

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING FROM ALL: CONCEPT ALIGNMENT FOR AUTONOMOUS DISTILLATION FROM MULTIPLE DRIFTING MLLMs

Anonymous authors

Paper under double-blind review

ABSTRACT

This paper identifies a critical yet underexplored challenge in distilling from multi-modal large language models (MLLMs): the reasoning trajectories generated by multiple drifting teachers exhibit concept drift, whereby their reasoning distributions evolve unpredictably and transmit biases to the student model, ultimately compromising its performance. To tackle this issue, we pioneer a theoretical connection between concept drift and knowledge distillation, casting the non-stationary reasoning dynamics from multiple MLLM teachers as next-token prediction of multi-stream reasoning trajectories. Guided by concept drift, we introduce the “learn–compare–critique” paradigm, culminating in autonomous preference optimization (APO). Under the active guidance of the teachers, the student model first learns and self-distils preferred thinking by comparing multiple teachers. It then engages in critical reflection over the drifting inference from teachers, performing concept alignment through APO, ultimately yielding a robust, consistent, and generalizable model. Extensive experiments demonstrate our superior performance of consistency, robustness and generalization within knowledge distillation. Besides, we also contributed a large-scale dataset CXR-MAX (Multi-teachers Alignment X-rays), comprising 170,982 distilled reasoning trajectories derived from publicly accessible MLLMs based on MIMIC-CXR. Our code and data are public at: <https://anonymous.4open.science/r/Autonomous-Distillation/>.

1 INTRODUCTION

Knowledge distillation (KD) has emerged as a central paradigm for transferring knowledge from general large-scale teacher models, such as multi-modal large language models (MLLMs), to more compact student models. This is particularly in customized domain-sensitive settings such as the medical field Shen et al. (2025a); Shu et al. (2025); Cao et al. (2025a); Feng et al. (2025b). Recent advances in multi-teacher distillation further highlight the promise of leveraging complementary expertise and diverse domain-specific priors from multiple teacher models to enhance the student’s learning Gu et al. (2025a); Chen et al. (2024a). However, this paradigm remains fundamentally constrained by the non-stationary dynamics of drifting MLLMs. Specifically, the inherent *inter-model drift* among multiple teachers progressively destabilizes the *concept alignment* between the student model’s representation space and the real-world domain. This misalignment driven by model drift can lead to catastrophic error propagation, critically threatening the reliability of models in safety-sensitive applications.

Concept drift theory offers a compelling analytical lens to examine concept alignment. It allows us to characterize not only the *inter-model drift* among MLLM teachers but also the *hierarchical drift* between the teacher ensemble and the student model under non-stationary custom-tuning Lu et al. (2019); Yang et al. (2025a). This framework is adept at capturing the unpredictable distributional shifts that unfold across their parallel reasoning trajectories. Within this perspective, the autoregressive decoding paradigm of a single MLLM can be viewed as a sequential token-generation process, where each step propagates through the model’s latent reasoning pathways. Consequently, when multiple teachers are involved, their parallel autoregressive processes are transformed into a multi-stream drift scenario, where each process follows its own distributional dynamics that may drift

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

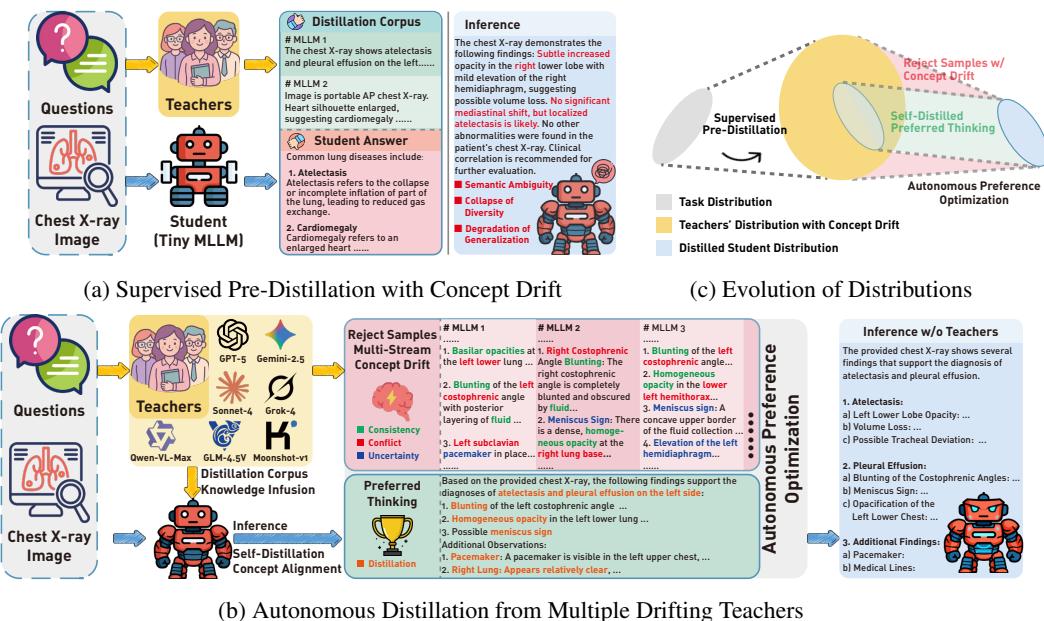
149

150

151

1. We establish a novel theoretical framework that casts the autoregressive generation of reasoning trajectories in MLLMs within the perspective of concept drift theory, providing a principled foundation for understanding and analyzing knowledge distillation from multiple drifting teachers.
2. Second, building upon the concept drift theory, we design an autonomous distillation framework following a “learn–compare–critique” paradigm. The student first absorbs broad domain-specific knowledge from diverse teachers, then conducts self-distillation to align their concepts, and ultimately employs autonomous preference optimization to reconcile biases and reinforce generalization. Unlike traditional knowledge distillation, the drifting teachers here also act as negative signals, which helps approximate and refine the decision space of the student model.
3. Third, we conduct comprehensive empirical evaluations on diverse clinical benchmarks for chest radiographs, including disease classification, diagnostic report generation, and zero-shot generalization. Despite relying on only one-tenth of the distillation data typically required, our method consistently delivers statistically significant gains in robustness, generalization, and accuracy under multiple drifting MLLM teachers. Furthermore, ablation studies substantiate the effectiveness of each component of our framework.
4. As a pioneer contribution to the community, we introduce **CXR-MAX** (Multi-teachers Alignment X-rays), a large-scale dataset comprising 170,982 distillation results of reasoning trajectories derived from publicly accessible MLLMs based on MIMIC-CXR.

2 METHODOLOGY



152

153

154

155

156

157

158

159

160

161

Figure 2: The main contributions of our methods. (a) By formalizing the autoregressive inference of MLLM teachers as multi-stream next-token prediction under the lens of concept drift, we reveal that inter-teachers’ disturbances of reasoning can propagate to the student via supervised pre-distillation, inducing unpredictable drifts. (b) We propose autonomous preference optimization (APO), leveraging reasoning trajectories carrying explicit conflicts and uncertainties from drifting MLLMs as negative samples, whereas crystallized thinkings via self-distillation as positive signals. Driven by reinforced learning, our model follows a “learn–compare–critique” paradigm to autonomously perform preference alignment, yielding a more robust and generalizable domain-specialized student model. (c) The distribution evolution at different stages is exhibited. Multiple teacher models first map the task distribution to a student-amenable space; the student then learns from this space while simultaneously reflecting on inter-teacher drift, thus autonomously refining itself.

162 2.1 UNDERSTANDING TEACHER DIVERGENCES WITH MULTI-STREAM CONCEPT DRIFT
163

164 In this section, we extend the notion of concept drift to the setting of multi-teacher MLLMs, empha-
165 sizing the unpredictable distributional shifts that arise across the reasoning trajectories of different
166 teachers. Prior studies on concept drift predominantly address single-stream inference Yang et al.
167 (2025b), where an individual MLLM π autoregressively generates the token at position j in the rea-
168 soning chain by recursively performing on-policy sampling conditioned on the visual input v and
169 textual prompt l , such that the partial token sequence $t_{<j}$ of the CoT trajectory is given by

$$170 \quad t_j \sim \pi(\cdot | v, l, t_{<j}). \quad (1)$$

171 Accordingly, the single-stream reasoning process of an MLLM can be formalized as follows:

173 **Definition 2.1** *Intuitively, the autoregressive reasoning trajectory of an MLLM unfolds as a chain-
174 of-thought (CoT) stream $S_{0,i} = \{s_0, \dots, s_i\}$, where each state $s_j = (t_{<j}, z_j)$ comprises the partial
175 token sequence $t_{<j}$ generated up to step j together with the corresponding latent predictive distri-
176 bution z_j that governs the subsequent generation.*

178 Capitalizing this formulation, we generalize the concept drift framework from a single MLLM to the
179 multi-teacher setting, where each teacher is associated with a distinct reasoning trajectory. Formally,
180 we define the multi-stream concept drift of the reasoning process as follows:

182 **Definition 2.2** *Consider N CoT streams corresponding to N MLLM teachers, with their reasoning
183 trajectories denoted by $S_{0,i} = \{\mathcal{S}_0, \dots, \mathcal{S}_i\}$, where $\mathcal{S}_j = (s_j^1, \dots, s_j^N)$, and s_j^m represents the state
184 from the m -th teacher. Let $S_{0,i}$ follow a certain distribution $F_{0,i}(\mathcal{S}_m)$. Concept drift among the
185 various MLLM teachers is said to occur at step $m + 1$ if $P_{0,i}(\mathcal{S}_m) \neq P_{i+1,\infty}(\mathcal{S}_m)$, which can be
186 expressed as*

$$187 \quad \exists t : P_i(\mathcal{S}_m) \neq P_{i+1}(\mathcal{S}_m). \quad (2)$$

188 where the teachers' predictions are conditionally independent given their own prior states, leading
189 to the joint probability $P_i(\mathcal{S}_m)$ can be decomposed as

$$191 \quad P_i(\mathcal{S}_m) = P_i(t_{<m}^1, \dots, t_{<m}^N) \prod_{u=1}^N P_i(z_m^u | t_{<m}^u) \quad (3)$$

194 Furthermore, we assume that the teachers do not interact during reasoning, so their historical tra-
195 jectories $t_{<m}$ are statistically independent, allowing the joint distribution to be factorized into the
196 product of the marginal distributions of individual teachers, thereby yielding a fully decomposed
197 form:

$$198 \quad P_i(\mathcal{S}_m) = \prod_{u=1}^N P_i(t_{<m}^u) P_i(z_m^u | t_{<m}^u) \quad (4)$$

201 Therefore, with the notion of multi-stream concept drift of MLLM reasoning trajectories in place, we
202 are able to effectively capture the dynamic variations that emerge during the knowledge distillation
203 from multiple teachers, formalized as the concept drift process $\prod_{u=1}^N P_i(t_{<m}^u)$, and its induced
204 probabilistic divergence $\prod_{u=1}^N P_i(z_m^u | t_{<m}^u)$. Specifically, the framework enables us to quantify
205 the evolving discrepancy between the expected predictive distribution and the realized distribution
206 of cognitive states throughout the reasoning trajectory, which directly governs the alignment of
207 concepts learned by the student.

