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ABSTRACT

We analyze the convergence rate of the unregularized natural policy gradient
algorithm with log-linear policy parametrizations in infinite-horizon discounted
Markov decision processes. In the deterministic case, when the Q-value is known
and can be approximated by a linear combination of a known feature function up
to a bias error, we show that a geometrically-increasing step size yields a linear
convergence rate towards an optimal policy. We then consider the sample-based
case, when the best representation of the Q-value function among linear combi-
nations of a known feature function is known up to an estimation error. In this
setting, we show that the algorithm enjoys the same linear guarantees as in the
deterministic case up to an error term that depends on the estimation error, the
bias error, and the condition number of the feature covariance matrix. Our results
build upon the general framework of policy mirror descent and extend previous
findings for the softmax tabular parametrization to the log-linear policy class.

1 INTRODUCTION

Sequential decision-making represents a framework of paramount importance in modern statistics
and machine learning. In this framework, an agent sequentially interacts with an environment to
maximize notions of reward. In these interactions, an agent observes its current state s ∈ S , takes
an action a ∈ A according to a policy that associates to each state a probability distribution over
actions, receives a reward, and transitions to a new state. Reinforcement Learning (RL) focuses on
the case where the agent does not have complete knowledge of the environment dynamics.

One of the most widely-used classes of algorithms for RL is represented by policy optimization.
In policy optimization algorithms, an agent iteratively updates a policy that belongs to a given
parametrized class with the aim of maximizing the expected sum of discounted rewards, where
the expectation is taken over the trajectories induced by the policy. Many types of policy optimiza-
tion techniques have been explored in the literature, such as policy gradient methods (Sutton et al.,
1999), natural policy gradient methods (Kakade, 2002), trust region policy optimization (Schulman
et al.), and proximal policy optimization (Schulman et al., 2017). Thanks to the versatility of the pol-
icy parametrization framework, in particular the possibility of incorporating flexible approximation
schemes such as neural networks, these methods have been successfully applied in many settings.
However, a complete theoretical justification for the success of these methods is still lacking.

The simplest and most understood setting for policy optimization is the tabular case, where both
the state space S and the action space A are finite and the policy has a direct parametrization,
i.e. it assigns a probability to each state-action pair. This setting has received a lot of attention in
recent years and has seen several developments (Agarwal et al., 2021; Xiao, 2022). Its analysis is
particularly convenient due to the decoupled nature of the parametrization, where the probability
distribution over the action space that the policy assigns to each state can be updated and analyzed
separately for each state. This leads to a simplified analysis, where it is often possible to drop
discounted visitation distribution terms in the policy update and take advantage of the contractivity
property typical of value and policy iteration methods. Recent results involve, in particular, natural
policy gradient (NPG) and, more generally, policy mirror descent, showing how specific choices of
learning rates yield linear convergence to the optimal policy for several formulations and variations
of these algorithms (Cen et al., 2021; Zhan et al., 2021; Khodadadian et al.; Xiao, 2022; Li et al.,
2022; Lan, 2022; Bhandari and Russo, 2021; Mei et al., 2020).
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Two of the main shortfalls of these methods are their computational and sample complexities, which
depend polynomially on the cardinality of the state and action spaces, even in the case of linear
convergence. Indeed, by design, these algorithms need to update at each iteration a parameter or a
probability for all state-action pairs, which has an operation cost proportional to |S||A|. Further-
more, in order to preserve linear convergence in the sample-based case, the aforementioned works
assume that the worst estimate (ℓ∞ norm) of Qπ(s, a)—which is the expected sum of discounted
rewards starting from the state-action pair (s, a) and following a policy π—is exact up to a given
error threshold. Without further assumptions, meeting this threshold requires a number of samples
that depends polynomially on |S||A|.
A promising approach to deal with large and high-dimensional spaces that is recently being explored
is that of assuming that the environment has a low-rank structure and that, as a consequence, it can
be described or approximated by a lower dimensional representation. In particular, a popular frame-
work is that of linear function approximation, which consists in assuming that quantities of interest
in the problem formulation, such as the transition probability (Linear MDPs) or the action-value
function Qπ of a policy π can be approximated by a linear combination of a certain d-dimentional
feature function ϕ : S × A → Rd up to a bias error εbias. This linear assumption reduces the di-
mensionality of the problem to that of the feature function. In this setting, many researchers have
proposed methods to learn the best representation ϕ (Agarwal et al., 2020; Modi et al., 2021; Uehara
et al., 2021; Zhang et al., 2022) and to exploit it to design efficient vairations of the upper confidence
bound (UCB) algorithm, for instance (Jin et al., 2020; Li et al., 2021; Wagenmaker et al., 2022).

