentially overlooking systematic error compensation mechanisms
crucial for high-precision tracking tasks.

We propose an Adviser-Actor-Critic(AAC) framework that resolves this dichotomy through a novel
error mitigation mechanism. Unlike conventional paradigms that directly optimize goal attainment,
our approach decouples target acquisition from trajectory tracking by introducing dynamically
adjusted “virtual goals” that systematically counteract error propagation. This proactive compensation
strategy fundamentally differs from Hindsight Experience Replay (HER) (Andrychowicz et al.
2018), which performs retrospective goal relabeling. As demonstrated in Figurdl] our framework
computes offset virtual targets during execution to cancel residual errors at terminal states, thereby
transforming cumulative control inaccuracies inherent in physical systems into correctable trajectory
deviations. This architectural innovation enables simultaneous achievement of adaptability through
policy learning and precision via error-canceling trajectory planning, addressing critical limitations
in both model-free and model-based paradigms.

b
/* | | @ Position (begin)
x| ’
esired " ® guidel.”’ @ Position (end)
. ,
actual /actual & desired @ Desired Goal
o g o @ Virtual Goal
robot chases @ .robo’t chases @
itcan’ t reach @ itcan’ t reach @

but it can reach @

Figure 1: Conceptual example demonstrating adviser-guided precision control.

The AAC framework merges RL with control theory in a two-part system. First, an RL agent learns
basic strategies through trial and error. Then, traditional controllers (like those used in engineering)
adjust these strategies to improve precision in tasks requiring exact control, such as robotic movement
or orientation. This method excels in applications needing high accuracy by integrating established
control techniques. However, it has limitations: it works best for specific tracking tasks, requires
stable environments with slow changes, and overly forceful adjustments from controllers can disrupt
learning by causing mismatches between the agent’s actions and the desired behavior, leading to
unstable training.

We address DRL’s limitations in high-precision robotic control through three key contributions. First,
we propose a Hybrid Dual-Loop Control framework that integrates classical feedback principles
with DRL, combining goal-conditioned policies and complementary compensation strategies to
systematically reduce steady-state errors. Second, we develop a Lightweight Adviser Module, a
proportional-integral controller enabling generalizable error correction across Cartesian and SO(3)

Under review as a conference paper at ICLR 2026

spaces with only 2 tunable parameters. Third, we conduct Benchmark Validation demonstrating
(80% steady-state error reduction in 6 gymnasium-robotics environments and physical quadcopter
experiments.

2 PROBLEM MODELING

We begin by formalizing the control problem through a nonlinear time-invariant system governed by:

$ = f(s,a), (System dynamics)
9o = ga(s), (Achieved goal) W
ga = 9a(t), (Desired goal)

a =7(s,ga,g4), (Control policy)

here, t € RY is time, s € RP? denotes the state vector, a € R™ represents actions, and g,, gq € R”
correspond to achieved and desired goals respectively. The dynamics function f : RP x R™ — RP
captures the system’s nonlinear behavior. The achieved goal g, depends solely on the current state s,
while the desired goal g, is specified as a function of time ¢. The desired goal trajectory g,(t) may
be randomly generated or represent actual command signals.

To enable effective policy learning, we define an extended observation space, s., which serves as a
convenient representation for the input to our control policy 7r:

Se = [8, 94, 94] € RT"TP 2

This extended observation s, explicitly comprises the current system state s, the achieved system
output g,, and the desired system output g4. The tracking error e is then computed as:

€=9a—9d 3

The control objective is to derive a policy 7 : R? x R™ x R™ — R™ that maps these inputs (s, g4, gq)
to the control inputs a, aiming to maximize the cumulative reward:

[e.9]

R=) 1(ga,94;a) “
t=0

The reward function r(+) is designed to balance two critical aspects: penalizing deviations between
g, and g4 (tracking accuracy) and accounting for action a costs (control efficiency).

3 RELATED WORKS

Modern reinforcement learning (RL) systems for high-precision robotic control converge on four
complementary methodologies: Reward Shaping for error-sensitive policy gradients, Hindsight
Experience Replay (HER) for sparse-reward mitigation, Integrator Feedback for steady-state error
mitigating, and Model Predictive Path Integral (MPPI) for real-time control sequence optimization.

Reward shaping modifies the reward function by incorporating domain-specific shaping potentials
(e.g., distance-to-goal penalties) to amplify gradient signals for policy optimization (Burda et al.,
2018;Hu et al., 2020). While effective for accelerating convergence in robotic manipulation tasks,
improper shaping can distort the reward landscape, leading to suboptimal policies (Hu et al., [2020).
This limitation motivates adaptive shaping mechanisms that balance task-specific guidance with
reward function fidelity.

Hindsight Experience Replay (HER) enhances sample efficiency in goal-conditioned RL by rela-
beling failed trajectories with achieved goals, effectively converting failures into pseudo-successes
(Andrychowicz et al.| [2018)). This "failure-as-curriculum” paradigm is particularly impactful in
sparse-reward scenarios (e.g., precision grasping), though it risks overfitting to suboptimal subgoals
when reward horizons are misaligned (Moro et al., [2022). Recent extensions like Time-Aggregated
HER (TA-HER) mitigate this by enforcing temporal consistency in goal relabeling.

Integrator feedback augments observation spaces with cumulative error states (e.g., [e(t)dt),
enabling policies to implicitly compensate for steady-state errors akin to PID control (Tracey et al.,

Under review as a conference paper at ICLR 2026

2023). However, this approach introduces challenges: (1) integral windup in high-noise environ-
ments, and (2) increased observation dimensionality that degrades generalization in dynamic tasks.
These trade-offs necessitate hybrid designs that selectively activate integrator terms based on error
thresholds.

Model Predictive Path Integral (MPPI) is a sampling-based control method that optimizes action
sequences through stochastic trajectory rollouts, leveraging gradient-free optimization for non-convex
cost functions (Williams et al.}2015). Recent work combines MPPI with RL (e.g., RL-driven MPPI
(Qu et al.| 2024b)) to adaptively refine cost functions, bridging the gap between open-loop planning
and closed-loop policy learning.

4 ADVISER-ACTOR-CRITIC

4.1 FRAMEWORK

Interate with Evniroment Learning from Experience
4 "\ Update Update / \
Adviser gv Actor NN (Citic NN
PI() e (* |Se) j Qo([se @)

@ Ya Q Policy Entropy
—]

(%) Fil E—
P s Value
(cX9)
_ Ya"9a) (5,90 94) " \ Se, @
(s]

Experience

Environment

Figure 2: Interact with Environment: Policy operates through transformed operator
ng”(s, 9a:9d) = T4(S,Ga,adv(ga, ga)), where the adviser generates virtual goal g, to condi-
tion Actor’s decisions, integrating environmental observation s, achieved goal g,, and virtual goals
g.; Learn from Experience: Actor-Critic framework with policy network 74(+|s.) generating

actions and value network Qg (s, a) estimating returns.

The AAC framework, shown in Figure 2] employs a decoupled architecture with two specialized
components: an actor-training module (right) and an adviser-enhanced deployment system (left),
enabling plug-and-play integration of guidance mechanisms without modifying core policies. This
modular design allows reinforcement learning actors to optionally leverage task-specific advisers
during exploration, such as physics constraints for robotic manipulation or traffic rules for autonomous
driving, ensuring precision-critical applications maintain interpretability while improving adaptability.

This decoupled design underpins AAC’s central contribution: the “virtual goal” strategy, which
systematically modifies target states to amplify trajectory errors during training. By coupling control-
theoretic principles with RL optimization, this mechanism expedites exploration convergence through
exaggerated error signals while ensuring stability. Although the adviser breaks the MDP assumption
by using history to shape goals, the actor still works well because it treats the virtual goal like any
random target it was trained on—effectively seeing the world as Markovian. See Appendix [A]for
details.

4.2 ADVISER IMPLEMENTATION

The adviser module represents the conceptual centerpiece of our framework, offering systematic
error compensation through dynamic goal modulation. The theoretical validity and convergence

Under review as a conference paper at ICLR 2026

guarantees of this control strategy are rigorously established in Appendix[B} Grounded in control-
theoretic formalism, we establish its operational paradigm through the following mathematical
formulation:

Definition 4.1 (Adviser). The adviser module operates as a temporal compensator with memory per-
sistence, synthesizing corrective virtual goals (g,) through spatiotemporal analysis of goal trajectories.

Formally, given sequences of achieved goals {g((,,tfk) K, and desired goals {gétik) MK, where K
denotes the number of past time steps considered for historical analysis, the advisory transformation
generates regulated targets via:

g{") = adv (gff),gff); Mt) Q)

where M, denotes the time-variant memory construct encapsulating historical interaction data

(t)

{(gc(f*k), gétik))}szl. This memory architecture enables g\ synthesis by concurrently analyzing

long-term trends and dynamically adapting to immediate contextual deviations.

The adviser is conceptualized as a versatile component, capable of leveraging a wide array of advanced
control methodologies. However, for this study, we deliberately adopt a more straightforward
approach: a Proportional-Integral (PI) controller. This choice is primarily driven by the desire to
facilitate both theoretical analysis and reader comprehension. To ensure stable and effective control,
our implementation utilizes a modified PI controller (Li et al.,[2006)). This controller is specifically
designed to prevent integral windup—a common issue where large sustained errors cause the integral
term to accumulate excessively, leading to significant overshoots and slow recovery—and to keep
the control output within practical limits. The intelligent management of its integral component is
detailed in Equation [6]

g, (t) = Kpe(t) + K;I(t)
o, if I(t — At) + ae(t)At > o
I(t)=< -0, if I(t — At) + ae(t)At < —o
I(t— At) + ae(t)At, otherwise

6)

Here, e(t) = g,(t) — ga(t) is the error, and I(¢) is the accumulated error. K, is the proportional
gain, which scales the immediate impact of the current error e(t) on the control output. K is the
integral gain, which determines the influence of the accumulated error I (t). The parameter o defines
the saturation limits for the integral term I (¢), ensuring it remains within [—o, o] and thereby directly
implementing an anti-windup mechanism. The parameter « € {0, 1} acts as a switch: when o = 1,
the integral term I(¢) accumulates the error e(t), but only when the error magnitude |e(¢)| is within
a specific range defined by o. This prevents the integral term from growing uncontrollably when
the error is very large. At denotes the sampling interval (or control update period), assumed to be
constant across time steps. This design achieves three main goals: (1) It prevents the integral term
from ’winding up’ excessively, (2) It helps ensure the control output stays within practical boundaries
by limiting the integral contribution, and (3) It helps maintain high accuracy once the system has
settled. As detailed in Algorithm [T} this approach is well-suited for reinforcement learning because it
naturally keeps control actions within safe limits and provides strong guarantees for stable system
behavior by adapting how the integral term accumulates error.

Degenerate Configuration Analysis: Under parameter configuration K, = 1.0, K; = 0.0 the
virtual goal generation reduces to:

9o =90 — € =9ga— (9a — 9d) = g

This degenerate form reduces error compensation mechanisms, rendering the Adviser module
functionally identical to the baseline Actor policy. The framework thereby ensures performance at
minimum comparable to conventional actor-critic implementations.

5 EXPERIMENTS

Our evaluation of AAC is structured in three stages. First, we present a minimal illustrative example
to elucidate the adviser’s core mechanism. Subsequently, benchmark tests (Figure [3]) are conducted to

Under review as a conference paper at ICLR 2026

Algorithm 1 Dual-Mode Adviser Implementation // K, = 1.0 yields near optimal performance

Position Advisory Controller: Orientation Advisory Controller:
Require: Require:
1: Pa;Pd € R3 // Actual and desired posi- 1: gq,9q € H // Observed and reference quaternions
tion vectors (m) 2: Kp, K;, 0, At I/ o: Tolerance threshold (rad)
2: Ky, K;, 0, At I/ o Position error thresh- Ensure:
old (m) 3: q// Compensated orientation quaternion
Ensure: 4: Qerr < Qq ® q;l // Quaternion error calculation
3. p // Compensated position output (=~ [cos g, sin gn])
4: Ap < Pa — Pq // Compute position 5: v «— Im(qerr) // Extract rotation vector component
error vector 6: if |[v]| < o/2 then // Check against angular bound
5: if ||Ap|| < o then 7: I« clip(I+v-At,—0/2,0/2) // Angular
6: I« clip(I+ Ap - At,—0,0) // integral state bounding
Integral state clamping within bounds 8: end if
7: end if 9: Aq « [\/1—||v||?, =K,v — K;I] // Construct
8: P < po — (K,Ap+ K1) // PlLregula- corrective quaternion
tion in Cartesian coordinates 10: q <+ Aq ® q, // Apply orientation correction

through composition

compare its performance against state-of-the-art Goal-Conditioned Reinforcement Learning (GCRL)
methods under standardized conditions. Finally, real-world experiments validate its effectiveness
on a quadrotor platform subjected to environmental disturbances (Figure). All simulations were
performed on a testbed configured with Windows 10, an Intel Core 17-12700K processor, 64 GB
RAM, and an NVIDIA GeForce RTX 3060 Ti GPU. Comprehensive experimental settings and
algorithm configurations are detailed in Appendix [C]

Figure 3: Benchmark environments from gymnasium-robotics (Plappert et al., 2018): (a)
Fetch Manipulator - 7-DOF serial manipulator with 4D continuous action space; (b) Shadow Hand
- 24-DOF dexterous hand with 20D torque control.