209 2.2 HARMONIZING DRIFTING MLLM TEACHERS VIA CONCEPT ALIGNMENT
210

211 Building on the formalization of concept drift across multiple MLLM teachers in Eq. 4, we re-
212 veal intrinsic inconsistencies and biases in their domain knowledge that, if distilled naively, would
213 inevitably propagate to the student model and manifest as systematic errors, as demonstrated in
214 Observation 1.2. To address this challenge, we propose an approach that integrates the drifting
215 knowledge of multiple teachers while enforcing concept alignment not only across teachers but also
between the teachers and the student model through self-distillation.

First, our model undergoes a supervised pre-distillation phase with multiple drifting MLLM teachers, during which it broadly assimilates their collective predictions despite the presence of concept drift, as illustrated in Fig. 2a. Specifically, at each reasoning step m , the teachers provide a set of predictive distributions \mathcal{Z}_m from which the student model absorbs heterogeneous knowledge across distinct reasoning trajectories, formalized as

$$\mathcal{Z}_m = \{P_i(z_m^u | t_{<m}^u)\}_{u=1}^N \quad (5)$$

Thus, in this stage, the goal of the student is to project domain-specific distributions into the representational concept space jointly recognized by the MLLM teachers, as depicted in Fig. 2b. Formally, the objective can be expressed as

$$q^*(z_m | t_{<m}) = \arg \min_q \sum_{u=1}^N D_{KL}(P_i(z_m^u | t_{<m}^u) || q(z_m | t_{<m})) \quad (6)$$

where q^* denotes the unified distribution that encapsulates the collective knowledge of all MLLM teachers within the student model. In this context, the student integrates the drifting teacher distributions into a coherent internal representation, reconciling heterogeneous signals not by following any single teacher, but by minimizing their collective divergence from an aligned target distribution $q(z_m | t_{<m})$.

Consequently, the pre-distilled student model $\hat{\pi}_{st}$ has assimilated the specific-domain knowledge from diverse teachers via pre-distillation, mitigating potential omissions during the reasoning. The subsequent step addresses the drift across teachers by employing self-distillation to compare their underlying concepts and extract the consistent ones. Specifically, We aggregate the CoT sequences $\mathcal{T} = \{t^1, \dots, t^N\}$ generated by various teachers for the same instance, and condition the sampling process on the concatenated trajectories jointly with the input image v and prompt l , thereby deriving self-distilled outcomes that enforce conceptual alignment:

$$t^+ \sim \hat{\pi}_{st}(\cdot | v, l, \mathcal{T}) \quad (7)$$

At this stage, our framework consolidates insights from multiple drifting MLLM teachers through self-distillation, yielding the preferred reasoning trajectories while distilling the teachers' feature space into the student.

2.3 ALIGNING DISTILLED CONCEPTS VIA AUTONOMOUS PREFERENCE OPTIMIZATION

Beyond relying on teachers' guidance \mathcal{T} to derive preferred reasoning trajectories t^+ in Eq.7, the target student model is expected to autonomously refine its reasoning, toward independent, self-consistent and generalized conclusions. Consequently, following the "learn-compare-critique" paradigm, the bias reasoning trajectories \mathcal{T} from drifting MLLM teachers serve as negative signals, prompting the student model to critically re-evaluate and refine its acquired knowledge. Through conceptual alignment, the student identifies coherent and rational explanations that resolve inconsistencies, thereby enabling iterative self-improvement and evolutionary learning.

Formally, drawing inspiration from DPO Rafailov et al. (2023b), we derive the optimal policy that maximizes the reward function:

$$r(v, l, t) = \beta \log \frac{\pi_\theta(t | v, l)}{\hat{\pi}_{st}(t | v, l)} \quad (8)$$

where β is a parameter controlling the deviation from the base reference policy $\hat{\pi}_{st}$, namely the pre-distilled student model, and π_θ denotes the autonomous refining model. With the reward function, we treat the distilled reasoning trajectories t^+ in Eq.7 as the preferred thinking, whereas the raw outputs \mathcal{T} from drifting MLLM teachers are regarded as negative signals that provide biased guidance. Thus, based on the Bradley-Terry model Bradley & Terry (1952), the preferred distilled distribution can be written as:

270
271
272
273

$$P(t^+ \succ \mathcal{T}|v, l) = \frac{\exp(r(v, l, t^+))}{\exp(r(v, l, t^+)) + \sum_{u=1}^N w_u \exp(r(v, l, t^u))} \quad (9)$$

Having expressed the probability of distilled preference reasoning trajectories in terms of the optimal policy, we can now formulate a maximum likelihood objective for the parametrized policy π_θ , which objective is given by:

274
275
276
277

$$\mathcal{L}_{APO} = -\mathbb{E}_{(v, l, t^+, \mathcal{T})} [\log P(t^+ \succ \mathcal{T}|v, l)] \quad (10)$$

In this context, combined with Eq.8, Eq.9 and Eq.10, the autonomous preference optimization (APO) is driving the reinforced distillation with multiple drifting MLLMs teachers through the maximum likelihood objective:

280
281
282
283

$$\mathcal{L}_{APO} = -\mathbb{E}_{(v, l, t^+, \mathcal{T})} \left[\log \frac{(\frac{\pi_\theta(t^+|v, l)}{\hat{\pi}_{st}(t^+|v, l)})^\beta}{(\frac{\pi_\theta(t^+|v, l)}{\hat{\pi}_{st}(t^+|v, l)})^\beta + \sum_{u=1}^N w_u (\frac{\pi_\theta(t^u|v, l)}{\hat{\pi}_{st}(t^u|v, l)})^\beta} \right] \quad (11)$$

Against this backdrop, by adhering to the paradigm of “learning-compare-critique”, the student model attains concept alignment under the influence of drifting MLLM teachers, thereby mitigating the transmission of biased knowledge. This adaptive evolution not only enhances the model’s internal consistency but also strengthens its generalization and robustness, laying a principled foundation for reliable reasoning across diverse domains.

2.4 BUILDING CXR-MAX DATASET FOR MULTI-TEACHERS REASONING

Since we are pioneers in introducing the concept drift into the knowledge distillation of multiple MLLMs, we are deeply aware of the scarcity of multiple CoT from various MLLMs in downstream tasks, especially in the highly professional medical field. Consequently, we aim for the model to autonomously adapt to concept drift, selectively assimilating consistent and valuable knowledge from multiple teachers while preventing the inheritance of biases during distillation.

In this context, to rigorously evaluate the potential of a student model trained under multiple drifting teachers, a more realistic training dataset for knowledge distillation is essential. Addressing the need for high-quality chain-of-thought (CoT) data from diverse MLLMs, we introduce CXR-MAX (Multi-teachers Alignment for X-rays), an extension of the MIMIC-CXR dataset Johnson et al. (2019) incorporating outputs from seven widely used public MLLMs. CXR-MAX provides 170,982 distillation instances of reasoning trajectories covering 14 thoracic pathologies, establishing the first large-scale benchmark for knowledge distillation with multiple MLLM teachers’ reasoning trajectories in clinical chest X-ray interpretation. Additional details are provided in Appendix B.

3 EXPERIMENTS

In this section, we verify the robustness, consistency and generalization of our proposed autonomous distillation under multiple drifting teachers.

The MIMIC-CXR dataset Johnson et al. (2019) serves as an ideal training environment for our method, since medical diagnosis embodies the sophisticated reasoning and high-stakes practicality that our distillation approach aims to capture. It presents 371,920 chest X-rays associated with 227,943 imaging studies from 65,079 patients. And images are provided with 14 labels with corresponding free-text radiology reports, namely Atelectasis (Ate.), Cardiomegaly (Car.), Consolidation (Con.), Edema (Ede.), Enlarged Cardiomediastinum (ECM), Fracture (Fra.), Lung Lesion (LL), Lung Opacity (LO), Pleural Effusion (PE), Pneumonia (Pna.), Pneumothorax (Pnx.), Pleural Other (PO), Support Devices (SD) and No Finding (NF).

Acknowledging the additional computational overhead and costs associated with employing multiple teachers, we intentionally and deliberately restricted our distillation to only 1/10 of the whole MIMIC-CXR, underscoring the efficacy of our method in achieving high-quality knowledge transfer

324 from the drifting teachers, even under limited data conditions. The list of chosen random samples is
 325 given in our code.
 326

327 Additionally, we relied solely
 328 on the classification labels
 329 from MIMIC-CXR and did
 330 not utilize the original radiology
 331 reports for training.
 332 It is motivated by our focus
 333 on knowledge transfer from
 334 MLLMs as teachers, as well as
 335 the limited generalizability of
 336 human-annotated reports with
 337 reasoning trajectories, which
 338 are often scarce in the domain-
 339 specific area.

340 In terms of the model, we
 341 employ Qwen2.5-VL (7B) Bai
 342 et al. (2025) as the student
 343 model to perform supervised
 344 pre-distillation and
 345 autonomous preference
 346 optimization, cascadedly. And
 347 they only train one epoch for
 348 each stage with a batch size of
 349 2. More detailed experimental
 350 implementations are given
 351 in Appendix C.

