
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BEATS: OPTIMIZING LLM MATHEMATICAL CAPA-
BILITIES WITH BACKVERIFY AND ADAPTIVE DISAM-
BIGUATE BASED EFFICIENT TREE SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have exhibited exceptional performance across
a broad range of tasks and domains. However, they still encounter difficulties in
solving mathematical problems due to the rigorous and logical nature of mathe-
matics. Previous studies have employed techniques such as supervised fine-tuning
(SFT), prompt engineering, and search-based methods to improve the mathemati-
cal problem-solving abilities of LLMs. Despite these efforts, their performance
remains suboptimal and demands substantial computational resources. To ad-
dress this issue, we propose a novel approach, BEATS, to enhance mathemati-
cal problem-solving abilities. Our method leverages newly designed prompts that
guide the model to iteratively rewrite, advance by one step, and generate answers
based on previous steps. Additionally, we employ a pruning tree search to opti-
mize search time while achieving strong performance. Furthermore, we introduce
a new back-verification technique that uses LLMs to validate the correctness of
the generated answers. Notably, our method improves Qwen2-7b-Instruct’s score
from 36.94 to 61.52 (outperforming GPT-4’s 42.5) on the MATH benchmark.
The code is made available at https://anonymous.4open.science/r/
BEATS-A65C/README.md

1 INTRODUCTION

LLMs have demonstrated exceptional performance across diverse tasks and domains (Touvron et al.,
2023; meta llama, 2024; Bai et al., 2023a), excelling in zero-shot and few-shot scenarios. Recent
advancements in scaling laws and fine-tuning have further enhanced their capabilities, enabling their
application in complex real-world tasks such as natural language understanding and multimodal
processing.

Among the various capabilities of LLMs, mathematical proficiency is crucial, as it reflects not only
logical reasoning but also the model’s capacity for structured problem-solving. Mastery of mathe-
matical tasks necessitates precision, adherence to complex rules, and the application of algorithms,
all of which are essential indicators of an LLM’s overall reasoning and cognitive abilities. There
are generally two approaches to enhance mathematical capability. The first set of methods trains
LLMs to improve their mathematical skills. Models such as Mammoth (Yue et al., 2023; 2024) and
Internlm-math (Ying et al., 2024), along with DeepSeek (Shao et al., 2024), utilize vast amounts
of data to develop robust mathematical models. The second set of methods employs tree search
and self-correction techniques to enhance mathematical abilities. Techniques like ToT (Yao et al.,
2024), RAP (Hao et al., 2023), ReST-MCTS* (Zhang et al., 2024), and LiteSearch (Wang et al.,
2024) leverage tree structures and search methods such as BFS, DFS and Monte Carlo Tree Search
(MCTS). However, both approaches still encounter suboptimal results. They face the following
challenges:

Suboptimal Prompts Self-improving models (Yao et al., 2024; Wang et al., 2024) typically ad-
dress problems by either decomposing them into subproblems or rewriting them, followed by solv-
ing through methods CoT or Process of Thought (PoT). However, they tend to overlook the issue
of ambiguous problem statements. As illustrated by the root node in Figure 1(a), vague expressions
can mislead the LLM’s understanding.

1

https://anonymous.4open.science/r/BEATS-A65C/README.md
https://anonymous.4open.science/r/BEATS-A65C/README.md

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

James decides to run 3 sprints 3
times a week. He runs 60 meters
each sprint. How many total
meters does he run a week?

… … … …

If 540 meters he
run a week …

540 180 180 540 The answer is 540.

✅

❎

❎

One Step Forward

Giving Answer

Question Disambiguation

(a) Candidate Answer Generation (b) Answer Back Verify

If 180 meters he
run a week …

If 560 meters he
run a week …

How many total meters does James
run in a week if he runs 3 sprints,
each of 60 meters, 3 times a week?

Figure 1: We provide a straightforward example to illustrate our BEATS method. First, we construct
a tree search using three distinct actions. Next, we apply back verification to achieve the correct
answer.

High Computational Cost Previous researches utilizing pre-training or SFT techniques (Yue
et al., 2023; 2024; Ying et al., 2024) often suffer from insufficient amounts of data and high com-
putational costs. Search-based approaches enhance mathematical reasoning during the inference
stage, thus avoiding the pressure of additional training. However, due to the vast search space, a
naive search algorithm can lead to a significant increase in inference time(Yao et al., 2024). Al-
though Wang et al. (2024) employs MCTS to compress the search space, which may result in the
absent of correct answers.

Ineffective Verification Method When selecting among multiple candidate answers to a problem,
previous works like Yao et al. (2024); Wang et al. (2024) typically employ voting-based verification
methods. However, they overlook the fact that LLMs can make the same mistakes across multiple
routes.

To address these challenges, we propose BEATS, a novel method for efficient search aimed at en-
hancing mathematical performance. Our method guides the model to answer problems instructed
by clarified question, thereby avoiding ambiguities in problem statements. We meticulously design
prompts that instruct the model to disambiguate, solve one step at a time, and directly generate an-
swers based on preceding steps. Additionally, traditional verification methods in tree search, such
as majority voting, may be unreliable, as LLMs can perpetuate the same mistakes across multiple
branches. To overcome this, we introduce a back-verification technique that re-submits both the
answer and the problem to the model for a judgment of correctness, leveraging the model’s capa-
bilities while reducing its reasoning difficulty. Furthermore, we employ a pruning tree search to
optimize search time while achieving strong performance. It is worth noting that with our meticu-
lously designed pruning tree, we can control search expenses; simultaneously, compared to MCTS,
the pruning tree is able to search through every leaf node, ensuring promising performance, while
MCTS is more likely to search based on prior experience.

