
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNLOCKING COHERENT REASONING IN LLMS WITH
HIERARCHICAL SOFT PROMPTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) exhibit strong reasoning capabilities in complex
tasks. Soft prompt tuning, as a lightweight approach, injects trainable vectors into
the input to guide the reasoning process and enhance model performance. Prior
studies show that soft prompts effectively activate prior knowledge and improve
problem understanding in the early stages of reasoning. However, when they con-
tinue to exert strong influence in the middle and later stages, they often disrupt the
information flow and degrade reasoning performance. Based on this observation,
we argue that the role of soft prompts should not be confined to a single stage of
activation and guidance. Instead, they should be inserted at appropriate stages to
ensure smooth information transmission across layers. Existing methods, however,
typically rely on one-shot static injection and cannot dynamically regulate prompts
across stages, leading to functional mismatches during reasoning. To address this
limitation, we propose a dynamic hierarchy-aware mechanism(DHAM). This mech-
anism first employs hierarchical clustering to derive stage-specific representations,
and then leverages the semantic guidance capability of soft prompts to adaptively
align and activate them, ensuring effective coordination across reasoning stages.
DHAM yields consistent gains across models and benchmarks (e.g., 29.5%→43.8%
on Llama-2-13B/GSM8K), with ablations showing CKA clustering and moderate
stage numbers (e.g., G = 3/4) perform best, consistent with the stable information
flow hypothesis.

1 INTRODUCTION

Large Language Models (LLMs) (Vaswani et al., 2017; Brown et al., 2020; Raffel et al., 2020)
demonstrate strong capabilities in knowledge integration and reasoning across open-domain question
answering, mathematical reasoning, and multi-hop inference tasks. However, improving their
reasoning performance without incurring large parameter overhead remains challenging. As a
parameter-efficient paradigm, Soft Prompting has received increasing attention due to its lightweight
nature, transferability, and training efficiency (Li & Liang, 2021). By injecting learnable prompt
vectors into the input, this approach allows models to rapidly adapt to downstream tasks while keeping
the backbone parameters frozen.

Nevertheless, existing soft prompt methods predominantly adopt a static injection strategy, where
prompt vectors are introduced into model layers in a heuristic or intuition-driven manner rather than
being dynamically adapted (Lester et al., 2021; Liu et al., 2021; 2023). Although such designs can
activate prior knowledge and facilitate problem understanding, their persistent and non-adaptive
influence often leads to over-reliance on the prompts themselves, thereby disrupting information flow
and weakening logical integration (Dai et al., 2021; Wang et al., 2023; Yuan et al., 2024). In other
words, static prompting cannot dynamically adapt to the reasoning process, and in complex reasoning
tasks, it frequently causes late-stage mismatches, reducing both coherence and stability.

To address this issue, researchers have explored multiple improvement directions. Some studies
extend continuous prompts across multiple layers to approximate full fine-tuning (Liu et al., 2021),
while others introduce late prompts at intermediate layers to strengthen information flow control
in later reasoning (Liu et al., 2022). Additional approaches learn where to place prompts and how
strongly they should act across layers (Zhu & Tan, 2023), or dynamically determine the length,
position, and representation of prompts from an instance-specific detailed perspective (Wu et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2022; Yang et al., 2023). Recently, several works have proposed detecting and masking harmful
prompts during reasoning to mitigate negative effects (Fan et al., 2025). Although these methods
make progress in layer selection, gating, and instance adaptation, they generally focus on single-point
optimization or instance-level adjustment and still lack explicit stage modeling of the reasoning
process as well as mechanisms for aligning information flow.

We argue that improving complex reasoning performance requires not only designing better prompts
but also capturing the hierarchical structure of the reasoning process and aligning prompts with
stage-level information. In other words, an explicit stage-aware scheduling mechanism is needed to
dynamically adapt to reasoning requirements at different stages. To this end, we propose the Dynamic
Hierarchy-Aware Mechanism (DHAM).

Specifically, we first use Centered Kernel Alignment (CKA) similarity to measure relationships
between different layer representations, and then apply hierarchical clustering to partition the multi-
layer hidden states of the model into several stage-wise groups, each capturing functionally similar
layers during reasoning. We then introduce trainable soft prompts into each stage and jointly train
them with the corresponding stage representations, ensuring stable information transmission and
dynamic alignment within stages. Compared with static full-layer injection, single late insertion,
gated layer selection, instance-level adaptation, and harmful prompt masking, our method builds on
significance-driven process diagnostics to achieve fine-grained prompt injection at the hierarchical
level. This design effectively alleviates late-stage mismatches, improves the coherence and stability
of reasoning flows, and ultimately enhances reasoning accuracy in complex tasks. In summary, our
main contributions are as follows:

• We conduct saliency-score-based diagnostics and reveal stage-wise trends in information
flow, further identifying patterns that are beneficial for reasoning.

• Based on this finding, we propose a CKA-driven hierarchical clustering method together with
a stage-level soft prompt scheduling mechanism, which dynamically aligns information flow
and injects prompts within the hierarchical structure, effectively mitigating the mismatch
problem in static prompting methods.

• We design and carry out comprehensive experimental evaluations on multiple complex
reasoning tasks, and the results demonstrate that our approach consistently outperforms
existing prompt-tuning methods in terms of reasoning coherence and accuracy.

2 RELATED WORK

Prompt-based Adaptation for LLM Reasoning. In recent years, researchers have widely adopted
Prompt Tuning, especially Soft Prompt tuning, as a parameter-efficient adaptation method (Liu et al.,
2021; Lester et al., 2021; Ding et al., 2023). Studies show that Prompt Tuning enhances downstream
task performance with only a small number of trainable parameters while keeping the pretrained
backbone frozen (Li & Liang, 2021; Liu et al., 2023). However, the role of Soft Prompts across
different reasoning stages remains unclear, which makes it challenging to leverage them effectively
in complex reasoning.

