
Licence to Scale: A Microservice Simulation
Environment for Benchmarking Agentic AI

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recent advances in large language models (LLMs) have enabled the development of1

intelligent agents with reasoning and planning capabilities. However, there are two2

key limitations: the lack of realistic doamain specific models that capture the causal3

system dynamics in which these agents operate and the absence of representative4

simulation environments combining LLM-Agents with reinforcement learning5

(RL) for rigorous evaluation. The cloud autoscaling problem is a compelling use6

case for benchmarking AI systems. It allows the use of a causal system model7

while requiring agents to solve a constrained optimisation problem: minimising8

resource costs while meeting strict service level objectives (SLOs), with minimal9

intervention and interpretable actions. We use these characteristics to develop a10

microservice simulation environment that models the causal relations between CPU11

usage, memory usage, resource limits, and latency in applications of any scale and12

topology. It also has the ability to introduce realistic system failures.13

Our simulation engine gives agents the ’licence to scale’ without doing any harm in14

real deployments. Furthermore, it provides a realistic and controlled environment15

for RL agents, making it compatible with standard RL baselines. Our work provides16

a benchmark environment for the integration of LLMs, agents, causal models, and17

RL for adaptive decision-making in dynamic, resource-constrained environments.118

1 Introduction19

In recent years, the breakthrough of Large Language Models (LLMs) has enabled the development20

of smart agents with reasoning capabilities. These tools have produced good results in various21

application domains [Timms et al., 2024, Hosseini and Seilani, 2025]. However, as a recent survey by22

[Gao et al., 2024] points out, one issue that still needs to be addressed is how to provide LLM-agents23

with sufficient domain-specific knowledge of the system dynamics in which they operate. This24

directly translates into a lack of simulation environments tailored to specific domains, in which to test25

LLM-based reasoning capabilities in realistic use cases grounded in real system dynamics. In this26

work, we propose such an environment for cloud autoscaling, a common real-life application of RL,27

by giving the agent access to the causal latency graph of the application.28

Here, the goal is to solve a constrained optimisation problem: keeping the cost of resources as low as29

possible while maintaining the latency below an agreed service level objectivs (SLOs), e.g. latency30

at a terminal service. As the interventions involved in this use case are costly, it is important to31

minimise the number of actions and also give and explanation why they have been taken. While32

some approaches address this problem without a model of the underlying system [Sachidananda and33

Sivaraman, 2024], other works represent the underlying system with a causal model and apply root34

1We will provide access to the GitHub repository in the camera ready version.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

cause analyses [Hardt et al., 2024, Ikram et al., 2022]. Nevertheless, automatically scaling resources35

remains a sufficiently difficult task for (multi)-agentic systems. To address this shortcoming, we36

make the following contributions:37

1. We develop an RL environment to simulate the load, CPU usage, memory usage and latency38

of a network of microservices of arbitrary size. It also supports the injection of various39

system failures such as CPU and memory leaks.40

2. We use this environment to set-up three challenges of varying difficulty, each accompanied41

by a gold standard solution.42

3. We demonstrate how this environment can be used to evaluate LLM agents that have access43

to a system-wide model, and the ability to scale within an interactive setting.44

4. We compare multi-agentic solutions with standard RL algorithms in terms of reward, viola-45

tions and complexity.46

2 Background47

As our microservice simulation system’s model is based on causal methods, to ensure numerical48

accuracy and realistic values, we provide the necessary background in this section. First, we give49

a brief introduction to causality, then map it to the microservices use case, and finally explain how50

multi-agentic AI can be used to solve complex problems.51

Causality We employ the structural causal model-based formalisation of cause-and-effect rela-52

tionships [Pearl, 2009]. The notation X → Y means that changes in X lead to changes in Y .53

For multivariate datasets comprising multiple random variables, the causal relationships among54

variables can be modelled using a structural causal model (SCM). In an SCM, each variable X55

is assigned a value based on a function of a subset of its respective causal parents PaX, such56

that X = fX(PaX , ηX), where ηX is an independent noise term [Pearl, 1995]. The SCM can be57

represented graphically as a Directed Acyclic Graph (DAG) G.58

Cloud Microservices and Causality With the emergence of cloud computing, the distributed59

computing paradigm has been popularised. These architectures use a set of independently deployed60

microservices instead of monolithic applications. While this distributed way of computing has several61

advantages such as the targeted scaling of parts of the system based on demand, it also poses various62

challenges. Often, certain SLOs need to be maintained; therefore, it is important to know the causes of63

high latency in microservice deployments. The services call each other and one can (at least if the call64

function is synchronous) visualise these dependencies in a directed call graph GC . The reversed call65

graph can be seen as an approximation of a potentially causal latency graph of the system [Hardt et al.,66