The core contributions of this paper are summarized as follows:

• Meticulously Designed Prompt We developed three newly curated prompts designed to
solve mathematical problems step-by-step, provide final answers, and, most importantly,
avoiding ambiguities in problem statements.

• Pruning Tree Search for Controllable Inference Time We implement a pruning strategy
for the tree by imposing constraints on the search steps. Specifically, we restrict the rewrit-
ing of the question to once and terminate the tree construction when answer is achieved.

• New Effective Verification Method We propose a new back-verification method that re-
submits both the answer and the problem to the model for a judgment of correctness, as
shown in Figure 1. This approach enhances the performance of searching in LLMs com-
pared to majority voting.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• Strong Performance We achieved competitive results across several datasets, including
MATH, GSM8K, SVAMP, SimulEq, and NumGLUE. Notably, the BEATS method, based
on Qwen2-7B-Instruct, improved its performance on the MATH dataset from 36.94 to
61.52, significantly surpassing GPT-4’s score of 42.5.

2 RELATED WORK

2.1 MATH LARGE LANGUAGE MODELS

LLMs have demonstrated significant capabilities across various tasks, including mathematical
problem-solving, which is a critical skill for these models. However, learning to solve mathematical
problems poses challenges for LLMs, often requiring large amounts of training data and substantial
computational resources. In this paper, we review several state-of-the-art (SOTA) models specifi-
cally designed to tackle mathematical problems.

Llemma (Azerbayev et al., 2021) integrates both code and mathematical data to train mod-
els, resulting in strong performance. InternLM2 (Ying et al., 2024) utilizes a vast amount of
math-related pre-training corpus to achieve high performance. Mammoth (Yue et al., 2023) col-
lected Chain-of-Thought (CoT) data for fine-tuning language models and achieved impressive re-
sults. Mammoth2 (Yue et al., 2024) builds on Mammoth by collecting WebInstruct, one of the
largest open-source math datasets, and uses it to fine-tune LLMs, resulting in SOTA performance.
DeepSeek (Shao et al., 2024) employs preference-based mathematical data to perform an additional
stage of reinforcement learning, achieving SOTA results.

In addition to models explicitly trained for mathematics, a few foundation models exhibit excep-
tional mathematical proficiency. Llama3 (Touvron et al., 2023) has shown remarkable performance
in solving mathematical problems. Qwen2 (Bai et al., 2023b), another series of outstanding models,
is one of the SOTA open-source models. Furthermore, closed-source models like Claude and GPT
also demonstrate strong capabilities in mathematical problem solving.

2.2 PROMPT ENGINEERING FOR LARGE LANGUAGE MODELS

The effectiveness of large language models in various applications largely depends on the quality
of the prompts used. There are already many designed prompts that can significantly enhance the
performance of LLMs (Kojima et al., 2022; Wei et al., 2022; Yao et al., 2024; Besta et al., 2024;
Yang et al., 2024; Wang et al., 2023a). However, these methods that rely on manual prompt engi-
neering are far less scalable. In the field of mathematical logical reasoning for LLMs, the Chain of
Thought and its derived strategies are widely popular due to their effectiveness. Zero-shot CoT (Ko-
jima et al., 2022) is adding a simple sentence like “Let’s think step by step” at the end of questions
to assist LLMs in generating reasoning steps. Instead of Zero-shot CoT, Manual-Cot (Wei et al.,
2022) provides reasoning steps as few shots. Self-Consistency further improves language models’
reasoning performance by generating a diverse set of reasoning paths and choosing the most consis-
tent answer in the final answer set. Tree of Thought (Yao et al., 2024) and GOT (Besta et al., 2024)
extend the reasoning pathway from linear to non-linear data structures by leveraging multiple LLM
queries to elicit different plausible reasoning paths (Yang et al., 2024). Buffer of Thought (BOT)
(Yang et al., 2024) designs a series of thought-template for tasks, and for each problem, it retrieve
a relevant thought-template to prompt LLMs. PS prompting (Wang et al., 2023a) improves COT by
encouraging LLMs to devise a plan before attempting to solve a problem. In this paper, we employ
meticulously designed prompts to enhance the model’s mathematical capabilities.

2.3 REASONING IN LARGE LANGUAGE MODELS

The recently introduced GPT-o1 model has demonstrated outstanding performance in solving math-
ematical problems, primarily due to its integration of a novel reasoning module. Our proposed tree
search methodology can be categorized as a mathematical reasoning technique. In this paper, we
provide a comprehensive review of existing reasoning methods for LLMs. Li et al. Li et al. (2024c)
showed that LLMs can achieve arbitrarily high performance with Chain-of-Thought (CoT) prompt-
ing. Similarly, Zelikman et al. Zelikman et al. (2024) highlighted the potential for LLMs to “think
before reasoning,” facilitated by the use of tree structures and verification mechanisms. Tree of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Step 3

St
ep

 2

Step 1-1-1

St
ep

 1

A board game spinner is divided into three parts labeled 𝐴, 𝐵 and 𝐶. The
probability of the spinner landing on 𝐴 is ⁄1 3 and the probability of the spinner
landing on 𝐵 is ⁄5 12. What is the probability of the spinner landing on 𝐶?
Express your answer as a common fraction.