Researchers have therefore developed dynamic control mechanisms to improve the adaptability of
soft prompts. Instance-adaptive Prompting (Yuan et al., 2024) selects prompts for each input instance,
and the Dynamic Prompting framework (Yang et al., 2023) explores dynamic positions, lengths,
and prompt pools. Other methods, such as Adaptive Prefix Tuning (APT) (Zhang et al., 2023) and
Hierarchical Prompt Tuning (HPT) (Wang et al., 2022; Zeng et al., 2024), incorporate hierarchical
information or gating mechanisms to differentiate the effects of prompts across layers and semantic
stages. More recently, Fan et al. proposed Dynamic Prompt Corruption (DPC), which uses saliency
analysis to detect harmful prompts in later reasoning stages and applies dynamic masking to mitigate
their effects (Fan et al., 2025).

Information-Flow Analyses and Stage-Aware Motivation. To investigate how soft prompts
influence reasoning, researchers have applied information flow and saliency analyses (Simonyan
et al., 2013; Selvaraju et al., 2017; Abnar & Zuidema, 2020). Dai et al. introduced Knowledge
Neurons to characterize knowledge storage units inside LLMs (Dai et al., 2021), and Wang et al.
analyzed in-context learning from an information flow perspective (Wang et al., 2023). Beyond raw
attention maps, works have quantified how information propagates through Transformer layers (e.g.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

attention rollout/flow and cross-layer relevance propagation) (Abnar & Zuidema, 2020; Chefer et al.,
2021). Complementary studies analyzed what attention heads “look at” and whether attention is an
explanation, revealing specialized heads and mixed evidence on attention’s explanatory power (Clark
et al., 2019; Voita et al., 2019; Jain & Wallace, 2019; Wiegreffe & Pinter, 2019). Drawing on
evidence across prior studies, we observe a consistent tendency: across a range of settings, successful
reasoning shifts saliency from prompts to the question and intermediate steps, whereas unsuccessful
reasoning exhibits stronger prompt dependence in deeper layers, thereby disrupting the coherence
of information flow. This observation motivates us to differentiate the role of soft prompts across
hierarchical levels. Accordingly, we propose DHAM and describe it below.

3 PRELIMINARY

Figure 1: Layer-wise saliency with and without soft prompt insertion. The pretrained model (a,
w/o SP) shows oscillatory peaks. Early SP at Layer 1 (b) yields a smooth rise–fall trajectory,
while mid/late SP at Layers 9 and 24 (c, d) introduce spikes and backflows, indicating less stable
transmission and motivating stage-aware prompt scheduling.

Prior studies show that soft prompt may play different roles at different stages of reasoning, and that
they may introduce interference effects in the middle and late stages. While existing work reveals this
phenomenon through empirical results, the underlying mechanisms remain insufficiently understood.
To systematically understand the true impact of soft prompts on the reasoning process of large models,
we examine the information flow across Transformer layers. Specifically, this section aims to answer
two key questions:

(1) How does information propagate and evolve with depth when soft prompts are inserted at
different layers?

(2) Which inter-layer transmission pattern better maintains stable information flow and improves
complex reasoning performance?

To this end, we construct both a visualization and a quantitative analysis of inter-layer information flow
based on saliency scores Dai et al. (2021). Figure 1 illustrates the visualization (more visualizations
of saliency-based information flow can be found in the Appendix A.2), where saliency is defined as:

I l =
∑
h

Ah,l ⊙ ∂L(x)

∂Ah,l
(1)

where Ah,l denotes the attention matrix of the h-th head in the l-th layer, L(x) denotes the task
loss (cross-entropy), and ⊙ represents element-wise multiplication. For visualization, we aggregate
and normalize across heads and positions (taking the absolute value and averaging), obtaining a
single scalar for each layer and plotting its variation with respect to layer depth (red markers indicate
insertion layers). To eliminate the confounding factor of correctness and focus on the shape of
information flow trajectories, we only visualize samples that are correctly solved under all four
configurations. This allows us to directly observe the influence of different insertion stages without
interference from task difficulty or outcome differences.

Under this controlled setting, as shown in Figure 1, we observe significant differences in saliency
curve shapes across different insertion stages. (a) The “w” configuration shows a relatively un-
stable and erratic pattern, indicating a less stable inter-layer information flow. (b) Early insertion
of soft prompts results in a unimodal and smooth trajectory that rises and then falls, suggesting

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Layer-wise saliency difference heatmaps under different SP insertion settings, computed
as the change between consecutive layers (later minus earlier). The pretrained model (a, w/o SP)
and mid/late insertions (c, d) show scattered hotspots and irregular perturbations, indicating unstable
propagation. Early insertion at Layer 1 (b) yields a smooth diagonal band, suggesting stable cross-
layer information flow.

a gradual migration of information from the prompt to the problem statement and intermediate
reasoning steps as depth increases, thereby forming a more stable flow. (c) Mid-stage inser-
tion leads to multi-peaked and oscillatory patterns with frequent spikes and local reversals, sig-
nifying unstable information transmission across layers. (d) Similarly, late-stage insertion also
exhibits a highly oscillatory pattern, with significant fluctuations and reversals in the saliency
curve, indicating stage misalignment and disrupted flow of information. These observations in-
dicate that the insertion stage systematically alters the way information propagates across layers.

Figure 3: Accuracy comparison under differ-
ent SP insertion positions on GSM8K with
LLaMA-3-8B.

We further quantify these transmission patterns by
visualizing saliency differences between adjacent lay-
ers (Figure 2). We find that early insertion signif-
icantly reshapes the inter-layer structure: the diag-
onal band becomes more continuous and uniform,
and scattered hotspots are reduced, indicating that
saliency is smoothly propagated between adjacent
layers and that abrupt cross-stage shifts (i.e., back-
flows) are suppressed. By contrast, the other three
configurations show highly similar structures, consis-
tent with their oscillatory saliency trajectories. Com-
bined with the accuracy comparison on GSM8K us-
ing LLaMA-3-8B (Figure 3), where early insertion
achieves the highest accuracy of 70.7%, we conclude
that smooth migration patterns are likely more ben-
eficial for reasoning performance.

To formalize this relationship, we propose two
testable hypotheses: (i) the Stable Information Flow Hypothesis—a unimodal and smooth mi-
gration of saliency along depth facilitates controllable reasoning paths and stronger robustness; and
(ii) theStage Misalignment Hypothesis—when soft prompts continuously dominate saliency in the
middle and late stages, inducing repeated backflows and spikes, model attention competes with task
signals at inappropriate stages. This disrupts information propagation, occasionally yielding correct
answers but with weaker robustness and generalization.