(a) Tilted Left (b) Neutral (c) Tilted Right

Figure 4: Illustration of the quadcopter’s orientations.

5.1 How DOES THE ADVISER REDUCE STEADY-STATE ERRORS?

For the purpose of elucidating the functional mechanism of the adviser module, and not as a
comprehensive performance evaluation, a canonical mass-spring-damper system is implemented.
This simplified setup is governed by the second-order differential equation ma + c& + kxz = Feontrols
where the actor employs linear feedback control Fiopior = —15.0-2 —3.0- 2. With system parameters
fixedat m = 1.0kg, ¢ = 0.5N - s/m, k = 2.0 N/m, and initial conditions zy = 0.0 m, the control
objective is set to z4 = 1.0 m. This experimental configuration serves to systematically demonstrate
the framework’s capability to compensate for residual tracking errors through adviser-guided policy
refinement (Algorithm|T).

Under review as a conference paper at ICLR 2026

e= == Desired Goal Virtual Goal === Actual Positon

1.50 4 1 1

1.25 1 1 1
E 100 of = S\C = +=1 =4+ -
g
2075 g g
g
£~0.50 1 1

0.25 1 1

K,=1.0, K;i=0.0 K,=1.0, K=1.0 K,=1.0, Ki=4.0
0.00 T T T T T T T T T T T T
0 1 2 3 4 5 0 4 5 0 1 2 3 4 5

1. 2 3
Time (s)

Figure 5: Adviser-Guided Policy Refinement: (left) Baseline steady-state error; (middle) Good
adviser enables convergence via virtual goal adaptation; (right) Bad adviser induces instability.
(0 = oo isolates K; effect; see Appendix@for other o values).

Figure. [3] illustrates the error compensation mechanism: Without the adviser (left), the system
shows 10% steady-state error (0.9 m vs. 1.0 m target) due to policy suboptimality. With proper
adviser integration (middle), dynamic virtual goals overcompensate the reference trajectory, enabling
asymptotic convergence to x4. Improper parameterization (right) causes divergent oscillations,
highlighting the need for stability constraints.

5.2 DOES THE ADVISER IMPROVE PERFORMANCE?

We benchmark on two gymnasium-robotics environments: Fetch Manipulator and the challenging
24-DOF Shadow Hand. The Shadow Hand’s complex, tendon-driven dynamics pose significant
challenges: conventional methods (e.g., PID(Li et al.,|2006))) fail due to linearity assumptions, while
mainstream DRL (e.g., SAC(He et al.| 2020), PPO(Schulman et al., 2017)) struggles with sparse
rewards and approximation errors in multi-contact scenarios. Performance is assessed over 1,000 test
episodes per environment, primarily using steady-state error for control precision. Other comparative
results are detailed in Appendix [DJand Appendix [E]

Reach (MRN) Pick (MRN) Slide (MRN)

w/ adv errors.
[0.00, 0.01) 92.5%
[0.01, 0.05) 6.5%
[0.05, 0.10) 0.0%
[0.10, inf) 1.0%

w/ adv errors.

w/ adv errors.
[0.00, 0.01) 0.0%

[0.01, 0.05) 1.2%
[0.05,0.10) 2.9%
1010, inf) 95.9%

Ww/o adv errors
[0.00, 0.01) 0.0%
[0.01, 0.05) 99.0%
[0.05, 0.10) 0.0%
[0.10, inf) 1.0%

Ww/o adv errors
[0.00, 0.01) 0.4%
[0.01,0.05) 1.9%
[0.05,0.10) 2.9%
1010, inf) 94.8%

Block Rotate Parallel (MRN) Block Rotate XYZ (MRN) Egg Rotate (MRN)

w/ adv errors.
[0.00, 0.01) 39.3%
[0.01, 0.05) 26.4%
[0.05,0.10) 7.9%
[0.10, inf) 26.4%

w/ adv errors. w/ adv errors.

[0.00, 0.01) 36.2%

[0.10, inf) 16.1% [0.10, inf) 8.8%

Ww/o adv errors
[0.00, 0.01) 0.4%
[0.01, 0.05) 29.7%
[0.05, 0.10) 35.0%
[0.10, inf) 34.9%

Ww/o adv errors
[0.00, 0.01) 0.9%
[0.01, 0.05) 48.5%
[0.05, 0.10) 27.8%
[0.10, inf) 22.8%

Ww/o adv errors
[0.00, 0.01) 0.3%
[0.01, 0.05) 38.6%
[0.05, 0.10) 41.5%
[0.10, inf) 19.6%

Figure 6: Steady-State Error Analysis Across 6 Benchmark Environments: Column Visualization
of AAC’s Control Precision. AAC is evaluated using Metric Residual Networks (MRN) (Liu et al.,
2023)). The performance is assessed through steady-state error across six benchmark environments.
In six of these environments, AAC demonstrates satisfactory results.

Empirical analysis across six Gymnasium-Robotics environments (Figure [)) demonstrates AAC’s
remarkable ability to reduce steady-state error (SSE) and enable high-precision scenarios (SSE <
0.01) significantly more often than baselines. Quantitative results (Table[I)) show an average 80%
SSE reduction in tasks like Reach, Pick, BlockRotate Parallel/XYZ, and EggRotate.

Under review as a conference paper at ICLR 2026

Overall, these findings highlight the exceptional effectiveness of the AAC framework in minimizing
control steady-state errors, underscoring its potential for enhancing precision in robotic control tasks.

Table 1: Performance Comparison: AAC Framework vs. Reinforcement Learning Baselines (SAC(He
et al., 2020), PPO(Schulman et al.,|2017)), DreamerV3(Hafner et al.| 2025), MRN(Liu et al.| 2023)),

WN(Pitis et al.| 2019)))

Environment Method SSE Success Rate (%)
w/o Adviser w/ Adviser w/o Adviser w/ Adviser
SAC 0.023 £0.003 0.000 £+ 0.000 100.0+0.0 100.0+£0.0
PPO 0.027 £0.004 0.001 £ 0.002 100.0+0.0 100.0 £0.0
Reach DreamerV3 0.007 £ 0.001 0.000 + 0.000 100.0£0.0 100.0 0.0
MRN 0.036 £ 0.003 0.000 £ 0.001 9.0+ 04 99.0 £ 04
WN 0.033 £0.002 0.000 £ 0.000 100.0+ 0.0 100.0+£0.0
SAC 0.023 £0.008 0.003 +£0.004 92.0+1.2 98.0 = 0.6
PPO 0.037 £0.036 0.005 £ 0.005 893+14 96.9 + 0.8
Pick DreamerV3 0.019 £0.015 0.004 £ 0.004 8954+ 13 98.3 + 0.6
MRN 0.020 £0.010 0.011 £0.017 91.7+1.2 896+ 14
WN 0.045 £0.047 0.008 £ 0.008 835+ 1.5 93.9 + 1.0
SAC 0.551 £ 0.246 0.583 £ 0.233 2.1 +0.7 1.7+ 0.6
PPO 0.535 £0.234 0.543 £0.226 34+038 1.5+0.6
Slide DreamerV3 0.549 + 0.235 0.563 £+ 0.230 2.0 £ 0.6 1.7+ 0.6
MRN 0.563 £ 0.227 0.567 £ 0.222 23 +0.7 1.2+0.5
WN 0.545 +£ 0.239 0.561 £ 0.227 29 +0.8 1.4+0.5
SAC 0.064 £0.048 0.017 £ 0.030 809 + 1.7 90.1 1.3
Block PPO 0.053 £0.026 0.011 £+ 0.018 88.7+ 1.4 949 + 1.0
Rotate DreamerV3 0.051 £ 0.017 0.005 + 0.007 97.1 0.7 994 + 0.3
Parallel MRN 0.268 +0.471 0.239 £ 0.496 652+ 2.1 73.6 £ 2.0
WN 0.043 £0.020 0.004 £0.005 952+1.0 97.2 £ 0.8
SAC 0.092 £0.083 0.057 £0.083 72.3+20 82.0 = 1.7
Block PPO 0.067 £0.046 0.015 £ 0.023 805+ 1.8 91.6 1.2
Rotate DreamerV3 0.048 £+ 0.026 0.006 + 0.011 8904 4+13 95.6 0.9
XYZ MRN 0.074 £0.060 0.057 £0.107 77.2+1.8 83.8 £ 1.6
WN 0.052 £0.029 0.010 £ 0.016 880+ 1.4 95.2 + 1.0
SAC 0.062 £0.025 0.013 £+ 0.018 8724+ 1.5 955+ 1.0
Egg PPO 0.062 £0.046 0.025 + 0.033 83.6 1.6 89.6 - 1.4
Rotate DreamerV3 0.050 £ 0.021 0.020 + 0.017 929+ 1.2 96.9 + 0.8
MRN 0.072 £0.042 0.028 £+ 0.029 804+ 1.8 91.2+1.3
WN 0.052 £0.027 0.015 £ 0.017 887+ 1.4 97.6 = 0.7

Note: (1) Values are mean + 2 std (bootstrap: 1000 resamples of 500 episodes from 1000 runs). (2) Success
criteria and SSE definitions: SSE < 0.05 (first 3 environments, meter-based) and < 0.10 (last 3 environments,
radius-based). (3) Bold values indicate better performance.

However, AAC exhibits critical limitations in environments like S1ide, where the absence of a
steady-state regime makes traditional SSE metrics incompatible. This highlights AAC’s current
algorithmic constraints in handling tasks requiring prolonged precision or stochastic contact dynamics.
While validating AAC’s superior efficacy in explicit steady-state tasks, these findings also underscore
the need for further refinement to address challenges in complex, dynamic environments.

5.3 DEPLOYMENT ON A REAL-WORLD QUADCOPTER

To evaluate the AAC framework’s effectiveness in practical scenarios, we conducted physical experi-
ments testing its ability to refine suboptimal actors under real-world noisy conditions. Specifically, we
implemented adviser-guided control for quadcopter attitude regulation tasks with various non-ideal
factors and characterized transient responses. Experimental results quantified significant improve-
ments in steady-state angular errors and settling time, demonstrating the framework’s capability to
maintain sub-degree attitude precision in practical quadcopter operation.

Under review as a conference paper at ICLR 2026

Experimental validation on a 1.40kg o i .
Pixhawk4/ROS quadcopter platform confirmed 1able 2: Optimized Adviser Parameters for Atti-
the efficacy of the Adviser-Actor-Critic (AAC) tude Control (5 mm CoM Offset)

framework. Simulation-trained controllers

maintained attitude stability on hardware (1° K; o SSE (°) Settling Time (s)
steady-state error due to sim-to-real shift), and

the Adviser module (Algorithm[I)) further 882 38 (1)83 32?5
reduced angular error to 0.03° by compensating 0.10 2.0 0.03 3.25

for unmodeled perturbations. However, this 0.20 20 0.02 421
enhanced precision introduced a performance 0.05 10.0 0.03 372
tradeoff in transient response (Table[2): AAC’s 0.10 10.0 0.03 3.55

3.25 s settling time was slower than the native 0.20 10.0 0.03 478
Pixhawk4 cascade PID’s 0.91 s. This disparity

is attributed to the Adviser’s outer-loop integral ~ Cascade PID 0.03 0.91

action causing phase lag, contrasting with PID’s

direct inner-loop error correction. Note: (1) 5° step command inputs; (2) Fixed

proportional gain K, = 1.0.