351 3.1 ORCHESTRATING MULTIPLE DRIFTING TEACHERS FOR ROBUST MLLM DISTILLATION

352 First, to explicitly demonstrate the
 353 superior performance of our pro-
 354 posed method under non-stationary
 355 environments, especially in robust-
 356 ness, we compare it with other mod-
 357 els on MS-CXR-T Bannur et al.
 358 (2023a), where instances are cho-
 359 sen from the public MIMIC-CXR.
 360 As presented in Table 1, our au-
 361 tonomous distillation approach at-
 362 tains a superior overall performance
 363 of 0.76, outperforming the second-
 364 best method, CoCa-CXR Chen et al.
 365 (2025) by nearly 13%, especially for
 366 only 1/10 of the data without radiol-
 367 ogist reports. This result underscores
 368 the robustness of our framework un-
 369 der instruction from multiple drifting
 370 MLLMs. While our method trails the
 371 top-performing CoCa-CXR by a
 372 narrow margin of 0.03 on pleural ef-
 373 fusion (PE), we attribute this per-
 374 formance gap to CoCa-CXR’s use of ad-
 375 dditional data from Chest ImaGenome
 376 Wu et al. (2021) in addition to stan-
 377 dard MIMIC-CXR. In terms of the edema (Ede.), we argue that excessive disagreement among the
 378 teachers is beyond a reconcilable threshold, as indicated in Table 2 with accuracy 0.15 of Sonnet-4
 379 Anthropic (2025) and 0.19 of Moonshot AI (2025) on the edema. It severely hinders the student

	Venue	Con.	PE	Pna.	Pnx.	Ede.	Avg.
<i>Full Data Training</i>							
CTrans	CVPR’23	0.44	0.61	0.45	0.32	0.66	0.49
CheXRelNet	MICCAI’22	0.47	0.47	0.47	0.36	0.49	0.45
BioViL	ECCV’22	0.56	0.63	0.60	0.43	0.68	0.58
BioViL-T	CVPR’23	0.61	0.67	0.62	0.43	0.69	0.60
Med-ST	ICML’24	0.61	0.67	0.59	0.65	0.54	0.61
TempA-VLP	WACV’25	0.65	0.59	0.73	0.43	0.77	0.64
CoCa-CXR	Arxiv’25	0.70	0.70	0.61	0.73	0.72	0.69
<i>10% Data Training w/o Radiologist Reports</i>							
Ours	This paper	0.84	0.67	0.78	0.96	0.65	0.78

352 Table 1: **Evaluation results of multi-label chest diseases classi-
 353 fication on MS-CXR-T.** Top-1 accuracy is applied to evaluate the
 354 performance of different methods. The best-performing models are
 355 highlighted in red, with the second-best in blue. Comparison meth-
 356 ods include CTrans Bannur et al. (2023b), CheXRelNet Karwande
 357 et al. (2022), BioViL Boecking et al. (2022) , BioViL-T Bannur
 358 et al. (2023b) , Med-ST Yang et al. (2024a) ,TempA-VLP Yang &
 359 Shen (2025) and CoCa-CXR Chen et al. (2025).

MLLMs	Con.	PE	Pna.	Pnx.	Ede.	Avg.
<i>MLLM Teachers with Huge Parameters</i>						
GPT-5	0.75	0.68	0.89	0.90	0.52	0.75
Gemini-2.5	0.28	0.61	0.40	0.94	0.42	0.53
Sonnet-4	0.89	0.69	0.48	0.15	0.15	0.47
Qwen-VL-Max	0.54	0.65	0.40	0.95	0.64	0.64
Grok-4	0.43	0.41	0.36	0.97	0.61	0.56
GLM-4.5V	0.59	0.67	0.52	0.96	0.72	0.69
Moonshot	0.13	0.46	0.77	0.88	0.19	0.48
<i>Student Model (7B MLLM)</i>						
Ours	0.84	0.67	0.78	0.96	0.65	0.78

352 Table 2: **Evaluation results of multiple MLLM teachers**
 353 **on classification of MS-CXR-T for comparison.** Top-1
 354 accuracy is applied to evaluate the performance of differ-
 355 ent methods. The best-performing models are highlighted in
 356 red, with the second-best in blue. The comparison MLLMs
 357 includes: Claude Sonnet-4Anthropic (2025), Gemini-2.5
 358 Comanici et al. (2025), GLM-4.5V Team et al. (2025), GPT-
 359 5OpenAI (2025), Qwen-VL-Max Bai et al. (2025), Grok-4
 360 xAI (2025) and Moonshot-v1 AI (2025).

378 model’s ability to learn a consistent decision policy. Nonetheless, the distilled student model still
 379 outperforms the majority of the teacher models on the edema (Ede.) as illustrated in Table 2.
 380

381 Beyond comparison with domain-specific methods, we also focus on the robust alignment between
 382 drifting MLLM teachers and our distilled student model, as exhibited in Fig.2. The compared
 383 MLLM teachers all have huge parameters, while our distilled student is a “small” MLLM with
 384 only 7B parameters. Despite it, the distilled student achieves the best average performance with a
 385 Top-1 accuracy of 0.78 across all diseases, surpassing every single teacher. It demonstrates that our
 386 autonomous distillation empowers the student model to integrate the diverse strengths of multiple
 387 teachers, thereby truly learning from all.

388 Moreover, as shown in Table 2, although the distilled student does not surpass any single teacher
 389 MLLM on individual diseases, it consistently achieves the second-best performance across all cat-
 390 egories except pleural effusion (PE), underscoring its robustness and stability. Notably, for cases
 391 where teacher disagreements are particularly pronounced, such as consolidation (Con.) with an
 392 accuracy gap of 0.62 and edema (Ede.) with a gap of 0.57, our approach effectively mitigates unpre-
 393 dictable drifts among MLLM teachers, preventing biased knowledge from infiltrating the student.
 394 Even in the extreme case of Pneumonia (Pna.), where only a few positive teachers with accuracy
 395 above 0.5 (GPT-5, GLM-4.5V, and Moonshot) are overwhelmed by a larger number of negative
 396 teachers, the student is still able to leverage APO-based critique to align more closely with positive
 397 feedback despite the prevalence of negative signals.

398 In addition, the teacher comparison further highlights the substantial drifts among multiple MLLMs,
 399 which are manifested not only in the absence of a single teacher that consistently performs best
 400 across most diseases, but also in the strikingly large accuracy gaps observed among teachers on
 401 individual diseases. These findings underscore the considerable challenges posed by multi-teacher
 402 distillation and further validate the central Observation 1.1 of our study.

403 3.2 HARMONIZING CONCEPT ALIGNMENT FOR CONSISTENT THINKING

	Venue	BLEU-1	BLEU-2	BLEU-3	BLEU-4	ROUGE-L	METEOR
METransformer	CVPR’23	0.386	0.250	0.169	0.124	0.291	0.152
R2GenGPT	MetaRad’23	0.408	0.256	0.174	0.125	0.285	0.167
PromptMRG	AAAI’24	0.398	-	-	0.112	0.268	0.157
BtspLLM	AAAI’24	0.402	0.262	0.180	0.128	0.291	0.175
MambaXray	Arxiv’24	0.422	0.268	0.184	0.133	0.289	0.167
Ours	This paper	0.463	0.272	0.210	0.152	0.298	0.213

413 **Table 3: Evaluation results of diagnostic report generation on MIMIC-CXR with various met-
 414 rics including BLEU-1/-2/-3/-4, ROUGE-L, METEOR and CIDEr.** The best-performing models
 415 are highlighted in red. The comparison methods include: METransformer Wang et al. (2023b),
 416 R2GenGPT Wang et al. (2023c), BtspLLM Liu et al. (2024) and MambaXray Wang et al. (2024b)
 417

418 Beyond classification, we further substantiate our core contribution of consistent reasoning, which
 419 retains the beneficial CoT across multiple MLLM teachers while suppressing harmful drift. As
 420 shown in Table 3, we assess diagnostic report generation on MIMIC-CXR to evaluate the reason-
 421 ing capabilities of the distilled student model. Evaluation employs BLEU to quantify terminology
 422 precision and reasoning coherence, ROUGE-L to assess narrative completeness, and METEOR to
 423 capture synonym-aware lexical alignment.

424 The results demonstrate that our reasoning framework consistently excels across all evaluation met-
 425 rics, achieving notable gains in BLEU-4 (14.3%), ROUGE-L (2.4%), and METEOR (27.5%), re-
 426 reflecting the consistency and completeness. We attribute this improvement to the “critique” phase
 427 within autonomous preference optimization. Unlike conventional knowledge distillation, where
 428 teachers primarily provide positive guidance, we reinterpret the drifting outputs of teachers as neg-
 429 ative samples, while treating the student’s self-distilled, conceptually aligned signals as positive
 430 samples for preference learning. This strategy sharpens the decision boundary of the student model,
 431 effectively suppresses the transmission of biased information from teachers, and reinforces concep-
 432 tual consistency within the student.

432 3.3 AMPLIFYING AUTONOMOUS DISTILLATION FOR GENERALIZED REASONING
433

434 Furthermore, we assess the generalization ability
435 of our model on downstream tasks through
436 zero-shot multi-label classification across four
437 diverse benchmarks, as reported in Table 4.
438 The results show that our APO-driven MLLMs
439 consistently surpass the second-best baseline,
440 CARZero Lai et al. (2024), across all datasets,
441 highlighting their robustness and strong generalization
442 even when trained under drifting MLLM teachers.
443

444 3.4 ABLATION STUDIES
445

446 Moreover, we conduct ablation experiments on
447 MIMIC-CXR to validate the feasibility and co-
448 ordination of the multiple teachers (MT) and
449 autonomous preference optimization (APO)
450 under non-stationary knowledge distillation, as
451 presented in Table 5. For the distillation within
452 a single teacher, GPT-5 serves as the teacher
453 due to the best average accuracy among vari-
454 ous teachers as exhibited in 2. Moreover, since
455 APO inherently relies on concept alignment
456 across multiple teachers, we do not conduct an
457 ablation study of APO under the setting where
458 MT is absent.

459 The ablation on MT reveals only marginal over-
460 all gains, while performance on most diseases,
461 including Con., PE, Pna. and Pnx. deteriorates.
462 This corroborates our observation that the un-
463 predictable drift among teachers severely dis-
464 rupts the student’s learning and degrades its ef-
465 fectiveness. Besides, compared with MT and
466 SPD, APO delivers significant accuracy gains
467 across all diseases by blocking the transmission
468 of concept drift and enabling the student to con-
469 structively learn all teachers. Thus, the con-
470 sistent, robust, and generalizable improvements
471 confirm that the performance boost arises from
472 APO itself rather than MT.

473 4 CONCLUSIONS AND LIMITATIONS
474

475 In this paper, we introduce autonomous preference optimization (APO), a novel and robust paradigm
476 for generalized knowledge distillation across multiple drifting MLLMs. Grounded in concept drift
477 theory, APO systematically formalizes the biases inherent in the generation of MLLMs and lever-
478 ages a “learn–compare–critique” paradigm to guide distillation. Through this framework, APO
479 effectively prevents the propagation of concept drift while enabling the student model to learn from
480 all teachers, assimilating the complementary strengths in a constructive manner.

481 We envision that this work will stimulate further progress in knowledge distillation for MLLMs,
482 particularly in addressing domain-specific biases. Looking ahead, our future efforts will concen-
483 trate on enhancing the efficiency and reducing the computational cost of distillation in large-scale
484 multimodal settings.