If these hypotheses hold, we expect to observe consistent evidence across datasets and models: the
smoother and more unimodal the saliency curve, the more robust the sample is to paraphrasing
or mild noise; moving soft prompts from later to earlier stages, or suppressing their influence in
later stages, shifts the curve from a multi-peaked oscillatory pattern to a unimodal smooth pattern;
and other interpretability signals (e.g., attention rollout, cross-layer correlation propagation) more
consistently trace to the problem statement and intermediate reasoning steps, rather than repeatedly
returning to the prompt itself.

In summary, even when the final answers are identical, an along-depth smooth migration pattern
aligns better with the information flow required for coherent reasoning, whereas repeated backflows
and spikes reflect stage misalignment and attention competition. This observation directly motivates
the method design in the following section: by differentiating the roles and strengths of soft prompts

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

across stages and suppressing their excessive influence in the later layers, we promote stable inter-layer
propagation and thereby improve reasoning accuracy.

4 METHOD

We propose a DHAM that models cross-layer organization in LLMs by clustering layers into coherent
stages and injecting trainable soft prompts at representative layers to provide stage-specific semantic
guidance during inference. In the following sections, we detail the overall workflow and the key
technical elements of DHAM.

4.1 HIERARCHICAL PARTITIONING

A large language model typically contains L Transformer layers with hidden dimension d. For an
input sequence of length n, the output of the l-th layer is denoted as X(l) ∈ Rn×d. To measure the
similarity among internal representations, we adopt Centered Kernel Alignment (CKA) (Kornblith
et al., 2019), a normalized dependence measure widely used for comparing neural network features.
We choose CKA as it is more effective in capturing cross-layer distributional similarity and more
stable for hierarchical partitioning than cosine similarity or other common measures. Given two
representations X,Y ∈ Rn×d, the CKA score is defined as:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
(2)

where K = XX⊤, L = Y Y ⊤, and HSIC denotes the Hilbert–Schmidt Independence Criterion.

After obtaining the similarity matrix, we compute pairwise CKA scores across the L layers to
construct S ∈ [0, 1]L×L. We then apply agglomerative hierarchical clustering (Murtagh & Contreras,
2012) to partition the model into G hierarchies {G1, . . . ,GG} (see Fig. 4). Each hierarchy corresponds
to a group of layers with similar functional roles in reasoning and is regarded as a semantic unit.

The number of hierarchies G is determined in a data-driven manner. Specifically, we employ
hierarchical clustering on the CKA-based similarity matrix to construct a dendrogram T , which
models the aggregation relations among layers. This method does not require a pre-specified number
of clusters, and the resulting tree structure inherently provides multi-granularity hierarchical partitions.
Such partitions offer interpretable layer groupings at different depths, thereby supplying a stable
structural basis for subsequent stage-wise soft prompt injection.

On the dendrogram T , a cut threshold τ produces the initial number of clusters as:

G(τ) = NumClusters(T , τ) (3)

corresponding to different hierarchical partitions. To select the optimal hierarchy number, we compute
the Silhouette coefficient for each partition and take the best-performing one as:

G⋆ = argmax
G(τ)

Silhouette(G(τ)) (4)

Furthermore, to mitigate the instability caused by sample distribution randomness, we adopt bootstrap
resampling and choose the value of G that appears most frequently across repetitions. In practice,
G is typically constrained to the range of [3, 5] to balance hierarchical granularity with additional
parameter overhead. We also report sensitivity analyses on G in the experimental section, which
demonstrate that DHAM remains robust with respect to the choice of hierarchy number.

4.2 HIERARCHICAL SOFT PROMPTS INJECTION

After obtaining the stage partition, we incorporate clustering-based semantic matching, in which
trainable SPs provide stage-aware semantic guidance throughout the forward process.

Unlike conventional SP tuning that attaches prompts to every layer, our method injects prompts only
at the representative layer of each cluster (see Fig. 5).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 4: Overview of the hierarchical sharing procedure in DHAM. (a) Cross-layer similarity
analysis: CKA is used to compute pairwise similarities between Transformer layers, forming a
similarity matrix. (b) Hierarchical modeling via dendrogram: agglomerative clustering constructs
a dendrogram that models the aggregation relations among layers. (c) Determination of clustered
hierarchies: a cut threshold on the dendrogram yields candidate partitions, and the optimal number of
hierarchies is selected via the Silhouette coefficient with bootstrap stabilization.

For each stage Gi, we allocate a trainable soft prompt P (i) ∈ Rm×d, where m denotes the prompt
length and d the hidden dimension. The injection is implemented by concatenation along the sequence
dimension, so that the prompt tokens are processed jointly with the original representation.

At the first layer, the input consists of raw embeddings Ein ∈ Rn×d. We concatenate it with the stage
prompt P (1) to obtain:

X(1) = Concat(Ein, P
(1)) ∈ R(n+m)×d (5)

where the sequence length increases from n to n + m while the hidden dimension remains un-
changed. For each subsequent stage Gi, we similarly prepend the stage prompt P (i) to the input of its
representative layer:

X(l) = Concat(X(l), P (i)) ∈ R(n+m)×d (6)

This operation can be regarded as augmenting the sequence with m “virtual tokens”, thereby injecting
stage-specific semantic information into the hidden space. Such a design enables the model to
explicitly share prompts across stages, achieving stage-wise alignment and dynamic semantic control.