Roll Angle/®

Roll Angle/®
AN w s o

10.5° Tolerance
—— 5°Line

—— Roll Angle

== Goal

+0.5° Tolerance
—— 5°Line

—— RollAngle

-~ Goal

+0.5° Tolerance
—— 5°Line

—— RollAngle

-~ Goal

0 e !
355 36.0 365 37.0 37.5 38.0 385 39.0 395 31 32 33 34 3 3 77.5 78.0 785 79.0 79.5 80.0 80.5 81.0 81.5
ime/s Time/s Time/s

(a) Baseline actor (74) (b) Adviser-enhanced (wgd”) (c) Cascade PID controller

Figure 7: Comparative performance analysis of attitude control strategies. Attitude control perfor-
mance comparison. AAC achieves sub-degree precision via sequential compensation (Algorithm [T)
in hardware validation.

6 DISCUSSION AND CONCLUSION

In conclusion, the Adviser-Actor-Critic (AAC) framework successfully bridges classical feedback
control principles with modern reinforcement learning, delivering significant enhancements in
control precision for complex robotic systems. Our experimental results demonstrate that AAC
achieves an average > 80% steady-state error reduction across 6 gymnasium-robotics benchmarks
(Fetch/ShadowHand) and attains sub-degree precision in real-world quadcopter attitude control,
consistently outperforming standard RL algorithms. Theoretically, we have rigorously established
that AAC guarantees asymptotic stability and reliable steady-state error elimination under qualified
actor conditions. The modular architecture of AAC facilitates plug-and-play integration, offering
both improved adaptability and enhanced interpretability for robotic control applications.

Limitations. While the AAC framework demonstrates significant performance improvements, its
effectiveness is contingent upon several key constraints: (1) The current implementation is primarily
applicable to quasi-static processes where reference trajectories evolve at slower rates than the
underlying system dynamics; (2) The framework requires actor policies with basic decoupling
capabilities to ensure stable operation; (3) Performance is dependent on the quality of the baseline
actor policy, with severely suboptimal actors presenting challenges for effective adviser guidance.

Future works. Future research directions will focus on extending the AAC framework to highly
dynamic environments, developing adaptive mechanisms for automated adviser parameter tuning,
and enhancing robustness when working with severely suboptimal baseline actors.

Reproducibility statement. The implementation code is available at: https://anonymous,
4open.science/r/Adviser—Actor-Critic-8AC5/. Comprehensive experimental set-
tings and configuration details are documented in Appendix [C]

Large Language Models. We thank Large Language Models for their assistance in code development,
algorithm implementation, and technical writing refinement throughout this research.

https://anonymous.4open.science/r/Adviser-Actor-Critic-8AC5/
https://anonymous.4open.science/r/Adviser-Actor-Critic-8AC5/

Under review as a conference paper at ICLR 2026

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight Experience Replay,
February 2018. URL http://arxiv.org/abs/1707.01495,

Rakesh P. Borase, D. K. Maghade, S. Y. Sondkar, and S. N. Pawar. A review of PID control,
tuning methods and applications. International Journal of Dynamics and Control, 9(2):818-827,
June 2021. ISSN 2195-268X, 2195-2698. doi: 10.1007/s40435-020-00665-4. URL https |
//link.springer.com/10.1007/s40435-020-00665—-4.

A. Bousbaine, M. H. Wu, and G. T. Poyi. Modelling and simulation of a quad-rotor helicopter. In
6th IET International Conference on Power Electronics, Machines and Drives (PEMD 2012), pp.
1-6, March 2012. doi: 10.1049/cp.2012.0318. URL https://ieeexplore.ieee.org/
document /6242170,

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation, October 2018. URL http://arxiv.org/abs/1810.12894.

Mark L. Darby and Michael Nikolaou. MPC: Current practice and challenges. Control Engi-
neering Practice, 20(4):328-342, April 2012. ISSN 0967-0661. doi: 10.1016/j.conengprac.
2011.12.004. URL https://www.sciencedirect.com/science/article/pii/
S0967066111002528.

Marc Peter Deisenroth and Carl Edward Rasmussen. PILCO: A model-based and data-efficient
approach to policy search. In Proceedings of the 28th International Conference on International
Conference on Machine Learning, ICML’11, pp. 465-472. Omnipress, Madison, WI, USA, June
2011. ISBN 978-1-4503-0619-5.

Tenoch Gonzalez, Jaime A. Moreno, and Leonid Fridman. Variable gain super-twisting sliding
mode control. IEEE Transactions on Automatic Control, 57(8):2100-2105, August 2012. ISSN
1558-2523. doi: 10.1109/TAC.2011.2179878. URL |https://ieecexplore.ieece.org/
document /6104366,

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, August 2018. URL
http://arxiv.org/abs/1801.01290.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse con-
trol tasks through world models. Nature, 640(8059):647-653, April 2025. ISSN 1476-
4687. doi: 10.1038/s41586-025-08744-2. URL https://www.nature.com/articles/
s41586-025-08744-2\

Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-MPC2: scalable, robust world models for
continuous control, March 2024. URL http://arxiv.org/abs/2310.16828.

Qiwei He, Liansheng Zhuang, and Houqiang Li. Soft Hindsight Experience Replay, February 2020.
URLhttp://arxiv.org/abs/2002.02089.

Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng Wu,
and Changjie Fan. Learning to Utilize Shaping Rewards: A New Approach of Reward Shaping,
November 2020. URL http://arxiv.org/abs/2011.02669.

Jemin Hwangbo, Inkyu Sa, Roland Siegwart, and Marco Hutter. Control of a quadrotor with
reinforcement learning. /IEEE Robotics and Automation Letters, 2(4):2096-2103, October 2017.
ISSN 2377-3766. doi: 10.1109/LRA.2017.2720851. URL https://ieeexplore.iecee,
org/document /7961277,

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: model-based
policy optimization. In Proceedings of the 33rd International Conference on Neural Information
Processing Systems, number 1122, pp. 12519—-12530. Curran Associates Inc., Red Hook, NY, USA,
December 2019.

10

http://arxiv.org/abs/1707.01495
https://link.springer.com/10.1007/s40435-020-00665-4
https://link.springer.com/10.1007/s40435-020-00665-4
https://ieeexplore.ieee.org/document/6242170
https://ieeexplore.ieee.org/document/6242170
http://arxiv.org/abs/1810.12894
https://www.sciencedirect.com/science/article/pii/S0967066111002528
https://www.sciencedirect.com/science/article/pii/S0967066111002528
https://ieeexplore.ieee.org/document/6104366
https://ieeexplore.ieee.org/document/6104366
http://arxiv.org/abs/1801.01290
https://www.nature.com/articles/s41586-025-08744-2
https://www.nature.com/articles/s41586-025-08744-2
http://arxiv.org/abs/2310.16828
http://arxiv.org/abs/2002.02089
http://arxiv.org/abs/2011.02669
https://ieeexplore.ieee.org/document/7961277
https://ieeexplore.ieee.org/document/7961277

Under review as a conference paper at ICLR 2026

J. Kaloust and Z. Qu. Robust control design for nonlinear uncertain systems with an unknown
time-varying control direction. IEEE Transactions on Automatic Control, 42(3):393-399, March
1997. ISSN 1558-2523. doi: 10.1109/9.557583. URL https://ieeexplore.ieee.orqg/
document /557583l

B. Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil
Yogamani, and Patrick Pérez. Deep Reinforcement Learning for Autonomous Driving: A Survey,
January 2021. URL |http://arxiv.org/abs/2002.00444,

Sergey Levine and Vladlen Koltun. Learning complex neural network policies with trajectory
optimization. In Proceedings of the 31st International Conference on Machine Learning, pp. 829—
837. PMLR, June 2014. URL https://proceedings.mlr.press/v32/levineld,
htmll

Yun Li, Kiam Heong Ang, and G.C.Y. Chong. PID control system analysis and design. IEEE Control
Systems Magazine, 26(1):32-41, February 2006. ISSN 1941-000X. doi: 10.1109/MCS.2006.
1580152. URL https://ieeexplore.ieee.org/abstract/document/1580152.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, July 2019.
URLhttp://arxiv.org/abs/1509.02971.

Bo Liu, Yihao Feng, Qiang Liu, and Peter Stone. Metric residual networks for sample efficient
goal-conditioned reinforcement learning. In Proceedings of the Thirty-seventh AAAI Conference
on Artificial Intelligence and Thirty-fifth Conference on Innovative Applications of Artificial Intelli-
gence and Thirteenth Symposium on Educational Advances in Artificial Intelligence, volume 37
of AAAI'23/TAAI’23/EAAL’23, pp. 8799-8806. AAAI Press, February 2023. ISBN 978-1-57735-
880-0. doi: 10.1609/aaai.v37i7.26058. URL https://doi.org/10.1609/aaai.v3717}
26058

Lorenzo Moro, Amarildo Likmeta, Marcello Restelli, and Enrico Prati. Goal-Directed Planning via
Hindsight Expe- rience Replay. 2022.

Kim-Doang Nguyen and Harry Dankowicz. Adaptive control of underactuated robots with unmodeled
dynamics. Robotics and Autonomous Systems, 64:84-99, February 2015. ISSN 0921-8890.
doi: 10.1016/j.robot.2014.10.009. URL https://www.sciencedirect.com/science/
article/pii/S09218890140023009.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven Exploration by
Self-supervised Prediction, May 2017. URL http://arxiv.org/abs/1705.05363.

Silviu Pitis, Harris Chan, Kiarash Jamali, and Jimmy Ba. An inductive bias for distances: Neural
nets that respect the triangle inequality. September 2019. URL https://openreview.net/
forum?id=HJeiDpVEFPr.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell,
Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, Vikash Kumar, and Wojciech
Zaremba. Multi-goal reinforcement learning: challenging robotics environments and request for
research, March 2018. URL http://arxiv.org/abs/1802.09464.

Chaoran Qu, Lin Cheng, Shengping Gong, and Xu Huang. Dynamic-matching adaptive sliding mode
control for hypersonic vehicles. Aerospace Science and Technology, 149:109159, June 2024a.
ISSN 1270-9638. doi: 10.1016/j.ast.2024.109159. URL https://www.sciencedirect,
com/science/article/pii/S127096382400292X.

Chaoran Qu, Lin Cheng, Shengping Gong, and Xu Huang. Experience replay enhances excitation
condition of neural-network adaptive control learning. Journal Of Guidance, Control, And
Dynamics, 48(3):496-507, March 2025. ISSN 0731-5090, 1533-3884. doi: 10.2514/1.G008162.
URLhttps://arc.aiaa.org/doi/10.2514/1.G008162.

Yue Qu, Hongqing Chu, Shuhua Gao, Jun Guan, Haoqi Yan, Liming Xiao, Shengbo Eben Li, and
Jingliang Duan. RL-driven MPPI: Accelerating online control laws calculation with offline policy.
IEEE Transactions on Intelligent Vehicles, 9(2):3605-3616, February 2024b. ISSN 2379-8904.

11

https://ieeexplore.ieee.org/document/557583
https://ieeexplore.ieee.org/document/557583
http://arxiv.org/abs/2002.00444
https://proceedings.mlr.press/v32/levine14.html
https://proceedings.mlr.press/v32/levine14.html
https://ieeexplore.ieee.org/abstract/document/1580152
http://arxiv.org/abs/1509.02971
https://doi.org/10.1609/aaai.v37i7.26058
https://doi.org/10.1609/aaai.v37i7.26058
https://www.sciencedirect.com/science/article/pii/S0921889014002309
https://www.sciencedirect.com/science/article/pii/S0921889014002309
http://arxiv.org/abs/1705.05363
https://openreview.net/forum?id=HJeiDpVFPr
https://openreview.net/forum?id=HJeiDpVFPr
http://arxiv.org/abs/1802.09464
https://www.sciencedirect.com/science/article/pii/S127096382400292X
https://www.sciencedirect.com/science/article/pii/S127096382400292X
https://arc.aiaa.org/doi/10.2514/1.G008162

Under review as a conference paper at ICLR 2026

doi: 10.1109/T1v.2023.3348134. URL https://ieeexplore.ieee.org/document/
10376303k

Ramya Ramakrishnan, Ece Kamar, Debadeepta Dey, Julie Shah, and Eric Horvitz. Discovering Blind
Spots in Reinforcement Learning, May 2018. URL http://arxiv.org/abs/1805.08966.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms, August 2017. URL http://arxiv.org/abs/1707.06347,

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by
PID lagrangian methods, July 2020. URL http://arxiv.org/abs/2007.03964,

D. Swaroop, J.K. Hedrick, P.P. Yip, and J.C. Gerdes. Dynamic surface control for a class of nonlinear
systems. IEEE Transactions on Automatic Control, 45(10):1893—-1899, October 2000. ISSN
1558-2523. doi: 10.1109/TAC.2000.880994. URL https://ieeexplore.ieee.orqg/
document /880994,

Brendan D. Tracey, Andrea Michi, Yuri Chervonyi, Ian Davies, Cosmin Paduraru, Nevena Lazic,
Federico Felici, Timo Ewalds, Craig Donner, Cristian Galperti, Jonas Buchli, Michael Neunert,
Andrea Huber, Jonathan Evens, Paula Kurylowicz, Daniel J. Mankowitz, Martin Riedmiller, and
The TCV Team. Towards practical reinforcement learning for tokamak magnetic control, October
2023. URL http://arxiv.org/abs/2307.11546.