485

Method	Open-I	C’Xray14	C’Xpert	C’XDet10
BioViL	0.70	0.73	0.79	0.71
CheXzero	0.76	0.73	0.88	0.71
MedKLIP	0.76	0.73	0.88	0.71
KAD	0.81	0.79	0.91	0.74
CARZero	0.84	0.81	0.92	0.80
Ours	0.85	0.83	0.92	0.81

Table 4: Evaluation results of zero-shot diseases classification on Open-IDemner-Fushman et al. (2012), ChestXray14 Wang et al. (2017), ChestXpert Irvin et al. (2019) and ChestXDet10 Liu et al. (2020a). AUC is applied to evaluate the performance of different methods. The best-performing models are highlighted in red. The comparison methods include: BioViL Bannur et al. (2023b), CheXzero Tiu et al. (2022), MedKLIP Wu et al. (2023), KAD Zhang et al. (2023) and CARZero Lai et al. (2024)

SPD	MT	APO	Con.	PE	Pna.	Pnx.	Ede.	Avg.
✓	-	-	0.78	0.58	0.70	0.95	0.31	0.66
✓	✓	-	0.77	0.49	0.69	0.94	0.51	0.68
✓	✓	✓	0.84	0.67	0.78	0.96	0.65	0.78

Table 5: Ablation evaluation results on supervised pre-distillation (SPD), multiple teachers (MT) and autonomous preference (APO) under non-stationary distillation on MIMIC-CXR. The ✓ denotes that the results are trained with the corresponding module. The results are based on the test split of the MS-CXR-T with the Top-1 accuracy.

486 ETHICS STATEMENT
487488 This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
489 perimentation was involved. All datasets used, including CXR-MAX, MIMIC-CXR, MS-CXR-T,
490 Open-I, ChestXray14, ChestXpert and ChestXDet10, were sourced in compliance with relevant
491 usage guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or dis-
492 criminatory outcomes in our research process. No personally identifiable information was used, and
493 no experiments were conducted that could raise privacy or security concerns. We are committed to
494 maintaining transparency and integrity throughout the research process.
495496 REPRODUCIBILITY STATEMENT
497498 We have made every effort to ensure that the results presented in this paper are reproducible. All
499 code and datasets have been made publicly available in an anonymous repository to facilitate repli-
500 cation and verification. The experimental setup, including training steps, model configurations, and
501 hardware details, is described in detail in the paper. We have also provided a full description of
502 autonomous distillation to assist others in reproducing our experiments.503 Additionally, our contributed dataset, CXR-MAX, is publicly available, ensuring consistent and
504 reproducible evaluation results.
505506 We believe these measures will enable other researchers to reproduce our work and further advance
507 the field.
508509 REFERENCES
510

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self-generated mistakes. In *The twelfth international conference on learning representations*, 2024.

Rohan Agarwal et al. On-policy distillation of language models: Learning from self-generated mistakes. In *ICLR*, 2023. URL <https://openreview.net/forum?id=3zKtaqxLhW>.

Moonshot AI. Moonshot v1 (kimi), 2025. URL <https://platform.moonshot.cn/docs/introduction>.

Anthropic. Claude sonnet 4, 2025. URL <https://docs.anthropic.com/en/docs/about-claude/models/overview>.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, et al. Constitutional ai: Harmlessness from ai feedback. *arXiv preprint arXiv:2212.08073*, 2022.

Shruthi Bannur, Stephanie Hyland, Flora Liu, Fernando Pérez-García, Maximilian Ilse, Daniel Coelho de Castro, Benedikt Boecking, Harshita Sharma, Kenza Bouzid, Anja Thieme, Anton Schwaighofer, Maria Teodora Wetscherek, Matthew Lungren, Aditya Nori, Javier Alvarez-Valle, and Ozan Oktay. Learning to exploit temporal structure for biomedical vision-language processing. In *The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023a.

Shruthi Bannur, Stephanie Hyland, Qianchu Liu, Fernando Pérez-García, Maximilian Ilse, Daniel C. Castro, Benedikt Boecking, Harshita Sharma, Kenza Bouzid, Anja Thieme, Anton Schwaighofer, Maria Wetscherek, Matthew P. Lungren, Aditya Nori, Javier Alvarez-Valle, and Ozan Oktay. Learning to exploit temporal structure for biomedical vision-language processing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 15016–15027, June 2023b.

Benedikt Boecking, Naoto Usuyama, Shruthi Bannur, Daniel C Castro, Anton Schwaighofer, Stephanie Hyland, Maria Wetscherek, Tristan Naumann, Aditya Nori, Javier Alvarez-Valle, et al.

Making the most of text semantics to improve biomedical vision–language processing. In *European conference on computer vision*, pp. 1–21. Springer, 2022.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

Jiajun Cao, Yuan Zhang, Tao Huang, Ming Lu, Qizhe Zhang, Ruichuan An, Ningning Ma, and Shanghang Zhang. MoVE-KD: Knowledge Distillation for VLMs with Mixture of Visual Encoders. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 19846–19856, 2025a.

Jing Cao et al. Move-kd: Knowledge distillation for vlms with mixture of visual encoders. In *CVPR*, pp. 19846–19856, 2025b. URL https://openaccess.thecvf.com/content/CVPR2025/html/Cao_MoVE-KD_Knowledge_Distillation_for_VLMs_with_Mixture_of_Visual_Encoders_CVPR_2025_paper.html.

Vitor Cerqueira, Heitor Murilo Gomes, Albert Bifet, and Luis Torgo. STUDD: A student–teacher method for unsupervised concept drift detection. 112(11):4351–4378, 2023. ISSN 1573-0565. doi: 10.1007/s10994-022-06188-7. URL <https://doi.org/10.1007/s10994-022-06188-7>.

Kexin Chen, Yuyang Du, Tao You, Mobarakol Islam, Ziyu Guo, Yueming Jin, Guangyong Chen, and Pheng-Ann Heng. LLM-Assisted Multi-Teacher Continual Learning for Visual Question Answering in Robotic Surgery. In *2024 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 10772–10778, May 2024a. doi: 10.1109/ICRA57147.2024.10610603.

Kun Chen et al. Llm-assisted multi-teacher continual learning for visual question answering in robotic surgery. In *ICRA*, pp. 10772–10778, 2024b. doi: 10.1109/ICRA57147.2024.10610603.

Yixiong Chen, Shawn Xu, Andrew Sellergren, Yossi Matias, Avinatan Hassidim, Shravya Shetty, Daniel Golden, Alan Yuille, and Lin Yang. Coca-cxr: Contrastive captioners learn strong temporal structures for chest x-ray vision-language understanding, 2025. URL <https://arxiv.org/abs/2502.20509>.

Zhihong Chen, Yan Song, Tsung-Hui Chang, and Xiang Wan. Generating radiology reports via memory-driven transformer. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 1439–1449, 2020.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from human preferences. *Advances in neural information processing systems*, 30, 2017.

Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities. *arXiv preprint arXiv:2507.06261*, 2025.

Wenliang Dai, Zhuowan Li, Lei Zhang, and Jiebo Zhou. Instructblip: Towards general-purpose vision-language models with instruction tuning. *arXiv preprint arXiv:2305.06500*, 2023.

Dina Demner-Fushman, Sameer Antani, Matthew Simpson, and George R Thoma. Design and development of a multimodal biomedical information retrieval system. *Journal of Computing Science and Engineering*, 6(2):168–177, 2012.

Qi Feng, Wei Li, Tao Lin, and Xin Chen. Align-kd: Distilling cross-modal alignment knowledge for mobile vision-language large model enhancement. In *CVPR*, pp. 4178–4188, 2025a. URL https://openaccess.thecvf.com/content/CVPR2025/html/Feng_Align-KD_Distilling_Cross-Modal_Alignment_Knowledge_for_Mobile_Vision-Language_Large_Model_CVPR_2025_paper.html.

Qianhan Feng, Wenshuo Li, Tong Lin, and Xinghao Chen. Align-KD: Distilling Cross-Modal Alignment Knowledge for Mobile Vision-Language Large Model Enhancement. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4178–4188, 2025b.

594 Yimeng Gu, Zhao Tong, Ignacio Castro, Shu Wu, and Gareth Tyson. Multi-MLLM Knowledge
 595 Distillation for Out-of-Context News Detection, May 2025a.
 596

597 Yuxian Gu, Xu Han, Zhiyuan Liu, and Maosong Sun. Knowledge distillation of large language
 598 models. *arXiv preprint arXiv:2306.08543*, 2023.

599 Yuxian Gu, Zexu Tong, Ivan Castro, Shizhe Wu, and Gareth Tyson. Multi-mlm knowledge
 600 distillation for out-of-context news detection. *arXiv preprint arXiv:2505.22517*, 2025b. doi:
 601 10.48550/arXiv.2505.22517.

602 Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
 603 Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
 604 Doucet, Orhan Firat, and Nando de Freitas. Reinforced self-training (rest) for language modeling,
 605 2023. URL <https://arxiv.org/abs/2308.08998>.

606 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 607 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 608 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

609 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
 610 *NeurIPS Deep Learning Workshop*, 2015.

611 Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute, Henrik
 612 Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, et al. Chexpert: A large chest
 613 radiograph dataset with uncertainty labels and expert comparison. In *Proceedings of the AAAI
 conference on artificial intelligence*, volume 33, pp. 590–597, 2019.

614 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 615 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv
 616 preprint arXiv:2412.16720*, 2024.

617 Botao Jiao, Yinan Guo, Dunwei Gong, and Qiuju Chen. Dynamic Ensemble Selection for Im-
 618 balanced Data Streams With Concept Drift. 35(1):1278–1291, 2024. ISSN 2162-2388. doi:
 619 10.1109/TNNLS.2022.3183120. URL [https://ieeexplore.ieee.org/abstract/
 620 document/9802893](https://ieeexplore.ieee.org/abstract/document/9802893).

621 Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, et al. Tinybert: Distilling bert for natural language
 622 understanding. In *EMNLP*, 2020.

623 Haibo Jin, Haoxuan Che, Yi Lin, and Hao Chen. Promptmrg: Diagnosis-driven prompts for medical
 624 report generation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38,
 625 pp. 2607–2615, 2024.

626 Alistair EW Johnson, Tom J Pollard, Seth J Berkowitz, Nathaniel R Greenbaum, Matthew P Lun-
 627 gren, Chih-ying Deng, Roger G Mark, and Steven Horng. Mimic-cxr, a de-identified publicly
 628 available database of chest radiographs with free-text reports. *Scientific data*, 6(1):317, 2019.

629 Gaurang Karwande, Amarachi B Mbakwe, Joy T Wu, Leo A Celi, Mehdi Moradi, and Ismini
 630 Lourentzou. Chexrelnet: An anatomy-aware model for tracking longitudinal relationships be-
 631 tween chest x-rays. In *International Conference on Medical Image Computing and Computer-
 632 Assisted Intervention*, pp. 581–591. Springer, 2022.

633 Haoran Lai, Qingsong Yao, Zihang Jiang, Rongsheng Wang, Zhiyang He, Xiaodong Tao, and
 634 S Kevin Zhou. Carzero: Cross-attention alignment for radiology zero-shot classification. In *Pro-
 635 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 11137–
 636 11146, 2024.