4.3 TRAINING OBJECTIVE

The optimization of DHAM follows the standard autoregressive language modeling task, with cross-
entropy loss as the core objective. Given a target sequence y1:n, the conditional probability at time
step t is defined as:

pθ(yt | y<t, X
(L)) (7)

where X(L) denotes the final representation after hierarchical soft prompt injection. The loss function
is then defined as:

LCE(θ) = −
n∑

t=1

log pθ(yt | y<t, X
(L)) (8)

During training, we adopt the teacher forcing strategy, always conditioning on the ground-truth prefix
y<t to ensure stable gradient propagation. Regarding parameter updates, we freeze the pretrained
backbone parameters and only optimize the stage-specific soft prompts {P (i)} (as well as prompt
length-related parameters, if learnable). This approach significantly reduces the number of trainable
parameters, while ensuring that gradients flow effectively through X(L) to the prompts, thereby
aligning the hierarchical structure with the downstream task objective. For clarity, we provide the
detailed algorithmic workflow and pseudocode of DHAM in Appendix A.3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 5: Dynamic stage-wise prompt injection in DHAM. At the representative layer of each stage,
the input sequence is concatenated with a trainable soft prompt, which functions as virtual tokens to
provide stage-specific semantic guidance. During training, the backbone is frozen, and only the soft
prompt parameters (orange) are updated through backpropagation.

5 EXPERIMENT

In this section, we systematically conduct experiments to validate the effectiveness of our previous
analysis and the proposed method. We design three types of evaluations: (1) performance comparisons
across different models and reasoning benchmarks to assess the general applicability of our approach;
(2) ablation studies on hierarchical partition strategies and the number of stages to analyze the impact
of CKA-based clustering; and (3) visualization of information flow to intuitively demonstrate changes
in inter-layer transmission patterns.

5.1 EXPERIMENTAL SETUP

Models. We evaluate the proposed DHAM method on four pretrained large language models of
different scales and architectures: Llama-2-13B (Touvron et al., 2023), Llama-3-8B (Dubey et al.,
2024), Mistral-7B (Chaplot, 2023), and DeepSeek-7B (Bi et al., 2024). These models cover diverse
training corpora and reasoning capabilities, allowing us to comprehensively assess the generality and
robustness of our approach.

Datasets. We consider three challenging reasoning benchmarks. GSM8K (Cobbe et al., 2021) is a
large-scale grade-school math word problem dataset that primarily tests step-by-step reasoning and
numerical calculation. MATH (Hendrycks et al., 2021) contains problems ranging from elementary
algebra to advanced mathematics, focusing on multi-step logical reasoning and complex formula
derivation. AQuA (Ling et al., 2017) is a multiple-choice dataset involving reasoning-chain integration
and distractor discrimination. Together, these datasets cover distinct dimensions of reasoning,
including step-by-step arithmetic, multi-step logic, and answer integration, thereby providing a
comprehensive evaluation basis.

Baselines. We compare DHAM against several representative methods: (1) Pretrained model: directly
using the frozen backbone without adaptation (2) Prompt tuning (Lester et al., 2021): injecting
trainable prompt vectors at the input layer (3) Prefix tuning (Li & Liang, 2021): prepending trainable
key–value vectors to each Transformer layer (4) LoRA (Hu et al., 2022): low-rank adaptation for
efficient parameter tuning (5) DPC (Fan et al., 2025): dynamically detecting and masking harmful
prompts during reasoning (6) DHAM (Ours): our proposed dynamic hierarchy-aware mechanism.

Evaluation Metrics. We evaluate model performance on GSM8K and AQuA using accuracy, defined
as the proportion of predictions exactly matching the ground truth. For MATH, we adopt exact match
(EM), which requires strict agreement with the reference solution at both the numeric and expression
levels. All results are reported on the test set for fair comparison.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Training Setup. In all experiments, we freeze the backbone parameters and only train stage-specific
soft prompts along with their associated weights. We adopt AdamW as the optimizer with a learning
rate of 2 × 10−5 and a batch size between 4 and 8, depending on GPU memory. We apply early
stopping on the validation set to prevent overfitting.

5.2 PERFORMANCE EVALUATION

Table 1: Performance comparison across four models on GSM8K, MATH, and AQuA benchmarks.
(“ ” indicates that the result is not reported or not publicly available.)

Method Llama-2-13B Llama-3-8B Mistral-7B DeepSeek-7B

GSM8K MATH AQuA GSM8K MATH AQuA GSM8K MATH AQuA GSM8K MATH AQuA

Pretrained model 29.5 2.0 21.0 64.9 30.0 34.0 37.9 5.1 26.0 45.0 13.0 23.0
Prompt tuning 38.1 7.6 22.4 65.5 33.7 38.5 49.5 15.0 28.7 50.3 25.7 26.7
Prefix tuning 41.7 8.4 20.1 65.4 33.0 41.3 54.4 16.3 31.5 56.4 17.0 27.7
ACT 39.2 7.1 20.1 52.6 33.8 38.6 49.5 15.0 28.7 – – –
LoRA 12.7 7.4 24.8 40.9 27.1 42.9 45.1 12.4 26.4 45.0 26.3 27.0
DPC 41.9 9.2 31.1 67.6 36.3 42.5 51.1 16.4 31.9 – – –
DHAM(Ours) 43.8 9.7 33.4 74.0 38.9 44.7 57.5 18.1 34.7 60.1 28.7 30.9

Table 1 presents the performance of different tuning strategies across four representative LLMs on
three reasoning benchmarks. Several observations can be made. First, compared with pretrained
models, both prompt tuning and prefix tuning substantially improve accuracy, confirming the effec-
tiveness of trainable prompt vectors in guiding reasoning. However, these static methods remain
limited: their performance gains are mainly concentrated in the early stages of reasoning, while
performance on more complex tasks, such as MATH and AQuA, remains insufficient. Second, LoRA
yields unstable or even degraded results, with cases such as Llama-2-13B on GSM8K showing
severe drops. This suggests that parameter-heavy adaptation methods are prone to overfitting and
catastrophic forgetting in reasoning tasks. Third, DPC achieves some improvements by suppressing
harmful prompts, but its effectiveness is inconsistent across models. In contrast, our proposed DHAM
consistently outperforms all baselines across models and benchmarks. For example, DHAM improves
Llama-2-13B on GSM8K from 29.5% to 43.8% and Llama-3-8B on MATH from 30.0% to 38.9%,
while also delivering stable gains on Mistral-7B and DeepSeek-7B. These results demonstrate that
DHAM exhibits strong generality and robustness. We hypothesize that the performance gains stem
from DHAM’s ability to mitigate stage misalignment and maintain stable cross-layer information
transmission during reasoning, a hypothesis that we further validate in the following ablation studies.