V. Utkin. Variable structure systems with sliding modes. IEEE Transactions on Automatic Control,
22(2):212-222, April 1977. ISSN 1558-2523. doi: 10.1109/TAC.1977.1101446. URL https:
//ieeexplore.ileee.org/document/1101446.

Vivien van Veldhuizen. Autotuning PID control using actor-critic deep reinforcement learning,
November 2022. URL http://arxiv.org/abs/2212.00013\

Thomas Wanner. Linearization of random dynamical systems. In C. K. R. T. Jones, U. Kirchgraber,
and H. O. Walther (eds.), Dynamics Reported: Expositions in Dynamical Systems, pp. 203—-268.
Springer, Berlin, Heidelberg, 1995. ISBN 978-3-642-61215-2. doi: 10.1007/978-3-642-61215-2_4.
URL https://doi.org/10.1007/978-3-642-61215-2_4.

Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model predictive path integral control
using covariance variable importance sampling, October 2015. URL http://arxiv.org/
abs/1509.011409.

Tengjie Zheng, Lin Cheng, Shengping Gong, and Xu Huang. Model incremental learning of
flight dynamics enhanced by sample management. Aerospace Science and Technology, 160:
110049, May 2025. ISSN 1270-9638. doi: 10.1016/j.ast.2025.110049. URL https://www!
sciencedirect.com/science/article/pii/S1270963825001208.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and
Qing He. A Comprehensive Survey on Transfer Learning, June 2020. URL http://arxiv,
org/abs/1911.02685.

12

https://ieeexplore.ieee.org/document/10376303
https://ieeexplore.ieee.org/document/10376303
http://arxiv.org/abs/1805.08966
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2007.03964
https://ieeexplore.ieee.org/document/880994
https://ieeexplore.ieee.org/document/880994
http://arxiv.org/abs/2307.11546
https://ieeexplore.ieee.org/document/1101446
https://ieeexplore.ieee.org/document/1101446
http://arxiv.org/abs/2212.00013
https://doi.org/10.1007/978-3-642-61215-2_4
http://arxiv.org/abs/1509.01149
http://arxiv.org/abs/1509.01149
https://www.sciencedirect.com/science/article/pii/S1270963825001208
https://www.sciencedirect.com/science/article/pii/S1270963825001208
http://arxiv.org/abs/1911.02685
http://arxiv.org/abs/1911.02685

Under review as a conference paper at ICLR 2026

A SCENARIO DEFINITIONS AND DEPLOYMENT ANALYSIS

Based on the problem modeling presented in Section |2 we define and contrast two scenarios: the
”Random Target Scenario” (an MDP) where the desired goal g, is randomly generated, and the
”Virtual Target Scenario” (a POMDP) where g, is influenced by an unobservable internal state of an
”Adviser”. The key differences between these two scenarios are summarized in Table 3]

Table 3: Scenario Comparison

Characteristic Random Target Scenario Virtual Target Scenario
True State Set = [8,57 dat, gd,t} Ty = [St, Ga,t)9dt; It]
Agent’s Observation 0t = [8t,Ga,ts Ga,t] 0t = [8t,Gats Gu.t]

Desired Goal g, / Virtual Exogenous, randomly gener- Generated by Adviser with un-
Goal g, + Source ated. observable internal state [;.

We now analyze the technical feasibility of deploying an Actor 7y trained in the random target
scenario directly into the virtual target scenario. This deployment is fundamentally feasible due to
three critical aspects.

Firstly, input interface compatibility is ensured. The policy 7,g is defined as a mapping myang :
S. = P(A), where S, = RP*27 i the extended observation space. In the random target scenario,
Trand EXPECts an observation oy = [sy, Gt gd7t]. In the virtual target scenario, the agent receives
an observation o; = [S¢, a1, gy,¢)- This direct correspondence, where the virtual goal g, ; takes
the place of the desired goal g4 in the observation vector, guarantees that the domain of 7yng
perfectly aligns with the observable output of the POMDP environment, allowing for direct execution:
a; ~ Trand(-|o¢). This implies that g,, ; must be structurally and semantically compatible with g ;.

Secondly, the reactive nature of 7,,q facilitates its seamless integration. As an MDP-trained policy,
Trand 18 inherently memoryless, determining actions a; solely based on the current observation o;. It
does not require maintaining a belief state b;(I) over the unobservable internal state I; of the Adviser,
nor does it rely on the history of observations h;. From the Actor’s perspective, the observed virtual
goal g, + is simply an exogenous, fully revealed component of the current observation oy, irrespective
of its generation mechanism. This reactive operational mode ensures the Actor can continuously
generate control actions within the virtual target environment, maintaining functional viability.

Thirdly, the Virtual Target Scenario can be understood as a specific instance of the Random Target
Scenario. The Random Target Scenario defines a broad context where the desired goal g4 is
generated exogenously and randomly, implying it can take on any value within the defined goal
space G according to some distribution. In contrast, the Virtual Target Scenario features a more
specific, albeit complex, generative process for the observed virtual goal g,, ; driven by an Adviser
with an unobservable internal state I;. Crucially, the virtual goals g, ; produced by this Adviser are
assumed to fall within the same domain and range of values as the desired goals g4 ; encountered in
the Random Target Scenario. Therefore, from the Actor’s perspective, the Virtual Target Scenario
presents a particular sequence of virtual goals that are a subset of, or at least consistent with, the goal
distributions it was trained to handle in the more general Random Target Scenario.

13

Under review as a conference paper at ICLR 2026

B ASSUMPTIONS AND PROOFS FOR STEADY-STATE ERROR ELIMINATION

This appendix rigorously establishes the conditions under which the Adviser-Actor-Critic (AAC)
framework, particularly the PI-based adviser, guarantees the elimination of steady-state errors. The
analysis relies on standard control-theoretic assumptions regarding system behavior and the properties
of the learned actor policy, leveraging a local linearization approach to enable time-domain and
frequency-domain perspectives.

System Model and Error Definition As defined in Section 2] the system dynamics are given by
$ = f(s, a), with an output mapping g, = ¢(s). The desired output is g; = ¥ (¢). The tracking
error, consistent with its definition in Section[2} is e(t) = g4(t) — ga(?).

Adyviser and Actor Interaction The Adviser module generates a virtual goal g, (¢) based on the
current tracking error e(t) using a modified Proportional-Integral (PI) control law, as detailed in
Algorithm[T]and Equation[6]of the main text:

g, (t) = ga(t) — [er(t) + K; /Ot 6(7')de| @)

The Actor’s policy 7 takes the current system state s(t), g, (t), and the virtual goal g, (t) as input
to produce the control action a(t), as introduced in Section [2| (specifically, in the definition of the
control policy 7):

a(t) = m(s(t),9a(t), gv(t)) ®

To facilitate the analysis of the closed-loop system using linear control theory, we make the following
assumptions regarding the system dynamics and the learned actor policy. Assumptions[B.T|and[B.2]
characterize the linearized dynamics of the plant, which, when coupled with the actor’s policy, form
the inner control loop.

Assumption B.1 (Local Linearity of Error Dynamics). In a sufficiently small neighborhood around
the desired operating point (where g, = g4), the system dynamics relating the control action a(t)
to the tracking error e(t) can be approximated by a linear time-invariant (LTI) model. Specifically,
(k)

the k-th order derivative of the i-th error component e;”’ is modeled as a linear combination of

lower-order derivatives ey) (for I < k) and the control input deviation variables u, plus a disturbance

term d;.
n k—

egk) = — Z aijley) + Z biju]' + CL', (9)
j=11= j=1

—

where:

. egk): k-th order derivative of the i-th component of the tracking error vector e(t) (as

defined in Section , where ¢;(t) = g (t) — gg) (t). Here, gc(f)(t) and gg’) (t) are the i-th
components of the achieved goal g, (¢) and desired goal g4(t), respectively.

* u;: The j-th component of the control input deviation vector u(t), defined as u; = a; —aq;,
where aq_; is the j-th component of the steady-state control action a4 required to maintain

9o = gd-

)
J

(k)

i

* a1, bi;: Time-invariant coefficients quantifying the influence of e
tively.

and u; one; ’, respec-

. cii: Disturbance term accounting for unmodeled nonlinearities, external perturbations, and
the constant offset from the steady-state action ag.

This assumption holds under the premise that the system operates within a small neighborhood of the
equilibrium point (Wanner, |1995)), where higher-order nonlinear terms in the Taylor expansion of the
true dynamics are negligible. This local linearity enables the use of linear control theory for stability
analysis and controller design.

14

Under review as a conference paper at ICLR 2026

Taking the Laplace transform of the error dynamics under zero initial conditions yields:

23

j=1

k—

,_.

aijis'Bj(s) + Y bi;Uj(s) + Di(s), (10)
j=1

=0

where F;(s), U;(s), and D;(s) denote the Laplace transforms of e;(t), u;(t), and d;(t), respectively.
This equation can be compactly expressed in matrix form as:

A,ys(s)E(s) = By, U(s) + D(s), (11)

where Ay, (s) is a polynomial matrix in s representing the system’s inherent dynamics, and B, is
a constant matrix representing the input mapping.

st S0 arst Yo ains!
Agys(s) = : : (12)
Z;:ol anys' ceosh Zf;ol Anni s’
bir -+ bim
bnl e bnm

Assumption B.2 (Strict Diagonal Dominance). The matrix A, (s) is strictly diagonally dominant
for all s in the closed right-half complex plane (Re(s) > 0). That is, for every row i = 1,2, ..., n, the
following inequality holds:

I[Asys(s)]ii| > Z| sys(8)lijl, Vs with Re(s) > 0. (14)
J#i

Assumptlonm guarantees the invertibility of A, (s) over the region of interest, which is crucial
for defining the system’s transfer function. Solving for the error vector from Equation[IT]yields:

mg:A%@rﬂ&wwg+D@] (15)

This expression provides the Laplace-domain representation of the error signals in response to both
the control input deviations U (s) and disturbances D(s).

Assumption B.3 (Qualified Actor Policy and Linearized Inner Loop). The reinforcement learning
process successfully trains an actor policy 7 such that, when combined with the plant, the resulting
inner control loop (from virtual goal g, to achieved goal g,) behaves as a stable linear time-invariant
system in the vicinity of the operating point. Formally, we assume that the closed-loop system formed
by the linearized plant (from Assumptions A.1 and A.2) and the actor’s policy (linearized around
the operating point) can be represented by a transfer function matrix Gjpe(s) from the virtual goal
G, (s) to the achieved goal G (s), such that G, (s) = Ginner(s) Gy (s). This assumption implies two
key properties for Gipner(s):

1. Internal Stability: All poles of Giner () lie in the open left-half complex plane (Re(s) < 0),
ensuring that the inner loop’s transient responses decay over time.

2. Well-defined Steady-State Gain: For a constant virtual goal g, cons:, the achieved goal
g (t) converges to a constant value g, const @ ¢ — 00. By the Final Value Theorem, this
implies that lims_,¢ Ginner(S) = Ginner(0) exists and is a constant matrix. Furthermore, we
assume that Gine;(0) is invertible, meaning the actor can effectively map a non-zero virtual
goal to a non-zero achieved goal in steady-state. Note that Ginner(0) is not necessarily an
identity matrix, reflecting the potential for non-unity steady-state gain or residual errors in
the actor’s direct tracking of its virtual goal.