STEP: First, let's find the sum of the probabilities of the spinner landing on A and
B. This will give us a portion of the total probability space.
[𝑃(𝐴) + 𝑃(𝐵) = ⁄1 3 + ⁄5 12]
Now, let's compute this sum. [𝑃(𝐴) + 𝑃(𝐵) = ⁄4 12 + ⁄5 12 = ⁄9 12]

STEP: We have computed the sum of probabilities for 𝐴 and 𝐵 to be ⁄9 12. Next,
to find the probability of the spinner landing on 𝐶, we need to subtract this sum
from the total probability space, which is 1 (or ⁄12 12).
[𝑃(𝐶) = 1 - (𝑃(𝐴) + 𝑃(𝐵))]
[𝑃(𝐶) = ⁄12 12 - ⁄9 12]
[𝑃(𝐶) = ⁄3 12]

The probability of the spinner landing on 𝐶 is ⁄3 12. However, this
fraction can be simplified. \n\nTo simplify, we divide both the
numerator and the denominator by their greatest common divisor,
which is 3: [𝑃(𝐶) = ⁄(3 ÷ 3) (12 ÷ 3) = ⁄1 4]
The answer is ⁄1 4.

CLARIFIED QUESTION: In a board game spinner divided into three sections
labeled 𝐴, 𝐵 and 𝐶, the probability of the spinner landing on section 𝐴 is given as
⁄1 3, and the probability of landing on section 𝐵 is ⁄5 12. …

1

2

3

…

Base Question

One Step ForwardQuestion Disambiguation

St
ep

 1
-1 St
ep

 3
-1

Step 3-2

St
ep

 3
-1

-1 Step 3-1-2

…

𝑂!! 𝑂!"

𝑂!#

𝑂"
!,!

𝑂#
!,!,! 𝑂#

#,!,!

𝑂"
#,!

𝑂#
#,!,"

𝑂"
#,"

𝒽: 1

𝒽: 1

𝒽: 1

𝒽: 0
STEP: Calculate the total probability space by
adding the probabilities of sections 𝐴 and 𝐵, i.e.,
(⁄1 3 + ⁄5 12).

Giving Answer

Figure 2: Visualization of the search algorithm in BEATS.

Thought (Yao et al., 2024) leverages tree search and majority voting to improve inference perfor-
mance. Building on this foundation, Zhang et al. Zhang et al. (2024) applied Monte Carlo Tree
Search (MCTS) to achieve efficient and effective tree-based search.

Other works have focused on fine-tuning LLMs to develop self-improvement capabilities. For exam-
ple, Chen et al. Chen et al. (2024b) employed Step-Level Value Preference Optimization to achieve
high model performance. Another related work, AlphaMath Chen et al. (2024a), proposed by Chen
et al., utilized value and policy functions along with step-level beam search during inference to en-
hance mathematical problem-solving abilities. Kumar et al. Kumar et al. (2024) further employed
reinforcement learning and oracle feedback to train models for self-correction.

3 METHOD

3.1 PROMPT DESIGN

We design three actions for the tree search, illustrated in Figure 7. The three options are: One Step
Forward, Giving Final Answer, and Disambiguation.

One Step Forward The prompt is summarized in Figure 7(a). It encourages the model to progress
through the search tree by evaluating the next logical step based on the current context and informa-
tion. Given that mathematical problems often require multi-step reasoning, splitting a problem into
individual steps reduces the complexity of the LLM’s response. By addressing each step sequen-
tially, we enhance the likelihood of arriving at the correct answer, as the model can focus on one
aspect of the problem at a time, thereby improving accuracy and clarity in reasoning.

Giving the Final Answer The prompt is summarized in Figure 7(b), this option directs the model
to provide a conclusive answer after considering all relevant information, ensuring clarity and pre-
cision in responses. At the appropriate moment, this prompt assists in summarizing the reasoning
behind multi-step answers, allowing the model to draw a definitive conclusion. By integrating in-
sights from each step, it helps ensure that the final answer accurately reflects the cumulative logic
and reasoning process.

Disambiguation The prompt is illustrated in Figure 7(c). This prompt emphasizes reformulating
the initial query to enhance clarity and specificity, thereby facilitating a more effective search pro-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

cess. This approach is necessary, as many problem descriptions are frequently ambiguous or unclear,
leading to incorrect answers. For example, the query, Josh decides to try flipping
a house. He buys a house for $80,000 and then invests $50,000 in
repairs. This increased the value of the house by 150%. How much
profit did he make?, can introduce ambiguity. By incorporating a step to rewrite questions,
we aim to eliminate such ambiguities, ensuring that the model fully comprehends the problem
before attempting to solve it. This helps prevent errors that result from misinterpretations of the
initial query.