When applying the framework of linear approximation to policy optimization, researchers typically
adopt the log-linear policy class, where a policy πθ parametrized by θ ∈ Rd is defined as propor-
tional to exp(θ⊤ϕ). For this policy class, several works have obtained improvements in terms of
computational and sample complexity, as the policy update requires a number of operations that
scales only with the feature dimension d and the estimation assumption to retain convergence rates
in the sample-based setting is weaker than the tabular counterpart. In fact, theoretical guarantees
for these algorithms only assume the expectation of Qπ over a known distribution on the state and
action spaces to be exact up to a statistical error εstat. In the linear function approximation setting
meeting this assumption typically requires a number of samples that is only a function of d and it
does not depend on |S| and |A| Telgarsky (2022). However, a complete understanding of the con-
vergence rate of policy optimization methods in this setting is still missing. Recent results include
sublinear convergence rates for unregularized NPG (Agarwal et al., 2021; Qiu et al., 2021; Zanette
et al., 2021; Hu et al., 2021) and linear convergence rates for entropy-regularized NPG with bounded
updates (Cayci et al., 2021).

Our work fills the gap between the aforementioned findings and it extends the analysis and results
of the tabular setting to the linear function approximation setting. In particular, we show that, under
the standard assumptions on the (εstat, εbias)-approximation of Qπ mentioned above, a choice of
geometrically-increasing step-sizes leads to linear convergence of NPG for the log-linear policy
class in both deterministic and sample-based settings. Our result directly improves upon the sub-
linear iteration complexity of NPG previously established for the log-linear policy class by Agarwal
et al. (2021) and Hu et al. (2021) and it removes the need for entropy regularization and bounded
step-sizes used by Cayci et al. (2021), under the same assumptions on the linear approximation
of Qπ . Moreover, we have that the number of operations needed for the policy update and the
number of samples needed to preserve the convergence rate in the sample-based setting depend on
the dimension d of ϕ, as opposed to the tabular setting where the same quantities depend on |S||A|.
By extending the linear convergence rate of NPG from the tabular softmax parametrization to the
setting of log-linear policy parametrizations, our result directly addresses the research direction
outlined in the conclusion of Xiao (2022), and it overcomes the aforementioned limitations of the
tabular settings.

Our analysis is based on the equivalence of NPG and policy mirror descent with KL diver-
gence (Raskutti and Mukherjee, 2015), which has been exploited for applying mirror-descent-type
analysis to NPG by several works, such as Agarwal et al. (2021); Hu et al. (2021); Cayci et al.
(2021). The advantages of this equivalence are twofold. Firstly, NPG crucially ensures a simple
update rule, i.e. log πt+1(a|s) = log πt(a|s) + ηtQ

πt(s, a) , which in the particular case of the
log-linear policy class translates into θ⊤t+1ϕ(s, a) = θ⊤t ϕ(s, a) + ηtQ

πt(s, a). Secondly, the mirror
descent setup is particularly useful to iteratively control the updates and the approximation errors,
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e.g. through tools like the three-point descent lemma (see (3) below), and to induce telescopic sums
or recursions that are often used to analyze the converge rate of the last iterate.