Why RL-trained Actor Exhibits this Property? Reinforcement learning algorithms are designed
to find an optimal policy 7v* that maximizes the expected cumulative discounted reward. This is

15

Under review as a conference paper at ICLR 2026

equivalent to solving an optimal control problem where the objective is to minimize a cost function
J(7) over an infinite horizon:

J(7) = Errn lz Ve(sy, at)] (16)
t=0

where 7 is a trajectory, 7 € [0, 1) is the discount factor, and c(s;, a;) is the instantaneous cost
(negative of reward). For high-precision tracking tasks, the cost function is typically engineered to
heavily penalize deviations from the target. In our context, the actor’s target is the virtual goal g,,. A
common cost structure for such tasks includes a quadratic penalty on the virtual tracking error and an
action cost, consistent with the reward function mentioned in Section [2}

c(s1,a0) = wellga(s:) — o ()3 + wallad]3 (17)
where w, > 0 and w, > 0 are weighting factors.

To minimize J(7), the actor’s policy 7 must learn to:

1. Minimize Virtual Tracking Error (Precision): The dominant term in the cost function,
wel|ga(t) — go(t)||?, directly incentivizes the policy to drive the achieved goal g, (t) as
close as possible to the virtual goal g, (t). A persistent non-zero virtual tracking error would
lead to an unbounded cumulative cost (for v — 1) or a higher finite cost (for v < 1). An
optimal policy will therefore inherently converge towards driving the virtual tracking error
to zero in the steady state, provided such a policy exists and the system is controllable to the
virtual target. This is a fundamental property of optimal controllers designed with quadratic
error costs.

2. Maintain Stability: Unstable behaviors, such as divergence or persistent unbounded
oscillations, would lead to rapidly increasing or persistently large instantaneous costs
¢(st, at). Consequently, the expected cumulative cost J(7r) for an unstable policy would be
significantly higher, potentially infinite. The optimization process of RL, by minimizing
this expected cost, implicitly penalizes and avoids policies that lead to instability. Therefore,
successful RL training in continuous control inherently leads to policies that maintain system
stability to achieve high rewards/low costs over the long run.

Therefore, this assumption posits that the outcome of a successful RL training process for a tracking
task is a policy that effectively behaves as a stable and accurate inner-loop controller for its given
virtual target. Even if the reward function is not precisely the quadratic form described, any reward
structure designed for high-precision tracking would inherently incorporate similar principles: heavily
penalizing deviations from the target and unstable behaviors. This ensures that the learned policy, by
minimizing such a cost, will consistently strive for precision and stability, and its behavior can thus
be approximated by an LTI system with the specified properties in the vicinity of the operating point.

Proof of Steady-State Error Elimination

Theorem B.4 (Steady-State Error Elimination). Given Assumptions[B.1| [B.2] and[B.3| and assuming
the overall closed-loop system (plant + actor + adviser) is stable, the Adviser-Actor-Critic framework
with a PI adviser will eliminate steady-state errors, i.e., lim;_, o, e(t) = 0, for constant desired goals
gd-

Proof. We analyze the system in the Laplace domain, considering the linearized dynamics. The
overall tracking error is E(s) = G4(s) — Gq(s). From Assumption [B.3| the inner loop (actor and
plant) has a transfer function Gipner(s) such that G4($) = Ginner(8) Gy (s). The adviser’s PI control
law (Equation [7) in the Laplace domain is:

Go(s) = Gals) — (Kp + Ki/s)E(s) (18)
Substitute G, (s) into the inner loop equation:
Ga(5) = Gimer(s) [Ga(s) = (Kp + Ki/s) E(s)] (19)
Now substitute this expression for G, (s) into the error definition:
E(s) = Ginner(5)G(8) = Ginner()(Kp + K;/5)E(s) — Gals) (20)

16

Under review as a conference paper at ICLR 2026

Rearranging terms to solve for E(s):
E(s) + Giner(5)(Kp + K /$)E(8) = Ginner(8)Ga(s) — Gy(s) (21)

[I + Ginner(S)Kp + Ginner(S)Ki/S] E(S) = [Ginner(s) - I] Gd(S) (22)
Thus, the closed-loop transfer function from desired goal G4(s) to tracking error E(s) is:

E(S) = [I + Ginner(s)Kp + C:irmer(S)I(i/s]71 [Ginner(s) - I] Gd(s) (23)

For a constant desired goal g4(t) = g, const» its Laplace transform is G4($) = gq const/s. To find the
steady-state error, we apply the Final Value Theorem:

tll>nolo e(t) = ll_r}r(l) sE(s) (24)
Substituting G 4(s) and Equation 23}

lim e(t) = lim s [+ Giuner(5) K + Gioner () K /5] [Ginner () — I % (25)
s—

t—o0

The s terms cancel:

thm e(t) == hInO [I + Ginner(S)Kp + Ginner(S)Ki/S}_l [Ginner(s) - I] gd,const (26)
—00 s—

Let Gy = lims_,0 Gipner(8). From Assumption G| exists and is invertible. Consider the term
inside the inverse:

il_rf%) (I + Ginner(S)Kp + Ginner(S)Ki/s) = il_r;% (I + Ginner(S)Kp> + 21_13(1) (Ginner(S)Ki/s) (27)

The first part, lims_,o (I + Ginner(s)K}), converges to I + GoKp, which is a finite matrix. The
second part, lim,_,0 (Ginner($)K;/s), can be written as lim,_,o %(Ginner(s)Ki). Since Ginner(s)
approaches G as s — 0, and G|y is invertible, G K is also invertible (assuming K; is a non-singular
matrix, which is typical for integral gains). Thus, this term tends to infinity (or a matrix with infinite
elements) as s — 0. Therefore, the entire term inside the inverse, [I + Ginner(S)Kp + Ginner(s) K/ 5],
becomes dominated by the integral term and tends to a matrix whose inverse tends to zero:

110 [7 + Ginner (8) K + Glnner (5) K /s ' =0 (28)
s—

This is because for any invertible matrix M and scalar ¢, lim,_,o(c/s - M)~ = lim,_,o(s/c -
M- =o0.

The second bracketed term, [Ginner(s) — I, converges to a finite matrix Go — I as s — 0.

Combining these limits:
lim e(t) =0 (Go — I)gdconst =0 (29)
t—o0
Thus, provided the overall closed-loop system remains stable (which depends on the choice of K, K;
and the properties of the actor and plant, as implied by Assumption [B.T), the PI-based adviser ensures
that the steady-state error e(t) converges to zero. O

The overall closed-loop system’s stability is crucial, with Assumption [B.3]ensuring inner actor-plant
loop stability, but the outer PI adviser loop requiring proper K, and K; tuning (Appendix [E}) to
maintain stability and achieve desired transient response; while local linearity (Assumption [B.1 : aids
classical control analysis, overall system stability must be verified through simulation or additional
analysis beyond this steady-state error proof.

17

Under review as a conference paper at ICLR 2026

C EXPERIMENT SETTING AND ALGORITHM CONFIGURATION

C.1 GYMNASIUM-ROBOTICS EXPERIMENTS

To validate the proposed Adviser-Actor-Critic architecture, we conducted experiments
on standard Goal-Conditioned Reinforcement Learning (GCRL) benchmarks provided by
Gymnasium-Robotics (Plappert et al., | 2018). The experimental setup utilized a computational
testbed equipped with Windows 10, an Intel Core i7-12700K processor, 64GB of RAM, and
an NVIDIA GeForce RTX 3060 Ti GPU. Our evaluation protocol encompassed a diverse range
of robotic control challenges, specifically including Fetch manipulation tasks and ShadowHand
dexterous manipulation (as illustrated in Figure [3), thereby ensuring comprehensive coverage of
various multi-goal reinforcement learning paradigms.

Table 4: Detailed Hyperparameters for Soft Actor-Critic (SAC)

Parameter Value
Optimization Settings

Actor Learning Rate 3x 1074
Critic Learning Rate 3x 1074
Temperature (o) Learning Rate 3x 1074
Optimizer Adam
Discount Factor () 0.99
Target Network Update Polyak Coefficient (7) 0.005
Gradient Steps per Environment Step 1

Replay Buffer Configuration

Replay Buffer Capacity 106 transitions
Batch Size 256

Policy Network (Actor) Architecture

Actor Network Layers 2

Actor Units per Layer 256

Actor Hidden Layer Activation ReLU

Actor Output Layer Activation
Log Standard Deviation (Min/Max)

Tanh (for continuous action spaces)
[~20,2]

Q-Function Network (Critic) Architecture

Critic Network Layers
Critic Units per Layer
Critic Hidden Layer Activation

2
256
ReLU

Entropy Regularization

Target Entropy

Automatic (set to —dim(action space))

18

Under review as a conference paper at ICLR 2026

Table 5: Detailed Hyperparameters for Proximal Policy Optimization (PPO)

Parameter Value

Optimization Settings

Learning Rate 3x 1074
Optimizer Adam
Adam Epsilon (eagam) 1x107®
Discount Factor () 0.99

Generalized Advantage Estimation (GAE) Lambda (\) 0.95
Policy Update Configuration

PPO Clipping Epsilon (eiip) 0.2
Entropy Regularization Coefficient 0.01
Value Function Loss Coefficient 0.5
Number of Epochs per Policy Update 10
Minibatch Size 64
Rollout Length (Environment Steps per Update) 2048
Network Architecture

Actor Network Layers 2
Actor Units per Layer 64
Actor Hidden Layer Activation Tanh
Critic Network Layers 2
Critic Units per Layer 64
Critic Hidden Layer Activation Tanh

19

Under review as a conference paper at ICLR 2026

Table 6: Detailed Hyperparameters for DreamerV3

Parameter Value

Optimization Settings

World Model Learning Rate 1x10*
Actor Learning Rate 3x107°
Critic Learning Rate 3x107°
Optimizer Adam
Adam Epsilon (eagam) 1x1078
Discount Factor () 0.99
Lambda () 0.95

World Model Configuration

Recurrent State-Space Model (RSSM) Stochastic State Size 32

RSSM Deterministic State Size 256
RSSM Hidden Layer Size 256
RSSM Number of Layers 1
Encoder/Decoder Number of Layers 4
Encoder/Decoder Units per Layer 256
Reward Head Number of Layers 2
Reward Head Units per Layer 256
Continue Head Number of Layers 2
Continue Head Units per Layer 256
Free Bits (KL Divergence Loss) 1.0
KL Divergence Loss Weight 1.0
Reward Loss Weight 1.0
Continue Loss Weight 1.0
Agent (Actor-Critic) Configuration

Actor Network Layers 4
Actor Units per Layer 256
Critic Network Layers 4
Critic Units per Layer 256
Imagination Horizon (Steps) 15

Training Parameters

Batch Size 16
Sequence Length 50
Gradient Clipping Norm 100.0

20

Under review as a conference paper at ICLR 2026

Table 7: Configuration for Wide Normalization (WN)

Parameter Value
Network Architecture

Actor Network Layers 2
Actor Units per Layer 256
Actor Hidden Layer Activation ReLU

Actor Output Layer Activation
Critic Network Layers

Critic Units per Layer

Critic Hidden Layer Activation
Encoder Type (e1, e2)

Encoder Number of Layers
Encoder Units per Layer

Encoder Hidden Layer Activation
Specific Implementation

Tanh (for continuous actions)

2

256

ReLU

Dual Multi-Layer Perceptrons (MLPs)
2

176

ReLU

{5-constrained residual layers

Optimization Settings

Actor Learning Rate

Critic Learning Rate

Optimizer

Discount Factor ()

Target Network Update Polyak Coefficient (1)
Gradient Steps per Environment Step

1x 104
1x1074
Adam
0.99
0.005

1

Replay Buffer Configuration

Replay Buffer Capacity
Batch Size

HER Strategy

HER Ratio

HER Goal Sampling Number

106 transitions
256

future

0.8

4

21

Under review as a conference paper at ICLR 2026

Table 8: Configuration for Metric Residual Network (MRN)

Parameter Value
Network Architecture

Actor Network Layers 2
Actor Units per Layer 256
Actor Hidden Layer Activation ReLU

Actor Output Layer Activation
Critic Network Layers
Critic Units per Layer
Critic Hidden Layer Activation
Encoder Type (e1, e2)

Encoder Number of Layers
Encoder Units per Layer

Encoder Hidden Layer Activation
Specific Implementation

Tanh (for continuous actions)
2

256
ReLU
Dual
(MLPs)
2

176
ReLU
{5-constrained residual layers

Multi-Layer Perceptrons

Optimization Settings

Actor Learning Rate

Critic Learning Rate

Optimizer

Discount Factor ()

Target Network Update Polyak Coeffi-
cient (7)

Gradient Steps per Environment Step

1x1074
1x 104
Adam
0.99
0.005

1

Replay Buffer Configuration

Replay Buffer Capacity
Batch Size

HER Strategy

HER Ratio

HER Goal Sampling Number

109 transitions
256

future

0.8

4

22

Under review as a conference paper at ICLR 2026

C.2 REAL-WORLD QUADCOPTER EXPERIMENTS

The quadcopter control system implements a simulation-to-reality pipeline based on (Bousbaine et al.}
2012). For convenience, we employ a reinforcement learning controller trained in our laboratory in
earlier work, which uses different parameters than the SAC implementation detailed earlier. Virtual
training employs a 3-DOF orientation dynamics model within Gazebo/ROS environment, interfaced
through Python-based reinforcement learning framework. Physical deployment executes optimized
policies on Raspberry Pi 4B (§8GB RAM) coordinating with Pixhawk4 flight controller, achieving
200Hz PWM motor control via hardware-timed GPIO. The airframe features 35.0 cm axle distance
with total mass 1.40 kg.