2024, Lohse et al., 2025] GL. As practitioners usually either have direct access to the call graph or it67

can be retrieved with telemetry tools, we always have an approximation of the latency graph/causal68

DAG and thus an approximation of the SCM. This characteristic makes it convenient to model the69

system with a SCM where the latency li of a service vi is modelled as li := fi(Pali, ρi, η
′
vi), where70

Pali are the causal parent latencies, ρi are the associated resources and η′vi is an independent noise71

term (see Budhathoki et al. [2022], Hardt et al. [2024], Lohse et al. [2025]). Thus, we can say that72

the latency graph is an approximation of a causal model of the microservice system.73

Multi-Agentic AI/Systems In multi-agent systems a set of agents I = {1, 2,M} aims to satisfy74

a shared reward R(S), while only having access to their local observations os. Advances in LLMs75

have expanded their reasoning capabilities, enabling them to be used in new application domains, this76

is called agentic AI. Agentic systems offer a way to augment LLMs with external tools to enable task77

decomposition, tool selection and adaptation to changing conditions without the need for retraining78

the LLM [Lin et al., 2024, Jeyakumar et al., 2024]. A key element of this framework is that the tasks79

to perform in an environment are decomposed into different agents A which can access and leverage80

a number of tools T, enabling them to create complex workflows and integrate various different81

systems [Hosseini and Seilani, 2025]. This can be combined with multi-agent systems, in which the82

LLM can act as one or more agents with reasoning capabilities,[Li et al., 2024]. We refer to this as83

multi-agentic sytem or multi-agentic AI.84

2

3 Related Work85

In the this section, we review the state of the art in benchmarking RL for autoscaling, as well as86

benchmarking multi-agentic systems. We also highlight the gaps in related work, which justify the87

development of our simulation engine.88

Benchmarking RL for Autoscaling Optimising resource usage to reduce latency is a common89

problem for microservice deployments (see, for example, Sachidananda and Sivaraman [2024],90

Tournaire et al. [2022]). RL methods have been shown to consistently outperform heuristics in this91

task (see, for example, [Lakshan and Hussain, 2025] for a review of the state of the art). However, none92

of these papers have evaluated their set-ups in the same environment with the same reward function,93

which makes comparing different algorithms complicated. Furthermore, setting up commonly used94

real test environments such as Deathstarbench [Gan et al., 2019], Trainticket [Li et al., 2022], the95

Astronomy Shop Demo2, and the PetShop environment used by Hardt et al. [2024] is a non-trivial96

task; injecting faults in them even harder. In addition, performing actions in these environments is97

slow and not well suited for rapidly iterating multiple algorithms in the same setup for use cases of98

varying difficulty.99

Benchmarking Multi-Agentic Systems As multi-agentic systems are relatively new, they face a100

reproducibility crisis [Bettini et al., 2024, Gao et al., 2024]; only recently have the first benchmarking101

tools been released. For the cloud microservice use case, Jha et al. [2025] include various scenarios in102

an astronomy shop that need to be resolved by a multi-agentic system. However, rather than providing103

a reward, they measure task completion as a percentage. For other use cases, Bettini et al. [2024]104

provide a framework to benchmark multi-agentic systems in various environments. A few examples105

have been deployed in this framework, such as a collective robot learning environment [Bettini et al.,106

2022] and a multi-agentic problem based on StarCraft [Ellis et al., 2023]. However, more practical107

and industry-related use cases are lacking.108

4 Simulation Setup109

In the following section, we outline the set-up of our simulation engine. First, we motivate our110

numerical simulation process. Then, we briefly describe the reward function and formalise the111

optimisation problem. Finally, we motivate our design choices for the library.112

4.1 Simulation Process113

As we know, the call graph Gc can be used to generate a reverse latency graph. If we assume that all114

services are synchronised and there are no asynchronous function calls, we can use this feature to set115

up the microservice simulation environment and model realistic behaviours.116

The numerical simulation engine follows the structure of an structural vector autoregressive model117