3.2 PRUNING TREE SEARCH

Algorithm 1: Pruning Tree Building Algorithm
Input: Maximum depth D, question q, tree node u, action list A, one-step action limit τ , LLM

generation function G, action counter Count
Function BuildTree(u, d):

if d < D then
foreach a ∈ A do

if (a = "Disambiguation") ∧ d > 1 then
continue;

if a = "One Step Forward" ∧ Count(u, a) ≥ τ then
continue;

c← new Node();
u.value← G(LLM,u.prompt, a);
c.prompt← u.prompt⊕ u.value;
u.addChild(c);
if "the answer is" ∈ c.value then

continue;
BuildTree(c, d+ 1);

Output: BuildTree(root, 1)

In the constructed search tree τ , the root node represents the input question q, while the leaf nodes
correspond to the deduced answers S. The intermediate nodes represent reasoning states that con-
nect the root to the leaves, with edges between these nodes indicating the actions A taken during the
reasoning process.

As shown in Figure 2 and Algorithm 1, a node in the tree is denoted by ud, where d indicates
the depth of the node. For a given node ud, its ancestor nodes up to the root are denoted by the
sequence ud−1, ..., u1. Each node is associated with a prompt that concatenates the responses from
previous rounds. These prompts, containing prior rounds of answers, are fed into the action module
to generate further responses leading to the correct answer.

ud.prompt =
d−1⊕
i=1

ui.value (1)

Additionally, each node stores a value corresponding to the answer derived from both the preceding
rounds’ responses and the current action. The mathematical formulation is as follows:

ud.value = G(LLM, ud.prompt, a) (2)

We apply the following heuristic pruning rules during this process:

(1) Disambiguation actions are restricted to the immediate successors of the root node to ensure that
clarifications or specifications are handled early.

(2) One-step actions are limited to five occurrences within Pi, preventing the inference path from
becoming excessively long or repetitive.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(3) If a node’s content ends with the phrase The answer is, the node is marked as a terminal
state and added to the set of candidate answers S. This rule helps efficiently identify conclusive
outcomes, ensuring the search process terminates once a definitive answer is found.

3.3 BACK-VERIFICATION

After constructing the tree, we apply a depth-first search (DFS) to identify the leaf nodes. From
these, we select only those that contain the phrase The answer is as candidate answers for back
verification. For a candidate answer A, we concatenate it with the question Q for back verification
using LLMs:

Correct = LLM(Q⊕A) (3)

Back verification involves leveraging both the answer and the question to allow the LLM to confirm
the correctness of the answer. It is well-established that verifying an answer is typically easier
than solving the original problem. Thus, we employ back verification to enhance the accuracy of
validation. After the back-verification, we utilize majority voting based on the back-verification
results. The impact of back verification is further examined in Section 4.3.

4 EXPERIMENT

Table 1: We compared our method with previous tree search, zero-shot, and SFT approaches on two
commonly used benchmarks, i.e. GSM8K and MATH. Our model achieved SOTA performance on
both benchmarks.

Model Base Model Size MATH GSM8K

Zero-Shot

Chain-of-Thought LLaMA3 8B 27.80 50.27
Chain-of-Thought Yi-1.5 6B 30.42 64.47
Chain-of-Thought Qwen2 7B 36.94 76.63
Hard Voting@8 (Wang et al., 2024) LLaMA3 8B 30.00 78.39
Hard Voting@64 (Wang et al., 2024) LLaMA3 8B 33.00 83.24

SFT

WizardMath (Luo et al., 2023) LLaMA2 7B 10.70 54.90
MuggleMath (Li et al., 2024b) LLaMA2 7B - 68.40
MetaMath (Yu et al., 2023) LLaMA2 7B 19.80 66.50
LEMA-LLaMA (An et al., 2023) LLaMA2 7B 9.40 54.10

Search

ToT (Yao et al., 2024) LLaMA3 8B 13.60 69.07
RAP (Hao et al., 2023) LLaMA3 8B 18.80 80.59
ReST-MCTS*(1st iteration) LLaMA3 8B 31.42 -
ReST-MCTS*(2st iteration) LLaMA3 8B 34.28 -
LiteSearch (Wang et al., 2024) LLaMA3 8B - 82.30
Llama-2+M* (BS@16) (Kang et al., 2024) LLaMA2 13B 32.40 66.30
Llama-2+M* (LevinTS@16) LLaMA2 13B 33.90 68.80

Search

BEATS (w.o. BackVerify) LLaMA3 8B 35.17 83.62
BEATS LLaMA3 8B 42.93 88.48
BEATS (w.o. BackVerify) Yi-1.5 6B 42.01 74.68
BEATS Yi-1.5 6B 51.27 76.12
BEATS (w.o. BackVerify) Qwen2 7B 57.28 81.50
BEATS Qwen2 7B 61.52 83.02

4.1 EXPERIMENT SETTINGS

Datasets We conduct experiments on five authoritative mathematical reasoning datasets: (1)
GSM8K: The GSM8K dataset consists of 1,319 test samples and is widely used for arithmetic
problem-solving tasks, designed to evaluate models’ performance on grade-school-level math prob-
lems. (2) MATH: The MATH dataset contains 5,000 test samples drawn from competition-style
problems, covering a wide range of topics, including algebra, calculus, combinatorics, and geom-
etry. (3) SVAMP: The SVAMP dataset comprises 1,000 math word problems, each involving at

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: We compare our method with previous models on SVAMP, SimulEq, and NumGLUE
benchmarks. Our method show significant improvement over these benchmarks.