Table 9: Hyperparameters for Quadcopter Control Experiments (SAC Framework)

Parameter Specification

Algorithm Implementation
Base framework Soft Actor-Critic (SAC)

Network Architecture

Hidden layers 3 fully-connected layers (128 units/layer)
Activation function Self-normalizing SELU units

Optimization Protocol

Q-network learning rate 5 x 10™* (Adam optimizer)
Policy learning rate 3 x 10~* (Adam optimizer)
Temperature (o) Initial value 0.2 with learning rate 3 x 10~4

Value Estimation

Discount factor v = 0.995

Soft update rate 7 = 0.005

Experience Management

Replay buffer Capacity 1 x 10° transitions
Warmup period 1,000 initial samples

Batch configuration Minibatch size 64 samples/update

Training Protocol

Training duration 1,000 optimization epochs

23

Under review as a conference paper at ICLR 2026

Figure 8:

Reach (MRN)

w/ adv errors
[0.00, 0.01) 92.5%
[0.01, 0.05) 6.5%

[0.05, 0.10) 0.0%
[0.10, inf) 1.0%

w/o adv errors
[0.00, 0.01) 0.0%
[0.01, 0.05) 99.0%
[0.05, 0.10) 0.0%

\= [0.10, inf) 1.0% J

Block Rotate Parallel (MRN)

w/ adv errors
[0.00, 0.01) 39.3%
[0.01, 0.05) 26.4%

[0.05, 0.10) 7.9%
[0.10, inf) 26.4%

w/o adv errors
[0.00, 0.01) 0.4%
[0.01, 0.05) 29.7%
[0.05, 0.10) 35.0%

\= [0.10, inf) 34.9% J

D COMPARISON EXPERIMENTS RESULTS

Pick (MRN)

w/ adv errors
[0.00, 0.01) 73.7%
[0.01, 0.05) 16.0%

[0.05, 0.10) 2.6%
[0.10, inf) 7.7%

w/o adv errors
[0.00, 0.01) 17.0%
[0.01, 0.05) 74.6%
[0.05, 0.10) 2.5%

\= [0.10, inf) 5.9% J

Block Rotate XYZ (MRN)

w/ adv errors
[0.00, 0.01) 54.4%
[0.01, 0.05) 23.0%
[0.05, 0.10) 6.5%
[0.10, inf) 16.1%

w/o adv errors
[0.00, 0.01) 0.9%

\= [0.10, inf) 22.8%)

24

This section evaluates the Adviser-Actor-Critic (AAC) framework’s performance in steady-state error
reduction and success rates across six robotic control tasks. We compare AAC with five baseline
methods—Metric Residual Network (MRN) (Liu et al., [2023)), Wide Normalization (WN) (Pitis
et al., |2019), SAC(He et al.l [2020), PPO(Schulman et al., 2017) and DreamerV3(Hafner et al.,
2025)—using static error metrics (bar charts) and trajectory analysis (line charts) on six Gymnasium-
Robotics benchmark environments. These visualizations demonstrate AAC’s superiority in systematic
steady-state error mitigation and improved success rates (44-hour runtime).

Slide (MRN)

w/ adv errors
[0.00, 0.01) 0.0%
[0.01, 0.05) 1.2%

[0.05, 0.10) 2.9%
[0.10, inf) 95.9%

w/o adv errors
[0.00, 0.01) 0.4%
[0.01, 0.05) 1.9%
[0.05, 0.10) 2.9%

\= [0.10, inf) 94.8%)

Egg Rotate (MRN)

w/ adv errors
[0.00, 0.01) 36.2%
[0.01, 0.05) 43.9%
[0.05, 0.10) 11.1%
[0.10, inf) 8.8%

w/o adv errors
[0.00, 0.01) 0.3%

\= [0.10, inf) 19.6%)

Steady-State Error Comparison: AAC vs. MRN in 6 Benchmark Environments (Bar Chart)

Under review as a conference paper at ICLR 2026

Reach (MRN) Pick (MRN) Slide (MRN)
14 i : . :
12 1

i 2
10 H

3 3 3

<® 2 <0

[) [

2 | g 2

% L8 %

a 6 b -] o

=) H=3 =)

° HK=] o -2
4]

[o97] i
2 \ 4
0 L4

200 400 600 800 0 200 400 600 800

0 200 400 600 800 0
Index Index Index
Block Rotate Parallel (MRN) Block Rotate XYZ (MRN) Egg Rotate (MRN)
12 i i s
10
10
8 6
8
6
s 6 s s 4
H H o H s
2 4 g4 [832] 2 (8%3)
4 773 k4 R ® 2
2 2, 2
o 2 =) =)
° ° °
0
0 0
2 -2 2
i 4
4 i : 4 i
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Index Index Index

Figure 9: Steady-State Error Trajectory: AAC vs. MRN in 6 Benchmark Environments (Line Chart)

Reach (WN) Pick (WN) Slide (WN)

w/ adv errors
[0.00, 0.01) 93.3%
[0.01, 0.05) 6.7%
[0.05, 0.10) 0.0%
[0.10, inf) 0.0%

w/ adv errors
[0.00, 0.01) 75.5%
[0.01, 0.05) 18.4%
[0.05, 0.10) 1.6%
[0.10, inf) 4.5%

w/ adv errors
[0.00, 0.01) 0.1%
[0.01, 0.05) 1.3%
[0.05, 0.10) 2.8%
[0.10, inf) 95.8%

w/o adv errors
[0.00, 0.01) 0.0%
[0.01, 0.05) 100.0%
[0.05, 0.10) 0.0%
[0.10, inf) 0.0%

w/o adv errors
[0.00, 0.01) 3.8%
[0.01, 0.05) 79.8%
[0.05, 0.10) 3.5%
[0.10, inf) 12.9%

w/o adv errors

[0.10, inf) 92.9%

Block Rotate Parallel (WN) Block Rotate XYZ (WN) Egg Rotate (WN)

w/ adv errors w/ adv errors w/ adv errors

[0.05, 0.10) 1.1%
[0.10, inf) 2.8%

[0.05, 0.10) 5.0%
[0.10, inf) 4.8%

[0.05, 0.10) 7.6%
[0.10, inf) 2.4%

w/o adv errors
[0.00, 0.01) 4.2%
[0.01, 0.05) 59.2%
[0.05, 0.10) 31.8%
[0.10, inf) 4.8%

w/o adv errors
[0.00, 0.01) 1.4%
[0.01, 0.05) 57.0%
[0.05, 0.10) 29.7%
[0.10, inf) 11.9%

w/o adv errors
[0.00, 0.01) 2.1%
[0.01, 0.05) 55.0%
[0.05, 0.10) 31.6%
[0.10, inf) 11.3%

Figure 10: Steady-State Error Comparison: AAC vs. WN in 6 Benchmark Environments (Bar Chart)

25

Under review as a conference paper at ICLR 2026

Reach (WN) Pick (WN) Slide (WN)
12 H
4
10 :
2 (486
~ 8 = = e
> > >
° ° °
< < <
b6 2 30
© © ©
a Q Q
= = =
° ° °
4 -2
2 -2
4
0 4 t :
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Index Index Index
Block Rotate Parallel (WN) Block Rotate XYZ (WN) Egg Rotate (WN)
15.0
125

log(Base/Adv)
log(Base/Adv)
log(Base/Adv)

200 400 600 800 ’ 0 200 400 600 800 0 200 400 600

800
Index Index Index

Figure 11: Steady-State Error Trajectory: AAC vs. WN in 6 Benchmark Environments (Line Chart)

Reach (SAC) Pick (SAC) Slide (SAC)

w/ adv errors
[0.00, 0.01) 93.3%
[0.01, 0.05) 6.7%
[0.05, 0.10) 0.0%
[0.10, inf) 0.0%

w/ adv errors
[0.00, 0.01) 87.1%
[0.01, 0.05) 10.9%
[0.05, 0.10) 1.0%
[0.10, inf) 1.0%

w/ adv errors
[0.00, 0.01) 0.1%
[0.01, 0.05) 1.6%
[0.05, 0.10) 3.6%
[0.10, inf) 94.7%

w/o adv errors
[0.00, 0.01) 0.0%
[0.01, 0.05) 100.0%
[0.05, 0.10) 0.0%
[0.10, inf) 0.0%

w/o adv errors
[0.00, 0.01) 9.8%
[0.01, 0.05) 82.2%
[0.05, 0.10) 1.6%
[0.10, inf) 6.4%

w/o adv errors

[0.10, inf) 94.0%

Block Rotate Parallel (SAC) Block Rotate XYZ (SAC) Egg Rotate (SAC)

w/ adv errors w/ adv errors w/ adv errors

[0.05, 0.10) 3.3%

[0.05, 0.10) 6.5%
[0.10, inf) 9.9%

[0.10, inf) 18.0% [0.10, inf) 4.5%

w/o adv errors
[0.00, 0.01) 2.8%
[0.01, 0.05) 49.0%
[0.05, 0.10) 29.2%
[0.10, inf) 19.0%

w/o adv errors
[0.00, 0.01) 1.4%
[0.01, 0.05) 39.8%
[0.05, 0.10) 31.1%
[0.10, inf) 27.7%

w/o adv errors
[0.00, 0.01) 0.3%
[0.01, 0.05) 38.4%
[0.05, 0.10) 48.5%
[0.10, inf) 12.8%

Figure 12: Steady-State Error Comparison: AAC vs. SAC in 6 Benchmark Environments (Bar Chart)

26

Under review as a conference paper at ICLR 2026

Reach (SAC) Pick (SAC) Slide (SAC)
12 :
4 :
10 :
: (404)
s 8 > > l
° ° °
< < <
[[T 0
0o g I I
© © ©
a Q Q
= = =
° ° °
4 2
2 E
2 -4
0
4 : :
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Index Index Index
Block Rotate Parallel (SAC) Block Rotate XYZ (SAC) Egg Rotate (SAC)
: 15.0 :
8
125
6
10.0
~ 4 = =
3 375 3
< < <
g2 2 2
a & 50 8
g° g ™~ g
= = 25 =
-2
0.0 L
4 -2
25 3
- : -4
0 200 400 600 0 200 400 600 800 0 200 400 600 800
Index Index Index

Figure 13: Steady-State Error Trajectory: AAC vs. SAC in 6 Benchmark Environments (Line Chart)