In our work, we show how to exploit these advantages to use the linear approximation of Qπ in the
analysis and, consequently, make weaker assumptions on the accuracy of the estimation of Qπ w.r.t.
the tabular setting. While previous results for the tabular setting (Cen et al., 2021; Zhan et al., 2021;
Xiao, 2022) require an ℓ∞ norm bound on the estimation error, i.e. ∥Q̂π −Qπ∥∞ ≤ τ , our conver-
gence guarantee depends on the expected error of the estimate, i.e. E(Q̂π(s, a)−Qπ(s, a))2 ≤ εstat,
where the expectation is taken w.r.t. the discounted state visitation distribution induced by the policy
π and the uniform distribution over the action space. This allows us to employ sample-efficient pol-
icy evaluation algorithms, such as temporal difference learning (Hu et al., 2021; Telgarsky, 2022),
and to remove the cardinality of the state and action spaces |S||A| from the sample complexity of
the algorithm.

The paper is organized as follows. Section 2 introduces the main setting of RL, and Section 3
introduces the algorithm framework we consider. Section 4 contains the linear approximation set-up
and our main result. Section 5 presents the analysis of our main result, with the conclusions outlined
in Section 6.

2 SETTING

Consider an agent that acts in a discounted Markov Decision Process (MDP) M = (S,A, P, r, γ, µ),
where: S is the possibly infinite state space and A is the finite action space; P (s′|s, a) is the transi-
tion probability; r(s, a) ∈ [0, 1] is the reward function; γ is the discount factor; and µ is the starting
state distribution. A policy π : S × A → R is a probability distribution over A that represents the
probability that an agent takes action a when in state s. At time t denote the current state and action
by st and at.

For a policy π, let V π : S → R be the respective value function, which is defined as the expected
discounted cumulative reward with starting state s0 = s, namely,

V π
s = E

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣π, s0 = s

]
,

where at ∼ π(·|st) and st+1 ∼ P (·|st, at). Let V π(µ) = Es∼µV
π
s . The agent aims to find an

optimal policy π⋆ ∈ argmaxπ V
π(µ).

For a policy π, let Qπ : S ×A → R be the respective action-value function, or Q-function, which is
defined as the expected discounted cumulative reward with starting state s0 = s and starting action
a0 = a, namely,

Qπ(s, a) = E

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣π, s0 = s, a0 = a

]
,

where at ∼ π(·|st) and st+1 ∼ P (·|st, at).
Define the discounted state visitation distribution (Sutton et al., 1999)

dπµ(s) = (1− γ)Es0∼µ

∞∑
t=0

γtP (st = s|π, s0),

and the discounted state-action visitation distribution

dπρ (s, a) = (1− γ)Es0,a0∼ρ

∞∑
t=0

γtP (st = s|π, s0, a0),

where the trajectory (st, at)t≥0 is generated by the MDP following policy π and ρ is a distribution
over S×A. Then we can formulate the performance difference lemma (Kakade and Langfor, 2002),
a tool that will prove useful in our analysis,

V π(µ)− V π̄(µ) =
1

1− γ
Es∼dπ̄

µ

∑
a∈A

Qπ(s, a)(π(a|s)− π̄(a|s)). (1)
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2.1 NOTATION

We make the following definitions for ease of exposition. As to the policy, let πs := π(s, ·) and πt :=
πθt . For two functions f and g, denote (f ◦ g)(x, y) = f(x)g(y). As to the action-value function,
let Qπ

s := Qπ(s, ·) and Qt(s, a) := Qπt(s, a). As to the discounted visitation distributions, let
dtµ := dπ

t

µ , dt = dtµ ◦ UnifA, and d⋆ := d⋆µ ◦ UnifA. Lastly, denote KL⋆t = Es∼d⋆
µ
KL(π⋆

s , π
t
s).

3 NATURAL POLICY GRADIENT AND MIRROR DESCENT

Policy class — In this work, we consider the log-linear policy parametrization (Agarwal et al., 2021).
Let θ ∈ Rd be a parameter vector and ϕ : S ×A → Rd be a feature function. Then the policy class
consists of all policies of the form:

πθ(a|s) =
exp(θ⊤ϕ(s, a))∑

a′∈A exp(θ⊤ϕ(s, a′))
.