[Hyvärinen et al., 2010], which is commonly used to simulate time series data with causal dependen-118

cies. We simulate latency values as we would expect them to be for the 95th percentile of latency119

over a short time e.g. a minute, which is common when dealing with latency in this setup as we want120

to catch the worst case scenario [Hardt et al., 2024, Sachidananda and Sivaraman, 2024]. The data for121

d latency variables is generated by a discrete multivariate process (Xt)t∈Z, Xt = (X1
t , ..., X

(d)
t),122

compatible with GL. The process (Xt)t∈Z follows the evolution rule123

Xj
t =

∑
i∈paGL

(j)

Xi
t−1 + ajX

j
t−1 + f j(ρjt , R

j
t) + ηjt , (1)

where ηjt is a choosable noise function and aj is the autocausation constant. Typical noise functions124

for latency modelling are truncated exponential and half-normal distributions.3 The function f j125

models the load factoring to the latency depending on the number of requests Rt and the associated126

2https://github.com/open-telemetry/opentelemetry-demo
3as shown in https://www.pywhy.org/dowhy/v0.12/example_notebooks/gcm_rca_

microservice_architecture.html

3

https://github.com/open-telemetry/opentelemetry-demo
https://www.pywhy.org/dowhy/v0.12/example_notebooks/gcm_rca_microservice_architecture.html
https://www.pywhy.org/dowhy/v0.12/example_notebooks/gcm_rca_microservice_architecture.html

resources ρjt . PaGL
are the causal parents of the service j which can influence the latency for j127

at time t. We model the system in such a way that resources have an instantaneous effect on the128

latency while the latency of a parent service is lagged by one timestep. The number of requests Rj
t129

are generated by a discrete multivariate process (Rt)t∈Z, Rt = (R1
t , . . . , R

(d)
t), which is compatible130

with the graph GC . The number of requests at each node is a constant multiple of the total requests131

from its parents in GC :132

Rj
t =

∑
i∈paGC

(j)

Ri
tc

i
j , (2)

where cj ∈ R is the scaling constant associated with node j for all non-root nodes. For root nodes133

Rk
t , the number of requests is models, as previous work suggests [Niu et al., 2018], a Poisson134

random variable with a sinusoidal rate parameter to model daily seasonality [Abdullah et al., 2019]:135

Rk
t ∼ Poisson(λk [1 + sin(ωkt+ ϕk)]), where λk > 0 is the mean rate, ωk is the frequency, and136

ϕk is the phase shift. We start the simulation after an initial burn in period to assure a stationary137

distribution. Following the causal Markov assumption [Pearl, 2009], the joint distribution PX over138

(X1, . . . , Xn) factorizes into causal mechanisms:139

PX =

n∏
i=1

PXi|pai . (3)

4.2 Injected System Failures140

For the base case the process is modelled sufficiently in equation 1. However, we are also able to141

model more complex cases.142

0 50 100 150 200 250 300
Time step

0

20

40

60

80

100

La
te

nc
y

(m
s)

s1
s1 degraded

s1 leak
s2

s2 degraded
s2 leak

SLO

Figure 1: Latency traces for two services with degraded episodes (x) and leak episodes (o) marked;
SLO shown as dashed line to highlight distribution shift.

In order to make the simulation more challenging and realistic our engine is capable of injecting143

various faults at the service level for a latency variable Xi translating to a change in the causal144

mechanism of Xi.145

Following Hardt et al. [2024] we model this as a distribution shift for a variables XT , indexed by a146

change set T , where147

PT
X =

∏
j∈T

P̃Xj |paj

∏
j /∈T

PXj |paj . (4)

The change of the causal mechanism for Xi originates from the following type of failures, which we148

implemented following Hardt et al. [2024], Mariani et al. [2018], Ikram et al. [2022]:149

Spikes: CPU and memory usage typically follow a predictable distribution for a constant number150

of requests. However, when the request rate changes drastically, this distribution shifts, causing151

4

sudden spikes in CPU and/or memory usage. This can lead to increased latency at the terminal152

node. Spikes can be simulated by passing enable_random_spikes = True to the constructor of a153

service object.154

Memory Leak: In contrast to spikes, a memory leak leads to a gradual, monotonic increase in memory155

usage. In real-world scenarios, this may be caused by poorly written code that fails to release allocated156

memory. We simulate this behaviour by introducing a degradation probability that increases memory157

usage at each time step by a specified amount. This can be enabled by passing enable_memory_leak158