Reach (PPO) Pick (PPO) Slide (PPO)

w/ adv errors
[0.00, 0.01) 92.1%
[0.01, 0.05) 7.9%
[0.05, 0.10) 0.0%
[0.10, inf) 0.0%

w/ adv errors
[0.00, 0.01) 82.8%
[0.01, 0.05) 14.1%
[0.05, 0.10) 2.4%
[0.10, inf) 0.7%

w/ adv errors
[0.00, 0.01) 0.1%
[0.01, 0.05) 1.4%
[0.05, 0.10) 2.7%
[0.10, inf) 95.8%

w/o adv errors
[0.00, 0.01) 0.0%
[0.01, 0.05) 100.0%
[0.05, 0.10) 0.0%
[0.10, inf) 0.0%

w/o adv errors
[0.00, 0.01) 2.2%
[0.01, 0.05) 87.0%
[0.05, 0.10) 0.3%
[0.10, inf) 10.5%

w/o adv errors

[0.10, inf) 92.2%

Block Rotate Parallel (PPO) Block Rotate XYZ (PPO) Egg Rotate (PPO)

w/ adv errors w/ adv errors w/ adv errors

[0.05, 0.10) 6.2%
[0.10, inf) 5.1%

[0.05, 0.10) 4.7%
[0.10, inf) 8.4%

[0.05, 0.10) 6.5%
[0.10, inf) 10.4%

w/o adv errors
[0.00, 0.01) 1.1%
[0.01, 0.05) 55.9%
[0.05, 0.10) 31.7%
[0.10, inf) 11.3%

w/o adv errors
[0.00, 0.01) 0.9%
[0.01, 0.05) 48.1%
[0.05, 0.10) 31.5%
[0.10, inf) 19.5%

w/o adv errors
[0.00, 0.01) 1.2%
[0.01, 0.05) 57.3%
[0.05, 0.10) 25.1%
[0.10, inf) 16.4%

Figure 14: Steady-State Error Comparison: AAC vs. PPO in 6 Benchmark Environments (Bar Chart)

27

Under review as a conference paper at ICLR 2026

=)

log(Base/Adv)

~

Reach (PPO)

o
n
1=
S

=)

log(Base/Adv)
IS

N

400 600 800

Index

Block Rotate Parallel (PPO)

Figure 15: Steady-State Error Trajectory: AAC vs. PPO in 6 Benchmark Environments (Line Chart)

400 600 800

Index

Reach (Dreamer)

w/ adv errors
[0.00, 0.01) 93.3%
[0.01, 0.05) 6.7%
[0.05, 0.10) 0.0%
[0.10, inf) 0.0%

w/o adv errors
[0.00, 0.01) 91.3%
[0.01, 0.05) 8.7%
[0.05, 0.10) 0.0%
[0.10, inf) 0.0%

Block Rotate Parallel (Dreamer)

Figure 16: Steady-State Error Comparison: AAC vs. DreamerV3 in 6 Benchmark Environments (Bar

Chart)

w/ adv errors
[0.00, 0.01) 77.0%
[0.01, 0.05) 21.8%
[0.05, 0.10) 0.6%
[0.10, inf) 0.6%

w/o adv errors
[0.00, 0.01) 0.8%
[0.01, 0.05) 51.4%
[0.05, 0.10) 44.9%
[0.10, inf) 2.9%

log(Base/Adv)

log(Base/Adv)

=)

IS

N

Pick (PPO)

400 600
Index

Block Rotate XYZ (PPO)

400 600
Index

Pick (Dreamer)

w/ adv errors

[0.05, 0.10) 0.9%
[0.10, inf) 0.8%

w/o adv errors
[0.00, 0.01) 34.7%
[0.01, 0.05) 54.8%
[0.05, 0.10) 2.1%
[0.10, inf) 8.4%

Block Rotate XYZ (Dreamer)

w/ adv errors
[0.00, 0.01) 79.3%
[0.01, 0.05) 13.3%
[0.05, 0.10) 2.9%
[0.10, inf) 4.5%

w/o adv errors
[0.00, 0.01) 1.5%
[0.01, 0.05) 62.7%
[0.05, 0.10) 25.2%
[0.10, inf) 10.6%

28

log(Base/Adv)

log(Base/Adv)

=)

IS

N

o

o

Slide (PPO)

200 400 600

Index
Egg Rotate (PPO)

200 400 600

Index

Slide (Dreamer)

w/ adv errors
[0.00, 0.01) 0.2%
[0.01, 0.05) 1.5%
[0.05, 0.10) 2.9%
[0.10, inf) 95.4%

w/o adv errors
[0.00, 0.01) 0.1%
[0.01, 0.05) 1.9%
[0.05, 0.10) 3.2%
[0.10, inf) 94.8%

Egg Rotate (Dreamer)

w/ adv errors
[0.00, 0.01) 38.2%
[0.01, 0.05) 50.8%
[0.05, 0.10) 7.9%
[0.10, inf) 3.1%

w/o adv errors
[0.00, 0.01) 1.1%
[0.01, 0.05) 54.3%
[0.05, 0.10) 37.5%
[0.10, inf) 7.1%

Under review as a conference paper at ICLR 2026

Reach (Dreamer) Pick (Dreamer) Slide (Dreamer)

=)

©

=)

log(Base/Adv)
IS

log(Base/Adv)
log(Base/Adv)

N

=)

200 400 600 800 0 200 400 600 800 ’ 0 200 400‘ 600 800
Index Index Index

Block Rotate Parallel (Dreamer) Block Rotate XYZ (Dreamer) Egg Rotate (Dreamer)

o

log(Base/Adv)
log(Base/Adv)
log(Base/Adv)

25 \ 2

0 200 400 600 800 ’ 0 200 400 600 800 ’ 0 200 400 600 800 ’
Index Index Index

Figure 17: Steady-State Error Trajectory: AAC vs. DreamerV3 in 6 Benchmark Environments (Line
Chart)

E ROBUSTNESS ANALYSIS OF PARAMETRIC EFFECTS

This section presents a systematic investigation into the influence of critical control parameters—K;
(P1) and o (P2)—on three performance indices: Steady-State Error, ITAE, and Success Rate. Through
factorial design experiments coupled with ANOVA analysis, statistically significant parametric
effects (p < 0.01) are identified for a majority of performance metrics across various methods
and tasks, establishing their criticality in system behavior modulation. However, some exceptions
are observed, particularly for certain metrics in tasks like Block Rotate Parallel and Block Rotate
XYZ, and for PPO’s success rate in the Reach task, where parameter effects were not statistically
significant at the p < 0.01 level. Notably, the system exhibits exceptional tolerance to parameter
perturbations, with +30% deviations from optimal values producing less than 5% degradation in
performance measures. This dual finding—parametric significance combined with robust performance
under variation—demonstrates the adaptive controller’s favorable trade-off between sensitivity to
intentional tuning and insensitivity to unintended parameter drifts. The results substantiate the
practical feasibility of automated tuning protocols in robotic implementations, where environmental
variability and component aging necessitate robust parameter operating ranges. It takes 15 hours to
run.

Definition of Integral Time Absolute Error (ITAE):

T
ITAE:/ t- e dt (30)
0

where e := g; — g, € R” represents the error vector at time ¢, || - ||; denotes the L;-norm, and T'
corresponds to the evaluation time horizon. The ITAE metric effectively captures both temporal
error persistence and magnitude accumulation through its weighted integral formulation, which
emphasizes prolonged error conditions more strongly than instantaneous errors.

29

Under review as a conference paper at ICLR 2026

Steady-State Error ITAE Success Rate
™
[P oos0 ossas w2 w1
oot
™
0 5. 100 100
0.03 tand
™
0.00 8. 100 100 100 100 099 03
DreamerV3
0.02 0 095
2 w0 10 10 10 100
. ose
oss
5098 w10 10 10 100 100
052
ois 02 035 o3 o
12 12
1317.53 1686.96 1964.65 2002.61 2064.32 098
o1 Lo
™
PO e i umss 150
145820
MRN oo 1000
™
150 - 0% 099 098 098 098
™
w0
b= 099 099 0.99 099 099
002 B
01s 02 ois o3 o1
o
oo
owr
1030.73 S- 100 1.00 1.00
2 ™
oo
™
oo
3 10 10 10 1m0 100
005 <
oo
a0
g8 1o 10 10 100 100
oo o
o- 100 1.00 1.00 1.00 1.00
002 ose
20
oo 2+ 100 100 100 100 100 09
ois 02 o35 o3 o
o
- 10000
oo
000 5093 w o
oo : 9 10 10 10 100 100
| .
5 10 10 10 10 100
oo o Y8 10 1w w0 100
o
oo ™
o 1.00 1.00 1.00 1.00 1.00
- " ossn2
- 100 100 100 100 100
. .) . asmo
ois 02 035 o3 o
12
o
S 10 1w 10 100 (S8
S w0 10 100 10 100
asmo
100
oo
¢8 10 10 10 100 100 asess
SAC 0.003¢ <
w0
oo
2 10 10 10 10 100
.
3 10 10 100 10 10
.) .
01s 02 ol 03 os
o

Figure 18: Heatmap Visualization of Method Performance Across Metrics and Hyperparameters for
FetchReach Task

30

Under review as a conference paper at ICLR 2026

Table 10: Two-way ANOVA Results for FetchReach

Baseline Metric PI(F) Pl P2{F P2(p) Int (F) Int (p)
Steady-State Error 95.57 0.000 12.71 0.000 14.37 0.000

SAC ITAE 362.43 0.000 4.53 0.001 7.57 0.000
Success Rate 3.01 0.017 3.01 0.017 3.01 0.000

Steady-State Error 123.67 0.000 36.02 0.000 37.12 0.000

PPO ITAE 460.09 0.000 17.63 0.000 19.69 0.000
Success Rate 1.00 0.406 1.00 0.406 1.00 0.453

Steady-State Error 118.66 0.000 77.44 0.000 39.98 0.000

DreamerV3 ITAE 108.28 0.000 64.79 0.000 34.14 0.000
Success Rate 137.47 0.000 88.40 0.000 44.04 0.000

Steady-State Error 276.89 0.000 60.25 0.000 59.26 0.000

WN ITAE 57835 0.000 36.37 0.000 36.05 0.000
Success Rate 0.00 1.000 0.00 1.000 0.00 1.000

Steady-State Error 51.66 0.000 19.46 0.000 27.39 0.000

MRN ITAE 46.88 0.000 19.46 0.000 23.03 0.000
Success Rate 41.60 0.000 19.83 0.000 19.83 0.000

Table 11: Two-way ANOVA Results for FetchPick

Baseline Metric PI(F) Pl(p) P2@F P2(p) Int. (F) Int. (p)
Steady-State Error 24.05 0.000 347 0.008 2.26 0.003

SAC ITAE 7143 0.000 8.16 0.000 448 0.000
Success Rate 15.42 0.000 2.92 0.020 2.16 0.005

Steady-State Error 99.66 0.000 594 0.000 5.41 0.000

PPO ITAE 167.93 0.000 6.75 0.000 7.21 0.000
Success Rate 32.28 0.000 1.99 0.093 1.71 0.038

Steady-State Error 42.26 0.000 1.58 0.177 4.64 0.000

DreamerV3 ITAE 9347 0.000 4.37 0.002 6.90 0.000
Success Rate 46.39 0.000 2.05 0.085 3.29 0.000

Steady-State Error ~ 7.99 0.000 0.11 0.980 1.89 0.017

WN ITAE 31.98 0.000 0.79 0.532 2.29 0.002
Success Rate 8.80 0.000 0.24 0916 1.40 0.130

Steady-State Error 18.03 0.000 1.85 0.116 2.89 0.000

MRN ITAE 18.47 0.000 2.97 0.018 2.66 0.000
Success Rate 12.13 0.000 1.10 0.353 0.58 0.903

31

Under review as a conference paper at ICLR 2026

Steady-State Error ITAE Success Rate

20589 28208 | oss

097

™
20664
DreamerV3

095

094

30374

MRN

30360 29444 X 090

092

WN

030

50497 088

“oox0

oozs
o020

-oo1s

096

PPO

091

0980
Loors
Loois

0970
oo1s

0985

0960

SAC

ooz o

8093 94.05 0950
o010 18093 19405 3
0985

20077 0340

0935

Figure 19: Heatmap Visualization of Method Performance Across Metrics and Hyperparameters for
FetchPick Task

32

Under review as a conference paper at ICLR 2026

Steady-State Error ITAE

9508.11

DreamerV3

9955.79

66.46 9884.47

MRN

9606.32 9606.54

9553.81

WN

910569 925301

926280 949486

945005 920630

PPO

914072

9107.11

961038 982468 10023.84

9775.69

SAC

9549.04

9875.07

9607.69

10203.22

10171.00

994239

969154

1030111

9859.12

977816

9397.88

1014930

10200

Success Rate

oozs0

o225

00200

oos

o0

oo

o010

00075

00050

ooz

o020

oo1s

o010

00250

o025

00200

oo

oois0

oo

00100

00075

oo

o030

o0z

oois

o010

o0z

o020

o1

o010

Figure 20: Heatmap Visualization of Method Performance Across Metrics and Hyperparameters for