637 Junnan Li, Dongxu Li, and Silvio Savarese. Blip-2: Bootstrapping language-image pre-training with
 638 frozen image encoders and large language models. In *ICML*, 2023a.

639 Mingjie Li, Bingqian Lin, Zicong Chen, Haokun Lin, Xiaodan Liang, and Xiaojun Chang. Dynamic
 640 graph enhanced contrastive learning for chest x-ray report generation. In *Proceedings of the
 641 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 3334–3343, 2023b.

648 Wendi Li, Xiao Yang, Weiqing Liu, Yingce Xia, and Jiang Bian. DDG-DA: Data Distribution
 649 Generation for Predictable Concept Drift Adaptation. 36(4):4092–4100, 2022-06-28. ISSN
 650 2374-3468. doi: 10.1609/aaai.v36i4.20327. URL <https://ojs.aaai.org/index.php/AAAI/article/view/20327>.

652 Chang Liu, Yuanhe Tian, Weidong Chen, Yan Song, and Yongdong Zhang. Bootstrapping large
 653 language models for radiology report generation. In *Proceedings of the AAAI Conference on
 654 Artificial Intelligence*, volume 38, pp. 18635–18643, 2024.

655 Fenglin Liu, Shen Ge, and Xian Wu. Competence-based multimodal curriculum learning for medical
 656 report generation. In *Proceedings of the 59th Annual Meeting of the Association for Compu-
 657 tational Linguistics and the 11th International Joint Conference on Natural Language Processing
 658 (Volume 1: Long Papers)*, pp. 3001–3012, 2021a.

659 Fenglin Liu, Xian Wu, Shen Ge, Wei Fan, and Yuexian Zou. Exploring and distilling posterior and
 660 prior knowledge for radiology report generation. In *Proceedings of the IEEE/CVF conference on
 661 computer vision and pattern recognition*, pp. 13753–13762, 2021b.

662 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *arXiv
 663 preprint arXiv:2304.08485*, 2023.

664 Jingyu Liu, Jie Lian, and Yizhou Yu. Chestx-det10: Chest x-ray dataset on detection of thoracic
 665 abnormalities, 2020a.

666 Yulin Liu, Wei Zhang, and Jian Wang. Adaptive multi-teacher multi-level knowledge distillation.
 667 *Neurocomputing*, 415:106–113, 2020b. doi: 10.1016/j.neucom.2020.07.048.

668 Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
 669 Wang. Visual-RFT: Visual Reinforcement Fine-Tuning, March 2025.

670 Jie Lu, Anjin Liu, Fan Dong, Feng Gu, João Gama, and Guangquan Zhang. Learning under Concept
 671 Drift: A Review. 31(12):2346–2363, 2019. ISSN 1558-2191. doi: 10.1109/TKDE.2018.2876857.
 672 URL <https://ieeexplore.ieee.org/abstract/document/8496795>.

673 Jie Lu, Anjin Liu, Yiliao Song, and Guangquan Zhang. Data-driven decision support under concept
 674 drift in streamed big data. *Complex & intelligent systems*, 6(1):157–163, 2020.

675 OpenAI. Introducing gpt-5, 2025. URL <https://openai.com/introducing-gpt-5>.

676 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, et al. Training language models to follow in-
 677 structions with human feedback. In *NeurIPS*, 2022.

678 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, et al. Learning transferable visual
 679 models from natural language supervision. In *ICML*, 2021.

680 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 681 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 682 in neural information processing systems*, 36:53728–53741, 2023a.

683 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea
 684 Finn. Direct Preference Optimization: Your Language Model is Secretly a Reward Model. 36:53728–53741, 2023b. URL
 685 https://proceedings.neurips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html.

686 Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
 687 of bert: smaller, faster, cheaper and lighter. In *NeurIPS Workshop on Energy Efficient Machine
 688 Learning*, 2019.

689 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 690 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 691 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

702 Yaling Shen, Zhixiong Zhuang, Kun Yuan, Maria-Irina Nicolae, Nassir Navab, Nicolas Padoy, and
 703 Mario Fritz. Medical Multimodal Model Stealing Attacks via Adversarial Domain Alignment.
 704 *Proceedings of the AAAI Conference on Artificial Intelligence*, 39(7):6842–6850, April 2025a.
 705 ISSN 2374-3468. doi: 10.1609/aaai.v39i7.32734.

706 Yuxiang Shen et al. Medical multimodal model stealing attacks via adversarial domain alignment.
 707 *Proceedings of the AAAI Conference on Artificial Intelligence*, 39(7):6842–6850, 2025b. doi:
 708 10.1609/aaai.v39i7.32734.

710 Fangxun Shu, Yue Liao, Lei Zhang, Le Zhuo, Chenning Xu, Guanghao Zhang, Haonan Shi, Long
 711 Chan, TaoZhong, Zhelun Yu, Wanggui He, Siming Fu, Haoyuan Li, Si Liu, Hongsheng Li, and
 712 Hao Jiang. LLaVA-mod: Making LLaVA tiny via moe-knowledge distillation. In *The Thirteenth*
 713 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=uWtLOy35WD>.

714 Fangyuan Shu et al. Llava-mod: Making llava tiny via moe-knowledge distillation. In *ICLR*, 2024.
 715 URL <https://openreview.net/forum?id=uWtLOy35WD>.

718 Woong Son, Jaehong Na, Janghoon Choi, and Wonjun Hwang. Densely guided knowl-
 719 edge distillation using multiple teacher assistants. In *ICCV*, pp. 9395–9404, 2021. URL
 720 https://openaccess.thecvf.com/content/ICCV2021/html/Son_Densely_Guided_Knowledge_Distillation_Using_Multiple_Teacher_Assistants_ICCV_2021_paper.html.

723 Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model
 724 compression. In *EMNLP*, 2019.

726 V Team, Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale
 727 Cheng, Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Weihan Wang, Yan Wang, Yean Cheng,
 728 Zehai He, Zhe Su, Zhen Yang, Ziyang Pan, Aohan Zeng, Baoxu Wang, Bin Chen, Boyan Shi,
 729 Changyu Pang, Chenhui Zhang, Da Yin, Fan Yang, Guoqing Chen, Jiazheng Xu, Jiale Zhu, Jiali
 730 Chen, Jing Chen, Jinhao Chen, Jinghao Lin, Jinjiang Wang, Junjie Chen, Leqi Lei, Letian Gong,
 731 Leyi Pan, Mingdao Liu, Mingde Xu, Mingzhi Zhang, Qinkai Zheng, Sheng Yang, Shi Zhong,
 732 Shiyu Huang, Shuyuan Zhao, Siyan Xue, Shangqin Tu, Shengbiao Meng, Tianshu Zhang, Tianwei
 733 Luo, Tianxiang Hao, Tianyu Tong, Wenkai Li, Wei Jia, Xiao Liu, Xiaohan Zhang, Xin Lyu,
 734 Xinyue Fan, Xuancheng Huang, Yanling Wang, Yadong Xue, Yanfeng Wang, Yanzi Wang, Yifan
 735 An, Yifan Du, Yiming Shi, Yiheng Huang, Yilin Niu, Yuan Wang, Yuanchang Yue, Yuchen Li,
 736 Yutao Zhang, Yuting Wang, Yu Wang, Yuxuan Zhang, Zhao Xue, Zhenyu Hou, Zhengxiao Du,
 737 Zihan Wang, Peng Zhang, Debing Liu, Bin Xu, Juanzi Li, Minlie Huang, Yuxiao Dong, and Jie
 738 Tang. Glm-4.5v and glm-4.1v-thinking: Towards versatile multimodal reasoning with scalable
 739 reinforcement learning, 2025. URL <https://arxiv.org/abs/2507.01006>.

740 Ekin Tiu, Ellie Talius, Pujan Patel, Curtis P Langlotz, Andrew Y Ng, and Pranav Rajpurkar. Expert-
 741 level detection of pathologies from unannotated chest x-ray images via self-supervised learning.
 742 *Nature biomedical engineering*, 6(12):1399–1406, 2022.

744 Luong Trung, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. ReFT: Reasoning with Reinforced Fine-Tuning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
 745 *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 7601–7614, Bangkok, Thailand, 2024. Association for Computational
 746 Linguistics. doi: 10.18653/v1/2024.acl-long.410.

749 Kun Wang, Li Xiong, Anjin Liu, Guangquan Zhang, and Jie Lu. A self-adaptive ensemble for
 750 user interest drift learning. 577:127308, 2024a. ISSN 0925-2312. doi: 10.1016/j.neucom.
 751 2024.127308. URL <https://www.sciencedirect.com/science/article/pii/S0925231224000791>.

754 Xiao Wang, Fuling Wang, Yuehang Li, Qingchuan Ma, Shiao Wang, Bo Jiang, Chuanfu Li, and Jin
 755 Tang. CXPMRG-Bench: Pre-training and Benchmarking for X-ray Medical Report Generation
 on CheXpert Plus Dataset, 2024b. URL <https://arxiv.org/abs/2410.00379>.

756 Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M. Summers.
 757 Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised
 758 classification and localization of common thorax diseases. In *Proceedings of the IEEE Conference*
 759 *on Computer Vision and Pattern Recognition (CVPR)*, July 2017.

760 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, et al. Self-instruct: Aligning language
 761 models with self generated instructions. *ACL*, 2023a.

763 Zhanyu Wang, Lingqiao Liu, Lei Wang, and Luping Zhou. Metransformer: Radiology report gen-
 764 eration by transformer with multiple learnable expert tokens. In *Proceedings of the IEEE/CVF*
 765 *Conference on Computer Vision and Pattern Recognition*, pp. 11558–11567, 2023b.

767 Zhanyu Wang, Lingqiao Liu, Lei Wang, and Luping Zhou. R2gengpt: Radiology report generation
 768 with frozen llms. *Meta-Radiology*, 1(3):100033, 2023c.

769 Peter West, Chandra Bhagavatula, Jack Hessel, Ronan Le Bras, et al. Symbolic knowledge distilla-
 770 tion: from general language models to commonsense models. *NAACL*, 2022.

772 Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, and Weidi Xie. Medklip: Medical knowl-
 773 edge enhanced language-image pre-training for x-ray diagnosis. In *Proceedings of the IEEE/CVF*
 774 *International Conference on Computer Vision*, pp. 21372–21383, 2023.

775 Joy T Wu, Nkechinyere N Agu, Ismini Lourentzou, Arjun Sharma, Joseph A Paguio, Jasper S
 776 Yao, Edward C Dee, William Mitchell, Satyananda Kashyap, Andrea Giovannini, et al. Chest
 777 imangenome dataset for clinical reasoning. *arXiv preprint arXiv:2108.00316*, 2021.