5.3 ABLATION ON PARTITION STRATEGIES.

Comparison of Hierarchical Partitioning Methods.

Table 2: Ablation study on different stage partition strategies
and similarity metrics. Model: Llama-3-8B; benchmarks:
GSM8K, MATH, and AQuA. Metric: Accuracy (Acc).

Method GSM8K MATH AQuA
Single SP (no partition) 65.5 33.7 38.5
Uniform partition 65.8 33.9 39.0
Cosine similarity + clustering 66.9 34.2 40.5
Euclidean distance + clustering 66.5 34.0 40.1
CKA similarity + clustering (Ours) 74.0 38.9 44.7

Table 2 presents the experimental re-
sults of different hierarchical parti-
tioning strategies and similarity met-
rics on Llama-3-8B across GSM8K,
MATH, and AQuA benchmarks. Sev-
eral observations emerge. First, using
a single soft prompt without hierarchi-
cal partitioning yields the worst per-
formance, indicating that treating all
layers uniformly fails to exploit inter-
layer differences. Introducing hierar-
chical partitioning consistently improves performance, and even the simplest uniform partition
provides noticeable gains. Second, clustering-based strategies further enhance performance compared
with uniform partitioning, suggesting that adaptively grouping layers according to representational
similarity creates more meaningful stage boundaries. Among clustering metrics, cosine similarity and
Euclidean distance offer moderate improvements, but their effectiveness remains limited. In contrast,
CKA-based clustering achieves the best results, reaching 74.0% on GSM8K, 38.9% on MATH, and
44.7% on AQuA. This indicates that CKA more effectively captures cross-layer representational
alignment, leading to more coherent stage formation and more stable information flow.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Overall, the results confirm that the choice of partitioning strategy plays a positive role in mitigating
stage misalignment. In particular, CKA-based clustering provides a more principled and effective
hierarchical partitioning approach, maximizing the advantages of hierarchical soft prompting in
complex reasoning tasks.

Ablation on the Number of Hierarchical Stages. To evaluate the impact of CKA-based hi-
erarchical partitioning under different clustering thresholds, we conduct an ablation study on
the number of stages G. Specifically, we adjust the clustering threshold to control the degree
of layer merging, which results in different hierarchical structures. Varying G only changes
the distribution of prompts across the hierarchy, while keeping the overall prompt budget fixed.

Table 3: Ablation study on the number of hierarchical stages G
across different models. The total prompt token budget is fixed at
64 to ensure a fair comparison. Metric: Accuracy (Acc).

Model
Stages G

G = 2 G = 3 G = 4 G = 5 G = 6 G = 7 G = 8

Llama-2-13B 41.0 43.0 43.8 42.9 42.0 41.6 40.8
Llama-3-8B 73.0 74.0 72.0 65.0 69.0 69.0 67.0
Mistral-7B 54.8 55.9 56.8 57.5 57.0 56.2 55.1

DeepSeek-7B 58.2 60.1 59.1 58.0 57.2 56.5 55.9

The results in Table 3 show that
a moderate number of stages
yields the best performance,
while too few or too many re-
duce accuracy. Llama-2-13B per-
forms best at G = 4 (43.8%),
Llama-3-8B at G = 3 (74.0%)
but drops sharply with larger G,
and Mistral-7B and DeepSeek-
7B at G = 5 (57.5%) and G = 3
(60.1%), respectively, reflecting
model-specific optima.

In summary, too few stages merge layers and obscure hierarchical distinctions, while too many
stages fragment prompts and disrupt information flow. These results support our hypothesis that
aligning hierarchy with model depth is essential: an appropriate stage number stabilizes information
flow, prevents misalignment from over-aggregation or over-segmentation, and maximizes reasoning
performance under a fixed prompt budget.

5.4 VISUALIZATION

Figure 6: Average layer-wise saliency distribu-
tion on correctly solved GSM8K cases under
our method DHAM (G=3).

We analyze the information flow under DHAM.
Figure 6 shows that layer-wise saliency follows a
unimodal and smooth rise-and-fall pattern, which
aligns with the stable information flow hypothesis:
saliency gradually shifts from prompts to the prob-
lem and intermediate reasoning steps, thereby form-
ing continuous and directional transmission across
layers. In contrast, multiple peaks or sharp rever-
sals in the middle and later stages indicate stage
misalignment, where prompts compete with task
signals and disrupt transmission. Thus, a smooth
unimodal curve corresponds to stable reasoning,
whereas fluctuating multi-peak patterns reflect mis-
alignment.

6 CONCLUSION

In this paper, we show through saliency analysis that effective information flow in large-model rea-
soning follows a smooth, unimodal migration, where information passes layer by layer and gradually
concentrates on the problem and intermediate steps. In practice, however, models often exhibit
multi-peaked oscillations that cause backflow and weaken reasoning. To address this, we propose the
Dynamic Hierarchy-Aware Mechanism (DHAM), which uses CKA-based hierarchical partitioning
and stage-specific prompt regulation to guide reasoning at appropriate depths. Experiments demon-
strate that DHAM restores smooth cross-layer flow, mitigates disruption, and significantly improves
accuracy on complex reasoning tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We place strong emphasis on the reproducibility of our work and provide multi-level support across
the main paper, appendix, and supplementary materials. In particular, Section 4 describes the proposed
Dynamic Hierarchy-Aware Mechanism (DHAM) in detail, including CKA-based inter-layer similarity
computation, hierarchical clustering criteria, and stage-wise soft prompt injection. To further reduce
implementation barriers, Appendix A.3 provides full pseudocode for the core algorithms (stage
partitioning, prompt injection, and training), and explains the complete workflow step by step to
ensure transparency and operability. Section 5 systematically introduces the experimental setup,
including models (Llama-2-13B, Llama-3-8B, Mistral-7B, DeepSeek-7B), datasets (GSM8K, MATH,
AQuA), training configurations (optimizer, learning rate, batch size, freezing strategy), and evaluation
metrics, ensuring that experimental conditions are clearly documented. Additional analyses are
reported in Section 5 and Appendix A.2, covering ablations on partition strategies and the number of
stages G, as well as visualizations of information flow across layers. These supplementary results
support the robustness of our method and provide practical guidance for replication. All datasets
used in this work are publicly available, and their sources are clearly cited in the main text. Upon
acceptance, we will release the full source code and training scripts to further facilitate replication
and extension of our research by the community.