Natural Policy Gradient — We formulate NPG through mirror descent. The update at time t+ 1 is

∇h(πt+1
s ) = ∇h(πt

s) + ηtQ
t
s ∀s ∈ S, (2)

where h(πs) =
∑

a∈A π(a|s) log π(a|s), is the entropy mirror map. This is equivalent to the update

πt+1(s, a) ∝ πt(s, a)e
ηtQ

t(s,a) ∀s, a ∈ S,A,

or, as in Algorithm 1, to requiring that θt+1 is such that

θ⊤t+1ϕ(s, a) = θ⊤t ϕ(s, a) + ηtQ
t(s, a) ∀s, a ∈ S,A.

In the tabular setting, we have d = |S||A|, ϕ(s, a) is a vector of all zeros except a one in the position
assigned to (s, a), and the update is equivalent to the one analyzed by (Agarwal et al., 2021). This
mirror descent setup allows us to use standard mirror descent tools in the analysis (Bubeck, 2015;
Hu et al., 2021; Xiao, 2022), such as three-point descent lemma

Dh(πs, π
t
s)−Dh(πs, π

t+1
s )−Dh(π

t+1
s , πt

s) = ⟨∇h(πt
s)−∇h(πt+1

s ), πt+1
s − πs⟩ ∀πs, (3)

which in this setting can be expressed as

KL(πs, π
t
s)− KL(πs, π

t+1
s )− KL(πt+1

s , πt
s) = −ηt⟨Qt

s, π
t+1
s − πs⟩ ∀πs. (4)

These tools, along with the performance difference lemma (1), ensure that we can control the in-
crease of the value function for each policy update. When we only have access to an approximation
Q̃π of Qπ , these tools allow controlling the error of this approximation by means of simple trian-
gle inequality arguments, making possible the incorporation of the linear function approximation
framework where Qπ is approximated by a linear combination of the feature function ϕ.

4 MAIN RESULT

In this section, we present our main result on the linear convergence of NPG. We start by introducing
and discussing the assumptions and the algorithm.

4.1 ALGORITHM AND LINEAR FUNCTION APPROXIMATION

We make the following two assumptions on the linear approximation of Qπ , which are standard in
the literature (Agarwal et al., 2021; Cayci et al., 2021).
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Assumption 4.1. (Bias error) Define the loss function

L(w, θ, v) := Es,a∼v

[(
Qπθ (s, a)− w⊤ϕ(s, a)

)2]
and let

wt ∈ argmin
w

L(w, θt, d
t
ρ). (5)

Assume that ∀t < T we have

L(wt, θt, d
⋆) ≤ εbias, L(wt, θt, d

t+1
µ ◦ UnifA) ≤ εbias.

In order to better understand the implications of Assumption 4.1, we consider the trivial upper bound
(Agarwal et al., 2021)

L(wt, θt, d
⋆) ≤

∥∥∥∥d⋆dtρ
∥∥∥∥
∞
L(wt, θt, d

t
ρ) ≤

1

1− γ

∥∥∥∥d⋆ρ
∥∥∥∥
∞
L(wt, θt, d

t
ρ).

This bound allows to think of εbias in Assumption 4.1 as controlling two quantities of interest. The
first quantity is the loss incurred by the minimizer of L(w, θt, dtρ), that is the best approximation
Q̃t = w⊤

t ϕ of Qt with respect to the squared error averaged over the distribution dtρ. The second
quantity is the shift in distribution from dtρ to d⋆ in the loss function. A similar conclusion for
Assumption 4.1 can be drawn for the the distribution dt+1

µ ◦ UnifA.

Assumption 4.2. (Statistical error) Assume that our estimate ŵt of wt is such that

Es,a∼dt
ρ

[
(⟨wt − ŵt, ϕ(s, a)⟩)2

]
≤ εstat.