779 xAI. Grok 4, 2025. URL <https://x.ai/news/grok-4>.

780 Bin Yan and Mingtao Pei. Clinical-bert: Vision-language pre-training for radiograph diagnosis and
 781 reports generation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36,
 782 pp. 2982–2990, 2022.

784 Jinxia Yang, Bing Su, Xin Zhao, and Ji-Rong Wen. Unlocking the power of spatial and temporal in-
 785 formation in medical multimodal pre-training. In *Forty-first International Conference on Machine*
 786 *Learning*, 2024a. URL <https://openreview.net/forum?id=87ZrVHDqmR>.

787 Xiaoyu Yang, Yufei Chen, Xiaodong Yue, Shaoxun Xu, and Chao Ma. T-distributed Spherical
 788 Feature Representation for Imbalanced Classification. *Proceedings of the AAAI Conference on*
 789 *Artificial Intelligence*, 37(9):10825–10833, 2023. ISSN 2374-3468. doi: 10.1609/aaai.v37i9.
 790 26284. URL <https://ojs.aaai.org/index.php/AAAI/article/view/26284>.

792 Xiaoyu Yang, Lijian Xu, Hao Sun, Hongsheng Li, and Shaoting Zhang. Enhancing visual ground-
 793 ing and generalization: A multi-task cycle training approach for vision-language models. *arXiv*
 794 *preprint arXiv:2311.12327*, 2024b.

795 Xiaoyu Yang, Jie Lu, and En Yu. Adapting multi-modal large language model to con-
 796 cept drift from pre-training onwards. In Y. Yue, A. Garg, N. Peng, F. Sha, and R. Yu
 797 (eds.), *International Conference on Representation Learning*, volume 2025, pp. 90869–90891,
 798 2025a. URL https://proceedings.iclr.cc/paper_files/paper/2025/file/e25d87b8a42ee3f0d5b3ef741ca13031-Paper-Conference.pdf.

801 Xiaoyu Yang, Jie Lu, and En Yu. Walking the tightrope: Disentangling beneficial and detri-
 802 mental drifts in non-stationary custom-tuning. In *The Thirty-ninth Annual Conference on Neural*
 803 *Information Processing Systems*, 2025b. URL <https://openreview.net/forum?id=1BAiQmAFsx>.

805 Zhi Yang et al. Self-distillation bridges distribution gap in language model fine-tuning. In *ACL*, pp.
 806 1028–1043, 2024c. doi: 10.18653/v1/2024.acl-long.58.

808 Zhuoyi Yang and Liyue Shen. Tempa-vlp: Temporal-aware vision-language pretraining for longitu-
 809 dinal exploration in chest x-ray image. In *2025 IEEE/CVF Winter Conference on Applications of*
Computer Vision (WACV), pp. 4625–4634, 2025. doi: 10.1109/WACV61041.2025.00454.

810 Yusheng Yao, Shikun Zhang, Xingcheng Pan, Peng Zhang, et al. Filip: Fine-grained interactive
 811 language-image pre-training. In *ICML*, 2022.

812

813 Di You, Fenglin Liu, Shen Ge, Xiaoxia Xie, Jing Zhang, and Xian Wu. Aligntransformer: Hier-
 814 archical alignment of visual regions and disease tags for medical report generation. In *Medical*
 815 *Image Computing and Computer Assisted Intervention—MICCAI 2021: 24th International Con-
 816 ference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part III 24*, pp. 72–82.
 817 Springer, 2021.

818 Shan You, Chang Xu, Chao Xu, and Dacheng Tao. Learning from multiple teacher networks. In
 819 *Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and*
 820 *data mining*, pp. 1285–1294, 2017.

821 Shan You, Chang Xu, Chao Xu, and Dacheng Tao. Learning with single-teacher multi-student. In
 822 *AAAI*, volume 32, 2018. doi: 10.1609/aaai.v32i1.11636.

823

824 En Yu, Yiliao Song, Guangquan Zhang, and Jie Lu. Learn-to-adapt: Concept drift adaptation
 825 for hybrid multiple streams. 496:121–130, 2022. ISSN 0925-2312. doi: 10.1016/j.neucom.
 826 2022.05.025. URL <https://www.sciencedirect.com/science/article/pii/S0925231222005550>.

827

828 En Yu, Jie Lu, Bin Zhang, and Guangquan Zhang. Online boosting adaptive learning under con-
 829 cept drift for multistream classification. In *Proceedings of the AAAI Conference on Artificial*
 830 *Intelligence*, volume 38, pp. 16522–16530, 2024.

831

832 Hang Yu, Weixu Liu, Jie Lu, Yimin Wen, Xiangfeng Luo, and Guangquan Zhang. Detecting group
 833 concept drift from multiple data streams. 134:109113, 2023. ISSN 0031-3203. doi: 10.1016/j.
 834 patcog.2022.109113. URL <https://www.sciencedirect.com/science/article/pii/S0031320322005933>.

835

836 Feng Yuan et al. Reinforced multi-teacher selection for knowledge distillation. *Proceedings of*
 837 *the AAAI Conference on Artificial Intelligence*, 35(16):14284–14291, 2021. doi: 10.1609/aaai.
 838 v35i16.17680.

839

840 Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
 841 and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
 842 models, 2024. URL https://openreview.net/forum?id=ci_j00f8u35.

843

844 Weihao Zeng, Yuzhen Huang, Lulu Zhao, Yijun Wang, Zifei Shan, and Junxian He. B-STar: Mon-
 845 itoring and balancing exploration and exploitation in self-taught reasoners. In *The Thirteenth*
 846 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=P6dwZJpJ4m>.

847

848 Shuo Zhang, Yan Luo, Zihan Lyu, and Xin Chen. Shiftkd: Benchmarking knowledge distillation un-
 849 der distribution shift. *Neural Networks*, 192:107838, 2025a. doi: 10.1016/j.neunet.2025.107838.

850

851 Xiaoman Zhang, Chaoyi Wu, Ya Zhang, Weidi Xie, and Yanfeng Wang. Knowledge-enhanced
 852 visual-language pre-training on chest radiology images. *Nature Communications*, 14(1):4542,
 2023.

853

854 Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
 855 Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
 856 reasoning. *arXiv preprint arXiv:2501.07301*, 2025b.

857

858 Chunting Zhou, Sara Hooker, Sainbayar Sukhbaatar, and Jason Weston. Lima: Less is more for
 859 alignment. *arXiv preprint arXiv:2305.11206*, 2023.

860

861

862

863

864

A RELATED WORKS

865

A.1 CONCEPT DRIFT

868 Building on an extensive body of work, Lu et al. Lu et al. (2019; 2020) provide a systematic survey
 869 that organizes concept drift mitigation into three dominant families: error rate–driven adaptation
 870 Wang et al. (2024a); Jiao et al. (2024), distribution-aware approaches Yang et al. (2025a); Cerqueira
 871 et al. (2023); Yang et al. (2023), and multi-hypothesis frameworks Yu et al. (2024; 2022). Our study
 872 is situated within the distribution-oriented stream, which is notable for coupling rigorous statisti-
 873 cal tests with broad representational power, thereby enabling not only accurate detection of drift
 874 but also its nuanced characterization along temporal, spatial, and quantitative axes. By supporting
 875 fine-grained diagnostics such as the timing of drift onset, the attribution of drift to specific feature
 876 subspaces, and the assessment of its magnitude, distribution-based methods provide a principled
 877 foundation for adaptive systems that demand both interpretability and precise recalibration in the
 878 presence of evolving data.

879 Ongoing research on concept drift adaptation has produced a wide spectrum of refined techniques
 880 designed for increasingly complex learning environments. Among them, the Online Boosting Adaptive
 881 Learning (OBAL) framework Yu et al. (2024) offers a two-stage pipeline for multistream clas-
 882 sification, beginning with Adaptive Covariate Shift Adaptation (AdaCOSA) to capture evolving
 883 inter-stream correlations, and subsequently employing a Gaussian Mixture Model–driven weighting
 884 scheme to counter asynchronous distributional changes. In the multimodal landscape, CDMLLM
 885 Yang et al. (2025a) highlights the susceptibility of vision–language models to drift-induced biases
 886 that arise during both pre-training and fine-tuning, and proposes a unified remedy that integrates T-
 887 distribution calibration for long-tailed scenarios with explicit out-of-distribution detection, thereby
 888 reinforcing alignment stability. Beyond single-stream settings, GDDM Yu et al. (2023) contributes
 889 a distribution-free statistical mechanism for uncovering subtle group-level shifts in multi-stream
 890 data, relying on adaptive hypothesis testing to achieve robust detection. Anticipatory strategies
 891 have also been explored, most notably in DDG-DA Li et al. (2022-06-28), which projects poten-
 892 tial environmental evolution by coupling predictive factor analysis with synthetic data generation,
 893 creating a principled bridge between current observations and future distributional states. Com-
 894plementing these supervised paradigms, STUDD Cerqueira et al. (2023) introduces an unsupervised
 895 teacher–student discrepancy model that measures predictive consistency to flag drift without depen-
 896 dence on annotated labels, thereby reconciling sensitivity to distributional change with the practical
 897 limitations of real-world deployment.

898

A.2 KNOWLEDGE DISTILLATION FOR LLMS AND MLLMs

899 Knowledge distillation (KD) Hinton et al. (2015) has become a central paradigm for transferring
 900 knowledge from large teachers to compact students. In NLP, KD was initially used to compress
 901 BERT-like models Sun et al. (2019); Jiao et al. (2020); Sanh et al. (2019), enabling efficiency without
 902 major performance loss. More recently, KD has been extended to large language models (LLMs),
 903 where the focus is not only on compression but also on improving reasoning robustness, alignment,
 904 and sample efficiency. For example, self-distillation and on-policy KD Agarwal et al. (2023); Yang
 905 et al. (2024c) help students learn from their own generated trajectories or mitigate distribution gaps
 906 during fine-tuning. Other works integrate distillation with instruction tuning Wang et al. (2023a);
 907 Zhou et al. (2023), preference optimization Ouyang et al. (2022); Bai et al. (2022), or symbolic
 908 reasoning West et al. (2022); Gu et al. (2023), highlighting the versatility of KD for enhancing LLM
 909 performance.