= True and setting both memory_leak_probability and leak_recovery_probability.159

CPU Hog/Leak: Similarly, a CPU leak causes CPU usage to increase steadily over time. This160

behavior can be enabled with enable_cpu_leak = True, along with appropriate values for161

cpu_leak_rate, cpu_leak_probability, and leak_recovery_probability.162

Service Degradation: Service degradation is a general fault model that simulates generic service163

failures unrelated to CPU or memory usage. When enable_degradation = True, the service may164

fail at each time step with a defined degradation_probability, and it can recover according to165

the specified recovery_probability.166

These fault behaviours can be introduced by passing the corresponding parameters to the constructor167

of a service object. Figure 1 shows how the distribution shift can look like for a simple example. The168

full set-up and a more detailed figure can be found in Appendix A.169

4.3 Reinforcement Learning Problem Formulation170

We slighly adapt the reward function introduced by [Sachidananda and Sivaraman, 2024] by including171

two scaling constants selectable by the user: α (for weighting SLO violations more) and β (for172

punishing high resource use):173

R(ltarget, α, β, S)
∧
= α ·min((ltarget − lobs), 0)− β · P(S). (5)

The variable ltarget is the specified maximum latency (SLO), lobs is the observed latency and S is the174

state of the environment, P is a penalty function quantifying the used resources. We include both175

constants to control the scale of the reward function; however, since only the ratio β/α matters, the176

same results can be obtained by fixing α = 1 and keeping only β.177

The overall goal here is to keep the observed latency lobs e.g. at the interaction point of a microservice178

application like a web interface below a certain (agreed) time, while using as few resources/electricity179

as possible, making it a constrained optimization problem. As modelling resource autoscaling with180

continuous actions would result in a very large action space, we only allow decremental or incremental181

vertical scaling (adding more resources to a service) and horizontal scaling (duplicating the service)182

at a single service i. If we denote memory actions by M, CPU actions by C and pod actions by H,183

we get the action space184

A = {∅} ∪ {(i, k, δ) | i ∈ {1, . . . , N}, k ∈ {C,M,H}, δ ∈ {−1,+1}} (6)

for N services, where ∅ means not performing any action. In our simulation, we scale the CPU up or185

down by adding or subtracting 0.1, and we add or subtract 128MB for memory. As the number of186

actions |A| = 1 + 6N the action space linearly increases with the size of the environment.187

If an oracle model tells us which service is the root cause for a latency violation, the set-up slightly188

changes and we employ a local reward function Ri for service i. This means that we only consider189

R(Si) as the resource penalty while the remaining part of the function remains unchanged. In this190

case, the number of actions shrinks to |Ai| = 7 as i in Equation 6 is set to a fixed value. In this191

reward-action-set-up, LLM-based agentic AI could be utilized to orchestrate resource scaling by first192

identifying the resource to scale, and then by operating on a limited per-service action space Ai. For193

the states of the environment(that change with the actions taken) S, we set the limits for CPU, pods194

and memory. The environment also provides observation of the resource usage at Ut, which can also195

be used as an input for an agent. The goal of the agent is to learn a policy π that maps all states S and196

observations Ut to actions a ∈ A such that the expected reward is maximized.197

5

4.4 Simulation Design Choices198

The simulation engine is designed using a modular, object-oriented programming style. In line with199

best practice, we have incorporated various Python libraries, including NetworkX [Hagberg et al.,200

2008], NumPy [Harris et al., 2020] and SciPy [Virtanen et al., 2020] to reuse as many functions as201

possible. The RL environment is configured using Gymnasium [Towers et al., 2024], providing an202

effective set-up process and simplifying the testing of various RL algorithms. Each service within the203

environment is represented as a Python object that can have a parent service, thereby defining the204

system’s topology. The workflow of the system is shown in Figure 2.205

Topology

Rules

Schedule

Simulator

Gymnasium Env
Agent(s)

States/Metrics

Scaler
Scales

scale

Figure 2: Overview of the Simulation Architecture used with the Gymnasium Environment. The
system allows one or more agents to interact with the environment. At each timestep t, the agents take
actions at that are sent to the Scaler, which adjusts resource allocations accordingly. The Simulator
within the Gymnasium Environment provides observations lobs, target latencies ltarget, the value of the
reward function R, the states S , and the causal latency graph GL back to the agents.