Assumption 4.2 concerns the statistical error incurred when solving the minimization problem in (5)
and it can be used to describe the sample complexity of the algorithm. Let Q̂π(s, a) = ŵ⊤

t ϕ(s, a)

be the sample-based estimate of Q̃π . Then Assumption 4.2 is equivalent to assuming that

Es,a∼dt
ρ

[(
Q̂π(s, a)− Q̃π(s, a)

)2]
≤ εstat.

Several algorithms have been shown to satisfy Assumption 4.2 with a number of samples that de-
pends only on the dimension d of ϕ and not on |S| or |A|, such as temporal difference learning (Tel-
garsky, 2022). This represent an improvement over the sample complexity of tabular algorithms,
where the typical assumption ∥Q̂π −Qπ∥∞ ≤ εstat (Xiao, 2022; Li et al., 2022) causes the sample
complexity to depend on |S||A|.
With this set-up, we can formulate NPG with linear function approximation as in Algorithm 1. At
time step t, let D(t, ρ) be an oracle such that ŵt = D(t, ρ) satisfies Assumption 4.2.

Algorithm 1: NPG with linear function approximation

Input: Learning rate schedule (ηt)t≥0; number of iterations T ; initialized policy π(0);
distribution ρ; oracle D.
for t = 0, . . . , T − 1 do

Obtain ŵt = D(t, ρ).
Update

θt+1 = θt + ηtŵt.

end for

Remark 4.3. (Tabular setting) It is possible to recover the tabular case by setting d = |S||A| and
ϕ(s, a) to be a vector of all zeros except a one in the position assigned to (s, a). In this case, we
recover the same update as the tabular setting and we have that εbias = 0, as by setting w = Qt we
obtain Es∼ν,a∼UnifA

[(
Qt(s, a)− w⊤ϕ(s, a)

)2]
= 0 for any distribution ν.
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Remark 4.4. (Linear MDPs) Another setting for which the bias error εbias is equal to 0 is that of
Linear MDPs (Jin et al., 2020), where it is assumed that the transition probability distribution and
the reward function can be expressed as a linear function of the feature function ϕ. Namely, assume
there exist two feature maps ϕ : S ×A → Rd and µ : S → Rd and a vector vr ∈ Rd such that

P (s′|s, a) = ⟨π(s, a), µ(s′)⟩, r(s, a) = ⟨vr, ϕ(s, a)⟩ ∀s, s′ ∈ S, a ∈ A.

If this assumption is satisfied, then we have that ∀s ∈ S, a ∈ A

Qπ(s, a) = r(s, a) + γ

∫
S
V π(s′)P (s′|s, a)ds′ =

〈
ϕ(s, a), vr + γ

∫
S
V π(s′)µ(s′)ds′

〉
,

which means that at each time step t there exists a wt ∈ Rd such that Qt(s, a) = ⟨wt, ϕ(s, a)⟩ and
L(wt, θt, d

t
µ) = 0.

4.2 LINEAR CONVERGENCE

In order to present the main result of our work, we need two additional assumptions on the distribu-
tion mismatch coefficient and the feature covariance matrix.
Assumption 4.5. Assume that the distribution mismatch coefficient

νµ =
1

1− γ

∥∥∥∥d⋆µµ
∥∥∥∥
∞

is finite, i.e. νµ < ∞.

Assumption 4.5 is a standard assumption in the policy optimization literature (Agarwal et al., 2021;
Xiao, 2022). As we will see in Theorem 4.7, the iteration complexity of Algorithm 1 depends poly-
nomially on this term, meaning that the convergence rate is faster when the starting state distribution
µ covers the whole state space.
Assumption 4.6. (Relative condition number) With respect to a distribution v, define

Σv = Es,a∼v

[
ϕ(s, a)ϕ(s, a)⊤

]
and assume that there exists a κ < ∞ such that

sup
w∈Rd

w⊤Σd⋆w

w⊤Σρw
≤ κ, sup

w∈Rd

w⊤(Σdt
µ◦UnifA)w

w⊤Σρw
≤ κ ∀t ≤ T.