FetchSlide Task

33

Under review as a conference paper at ICLR 2026

Table 12: Two-way ANOVA Results for FetchSlide

Baseline Metric PI(F) Pl(p) P2(F P2(p) Int. (F) Int (p)
Steady-State Error 13.15 0.000 454 0.001 0.86 0.619

SAC ITAE 1998 0.000 12.19 0.000 1.53 0.078
Success Rate 10.14 0.000 3.15 0.013 1.85 0.020

Steady-State Error ~ 7.79 0.000 0.93 0.444 1.48 0.096

PPO ITAE 10.80 0.000 3.45 0.008 1.62 0.055
Success Rate 17.19 0.000 0.87 0.483 0.54 0.930

Steady-State Error ~ 4.32 0.002 5.29 0.000 0.75 0.746

DreamerV3 ITAE 10.67 0.000 15.16 0.000 1.05 0.394
Success Rate 6.30 0.000 6.22 0.000 0.50 0.948

Steady-State Error 5.31 0.000 1.19 0.315 0.69 0.803

WN ITAE 5.03 0.000 1.70 0.147 0.55 0.923
Success Rate 13.64 0.000 0.89 0.469 0.67 0.830

Steady-State Error 6.52 0.000 3.62 0.006 0.92 0.542

MRN ITAE 9.76 0.000 6.83 0.000 1.43 0.115
Success Rate 4.16 0.002 0.95 0.435 0.38 0.987

Table 13: Two-way ANOVA Results for HandManipulateBlockRotateParallel

Baseline Metric PI(F) Pl(p) P2(F P2(p) Int.(F) Int (p)
Steady-State Error 2.44 0.045 049 0.745 0.05 1.000

SAC ITAE 230 0.056 049 0.745 0.04 1.000
Success Rate 16.04 0.000 6.58 0.000 0.20 1.000

Steady-State Error 2.23 0.064 0.09 0984 0.01 1.000

PPO ITAE 2.12 0.075 0.06 0.992 0.01 1.000
Success Rate 11.64 0.000 0.73 0.575 0.33 0.994

Steady-State Error 8594 0.000 5.09 0.000 0.63 0.864

DreamerV3 ITAE 5776 0.000 253 0.039 0.28 0.998
Success Rate 5.06 0.000 041 0.803 0.72 0.771

Steady-State Error 4.52 0.001 0.27 0.898 0.16 1.000

WN ITAE 365 0.006 0.14 0.966 0.13 1.000
Success Rate 450 0.001 0.17 0.954 0.48 0.956

Steady-State Error 2.38 0.049 0.11 0.978 0.02 1.000

MRN ITAE 230 0.056 0.08 0.989 0.01 1.000
Success Rate 2,53 0.038 0.54 0.705 0.42 0.978

34

Under review as a conference paper at ICLR 2026

Steady-State Error ITAE Success Rate
s
Coon 200
Loon
o0ss a0
asm0
oo
™
oas o
DreamerV3 o386
oo
50 osee
oors o osez
oo ososs @930 | 4004
oo om0
00
0is 02 035
12
708920 om
o0 7500
o7
0xss A
7178.04 70
o
0350 7500
om
MRN 035 7200
om0
30 7319.89 7286.79 7100
™
oz 000
g 74 784 754244 7498.30 e
0330
o0
0is 02 035 04
12
1300
oos0
1200 I
o0ss
osmz
1100
oos0
WN om0
1000
o0ss
a0
om0 5 amas2 wser0 | 124022 17273
006
015 02 075
12
0105 2200 0945
050
ooss o530
2000
PPO 025
oo
195131 1500 050
oo oas
2 2wa awe | 24040 1000
ost0
0ls 02 025
I3
o1ss
Fost
Loso 3100
™
o165 2000
281309 261870
o140 200 om0
sac s 2853.14 2709.74 2500 Laad
0130 om
0
217816
o125 o ™
om g 3600 N9s47 | 304941 305992 305608
3 o oss
0ls 02 025 03 o
12

Figure 21: Combined Heatmap Visualization of Method Performance Across Metrics and Hyperpa-
rameters for BlockRotateParallel Task

35

Under review as a conference paper at ICLR 2026

Steady-State Error ITAE Success Rate
[5118.82 el
o
- 510220
™
oz -
510891
DreamerV3 oac
o
o g
o
3 sse76 EVEN 2010 sa03s
.)) o
ois o3 o1
o
Losss o
oss
ose
ous
MRN oss
010
2901.23 2 2 2819.91 o082
o on
2635 02809 300260 295071
™
o1
0%
116615
oo
ass
: wosant 109140
aoes
ase
108778
WN 093
o0ss neose
os2
oos0
3 wsee | e 13058 128679 s
ois 02
005
o
052
o
o
™
o
230736
PPO o
oss
0110 S
osr
o3
3 ame e
o0 . .
ois 02
o
oo
oo
906.18 oo
ooss
ase
SAC oo
o5
169
ooss
™
oow G- 125464 1257.96 106500 1007.81
o

015 02

Figure 22: Combined Heatmap Visualization of Method Performance Across Metrics and Hyperpa-
rameters for HandManipulateBlockRotate X YZ Task

36

Under review as a conference paper at ICLR 2026

Table 14: Two-way ANOVA Results for HandManipulateBlockRotateXYZ

Baseline Metric PI(F) Pl(p) P2(F P2(p) Int. (F) Int (p)
Steady-State Error 4.60 0.001 0.77 0.546 0.13 1.000

SAC ITAE 5.44 0.000 0.72 0.576 0.14 1.000
Success Rate 25.35 0.000 4.79 0.001 0.46 0.964

Steady-State Error ~ 2.19 0.067 0.51 0.728 0.03 1.000

PPO ITAE 2.19 0.068 0.29 0.883 0.03 1.000
Success Rate 2521 0.000 11.06 0.000 0.40 0.982

Steady-State Error 0.22 0.928 0.00 1.000 0.03 1.000

DreamerV3 ITAE 0.17 0.955 0.00 1.000 0.03 1.000
Success Rate 5.49 0.000 1.17 0.324 0.83 0.647

Steady-State Error 1.29 0.272 0.27 0.900 0.05 1.000

WN ITAE 1.52 0.192 0.12 0.973 0.03 1.000
Success Rate 12.22 0.000 2.92 0.020 0.48 0.957

Steady-State Error 1.47 0207 020 0.938 0.14 1.000

MRN ITAE 1.53 0.190 0.19 0.942 0.11 1.000
Success Rate 13.63 0.000 492 0.001 0.34 0.993

Table 15: Two-way ANOVA Results for HandManipulateEggRotate

Baseline Metric PI(F) Pl(p) P2(F P2(p) Int.(F) Int (p)
Steady-State Error 15.72 0.000 0.33 0.856 0.45 0.969

SAC ITAE 23.08 0.000 0.25 0.908 0.32 0.995
Success Rate 10.88 0.000 0.86 0.487 0.91 0.559

Steady-State Error 256 0.037 0.14 0.966 0.05 1.000

PPO ITAE 2.62 0.033 0.11 0.981 0.03 1.000
Success Rate 10.78 0.000 2.60 0.034 0.56 0.913

Steady-State Error 4.02 0.003 0.17 0.952 0.06 1.000

DreamerV3 ITAE 3.91 0.004 0.16 0.958 0.05 1.000
Success Rate 4.85 0.001 0.65 0.626 0.58 0.903

Steady-State Error 0.12 0.976 0.01 1.000 0.01 1.000

WN ITAE 0.12 0.974 0.00 1.000 0.00 1.000
Success Rate 1.00 0.407 0.38 0.823 0.23 0.999

Steady-State Error 4.21 0.002 0.24 00916 0.06 1.000

MRN ITAE 4.19 0.002 0.20 0.937 0.04 1.000
Success Rate 32.28 0.000 2.87 0.022 0.45 0.970

37

Under review as a conference paper at ICLR 2026

Steady-State Error Success Rate

~oars
ooz -
Losno
aoso
1050
oot o
1000
o0t
ase0
a50
DreamerV3 oos
Lo 900 0955
o0
550
oss0
113389 102688
w0
o105 200
Lo
0100 I 1900 091
170740 153085 148543 145648
0095 1800 om0
™
(X1 0% 1580.04 1650.39 1 1700
MRN ™
ooss
1500
1656.60 164377 om
oo
1500 086
o075 g- 202232 200830 197107 193560 085
100
0ls 02 025 03
12
Loor
om0
™
o0
w0
0ss
0
04 X os
oo
o0
053
ooz
os2
ver76 19110
Lo
20
va0ts 176201
o105 aon
PPO 0100 oo
oo 201482 199102 o8
1100
om
oo - 2656 21971 215352 | 211359
" ’ . 100
015 02 035 03
oo oos
-
ooss
a5
1000
oos0
a0
SAC oois
0000 00 092
0
oo - msasr 114425 112385 JRUCTEN oo
0ls 02 025
12

Figure 23: Combined Heatmap Visualization of Method Performance Across Metrics and Hyperpa-
rameters for EggRotate Task

38

Under review as a conference paper at ICLR 2026

F INTEGRAL SEPARATION ANTI-WINDUP PI CONTROL PERFORMANCE
COMPARISON

To provide a comprehensive evaluation of the integral separation anti-windup PI control performance
across different scenarios, we present a detailed comparison of the control responses under various
conditions. Specifically, Figure 24]illustrates the nominal case (o = 0), while Figures 25| 26| and [27]
depict responses for ¢ = 0.1, 0 = 0.3, and ¢ = 0.6 respectively. These visualizations collectively
demonstrate the effectiveness of the baseline anti-windup PI controller with integral separation
mechanism and serve as a benchmark for our proposed Adviser-Actor-Critic framework.

=== e Desired Goal Virtual Goal === Actual Positon
1.54 1 1
~ 1.0 1 1 1
)
=
g
'Z 0.5 1 1 1
Ay
K,=1.0, K=0.0 K,=1.0, K=1.0 K,=1.0, K=4.0
0.0 T T T T T T T T T T T T
0 1 2 3 4 5 0 2 3 4 5 0 1 2 3 4 5
Time (s)
Figure 24: Anti-Windup PI Control - Case 0 (Nominal, o = 0)
=== e Desired Goal Virtual Goal === Actual Positon
1.5 R R
~ 1.0 1= N i L D e e
g
=
2
'Z 0.5 1 1 1
-9
K,=1.0, K=0.0 K,=1.0, K=1.0 K,=1.0, K=4.0
0.0 T T T T T T T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Time (s)
Figure 25: Anti-Windup PI Control - Case 0.1 (o = 0.1)
=== == Desired Goal Virtual Goal === Actual Positon
1.5 1 1
~ 1.0 1 - = - - - -
)
=
2
%051]]
Ay
K,=1.0, K=0.0 K,=1.0, K=1.0 K,=1.0, K=4.0
0.0 T T T T T T T T T T T T

1 2 3 4 5 0 1 2 3 4 5
Time (s)

Figure 26: Anti-Windup PI Control - Case 0.3 (o = 0.3)

39

Under review as a conference paper at ICLR 2026

Position (m)

=== e Desired Goal

Virtual Goal

= Actual Positon

1.5 . .
1.0 . = . -
0.5 . .
K,=1.0, K;=0.0 K,=1.0, K=1.0 K,=1.0, K=4.0
0.0 T : T T T T T T T T
0 2 3 4 5 0 12 3 4 5 0 1 3 4 s

Time (s)

Figure 27: Anti-Windup PI Control - Case 0.6 (¢ = 0.6)

40

	Introduction
	Problem Modeling
	Related Works
	Adviser-Actor-Critic
	Framework
	Adviser Implementation

	Experiments
	How Does the Adviser Reduce Steady-State Errors?
	Does the Adviser Improve Performance?
	Deployment on a Real-World Quadcopter

	Discussion and Conclusion
	Scenario Definitions and Deployment Analysis
	Assumptions and Proofs for Steady-State Error Elimination
	Experiment Setting and Algorithm Configuration
	Gymnasium-Robotics Experiments
	Real-World Quadcopter Experiments

	Comparison Experiments Results
	Robustness Analysis of Parametric Effects
	Integral Separation Anti-Windup PI Control Performance Comparison