One can further parse certain rules, such as the distribution that the latency follows, the defined SLO,206

the resource limit and the behaviour of the services, e.g. whether they are memory- or CPU-dependent,207

as well as the initial values for all resource usage and latency. The influence of the number of pods on208

the observed latency is modelled using exponential decay, so that the effect on latency decreases as the209

number of pods increases. The influence of CPU and memory usage on latency depends on whether a210

service is CPU- or memory-dependent. If a service is close to its resource limit the influence of CPU211

or memory on its latency increases exponentially. One can further define a schedule for spikes and212

set the probabilities for service failures, as described earlier. Figure 2 highlights how this set-up can213

be used to create the simulation engine with the pre-defined rules. In the gymnasium class, a scaler214

can then modify the environment’s resources and interact with potential agents, who also receive215

the environment’s state S and the reward function’s value R. A detailed list of all the customisable216

initialisation parameters of the environment can be found in Appendix B in subsection B.1 and an217

example setup of a small environment is given in subsection B.2.218

5 Assessing Agents in the Environment219

5.1 Set-up220

To highlight the capabilities of our simulation environment, we define three challenges of differing221

difficulty that can be solved by a multi-agentic system, either with or without RL, as well as with222

standard RL-agents, such as a deep Q-network [Mnih et al., 2015]. In the following, we describe223

these challenges as well as the four agents we test on them.224

Simulation challenges As three evaluation scenarios, we use our simulation engine to set-up an225

easy, an intermediate, and a hard challenge. The easy challenge is a small system, which could, for226

6

example, be an online shop. The intermediate challenge has slightly more services, one injected227

system failure, and could model a social media website. The hard challenge could represent a more228

challenging enterprise financial platform, with two system failures injected. A short explanation of229

the challenges is given in Table 1, and a more detailed explanation is provided in Appendix C.230

Each of these challenges has one master solution, or at least a solution that performs as well as231

possible in the case of the hard example. We include this master policy as a benchmark method in our232

results. The master policy has access to information that the agents do not, such as degradation and233

leak status, and which services have the greatest impact on reducing latency. In the easy environment,234

the master policy increases the number of pods for the central shopping-cart. In the intermediate235

challenge, the master policy increases CPU with each step up to a certain amount in the CPU-236

leaking user-service. For the hard challenge, it increases the number of pods to the maximum237

for the central ml-model pod, provided there is no failure. It also increases the number of pods if238

compliance-db is degraded, and increases the CPU limit for the fraud-detection service if it is239

leaking. This rule-based master policy can be considered the gold standard, although there may be240

ways to do better.241

Table 1: Set-up of the three experiments, d is number of nodes/Services, |V| number of edges, ltarget
the SLO and GL the causal Latency Graph (blue nodes depend on memory, blue on CPU, terminal
service has red border.

Use case Challenge d |V| ltarget GL

Easy E-commerce Plat-
form

The system is slightly
underprovisioned. If
some services are not
scaled, the SLO is
violated. Some central
services have a higher
impact and are smarter to
scale.

5 5 30ms

Intermediate Social Media Plat-
form

The system does not
violate the SLO without
failures. Injected Failure:
CPU of the central
user-service has a
high change to leak CPU
quickly leading to an
SLO violation.

9 11 100ms

Hard Enterprise Finan-
cial Platform

The system has three
issues: is
underprovisioned always
leading to an SLO, has
two injected failures: The
compliance DB can
degrade and the
fraud-detection service
can leak CPU.

12 17 100ms

Multi-Agentic System To demonstrate the usefulness of our simulation for benchmarking multi-242

agentic systems using LLMs, we have implemented a two-agent tool that interacts with our simulation.243

This is to demonstrate our engine’s ability to interact with such systems. As shown in Figure 3,244

two agents orchestrate the scaling process: a Reasoning Agent and a Resource Scaling Agent. The245

Reasoning Agent is based on the GPT-OSS LLM [Wallace et al., 2025] and determines which246

resources should be scaled, while the Resource Scaling Agent enforces these decisions.247

We pre-train local per-service DQN-Agent [Mnih et al., 2015] for 500 steps (one step is acting for248

t = 150 time steps in the environment) isolated from each other while operating on Ai and a local249

reward function Ri only having access to the local resource states, giving it access to the resource250

7

usage U i
t for each service. We will not go in detail how the training of the DQN works and refer to251

Mnih et al. [2015] for this. At each time step t, the Gymnasium environment outputs observations252

Ot = {lobs, ltarget,At,S,Ut}, where U is the observed resource usage. The Reasoning Agent uses Ot253

to compute the latency margin ∆Lt = lobs − ltarget, evaluates SLO compliance, and infers the most254

impacted service ŝt using GL and Ut as inputs for the prompt. The complete prompt can be found in255

appendix subsection D.1.256

Resource Scaling
Agent

Reasoning Agent

Service 1 Service d

DQN 1 DQN d

Identifies Impacted
 Services

...