REFERENCES

Samira Abnar and Willem Zuidema. Quantifying attention flow in transformers. arXiv preprint
arXiv:2005.00928, 2020.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Devendra Singh Chaplot. Albert q. jiang, alexandre sablayrolles, arthur mensch, chris bamford,
devendra singh chaplot, diego de las casas, florian bressand, gianna lengyel, guillaume lample,
lucile saulnier, lélio renard lavaud, marie-anne lachaux, pierre stock, teven le scao, thibaut lavril,
thomas wang, timothée lacroix, william el sayed. arXiv preprint arXiv:2310.06825, 3, 2023.

Hila Chefer, Shir Gur, and Lior Wolf. Transformer interpretability beyond attention visualization. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 782–791,
2021.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does bert look at?
an analysis of bert’s attention. arXiv preprint arXiv:1906.04341, 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers. arXiv preprint arXiv:2104.08696, 2021.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature machine intelligence, 5(3):220–235, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Sinan Fan, Liang Xie, Chen Shen, Ge Teng, Xiaosong Yuan, Xiaofeng Zhang, Chenxi Huang,
Wenxiao Wang, Xiaofei He, and Jieping Ye. Improving complex reasoning with dynamic prompt
corruption: A soft prompt optimization approach. arXiv preprint arXiv:2503.13208, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Sarthak Jain and Byron C Wallace. Attention is not explanation. arXiv preprint arXiv:1902.10186,
2019.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519–3529.
PMlR, 2019.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word problems. arXiv preprint arXiv:1705.04146,
2017.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM computing surveys, 55(9):1–35, 2023.

Xiangyang Liu, Tianxiang Sun, Xuanjing Huang, and Xipeng Qiu. Late prompt tuning: A late prompt
could be better than many prompts. arXiv preprint arXiv:2210.11292, 2022.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang.
P-tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks.
arXiv preprint arXiv:2110.07602, 2021.

Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an overview. Wiley
interdisciplinary reviews: data mining and knowledge discovery, 2(1):86–97, 2012.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, Fandong Meng, Jie Zhou, and Xu Sun. Label
words are anchors: An information flow perspective for understanding in-context learning. arXiv
preprint arXiv:2305.14160, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zihan Wang, Peiyi Wang, Tianyu Liu, Binghuai Lin, Yunbo Cao, Zhifang Sui, and Houfeng
Wang. Hpt: Hierarchy-aware prompt tuning for hierarchical text classification. arXiv preprint
arXiv:2204.13413, 2022.

Sarah Wiegreffe and Yuval Pinter. Attention is not not explanation. arXiv preprint arXiv:1908.04626,
2019.

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Rui Hou, Yuxiao Dong, VG Vydiswaran, and Hao Ma. Idpg:
An instance-dependent prompt generation method. arXiv preprint arXiv:2204.04497, 2022.

Xianjun Yang, Wei Cheng, Xujiang Zhao, Wenchao Yu, Linda Petzold, and Haifeng Chen. Dynamic
prompting: A unified framework for prompt tuning. arXiv preprint arXiv:2303.02909, 2023.

Xiaosong Yuan, Chen Shen, Shaotian Yan, Xiaofeng Zhang, Liang Xie, Wenxiao Wang, Renchu Guan,
Ying Wang, and Jieping Ye. Instance-adaptive zero-shot chain-of-thought prompting. Advances in
Neural Information Processing Systems, 37:125469–125486, 2024.

Lei Zeng, Ruifang He, Haowen Sun, Jing Xu, Chang Liu, and Bo Wang. Global and local hierarchical
prompt tuning framework for multi-level implicit discourse relation recognition. In Proceedings of
the 2024 Joint International Conference on Computational Linguistics, Language Resources and
Evaluation (LREC-COLING 2024), pp. 7760–7773, 2024.

Zhen-Ru Zhang, Chuanqi Tan, Haiyang Xu, Chengyu Wang, Jun Huang, and Songfang Huang.
Towards adaptive prefix tuning for parameter-efficient language model fine-tuning. arXiv preprint
arXiv:2305.15212, 2023.

Wei Zhu and Ming Tan. Spt: Learning to selectively insert prompts for better prompt tuning. In
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp.
11862–11878, 2023.

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

The authors utilized OpenAI’s GPT-5 to improve the grammar, clarity, and conciseness of the text.
All scientific contributions, methodology design, experiments, and analyses are the original work of
the authors, who take full responsibility for the paper’s content.

A.2 ANALYSIS OF STAGE MISALIGNMENT IN SOFT PROMPTS

As shown in Figure 7, different insertion stages lead to distinct patterns of saliency propagation.
Without SP (a), the trajectory exhibits oscillatory fluctuations, suggesting unstable information flow.
Early insertion at Layer 1 (b) produces a unimodal rise–fall curve, indicating a smooth migration of
information across depth and a more coherent flow. By contrast, mid- (c) and late-stage (d) insertions
yield multi-peaked and highly oscillatory trajectories, with frequent spikes and reversals that disrupt
stability. These results align with our hypothesis that early prompts facilitate stable inter-layer
propagation, whereas later prompts induce stage misalignment and interfere with reasoning.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

(a) (b)

(c) (d)

Figure 7: Layer-wise saliency analysis under different soft prompt (SP) insertion stages. (a) w/o
baseline, (b) early insertion at Layer 1, (c) mid-stage insertion at Layer 9, and (d) late-stage insertion at
Layer 24. Each panel reports saliency distributions, average trajectories, and correctness comparison,
highlighting how insertion stage systematically shapes information flow.