910 In multi-modal contexts, KD plays an essential role in bridging cross-modal representations. Vision-
 911 language models such as CLIP Radford et al. (2021) and FILIP Yao et al. (2022) motivated distil-
 912 lation strategies for multi-modal grounding. Frameworks like BLIP-2 Li et al. (2023a), LLaVA Liu
 913 et al. (2023), InstructBLIP Dai et al. (2023), and LLaVA-MoD Shu et al. (2024) employ KD from
 914 strong encoders or larger MLLMs to align modalities, compress architectures, or improve down-
 915 stream reasoning. Recent innovations include Align-KD Feng et al. (2025a) and MoVE-KD Cao
 916 et al. (2025b), which distill cross-modal alignment knowledge and ensemble signals from multiple
 917 visual encoders, respectively, demonstrating the growing interest in efficient and robust MLLM dis-
 918 tillation. KD has also been explored for domain-specific applications, such as robotic surgery VQA
 919 Chen et al. (2024b) and medical multimodal models Shen et al. (2025b).

918 A complementary direction is multi-teacher distillation, which synthesizes complementary strengths
 919 from multiple teachers. Early studies in CV You et al. (2017); Son et al. (2021); Yuan et al. (2021);
 920 Liu et al. (2020b); You et al. (2018) inspired recent extensions to LLMs and MLLMs. For example,
 921 Gu et al. Gu et al. (2025b) propose multi-MLLM distillation for out-of-context news detection,
 922 while multi-teacher continual learning frameworks Chen et al. (2024b) address streaming data in
 923 specialized domains. Moreover, recent benchmarks on distillation under distribution shift Zhang
 924 et al. (2025a) highlight the challenge of biased or drifting teacher supervision, which has not been
 925 systematically solved in multi-modal KD.

926 Overall, KD has evolved from compression to a general tool for alignment, reasoning transfer, and
 927 cross-modal adaptation. Yet, most methods remain constrained by single-teacher assumptions or
 928 overlook distribution drift across modalities. These gaps motivate our work on robust multi-teacher
 929 distillation for MLLMs, explicitly addressing the challenges of bias inheritance and teacher drift.

930

931

932 A.3 REINFORCED FINE-TUNING IN LLMs

933

934 The role of reinforcement learning (RL) in shaping post-training alignment of large language mod-
 935 els (LLMs) has advanced significantly since OpenAI’s pioneering work on Reinforcement Learning
 936 from Human Feedback (RLHF) Christiano et al. (2017), which introduced a paradigm for align-
 937 ing model behavior with human values Ouyang et al. (2022). Initial implementations, such as
 938 OpenAI-o1 Jaech et al. (2024), demonstrated the practical utility of preference-driven modeling,
 939 yet the reliance on large-scale human annotation quickly revealed severe limitations in cost and
 940 scalability. These constraints have spurred a transition toward automated reward construction using
 941 pre-trained systems, opening the door to a new generation of alignment methods. Bai et al.’s Bai
 942 et al. (2022) constitutional framework, for example, relies on sparse natural language feedback as
 943 an indirect supervisory signal, while DeepSeek’s research line illustrates a staged trajectory: begin-
 944 ning with a purely RL-based baseline (R0), and subsequently extending to the R1 system Guo et al.
 945 (2025), which cycles between supervised fine-tuning and their GRPO optimization scheme Shao
 946 et al. (2024). This cyclic design improved generalization capacity and marks a broader trend toward
 947 increasingly autonomous alignment pipelines that minimize human involvement while retaining ro-
 948 bust performance.

949 Concurrently, alignment research has diversified through a range of novel paradigms that extend be-
 950 yond the classical RLHF formulation. ReST Gulcehre et al. (2023) advances iterative self-training
 951 by generating policy-driven samples and refining them via offline RL, while DPO Rafailov et al.
 952 (2023b) reconceptualizes the task as direct optimization of preferences through implicit reward mod-
 953 eling. Complementary efforts include Rejection Sampling Fine-Tuning (RSFT) Yuan et al. (2024),
 954 which augments supervised training with carefully filtered reasoning trajectories, and ReFT Trung
 955 et al. (2024), which couples supervised fine-tuning initialization with PPO-based exploration to pro-
 956 gressively expand reasoning capabilities. Extending these principles to multimodal contexts, Visual-
 957 RFT Liu et al. (2025) adapts GRPO-driven strategies for visual-language alignment under limited
 958 data regimes, whereas B-STaR Zeng et al. (2025) introduces dynamic configuration mechanisms
 959 that balance exploration and exploitation for self-improving systems. Methodological innovation
 960 has also been paralleled by advances in evaluation: Qwen-Math-PRM Zhang et al. (2025b) inte-
 961 grates Monte Carlo estimation with LLM-as-judge consensus, building a hierarchical framework
 962 that captures both stepwise reasoning fidelity and holistic solution quality. Along a similar line,
 963 ViLaM Yang et al. (2024b) leverages reinforcement learning for unsupervised visual grounding,
 964 tackling the challenges of open-world multimodal understanding.

965

966

967 B CXR-MAX DATASET

968

969

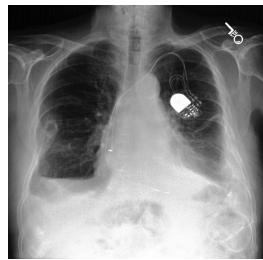
970

971

In this section, we showcase the samples utilized for training and validation in our study, generated
 by various MLLMs, with the image and ground truth of the radiology report. And the prompt we
 used to various MLLMs is:

””This is a patient’s chest DR image. The patient has been diagnosed with *;diseases;*. Can you find
 the basis for the diagnosis in the image?””

972
973
974
975
976
977
978
979
980



Radiology Report

Findings: There is unchanged moderate left lower lobe atelectasis and bilateral pleural effusions. Linear atelectases in the left mid lung field are again seen, essentially unchanged. Lesion in the right seventh rib is unchanged. Pleurx catheter is seen, unchanged in position at the base of the left lung. There is no evidence of pneumothorax. Pacer is seen with leads appropriately placed within the right and left atria. Mediastinal silhouette is within normal limits with a calcified aorta.

981
982
983
984
985
986
987
988

Claude Sonnet-4

Looking at this chest X-ray, I can identify several findings that support the diagnoses of atelectasis and pleural effusion:

Evidence of Atelectasis:

992
993
994
995
996
997
998

1. **Volume loss in the right hemithorax** - The right side appears smaller compared to the left
2. **Mediastinal shift** - The mediastinum (including the trachea and heart) appears shifted toward the right side, which is characteristic of right-sided volume loss
3. **Elevated right hemidiaphragm** - The right diaphragm appears higher than the left
4. **Increased opacity in the right lung** - Areas of collapsed lung tissue appear more dense/white

Evidence of Pleural Effusion:

999
1000
1001
1002
1003
1004
1005
1006
1007
1008

1. **Blunting of the right costophrenic angle** - The normally sharp angle where the diaphragm meets the chest wall is obscured
2. **Increased density at the right lung base** - There appears to be fluid accumulation in the lower right pleural space
3. **Meniscus sign** - The fluid appears to have the characteristic curved upper border typical of pleural effusion

The combination of these findings - volume loss with mediastinal shift (atelectasis) and basal opacity with costophrenic angle blunting (pleural effusion) - provides clear radiographic evidence supporting both diagnoses. The presence of what appears to be a pacemaker or similar device in the right chest area is also noted.

1009
1010
1011
1012
1013
1014
1015

GPT-5-nano

Key findings that support atelectasis and pleural effusion:

1016
1017
1018
1019
1020
1021
1022

- Left subclavian pacemaker/ICD in place (device visible in the left chest).
- Basilar opacities at the left lower lung suggesting subsegmental/plate-like atelectasis with some volume loss (diaphragm slightly elevated on the left).
- Blunting of the left costophrenic angle with posterior layering of fluid consistent with a small left pleural effusion (meniscus sign may be subtle on this view).

1023
1024
1025

Right lung and mediastinal contours are otherwise relatively unremarkable.

In short: left basilar atelectasis with a small left pleural effusion. Correlate clinically; consider follow-up radiographs or ultrasound/CT if the clinical picture warrants.

1026

GLM-4.5V

1027

To determine the basis for diagnosing **Atelectasis** and **Pleural Effusion** in the chest X - ray, we analyze key imaging features:

1028

1. Pleural Effusion:

1029

Pleural effusion is identified by **blunting of the costophrenic angles** (the normally sharp, downward - pointing angles where the diaphragm meets the rib cage). In this image, the right costophrenic angle appears blurred and loses its typical sharp contour, which is a classic sign of fluid accumulation in the pleural space.

1030

2. Atelectasis:

1031

Atelectasis refers to partial lung collapse, which shows as **increased opacity (whiteness)** in the affected lung regions due to reduced air content. In this X - ray, there are areas of increased density in the lower lung fields (particularly on the right side), indicating alveolar collapse and loss of normal lung aeration.

1032

In summary, the diagnostic clues are the **blunted right costophrenic angle (pleural effusion)** and **increased opacification in the lower lung zones (atelectasis)**.

1033

The answer is The basis for the diagnosis includes blunted right costophrenic angle (indicating pleural effusion) and increased opacification in the lower lung zones (indicating atelectasis) .

1034

1035

1036

1037

1038

1039

1040

Gemini-2.5-flash-lite

1041

Based on the chest DR image, here are the findings that support the diagnoses of Atelectasis and Pleural Effusion:

1042

1. Pleural Effusion:

1043

1044

- **Right Costophrenic Angle Blunting:** The right costophrenic angle is completely blunted and obscured by fluid.

1045

1046

- **Meniscus Sign:** There is a dense, homogeneous opacity at the right lung base with a characteristic curvilinear upper border (meniscus sign) that tracks upwards along the lateral chest wall. This indicates free fluid in the pleural space.

1047

1048

- **Obscured Diaphragm:** The right hemidiaphragm is completely obscured by the effusion.

1049

This combination clearly indicates a significant right-sided pleural effusion.

1050

2. Atelectasis:

1051

1052

- **Volume Loss in Right Hemithorax:** #blank

1053

1054

- **Mediastinal Shift:** The mediastinum, including the cardiac silhouette and potentially the trachea (though less clearly seen), is shifted towards the right (the affected side). This indicates a reduction in lung volume on the right.

1055

1056

- **Reduced Right Lung Volume:** The overall right lung field appears smaller and more collapsed compared to the left lung.

1057

1058

- **Increased Opacity/Consolidation:** The remaining lung parenchyma in the right hemithorax, particularly superior to the pleural effusion, appears denser and more opaque than normal lung, consistent with collapsed or consolidated lung tissue.

1059

1060

The atelectasis is likely, at least in part, compressive due to the large pleural effusion, but could also have an obstructive component.

1061

1062

1063

In summary, the image demonstrates a large right-sided pleural effusion, causing blunting of the costophrenic angle and a meniscus sign, accompanied by signs of volume loss in the right hemithorax (mediastinal shift to the right) and increased density of the remaining lung, all consistent with a diagnosis of right-sided pleural effusion and atelectasis.

1064

1065

1066

1067

1068

1069

Moonshot-v1

1070

1071

As an AI, I'm not capable of providing medical diagnoses or interpreting medical images with the same level of expertise as a trained medical professional. However, I can provide general information on what to look for in a chest X-ray when atelectasis and pleural effusion are suspected.