Model Base Model Size SVAMP SimulEq NumGLUE

Zero-Shot
Chain-of-Thought LLaMA3 8B 53.90 21.20 27.35
Chain-of-Thought Yi-1.5 6B 76.40 34.63 38.39
Chain-of-Thought Qwen2 7B 85.20 32.68 53.36

SFT

Code-Llama (Roziere et al., 2023) - 13B 60.00 3.80 27.60
WizardMath (Luo et al., 2023) LLaMA2 13B 51.90 14.90 36.10
Platypus (Lee et al., 2023) LLaMA2 13B 55.40 7.40 42.30
Platypus (Lee et al., 2023) LLaMA1 30B+ 51.70 13.60 40.50
Platypus (Lee et al., 2023) LLaMA2 65B+ 51.80 21.70 48.10
Ocra-Platypus (Lee et al., 2023) LLaMA2 13B 56.80 7.90 35.30
MAmmoTH (Yue et al., 2023) LLaMA2 13B 72.40 43.20 61.20
MAmmoTH-Coder (Yue et al., 2023) Code-Llama 13B 73.70 47.10 66.40
Galactica (Taylor et al., 2022) GAL 30B 41.60 13.20 34.70
Tulu (Wang et al., 2023b) LLaMA2 30B+ 59.00 10.30 43.40
Guanaco (Dettmers et al., 2023) LLaMA2 65B+ 66.80 20.20 40.50

Search

BEATS (w.o. BackVerify) LLaMA3 8B 80.60 72.76 66.99
BEATS LLaMA3 8B 88.70 78.40 73.61
BEATS (w.o. BackVerify) Yi-1.5 6B 79.30 34.72 75.43
BEATS Yi-1.5 6B 83.70 34.82 77.93
BEATS (w.o. BackVerify) Qwen2 7B 88.80 35.21 72.84
BEATS Qwen2 7B 90.70 36.19 73.16

most two mathematical expressions and one unknown variable. (4) SimulEq: The SimulEq dataset
includes 514 test samples focused on solving equations, with an emphasis on algebraic manipulation
and logical reasoning. (5) NumGLUE: The NumGLUE dataset includes 1,042 test problems en-
compassing 8 distinct tasks that involve various numerical reasoning challenges, such as arithmetic,
quantitative reasoning in commonsense and domain-specific contexts, reading comprehension, and
natural language inference.

Models To evaluate the effectiveness of our approach, we conducted experiments using three state-
of-the-art (SOTA) models: LLaMA3-8B-Instruct, Yi-1.5-6B-Chat, and Qwen2-7B-Instruct. The pri-
mary experimental results are presented in Table 1 and Table 2, while a detailed analysis is provided
in Section 4.2.

Baselines We consider three types of baseline models: (1) Zero-Shot Models, which include
Zero-Shot CoT and a hard-voting approach that first generates a set of candidate answers through
multiple sampling and then determines the final answer by majority voting. (2) Supervised Fine-
Tuning Models, encompassing WizardMath (Luo et al., 2023), MuggleMath (Li et al., 2024b),
MetaMath (Yu et al., 2023), LEMA-LLaMA (An et al., 2023), Code-Llama (Roziere et al.,
2023), Platypus (Lee et al., 2023), MAmmoTH (Yue et al., 2023), Galactica (Taylor et al., 2022),
Tulu (Wang et al., 2023b), and Guanaco (Dettmers et al., 2023). (3) Search Algorithm-Based Mod-
els, including ToT (Yao et al., 2024), RAP (Hao et al., 2023), ReST-MCTS* (Zhang et al., 2024),
LiteSearch (Wang et al., 2024), and Llama-2+M* (Kang et al., 2024).

Details In our experimental setup, we configured the tree depth to 7, with the disambiguation step
allowed only as a direct successor to the root node. Node expansion was performed using the vLLM
framework with the following parameters: temperature set to 0.8, top p set to 0.9, and max tokens
set to 2048. During the BackVerify stage, Qwen2-7B-Instruct was used as the discriminator. For an-
swer verification, we employed the same framework as MAmmoth. All experiments were conducted
on a machine running Ubuntu 22.04, equipped with 8 NVIDIA H100 GPUs, a 120-core CPU, and
960 GB of memory.

4.2 MAIN EXPERIMENT

The experimental results presented in Table 1 demonstrate the effectiveness of our proposed method
across both the MATH and GSM8K benchmarks. Compared to Zero-Shot category, our model,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

If the sum of two numbers, a and b, is equal to 7 (i.e., a + b = 7), and the sum of
their cubes is equal to 42 (i.e., a³ + b³ = 42), is the value of the sum of their
reciprocals equal to 1/2?
To verify, we can use the fact that a + b = 7 to express b as b = 7 - a. Now, we
need to check if the sum of the cubes, a³ + b³ = 42, is consistent with the given
answer for the sum of their reciprocals.
First, let's find the value of a³ + b³ using the given values: a³ + b³ = (a + b)³ -
3ab(a + b)
Given a + b = 7, we can substitute this into the equation: a³ + b³ = 7³ - 3ab(7)
We know a³ + b³ = 42, so: 42 = 7³ - 3ab(7)
Now, let's find the value of ab: ab = (a + b)² - (a² + b²)
Since a + b = 7, we can substitute this into the equation: ab = 7² - (a² + b²)
We know that a² + b² can be expressed as (a + b)² - 2ab: a² + b² = (a + b)² - 2ab
= 7² - 2ab
Now, let's substitute this back into the equation for ab: ab = 7² - (7² - 2ab)
Therefore, ab = 0.
Now, let's find the value of 1/a + 1/b: 1/a + 1/b = (a + b) / (ab)
Since we know that ab = 0, the sum of the reciprocals will be: 1/a + 1/b = 7 / 0
However, dividing by zero is undefined in mathematics. Thus, there is no valid
value for the sum of the reciprocals when ab = 0.
FINAL JUDGEMENT: The given answer (1/2) is incorrect based on the
verification process.