...

Gymnasium Env

Delegates

Figure 3: Overview of the simple example Multi-Agentic system used on the Benchmark Environ-
ment.

The reasoning agent selects a service i and passes its state ŝt to its corresponding pre-trained DQN-257

agent of service i, which selects an action a ∈ Ai in the reduced per service action space as described258

in appendix subsection 4.3. The different tools and agents are registered with the LangChain agent259

interface [Mavroudis, 2024], enabling the language model to call them directly during the reasoning260

loop of the agent.261

Global Deep-Q-Network We also implement a global DQN-Agent [Mnih et al., 2015] that scales262

the complete system without having access to the causal graph operating on the complete action263

space A, but having access to the states St, resource usage Ut. and satisfying the global reward R.264

The DQN is trained for 2000 steps on the full environment where one step is again acting for t = 150265

time steps in the environment.266

Lazy-Agent The simplest benchmark algorithm is the ’lazy agent’: it does nothing but sits and267

observes, failing to accomplish its mission of satisfying the SLO. However, this benchmark is really268

important, as it allows us to see whether an agent that performs actions is better than doing nothing.269

Evaluation Set-up To compare the different approaches, we set the four trained agents to compete270

in three challenges. As the LLM-based agent is very slow at inference (taking one hour to perform271

100 steps in the simulation), for now, we only perform 100 steps in the environment per trained agent.272

We fix the random seed to keep results comparable. This means that the results must be treated with273

care, as the environment is also slightly different every time. If the environment is to be used for274

thorough benchmarking of different agents, we recommend running multiple initialisations of the275

environment. For the each agent, we report the average reward, percentage of violations of ltarget in276

percent and number of actions/interventions taken in the environment.277

5.2 Results278

In Table 2, we report the results for the four agents across the three environments. For the easy279

environment, the master policy achieves the target with only a single action and no violations. The280

LLM-multi-agent also succeeds but incurs a 2% violation rate and requires three actions. This is281

because the model selects a slightly less ideal service to scale, resulting in additional actions. The282

global DQN consistently performs a large number of actions (100 per run) and shows a 4% violation283

rate. The lazy-agent performs no actions, leading to violations in 73% of cases.284

Evaluated on the intermediate environment, the Master Policy again achieves zero violations with285

only 17 actions. The LLM-Multi-Agent also avoids violations but requires nearly twice as many286

8

Table 2: Comparison of Master Policy, Global DQN Model, LLM-Multi-Agent, and Lazy-Agent
baseline on the three different Simulation Tasks.

Easy intermediate Hard
Reward Violations Actions Reward Violations Actions Reward Violations Actions

Master Policy −5.94± 0.03 0 % 1 −13.33± 0.05 0 % 17 −332.38± 167.55 87 % 93
Global DQN −5.78± 1.37 4 % 100 −23.69± 17.21 26 % 100 −415.43± 69.41 100 % 100
LLM-Multi-Agent −5.78± 0.23 2 % 3 −12.77± 0.05 0 % 30 −420.65± 134.17 100 % 17
Lazy-Agent −5.92± 0.63 73 % 0 −19.81± 11.91 32 % 0 −427.71± 92.07 100 % 0

actions (30). The global DQN performs 100 actions per run but still has a 26% violation rate, as287

it often fails to identify the correct root cause. We remark that in some cases the per service DQN288

scaled memory rather than CPU, which was less effective. The Lazy-Agent, performing no actions,289

violates the SLO in 32% of cases. Operating in the hard environment, all agents fail to fully meet290

the SLO. The Master Policy performs best, with an 87% violation rate, while the other agents reach291

100%. We note that the LLM-multi-agent was sometimes able to diagnose one of the causes of the292

high latency, but its paired DQN-service agent failed to select the correct scaling action.293

6 Discussion, Conclusion and Future Work294

In this paper, we present a causality-driven simulation environment for cloud microservices, which295

can be used to benchmark multi-agentic systems on realistic, constrained optimisation problems.296