(a) (b)

(c) (d)

Figure 8: Overall comparison of saliency trajectories between correct and incorrect predictions under
different SP insertion stages: (a) Layer 1, (b) Layer 9, (c) Layer 14, and (d) Layer 24. Each panel
shows average saliency scores and their differences across layers.13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

As illustrated in Figure 8, the gap between correct and incorrect samples varies systematically with the
insertion stage. When SPs are inserted at Layer 1 (a), correct and incorrect trajectories largely overlap,
with only small differences concentrated in shallow layers, suggesting that early insertion encourages
a stable and consistent propagation path. By contrast, mid- (b, c) and late-stage (d) insertions yield
more pronounced and persistent gaps between correct and incorrect samples, indicating that saliency
is increasingly diverted from task-relevant signals. This comparison further confirms that early-stage
prompts promote more robust alignment between saliency propagation and reasoning correctness,
whereas later-stage prompts exacerbate stage misalignment.

Figure 9: Comprehensive saliency statistics across layers. (Top-left) Average saliency trajectories
for correct vs. incorrect predictions. (Top-right) Overall average saliency with peak at Layer 15.
(Bottom-left) Heatmap of saliency evolution for 20 representative samples. (Bottom-right) Histogram
of saliency score distribution.

Figure 9 provides an overall view of saliency behavior. The average trajectories for correct and
incorrect samples (top-left) nearly overlap, suggesting that global saliency trends are largely consistent
regardless of correctness. The overall average curve (top-right) exhibits a clear unimodal pattern
with a peak around Layer 15, indicating that information concentration emerges in mid-depth layers.
The heatmap of representative samples (bottom-left) further confirms this trend, showing gradual
migration of saliency from shallow to mid layers. Finally, the histogram (bottom-right) reveals
that most saliency scores are concentrated in the 0.70–0.82 range, demonstrating stable activation
magnitudes across layers. Together, these results suggest that saliency exhibits a universal depth-
dependent trajectory, with mid-layer concentration acting as a key stage in information propagation.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3 PSEUDOCODE

This section provides the detailed pseudocode for the primary components of the DHAM framework.

Algorithm 1 CKA-based Hierarchical Stage Partitioning
Require: Pretrained LLMM with L Transformer layers; unlabeled calibration set C; cut-threshold candidates
{τ}; bootstrap rounds B

Ensure: Stage groups {Gi}Gi=1; representative-layer map r(i) for each stage i
Collect layer-wise representations on calibration set

1: for each sequence x ∈ C do
2: Run forward pass ofM on x and cache hidden states {X(l)(x) ∈ Rnx×d}Ll=1

3: end for
Build CKA similarity matrix

4: Initialize S ∈ [0, 1]L×L

5: for l = 1 to L do
6: for l′ = 1 to L do
7: Form X = stackx∈C(X

(l)(x)), Y = stackx∈C(X
(l′)(x))

8: K ← XX⊤, Lmat← Y Y ⊤, H ← I − 1
n
11⊤

9: K←HKH , L←HLmatH ▷ centered kernels
10: HSIC(K,L)← tr(KL)

11: S[l, l′]← HSIC(K,L)√
HSIC(K,K)·HSIC(L,L)

12: end for
13: end for

Agglomerative clustering and model selection
14: Build dendrogram T from S
15: for each τ in {τ} do
16: Obtain partition {Gi(τ)} by cutting T at τ
17: Compute Silhouette score Sil(τ)
18: end for
19: τ⋆ ← argmaxτ Sil(τ)
20: (Bootstrap) Repeat lines 12–17 for B resamples of C and pick the most frequent G
21: {Gi}Gi=1 ← partition at τ⋆ (or bootstrap majority)

Choose representative layer for each stage
22: for i = 1 to G do
23: r(i)← minGi ▷ default: shallowest layer in stage i
24: end for
25: return {Gi}Gi=1, r(i)

Algorithm 2 DHAM Forward: Stage-wise Soft Prompt Injection
Require: Token embeddings Ein ∈ Rn×d; stage groups {Gi}Gi=1; representative-layer map r(i); stage prompts
{P (i) ∈ Rm×d}; pretrained backboneM (frozen)

Ensure: Final hidden state X(L)

1: Z(1) ← Ein
2: for ℓ = 1 to L do
3: if ℓ = r(i) for some stage i then
4: Z(ℓ) ← Concatseq(Z

(ℓ), P (i)) ▷ concatenation along sequence dim (n→ n+m)
5: end if
6: X(ℓ) ← TransformerLayerℓ(Z

(ℓ)) ▷ frozen weights
7: if ℓ < L then
8: Z(ℓ+1) ← X(ℓ)

9: end if
10: end for
11: return X(L)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 3 Training DHAM with Cross-Entropy (Teacher Forcing)

Require: Training set D = {(x, y)}; stage groups {Gi}; representative layers r(i); prompts {P (i)} (trainable);
pretrained backboneM and LM head (frozen); optimizer O; learning rate η

Ensure: Trained stage prompts {P (i)}
1: Freeze all parameters ofM and LM head; set requires grad=False except {P (i)}
2: for each minibatch B ⊂ D do
3: L ← 0
4: for each (x, y) in B do
5: Ein ← Embed(x)

6: X(L) ← DHAM-FORWARD(Ein, {Gi}, r(·), {P (i)},M)

7: L ← L−
∑|y|

t=1 log pθ(yt | y<t, X
(L))

8: end for
9: Compute gradients∇{P (i)}L

10: Update prompts: {P (i)} ← O({P (i)},∇, η)
11: Zero optimizer/memory buffers
12: end for
13: return {P (i)}

A.3.1 PSEUDOCODE EXPLANATION

To complement the pseudocode presented in Algorithms 1–3, we provide a step-by-step explanation
of the DHAM workflow. The entire pipeline consists of three key components: stage partitioning,
stage-wise soft prompt injection, and optimization.

Stage Partitioning (Algorithm 1). The first step is to analyze representational similarity across
layers of the pretrained LLM. We collect hidden states from a small calibration set and compute
pairwise Centered Kernel Alignment (CKA) scores to quantify distributional similarity between
layers. These scores form a similarity matrix, which is then passed to agglomerative hierarchical
clustering to generate a dendrogram that reflects cross-layer functional relationships. By sweeping
over multiple cut thresholds τ and evaluating the resulting partitions with the Silhouette score, we
determine the optimal number of hierarchies G. To ensure stability, bootstrap resampling is applied
and the most frequent partition is selected. Finally, each stage is assigned a representative layer,
typically the shallowest layer in the cluster, which will later serve as the insertion point for stage
prompts.