Verify the candidate answer: 1/2 ❎

We are asked to find the value of $\frac{1}{a} + \frac{1}{b}$. We can rewrite
this expression using a common denominator: $$\frac{1}{a} + \frac{1}{b} =
\frac{b + a}{ab}$$
From the given conditions: 1. $a + b = 7$ 2. $a^3 + b^3 = 42$
We need to find ab. We can use the identity for the sum of cubes to help us
with this: $$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$
Given $a^3 + b^3 = 42$ and $a + b = 7$, we can substitute these values into the
identity: $$42 = 7(a^2 - ab + b^2)$$
First, let's solve for $a^2 + b^2$: $$6 = a^2 - ab + b^2$$
Now, we need to find ab. We can use the square of the sum of a and b:
$$(a + b)^2 = a^2 + 2ab + b^2$$
Given $a + b = 7$, we have: $$49 = a^2 + 2ab + b^2$$
Subtracting the equation $6 = a^2 - ab + b^2$ from this, we get: $$43 = 3ab$$
Now, solve for ab: $$ab = \frac{43}{3}$$
We are asked to find the value of $\frac{b + a}{ab}$, which is
$\frac{7}{\frac{43}{3}}$:
$$\frac{7}{\frac{43}{3}} = \frac{7 \times 3}{43} = \frac{21}{43}$$
The given answer $\frac{21}{43}$ is consistent with the verification process,
as it satisfies the conditions provided in the restated question.
FINAL JUDGEMENT: The answer is correct based on the verification.

Question: If $a+b=7$ and $a^3+b^3=42$, what is the value of the sum $\dfrac{1}{a}+\dfrac{1}{b}$? Express your answer as a common fraction.

Verify the candidate answer: $\frac{21}{43}$ ✅

Back Verify Case

Figure 3: From this figure, we observe that models are more likely to deduce errors when using
majority voting but can achieve the correct answer through back verification.

even without the BackVerify step, significantly outperforms these baselines, achieving 35.17% on
MATH and 83.62% on GSM8K using LLaMA-8B as the base model. In the Search category, iter-
ative methods like ReST-MCTS* show improvement over time, with the second iteration yielding
34.28% on MATH. Our model, with the BackVerify mechanism enabled, outperforms these meth-
ods, reaching 42.93% on MATH and 88.48% on GSM8K with LLaMA-8B. Furthermore, when
utilizing the Qwen-7B model, our approach reaches 61.52% on MATH and 83.02% on GSM8K,
demonstrating its robustness across different base models. Notably, even without fine-tuning, our
approach outperforms the SFT models across both MATH and GSM8K benchmarks. WizardMath
and LEMA-LLaMA, both fine-tuned models based on LLaMA-7B, achieve 10.7% and 9.4% accu-
racy on MATH, respectively, while our method without BackVerify reaches 35.17%, far surpassing
the SFT models. Similarly, on GSM8K, WizardMath achieves 54.9% and LEMA-LLaMA reaches
54.1%, whereas our model without BackVerify attains 83.62%, demonstrating a clear performance
advantage.

Additional experiments on the SVAMP, SimulEq and NumGLUE datasets consistently prove the
effectiveness of our method. On the SVAMP dataset, our model achieves a performance of 88.7 with
LLaMA, compared to the best Zero-Shot result of 85.2 using Qwen and the best SFT result of 73.7
from MAmmoTH-Coder. On the SimulEq dataset, our method achieves a significant improvement
with a score of 78.4 using LLaMA, outperforming all SFT models, where the highest score is 47.1
by MAmmoTH-Coder. Similarly, on the NumGLUE dataset, our method achieves 73.61, again
outperforming both the Zero-Shot and SFT models.

Overall, we have two following observations: (1) Fine-tuning alone may not be sufficient to achieve
optimal performance, and that the search-based methods integrated into our approach offer a more
robust mechanism for reasoning across tasks. (2) When solving mathematical problems, the MCTS
algorithm is not the only viable approach. A straightforward BFS search algorithm, combined with
carefully designed long-step and short-step problem-solving prompts along with the BackVerify
mechanism, can significantly enhance the model’s mathematical capabilities.

4.3 ABLATION STUDY

To better understand the strong performance of our model, we conducted an ablation study to demon-
strate the effectiveness of the disambiguation and back verification modules by systematically re-
moving them.

Remove the Disambiguation Module To assess the impact of the disambiguation process, we
conducted a series of comparative experiments using the MATH and GSM8K datasets with both

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Question Disambiguation

Original Question:
James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total meters does he run a week?

Clarified Question:
How many total meters does James run in a week if he runs 3 sprints, each of 60 meters, 3 times a week?