Assumption 4.6 is a standard assumption in the linear function approximation literature and high-
lights the importance of choosing a state-action distribution ρ with good coverage over the feature
space, as it can be enforced by choosing the appropriate ρ. In fact, if Φ = {ϕ(s, a)|s ∈ S, a ∈ A}
is a compact set, there always exists a state-action distribution ρ such that κ ≤ d (see Lemma 23 in
Agarwal et al. (2021)). In general, if ∥ϕ(s, a)∥22 ≤ B for all s ∈ S, a ∈ A, we have the crude bound
κ ≤ B/σmin(Σρ), where σmin(A) is the minimum eigenvalue of matrix A.

We are now ready to state the following theorem on the linear convergence of Algorithm 1.
Theorem 4.7. (Linear convergence of NPG with log-linear parametrization) Consider NPG as in
Algorithm 1 and let Assumptions 4.1, 4.2, 4.5, and 4.6 hold. If the step-size schedule satisfies

ηt+1 ≥ νµ
νµ − 1

ηt ∀t,

and η0 ≥ 1−γ
γ KL⋆t , then for every T ≥ 0 we have

V ⋆(µ)− V T (µ) ≤
(
1− 1

νµ

)T
2

1− γ
+ 2νµ

√
|A|κεstat

(1− γ)3
+ 2νµ

√
|A|εbias

1− γ
.

To the best of our knowledge, Theorem 4.7 represents the first result establishing linear convergence
rates for NPG with unbounded updates and without entropy regularization for the log-linear policy
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class. The convergence rate has no explicit dependence on the cardinality of the state and action
spaces, with the exception of the two |A| terms which, as already highlighted by Agarwal et al.
(2021), can be removed with a path-dependent bound. In the case where εbias = 0 and εstat = 0, the
theorem recovers the same convergence rate as Theorem 10 in Xiao (2022).

To obtain the sample complexity of the algorithm, we take advantage of the theory for temporal
difference learning developed by Telgarsky (2022). In particular, we have that in order to satisfy As-
sumption 4.2 for all T iterations with high probability we need Õ

(
T∥wt∥2

2

εstat(1−γ)3

)
samples. Combining

this quantity with the iteration complexity from Theorem 4.7, we obtain a total sample complexity
of

Õ

(
∥wt∥22

ε2(1− γ)10

∥∥∥∥d⋆µµ
∥∥∥∥
∞

)
.

Remark 4.8. (Different policy parametrizations) While our work focuses on the log-linear policy
class, it is possible to extend our framework and our analysis to general function approximation
schemes. Let fθ : S × A → R be a parameterized function and define the policy class {πθ|θ ∈ Θ}
as

πθ(a|s) =
exp(fθ(s, a))∑

a′∈A exp(fθ(s, a′))
.

Let gω be a parametrized operator of fθ, define the loss function

L(ω, θ, ν) := Es∼ν,a∼UnifA

[
(Qπθ (s, a)− gω(fθt(s, a)))

2
]

and let
ωt ∈ argmin

ω
L(ω, θt, d

t
µ).

Then, Assumption 4.1 becomes
L(ωt, θt, d

⋆
µ) ≤ εbias ∀t < T.

The NPG update (2) can then be formulated as requiring θt+1 to be such that
fθt+1

(s, a) = fθt(s, a) + ηtgωt
(fθt(s, a)) ∀s ∈ S, a ∈ A.

Finding methods to solve this system of equations is beyond the scope of this work.

5 ANALYSIS

In order to prove Theorem 4.7, we need some intermediate results. The first one regards the decom-
position of the statistical and the bias errors.

Lemma 5.1. The expected error of the estimate Q̂t
s of Qt

s can be bounded as follows∣∣∣Es∼v⟨Qt
s − Q̂t

s, π
t
s − πs⟩

∣∣∣ ≤ 2

√
|A|κεstat

1− γ
+ 2
√
|A|εbias ∀t < T,

for both v = dt+1
µ , πs = πt+1

s and v = d⋆µ, πs = π⋆
s .