1072

1073

Atelectasis is a condition where one or both lungs partially or completely collapse. On an X-ray, this might appear as an area of increased opacity (darker area) in the lung field, which could indicate that the lung tissue is not fully expanded.

1074

1075

1076

1077

Pleural effusion refers to the buildup of excess fluid in the pleural cavity, the space between the lungs and the chest wall. This can cause the lung to partially collapse and may appear on an X-ray as a layering density at the lung base or costophrenic angle, which could be seen as a meniscus sign (a curved line of increased density).

1078

1079

It's important to note that accurate diagnosis and interpretation of medical images should be done by a qualified radiologist or physician who can consider the full clinical context and other diagnostic information. If you have concerns about a medical condition, please consult a healthcare professional.

1080

Qwen-VL-Max

1081

The chest X-ray (DR image) shows several findings consistent with **atelectasis** and **pleural effusion**, particularly on the **left side**. Here's the basis for each diagnosis:

1082

1. Pleural Effusion (Left Side)

1083

Key Findings:

1084

- **Blunting of the left costophrenic angle:** The sharp angle between the diaphragm and rib cage on the left is obscured or rounded, which is a classic sign of pleural fluid accumulation.
- **Homogeneous opacity in the lower left hemithorax:** There is increased density in the left lower lung field, especially near the base, which does not follow the bronchovascular markings. This suggests fluid rather than lung parenchymal disease.
- **Meniscus sign:** A concave upper border of the fluid collection (though less clearly visible here due to overlying structures), often seen in moderate pleural effusions.
- **Elevation of the left hemidiaphragm:** Fluid can push the diaphragm upward.

1092

1093

1094

Note: The presence of a **cardiac pacemaker** on the left side may partially obscure the view, but the effusion is still evident.

1095

2. Atelectasis (Left Lower Lobe Likely)

1096

Key Findings:

1097

- **Volume loss in the left lower lung:** The left hemithorax appears compressed, and there is a shift of mediastinal structures slightly toward the left (e.g., trachea and heart), indicating volume loss.
- **Loss of normal lung markings in the affected area:** The lung tissue appears denser and consolidated, with reduced air content.
- **Possible displacement of the minor fissure:** (if visible): In lobar atelectasis, the fissures may be displaced due to collapse.

1098

1099

1100

1101

1102

1103

1104

1105

The atelectasis likely results from **compression by the pleural effusion** —this is known as **compressive atelectasis**.

Additional Notes:)

1106

- The **right lung** appears relatively clear, though some mild interstitial markings may be present, possibly due to chronic changes or early involvement.
- The **heart silhouette** appears enlarged, which could be due to the effusion pushing the heart laterally, or it may reflect underlying cardiomegaly.
- The **pacemaker device** is well-positioned, with leads extending into the right atrium and ventricle; no evidence of lead dislodgement.

1112

Summary:)

1113

✓ **Pleural effusion:** Left-sided, based on blunted costophrenic angle, homogeneous opacity, and diaphragmatic elevation.

1114

✓ **Atelectasis:** Likely left lower lobe, secondary to compressive atelectasis from the adjacent pleural effusion. These findings are typical of conditions such as pneumonia, heart failure, malignancy, or post-operative states, depending on clinical context.

1115

1116

1117

1118

1119

Recommendation: Further evaluation with ultrasound or CT thorax may help confirm the nature and extent of the effusion and guide management (e.g., thoracentesis).

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

Grok-4

1135

I can explain the basis for the diagnosis of atelectasis and pleural effusion based on an analysis of the chest X-ray (CXR) you provided. I'll keep this concise, objective, and focused on the visible findings in the image that support the diagnosis. Please note that I am not a substitute for the patient's actual treating physician, and CXR interpretation should always be correlated with the full clinical picture (e.g., symptoms, physical exam, labs, and possibly additional imaging like a CT scan or ultrasound for confirmation). If this is your CXR or that of someone you know, please discuss it directly with a doctor for personalized advice.

1139

Key Observations in the Image:

1140

This is a frontal (posteroanterior or PA) view of the chest. The lungs, heart, mediastinum (central chest structures), diaphragm, and bony thorax are visible. There's also an incidental implanted cardiac device (e.g., pacemaker or defibrillator) on the left side with leads extending into the heart—this is unrelated to the diagnosis but worth noting as it can sometimes complicate interpretation.

1144

1. Basis for Pleural Effusion:

1145

Location: Primarily on the right side (which appears on the left side of the image, as CXRs are conventionally viewed as if you're facing the patient).

1146

Key Findings:

1147

- Increased opacity (whitish haziness) at the right lung base, obscuring the normal sharp outline of the right hemidiaphragm (the dome-shaped muscle separating the chest from the abdomen).
- Blunting or filling-in of the right costophrenic angle (the sharp angle where the diaphragm meets the chest wall). Normally, this angle is very sharp and black (air-filled); here, it's filled with a denser, hazy material, which is classic for fluid accumulation.
- A subtle "meniscus sign" (curved upper border of the opacity) at the right base, suggesting free-flowing fluid layering dependently due to gravity in this upright view.
- The opacity is homogenous (evenly dense) and respects the lung boundaries without air bronchograms (air-filled airways standing out against the density), which fits with fluid in the pleural space rather than within the lung tissue itself.

1157

Why This Indicates Pleural Effusion: Pleural effusion is an abnormal collection of fluid between the lung and chest wall. In an upright CXR, it typically settles at the base of the lung, causing these exact changes. The amount here appears moderate (not massive, as the mediastinum isn't shifted much), but it's enough to cause visible changes. Common causes include infection, heart failure, malignancy, or inflammation, but the CXR alone doesn't specify the cause.

1162

2. Basis for Atelectasis:

1163

Location: Also primarily involving the right lower lobe (base of the right lung).

1164

Key Findings:

1165

- Loss of volume and increased density in the right lower lung zone, making it appear smaller and whiter compared to the left lung (which is more uniformly black and air-filled).
- Crowding or absence of normal lung markings (vascular structures) in the affected area, with the remaining lung tissue appearing compressed.
- Subtle elevation or silhouetting of the right hemidiaphragm, suggesting collapse of the adjacent lung tissue.
- No obvious shift of the trachea or mediastinum (which would indicate more severe collapse), but the changes are localized to the base.

1173

Why This Indicates Atelectasis: Atelectasis is partial or complete collapse of lung tissue, leading to reduced air content and increased density on CXR. It often occurs adjacent to a pleural effusion (the fluid compresses the lung), which is likely the case here—the effusion is probably contributing to compressive atelectasis. Other signs like air bronchograms are not prominent, suggesting it's not primarily consolidative (e.g., from pneumonia).

1177

3. Other Supporting Details:

1178

- Bilateral Comparison:** The left lung appears relatively normal (darker and more aerated), which highlights the asymmetry and makes the right-sided abnormalities more evident.
- No Contradictory Findings:** There are no signs of other issues (e.g., pneumothorax, large masses, or fractures) that might mimic these changes.
- Technical Quality:** The image is well-exposed and positioned, reducing the chance of artifacts mimicking disease.

1184

C IMPLEMENTATION DETAILS

1185

In this section, implementation details are provided.

1186

1187

In terms of the supervised fine-tuning progress, the hyperparameters are presented in Table 6. Qwen2.5-VL (7B) Bai et al. (2025) is applied as our pre-trained model. During the SPD, we utilize the AdamW optimizer, which is configured with a cosine annealing schedule as the learning policy. The initial learning rate is set to 1×10^{-4} , and the AdamW optimizer is employed with hyperparameters $\beta = (0.9, 0.98)$. Additionally, we set the weight decay to 0.05 and the dropout rate to 0.1. During the first 20 warm-up steps, the learning rate increases to 1×10^{-4} , and subsequently decays to 10^{-7} . Unless otherwise specified, the supervised pre-distillation of our multi-modal large language model consists of 10,686 steps, executed on 2×2 NVIDIA A100 GPUs.

Table 6: The training hyperparameters of our MLLM.

Supervised Pre-Distillation		Autonomous Preference Optimization	
Training Steps	10,686	Training Steps	12,132
Warmup Steps	20	Warmup Steps	0
Warmup Ratio	0.05	Optimizer	AdamW
Optimizer	AdamW	Learning Rate	2e-5
Learning Rate	1e-4	Learning Rate Decay	Cosine
Learning Rate Decay	Cosine	Adam β	(0.9, 0.98)
Adam β	(0.9, 0.98)	Weight Decay	0.05
Weight Decay	0.05	Batch Size	2
Batch Size	2		

While in the autonomous preference optimization (APO), the initial learning rate is reduced to 2×10^{-5} without the warmup, with the batch size of 2. The visual encoder and text decoder are frozen out of the training. The reinforced custom-tuning consists of 12,132 steps, executed on 2×2 NVIDIA A100 GPUs. Other training parameters are the same as the fine-tuning.

D MORE RESULTS

	Venue	BLEU-1	BLEU-2	BLEU-3	BLEU-4	ROUGE-L	METEOR
METransformer	CVPR'23	0.386	0.250	0.169	0.124	0.291	0.152
R2GenGPT	MetaRad'23	0.408	0.256	0.174	0.125	0.285	0.167
BtspLLM	AAAI'24	0.402	0.262	0.180	0.128	0.291	0.175
MambaXray	Arxiv'24	0.422	0.268	0.184	0.133	0.289	0.167
CounterfactRFT	NeurIPS'25	0.426	0.288	0.186	0.155	0.421	0.286
Ours	This paper	0.563	0.372	0.270	0.192	0.298	0.213

Table 7: Evaluation results of diagnostic report generation on MIMIC-CXR with various metrics including BLEU-1/2/3/4, ROUGE-L, METEOR and CIDEr. The best-performing models are highlighted in red. The comparison methods include: R2Gen Chen et al. (2020), PPKED Liu et al. (2021b), AlignTrans You et al. (2021), CMCL Liu et al. (2021a), Clinical-BERT Yan & Pei (2022), METransformer Wang et al. (2023b), DCL Li et al. (2023b), R2GenGPT Wang et al. (2023c), PromptMRG Jin et al. (2024), BtspLLM Liu et al. (2024), MambaXray Wang et al. (2024b), CounterfactRFT Yang et al. (2025b)

E LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript. Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing, grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or experimental design. All research concepts, ideas, and analyses were developed and conducted by

1242 the authors. The contributions of the LLM were solely focused on improving the linguistic quality
1243 of the paper, with no involvement in the scientific content or data analysis.
1244

1245 The authors take full responsibility for the content of the manuscript, including any text generated
1246 or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
1247 and does not contribute to plagiarism or scientific misconduct.
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295