Stage-wise Prompt Injection (Algorithm 2). Once stages are determined, we introduce trainable
soft prompts at their representative layers. Unlike conventional prompt tuning that attaches prompts
to every layer, our method concatenates a stage-specific prompt only at the designated entry point of
each stage. Concretely, for stage Gi, its prompt P (i) is prepended to the sequence at r(i), expanding
the sequence length from n to n+m while keeping hidden dimension d unchanged. The modified
input is then passed through the frozen Transformer backbone, allowing the injected virtual tokens to
steer the information flow in a stage-aware manner. This design enables dynamic guidance across
stages while avoiding over-saturation of prompts in deeper layers.

Training Objective (Algorithm 3). During training, we freeze all parameters of the pretrained
backbone and LM head, optimizing only the stage-specific prompts {P (i)}. We adopt teacher forcing,
where at each time step the model conditions on the ground-truth prefix y<t to predict the next token
yt. The objective is the standard cross-entropy loss over the sequence. Gradients are propagated
through the frozen backbone to the prompt embeddings, which are updated using AdamW or a similar
optimizer. This reduces the number of trainable parameters by several orders of magnitude, while
still allowing the injected prompts to adapt to task-specific reasoning requirements.

In summary, the three algorithms together describe the full DHAM pipeline: first partitioning the
model into semantically coherent stages, then injecting stage-aware soft prompts at the representative
layers, and finally training these prompts with cross-entropy under teacher forcing. This modular
pseudocode reflects the structural motivation of DHAM, making its implementation transparent and
reproducible.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.4 VISUALIZATION

Figure 10: CKA-based hierarchical clustering pipeline. (Left) Layer-wise representational similarity
measured by CKA. (Middle) Agglomerative hierarchical clustering produces a dendrogram that
models aggregation relations across layers. (Right) Layer-wise saliency scores are aligned with the
derived hierarchy to guide stage partitioning.

As illustrated in Figure 10, the hierarchical partitioning process follows a three-step pipeline. First,
CKA is employed to compute pairwise similarity across Transformer layers, yielding a structured
similarity matrix. Second, agglomerative hierarchical clustering constructs a dendrogram that captures
aggregation relations and potential stage boundaries. Finally, the obtained partitions are aligned
with saliency-based layer importance, providing a principled basis for stage-wise prompt injection.
This integration ensures that the partitions are both representation-driven and task-aware, stabilizing
cross-layer organization.

A.5 NOTATION

Table 4: Table of Mathematical Symbols

Symbol Meaning
L Number of Transformer layers in the backbone model
d Hidden dimension of Transformer representations
n Length of the input sequence (number of tokens)
m Length of each trainable soft prompt (number of virtual tokens)
X(l) ∈ Rn×d Hidden representation at the l-th Transformer layer
Ein ∈ Rn×d Input token embeddings
P (i) ∈ Rm×d Trainable soft prompt for stage Gi

{Gi}Gi=1 Partition of Transformer layers into G hierarchical stages
r(i) Representative layer index of stage Gi

S ∈ [0, 1]L×L CKA similarity matrix across all layers
τ Cut threshold applied to the dendrogram to obtain G(τ) clusters
G(τ) Number of hierarchies obtained at threshold τ
G⋆ Optimal number of hierarchies chosen via Silhouette score
C Calibration set used to compute CKA similarity
D = {(x, y)} Training dataset (input x with target sequence y)
X(L) Final hidden state of the model after L layers (input to LM head)
pθ(yt | y<t, X

(L)) Conditional probability of predicting token yt
LCE Cross-entropy loss for autoregressive language modeling
B Number of bootstrap rounds for stabilizing clustering
η Learning rate for optimizing prompts

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.6 FIGURE

Figure 11: Ablation on the number of hierarchical stages G across different LLMs. Each subfigure
corresponds to one backbone model: Llama-2-13B, Llama-3-8B, Mistral-7B, and DeepSeek-7B. The
x-axis denotes the number of hierarchical stages G, while the y-axis reports task accuracy. Bars
are color-coded by stage number, and the best-performing configuration is highlighted with a red
arrow. Results demonstrate that performance exhibits a unimodal trend: too few stages fail to capture
sufficient hierarchy, while too many stages dilute semantic guidance and reduce stability.

Ablation on Hierarchical Stages. Figure 11 presents the effect of varying the number of hierarchical
stages G under a fixed prompt budget. We observe that performance is sensitive to the choice of
G, typically following a unimodal distribution. When G is too small (e.g., G = 2), the clustering
collapses multiple functionally distinct layers into a single stage, which limits the ability of stage-
specific prompts to provide fine-grained guidance. Conversely, when G is too large (e.g., G ≥ 6),
the prompts become fragmented across stages, weakening semantic consistency and increasing
optimization difficulty. Moderate values of G (between 3 and 5) consistently yield the best results
across all evaluated models, suggesting that DHAM benefits from a balanced hierarchical granularity
that matches the intrinsic layer organization of LLMs.

A.7 FUTURE WORK.

While our ablation results suggest that moderate stage numbers (3 ≤ G ≤ 5) strike a good balance be-
tween semantic granularity and parameter efficiency, further exploration is warranted. One promising
direction is to make the stage partitioning process adaptive, allowing G to vary dynamically across
tasks, datasets, or even input instances. Another avenue is to jointly optimize the partitioning and
prompt parameters in an end-to-end manner, rather than precomputing the hierarchy. Such adaptive
and task-aware extensions could further enhance the generality and robustness of DHAM.

18

	Introduction
	Related Work
	Preliminary
	Method
	Hierarchical Partitioning
	Hierarchical Soft Prompts Injection
	Training Objective

	Experiment
	Experimental Setup
	Performance Evaluation
	Ablation on partition strategies.
	Visualization

	Conclusion
	Reproducibility Statement
	Appendix
	THE USE OF LARGE LANGUAGE MODELS (LLMS)
	Analysis of Stage Misalignment in Soft Prompts
	Pseudocode
	Pseudocode Explanation

	Visualization
	Notation
	Figure
	Future Work.