Proof of Lemma 5.1. We start by adding and subtracting Q̂t
s∣∣∣Es∼v⟨Qt

s − Q̂t
s, π

t
s − πt+1

s ⟩
∣∣∣ ≤ ∣∣∣Es∼v⟨Q̃t

s − Q̂t
s, π

t
s − πs⟩

∣∣∣+ ∣∣∣Es∼v⟨Qt
s − Q̃t

s, π
t
s − πs⟩

∣∣∣ .
We then bound the two terms on the right-hand side separately. For the first term, we have that∣∣∣Es∼v⟨Q̃t

s − Q̂t
s, π

t
s − πs⟩

∣∣∣
≤
∣∣Es∼v,a∼πt

s
[(wt − ŵt)ϕ(s, a)]

∣∣+ |Es∼v,a∼πs
[(wt − ŵt)ϕ(s, a)]|

≤
√

Es∼v,a∼πt
s

[
((wt − ŵt)ϕ(s, a))

2
]
+

√
Es∼v,a∼πs

[
((wt − ŵt)ϕ(s, a))

2
]

≤ 2

√
|A|Es∼v,a∼UnifA

[
((wt − ŵt)ϕ(s, a))

2
]
= 2
√
|A| ∥wt − ŵt∥2Σv◦UnifA

,
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where ∥w∥2Σ := w⊤Σw. Using Assumption 4.6 and the fact that (1− γ)ρ ≤ dtρ we have

∥wt − ŵt∥2Σv◦UnifA
≤ κ ∥wt − ŵt∥2Σρ

≤ κ

1− γ
∥wt − ŵt∥2Σdtρ

≤ κεstat

1− γ
.

Similarly, for the second term we have∣∣∣Es∼v⟨Qt
s − Q̃t

s, π
t
s − πs⟩

∣∣∣ ≤ 2

√
|A|Es∼v,a∼UnifA

[(
Qt(s, a)− Q̃t(s, a)

)2]
≤ 2
√
|A|εbias.

For ease of exposition, in the rest of this section denote

τ := 2

√
|A|κεstat

1− γ
+ 2
√
|A|εbias.

The next lemma regards the quasi-monotonic improvements of Algorithm 1. Let Q̂t
s = ŵ⊤

t ϕ(s, ·).
Lemma 5.2. The updates of Algorithm 1 satisfy, for all s ∈ S,

⟨Q̂t
s, π

t+1
s − πt

s⟩ ≥ 0

and
V t+1(µ)− V t(µ) ≥ − τ

1− γ
.

Proof of Lemma 5.2. By 1-strong convexity of h on (0, 1), we have ∀s ∈ S

0 ≤
∥∥πt+1

s − πt
s

∥∥2
2
≤ ⟨∇h(πt+1

s )−∇h(πt
s), π

t+1
s − πt

s⟩ = ⟨Q̂t
s, π

t+1
s − πt

s⟩.

As to the second inequality, we use the performance difference lemma (1) and Lemma 5.1 to obtain

(1− γ)(V t+1(µ)− V t(µ)) = Es∼dt+1
µ

⟨Qt
s, π

t+1
s − πt

s⟩

= Es∼dt+1
µ

⟨Q̂t
s, π

t+1
s − πt

s⟩+ Es∼dt+1
µ

⟨Qt
s − Q̂t

s, π
t+1
s − πt

s⟩

≥ − τ

1− γ
.

The last result we need is the following lemma, which can be straightforwardly proven by induction.
Lemma 5.3. Suppose 0 < α < 1, b > 0 and a nonnegative sequence {ak} satisfies

ak+1 ≤ αak + b ∀k ≥ 0.

Then for all k ≥ 0,

ak ≤ αka0 +
b

1− α
.

With these results in place, we are ready to prove Theorem 4.7.

Proof of Theorem 4.7. Let

νk =

∥∥∥∥ d⋆

dt+1
µ

∥∥∥∥
∞

and consider the equality in (4)

KL(πs, π
t
s)− KL(πs, π

t+1
s )− KL(πt+1

s , πt
s) = −ηt⟨Qt

s, π
t+1
s − πs⟩ ∀πs.