Our simulation engine provides a range of capabilities for setting-up customisable environments of297

different sizes and complexities. Our framework can model both global reward optimisation with a298

large number of actions and local reward optimisation operating on a reduced per-service action space.299

It also enables failures to be introduced into the system that can be attributed to one service and lead300

to a distribution shift. A notable feature of our simulator is the ability to provide agents with a causal301

system model, which could potentially enable advanced reasoning based on the model and recent302

observations. Furthermore, we provide three templates for challenges in environments of varying303

difficulty and size that can be used to fairly compare different (multi)-agentic tools. Although our304

simulation attempts to model the use case realistically, it is still inherently limited by the constraints305

of simulation, and therefore does not provide a fully realistic representation of a real system.306

We further demonstrate how one can leverage the information and simulation capabilities of the307

environment to test and benchmark a simple LLM powered multi-agentic system against three other308

algorithms. The LLM-multi-agentic system is not a sophisticated approach aimed at solving the309

challenges in the environment; it merely serves to demonstrate how a multi-agentic system could310

utilise the information provided by our environment. Our experiments in our three challenges indicate311

that they are difficult enough to challenge a simple multi-agentic system that has to come up with312

the way to solve the challenges. The fact that our gold standard outperforms every other model still313

leaves the challenge for algorithmic improvements on this application open. However, due to the314

limited number of evaluation steps for the agents in the environments, the results should be treated315

with caution; a more extensive evaluation is required.316

Future work could address the limitations of our approach by attempting to integrate or enrich317

the simulation system with real-system data. Furthermore, more sophisticated agents could be318

developed using our system. For example, causal root cause attribution techniques could be utilised319

to identify the service responsible for the distribution shift, and this information could be provided320

to an orchestrator agent. Alternatively, agent(s)/tools could be retrained while a global reward is321

optimised or a domain specific pre-trained LLM-model could be used. Additionally, our simulation322

environment could be integrated with existing benchmarking libraries.323

To summarise, our environment gives every agent a ’license to scale’. They have to adapt dynamically324

to a changing environment conditions and optimise a target under pressure, while being rigorously325

assets in a simulation, where conditions can be shaken through exploratory action, yet real systems326

are not stirred.327

9

References328

Muhammad Abdullah, Waheed Iqbal, Abdelkarim Erradi, and Faisal Bukhari. Learning predictive329

autoscaling policies for cloud-hosted microservices using trace-driven modeling. In 2019 IEEE330

International Conference on Cloud Computing Technology and Science (CloudCom), pages 119–331

126. IEEE, 2019.332

Matteo Bettini, Ryan Kortvelesy, Jan Blumenkamp, and Amanda Prorok. Vmas: A vectorized multi-333

agent simulator for collective robot learning. The 16th International Symposium on Distributed334

Autonomous Robotic Systems, 2022.335

Matteo Bettini, Amanda Prorok, and Vincent Moens. Benchmarl: Benchmarking multi-agent336

reinforcement learning. Journal of Machine Learning Research, 25(217):1–10, 2024.337

Kailash Budhathoki, Lenon Minorics, Patrick Bloebaum, and Dominik Janzing. Causal structure-338

based root cause analysis of outliers. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba339

Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Con-340

ference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,341

pages 2357–2369. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/342

budhathoki22a.html.343

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Ma-344

hajan, Jakob Nicolaus Foerster, and Shimon Whiteson. SMACv2: An improved benchmark345

for cooperative multi-agent reinforcement learning. In Thirty-seventh Conference on Neu-346

ral Information Processing Systems Datasets and Benchmarks Track, 2023. URL https:347

//openreview.net/forum?id=5OjLGiJW3u.348

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno,349

Justin Hu, Brian Ritchken, Brendon Jackson, et al. An open-source benchmark suite for microser-350

vices and their hardware-software implications for cloud & edge systems. In Proceedings of the351

twenty-fourth international conference on architectural support for programming languages and352

operating systems, pages 3–18, 2019.353

Chen Gao, Xiaochong Lan, Nian Li, Yuan Yuan, Jingtao Ding, Zhilun Zhou, Fengli Xu, and Yong354

Li. Large language models empowered agent-based modeling and simulation: A survey and355

perspectives. Humanities and Social Sciences Communications, 11(1):1–24, 2024.356

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics,357

and function using NetworkX. In Gaël Varoquaux, Travis Vaught, and Jarrod Millman, editors,358