Figure 4: From this figure, we observe that some questions may contain ambiguity, which can be
resolved by using the disambiguation operation to generate a clarified version of the question.

the LLaMA3-8b-Instruct and Qwen2-7b-Instruct models. As shown in Table 3, removing the dis-
ambiguation component in BEATS resulted in a significant decrease in accuracy across all experi-
ments, highlighting the critical role of the disambiguation process. Additionally, we evaluated the
effectiveness of disambiguation through case studies. In Figure 4, the clarified question offers the
following advantages: (1) The original phrasing, "3 sprints 3 times a week", is ambigu-
ous, as it could imply that James runs three sprints three times a week or that each session consists
of three sets of three sprints. In contrast, the clarified question explicitly states that James runs three
sprints per session and completes these sessions three times per week, thereby minimizing potential
misinterpretation. (2) The clarified question concisely presents the key details, "3 sprints of
60 meters each, 3 times a week", in a structured format that enhances logical flow and
comprehension.

Table 3: We compare the performance with and
without the disambiguation module. The results
demonstrate the effectiveness of the disambiguation
module.

Dataset Model Search Accuracy

MATH
LLaMA3

BEATS 42.93
w.o. disambiguation 35.80 ↓ 7.13

Qwen2
BEATS 61.52

w.o. disambiguation 51.88 ↓ 9.64

GSM8K
LLaMA3

BEATS 88.48
w.o. disambiguation 74.83 ↓ 13.65

Qwen2
BEATS 83.02

w.o. disambiguation 76.88 ↓ 6.14

Remove the Back Verification Module In
Table 1 and Table 2, we compare model vari-
ants with and without back verification across
five benchmark datasets: MATH, GSM8K,
SVAMP, SimulEq, and NumGLUE. The ab-
lation study demonstrates that back verifi-
cation consistently improves model perfor-
mance, highlighting its robustness and effec-
tiveness in enhancing the model’s mathemat-
ical capabilities. Furthermore, as illustrated
by the example in Figure 3, when presented
with the candidate answers 1

2 and 21
43 , the

LLM successfully discarded the incorrect so-
lutions through back verification, ultimately
selecting the correct answer.

Overall, the ablation study demonstrates the critical role of the disambiguation and back verification
modules in enhancing model performance. Removing either led to a drop in accuracy, showing their
effectiveness in clarifying ambiguous problem statements and filtering incorrect answers. Together,
these components significantly improve the model’s ability to solve mathematical problems.

5 CONCLUSION

In this paper, we introduced BEATS, a new method designed to enhance the mathematical problem-
solving capabilities of LLMs. By addressing critical challenges such as suboptimal prompts, in-
effective verification methods, and high computational costs, our approach offers a significant im-
provement in performance. The meticulously crafted prompts facilitate step-by-step reasoning, re-
ducing ambiguities in problem statements and enabling the model to generate accurate answers. Our
innovative back-verification technique enhances the reliability of results by ensuring that answers
are thoroughly validated. Additionally, the pruning tree search strategy allows for controlled infer-
ence time while maintaining state-of-the-art performance. Through extensive experimentation, we
demonstrated that BEATS notably outperforms existing methods, marking a solid foundation for ad-
vancing mathematical reasoning in LLMs. This work represents an excellent starting point, paving
the way for future research to explore more effective verification methods and their applicability
across a broader spectrum of complex problem domains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng, Jian-Guang Lou, and Weizhu Chen. Learning
from mistakes makes llm better reasoner. arXiv preprint arXiv:2310.20689, 2023.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, MD Santos, Stephen McAleer, Albert Q
Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for
mathematics.(2023). arXiv preprint arXiv:2310.10631, 2021.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint
arXiv:2309.16609, 2023a.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023b.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 17682–17690, 2024.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervision
without process. arXiv preprint arXiv:2405.03553, 2024a.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Step-level value preference optimization
for mathematical reasoning. arXiv preprint arXiv:2406.10858, 2024b.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: efficient finetuning
of quantized llms (2023). arXiv preprint arXiv:2305.14314, 52:3982–3992, 2023.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Jikun Kang, Xin Zhe Li, Xi Chen, Amirreza Kazemi, and Boxing Chen. Mindstar: Enhancing math
reasoning in pre-trained llms at inference time. arXiv preprint arXiv:2405.16265, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Ariel N Lee, Cole J Hunter, and Nataniel Ruiz. Platypus: Quick, cheap, and powerful refinement of
llms. arXiv preprint arXiv:2308.07317, 2023.

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and
Houwen Peng. Common 7b language models already possess strong math capabilities. arXiv
preprint arXiv:2403.04706, 2024a.