Then, for πs = π⋆
s we have that

Es∼d⋆
µ
⟨Q̂t

s, π
t
s − πt+1

s ⟩+ Es∼d⋆
µ
⟨Q̂t

s, π
⋆
s − πt

s⟩ ≤ KL⋆t − KL⋆t+1. (6)

8
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We bound the two terms on the left-hand side separately. For the first one, we have that

Es∼d⋆
µ
⟨Q̂t

s, π
t
s − πt+1

s ⟩

≥
∥∥∥∥ d⋆

dt+1
µ

∥∥∥∥
∞

Es∼dt+1
µ

⟨Q̂t
s, π

t
s − πt+1

s ⟩

= νk+1(1− γ)
(
V t(µ)− V t+1(µ)

)
+ νk+1Es∼dt+1

µ
⟨Q̂t

s −Qt
s, π

t
s − πt+1

s ⟩

≥ νk+1(1− γ)
(
V t(µ)− V t+1(µ)

)
− νk+1τ,

where the first inequality is due to Lemma 5.2, the equality is due to the performance difference
lemma (1) and the second inequality is due to Lemma 5.1. We use Lemma 5.1 again to bound the
second term in the left-hand side of (6)

Es∼d⋆
µ
⟨Q̂t

s, π
⋆
s − πt

s⟩ = Es∼d⋆
µ
⟨Qt

s, π
⋆
s − πt

s⟩+ Es∼d⋆
µ
⟨Q̂t

s −Qt
s, π

⋆
s − πt

s⟩
≥ (1− γ)

(
V ⋆(µ)− V t(µ)

)
− τ.

Plugging the two bounds in (6) we obtain

νk+1

(
∆t+1 −∆t −

τ

1− γ

)
+∆t ≤

KL⋆t
(1− γ)ηt

−
KL⋆t+1

(1− γ)ηt
+

τ

1− γ
,

where ∆t = V ⋆(µ) − V t(µ). From Lemma 5.2 we have that ∆t+1 − ∆t − τ
1−γ ≤ 0, so, since

νt+1 ≤ νµ, we can replace νt+1 with νµ and write

νµ (∆t+1 −∆t) + ∆t ≤
KL⋆t

(1− γ)ηt
−

KL⋆t+1

(1− γ)ηt
+

(1 + νµ)τ

1− γ
.

Rearranging and dividing by νµ we obtain

∆t+1 +
KL⋆t+1

(1− γ)νµηt
≤
(
1− 1

νµ

)(
∆t +

KL⋆t
(1− γ)ηt(νµ − 1)

)
+

(
1 +

1

νµ

)
τ

1− γ
.

If the step sizes satisfy ηt+1(νµ − 1) ≥ ηtνµ, then

∆t+1 +
KL⋆t+1

(1− γ)ηt+1(νµ − 1)
≤
(
1− 1

νµ

)(
∆t +

KL⋆t
(1− γ)ηt(νµ − 1)

)
+

2τ

1− γ

where we used that νµ ≥ 1. The proof of the theorem follows by applying Lemma 5.3.

6 CONCLUSION

We show how unregularized NPG can be tuned to achieve linear convergence for the log-linear
policy class up to an error floor that depends on the statistical error of our estimates of Qt and the
bias error of the best linear approximation of Qt. Our results fill the gap between the findings in the
tabular setting and the log-linear policy setting, taking advantage of a mirror-descent type analysis,
and address research directions outlined in previous works (Xiao, 2022). The main future direction
is that of extending our framework and results to general policy parametrizations, as we suggest in
Remark 4.8.

REFERENCES

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural complex-
ity and representation learning of low rank mdps. arXiv preprint arXiv:2006.10814, 2020.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. J. Mach. Learn. Res., 22
(98):1–76, 2021.

Jalaj Bhandari and Daniel Russo. On the linear convergence of policy gradient methods for finite
mdps, 2021.

9



Under review as a conference paper at ICLR 2023
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