Chengpeng Li, Zheng Yuan, Hongyi Yuan, Guanting Dong, Keming Lu, Jiancan Wu, Chuanqi Tan,
Xiang Wang, and Chang Zhou. Mugglemath: Assessing the impact of query and response aug-
mentation on math reasoning. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 10230–10258, 2024b.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. arXiv preprint arXiv:2402.12875, 2024c.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qing-
wei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning
for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583, 2023.

meta llama. Introducing Meta Llama 3: The most capable openly available LLM to date, 2024. URL
https://ai.meta.com/blog/meta-llama-3/. Accessed: 2024-05-02.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li,
Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300, 2024.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia,
Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model for
science. arXiv preprint arXiv:2211.09085, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ante Wang, Linfeng Song, Ye Tian, Baolin Peng, Dian Yu, Haitao Mi, Jinsong Su, and Dong Yu.
Litesearch: Efficacious tree search for llm. arXiv preprint arXiv:2407.00320, 2024.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091, 2023a.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu, David
Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels go? exploring
the state of instruction tuning on open resources. Advances in Neural Information Processing
Systems, 36:74764–74786, 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, Minkai Xu, Wentao Zhang, Joseph E Gonzalez,
and Bin Cui. Buffer of thoughts: Thought-augmented reasoning with large language models.
arXiv preprint arXiv:2406.04271, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Advances
in Neural Information Processing Systems, 36, 2024.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
Jiawei Hong, Kuikun Liu, Ziyi Wang, et al. Internlm-math: Open math large language models
toward verifiable reasoning. arXiv preprint arXiv:2402.06332, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. Mammoth2: Scaling instructions from the
web. arXiv preprint arXiv:2405.03548, 2024.

11

https://ai.meta.com/blog/meta-llama-3/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman.
Quiet-star: Language models can teach themselves to think before speaking. arXiv preprint
arXiv:2403.09629, 2024.

Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm self-
training via process reward guided tree search. arXiv preprint arXiv:2406.03816, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

(c) Yi

(b) LLaMA

(a) Qwen

Figure 6: Candidate answer set size.

A SEARCH COST AT INFERENCE PHASE

Figure 5: Average tokens needed for solving
different problems.

BEATS significantly improves the model’s math-
ematical capabilities through designed pruning
search algorithm, which processes multi-turn
question inference. Figure 5 presents a com-
parison of the average number of tokens gen-
erated by different models—LLaMA3, Qwen2,
and Yi-1.5—across five mathematical bench-
marks: MATH, GSM8K, SVAMP, SimulEq, and
NumGLUE. As shown in the figure, LLaMA3
consistently produces the highest number of to-
kens across all benchmarks, with a particularly
large margin in the MATH dataset, where it ex-
ceeds 5,000 tokens on average. In contrast,
Qwen2 and Yi-1.5 generate fewer tokens, with
Yi-1.5 often producing the least across most
datasets. This suggests that LLaMA3 might en-
gage in more extensive reasoning processes but at the cost of higher computation, while Qwen2 and
Yi-1.5 strike a balance between efficiency and performance.

B CANDIDATE ANSWER DISTRIBUTION

Figure 6 illustrates the distribution of candidate answer set sizes for individual test samples across
five mathematical benchmarks (MATH, GSM8K, SVAMP, SimulEq, and NumGLUE) for three
models: LLaMA3, Qwen2, and Yi-1.5. As shown in the figure, most test samples for all mod-
els tend to have larger candidate sets, with a clear peak at 12 candidates across all benchmarks.
LLaMA3 consistently demonstrates larger candidate sets compared to Qwen2 and Yi-1.5, particu-
larly in the MATH and GSM8K benchmarks, where the size of candidate sets reaches up to 12 for a
substantial number of cases.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Please act as a professional math teacher.
Your goal is to accurately clarify a math
word problem by restating the question in
a way that eliminates any potential
ambiguity.
To achieve the goal, you have two jobs.
Restate the Given Question clearly to
avoid any ambiguity or confusion.
Ensure that all important details from the
original question are preserved.

You have two principles to do this.
Ensure the clarified question is fully
understandable and unambiguous.
Ensure that no information is lost from
the original question.

Given Question: {question}
Your output should be in the following
format:
CLARIFIED QUESTION: <your
restated and clarified version of the
original question>

(c) Prompt for Question Disambiguation
Please act as a professional math teacher.
Your goal is to accurately solve a math
word problem.
To achieve the goal, you have two jobs.
Write detailed solution to a Given
Question.
Write the final answer to this question.
Output strictly according to the format.
Do not output any unnecessary content.

You have two principles to do this.
Ensure the solution is step-by-step.
Ensure the final answer is just a number
(float or integer).

Given Question: {question}
Your output should be in the following
format:
SOLUTION: <your detailed solution to
the given question>
FINAL ANSWER: The answer is <your
final answer to the question with only an
integer or float number>

(b) Prompt for Giving Answer
Please act as a professional math teacher.
Your goal is to accurately solve a math
word problem.
To achieve the goal, you have two jobs.
Write the NEXT step in solving the
Given Question.
Do not write the full solution or final
answer until prompted.

You have three principles to do this.
Ensure the solution is detailed and solves
one step at a time.
Ensure each output consists of only one
logical step.
Output strictly according to the format.
Do not output any unnecessary content.

Given Question: {question}
Your output should be in the following
format:
STEP: <your single step solution to the
given question>

(a) Prompt for One-Step Inference

Figure 7: Prompts used in BEATS.

C PROMPTS

Inspired by Li et al. (2024a), we utilized the prompts shown in Figure 7 to implement the BEATS
algorithm.

14

	Introduction
	Related Work
	Math Large Language Models
	Prompt Engineering for Large Language Models
	Reasoning in Large Language Models

	Method
	Prompt Design
	Pruning Tree Search
	Back-Verification

	Experiment
	Experiment Settings
	Main Experiment
	Ablation Study

	Conclusion
	Search Cost at Inference Phase
	Candidate Answer Distribution
	Prompts