Proceedings of the 7th Python in Science Conference (SciPy2008), pages 11–15, Pasadena, CA359

USA, August 2008.360

Michaela Hardt, William Roy Orchard, Patrick Blöbaum, Elke Kirschbaum, and Shiva Ka-361

siviswanathan. The petshop dataset — finding causes of performance issues across microservices.362

In Francesco Locatello and Vanessa Didelez, editors, Proceedings of the Third Conference on363

Causal Learning and Reasoning, volume 236 of Proceedings of Machine Learning Research,364

pages 957–978. PMLR, 01–03 Apr 2024. URL https://proceedings.mlr.press/v236/365

hardt24a.html.366

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David367

Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti368

Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández369

del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,370

Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming371

with NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2.372

URL https://doi.org/10.1038/s41586-020-2649-2.373

Soodeh Hosseini and Hossein Seilani. The role of agentic ai in shaping a smart future: A systematic374

review. Array, page 100399, 2025.375

Aapo Hyvärinen, Kun Zhang, Shohei Shimizu, and Patrik O Hoyer. Estimation of a structural vector376

autoregression model using non-gaussianity. Journal of Machine Learning Research, 11(5), 2010.377

10

https://proceedings.mlr.press/v162/budhathoki22a.html
https://proceedings.mlr.press/v162/budhathoki22a.html
https://proceedings.mlr.press/v162/budhathoki22a.html
https://openreview.net/forum?id=5OjLGiJW3u
https://openreview.net/forum?id=5OjLGiJW3u
https://openreview.net/forum?id=5OjLGiJW3u
https://proceedings.mlr.press/v236/hardt24a.html
https://proceedings.mlr.press/v236/hardt24a.html
https://proceedings.mlr.press/v236/hardt24a.html
https://doi.org/10.1038/s41586-020-2649-2

Azam Ikram, Sarthak Chakraborty, Subrata Mitra, Shiv Saini, Saurabh Bagchi, and Murat Kocaoglu.378

Root cause analysis of failures in microservices through causal discovery. Advances in Neural379

Information Processing Systems, 35:31158–31170, 2022.380

Shankar Kumar Jeyakumar, Alaa Alameer Ahmad, and Adrian Garret Gabriel. Advancing agentic381

systems: Dynamic task decomposition, tool integration and evaluation using novel metrics and382

dataset. In NeurIPS 2024 Workshop on Open-World Agents, 2024.383

Saurabh Jha, Rohan R. Arora, Yuji Watanabe, Takumi Yanagawa, Yinfang Chen, Jackson Clark,384

Bhavya Bhavya, Mudit Verma, Harshit Kumar, Hirokuni Kitahara, Noah Zheutlin, Saki Takano,385

Divya Pathak, Felix George, Xinbo Wu, Bekir O Turkkan, Gerard Vanloo, Michael Nidd, Ting386

Dai, Oishik Chatterjee, Pranjal Gupta, Suranjana Samanta, Pooja Aggarwal, Rong Lee, Jae wook387

Ahn, Debanjana Kar, Amit Paradkar, Yu Deng, Pratibha Moogi, Prateeti Mohapatra, Naoki Abe,388

Chandrasekhar Narayanaswami, Tianyin Xu, Lav R. Varshney, Ruchi Mahindru, Anca Sailer,389

Laura Shwartz, Daby Sow, Nicholas C. M. Fuller, and Ruchir Puri. ITBench: Evaluating AI390

agents across diverse real-world IT automation tasks. In Forty-second International Conference on391

Machine Learning, 2025. URL https://openreview.net/forum?id=jP59rz1bZk.392

Sivagnanasothy Lakshan and Sahdiya Hussain. A review of ai-driven techniques for cost optimization393

in kubernetes environments. In 2025 International Research Conference on Smart Computing and394

Systems Engineering (SCSE), pages 1–5. IEEE, 2025.395

Bowen Li, Xin Peng, Qilin Xiang, Hanzhang Wang, Tao Xie, Jun Sun, and Xuanzhe Liu. Enjoy396

your observability: an industrial survey of microservice tracing and analysis. Empirical Software397

Engineering, 27(1):25, 2022.398

Xinyi Li, Sai Wang, Siqi Zeng, Yu Wu, and Yi Yang. A survey on llm-based multi-agent systems:399

workflow, infrastructure, and challenges. Vicinagearth, 1(1):9, 2024.400

Fangru Lin, Emanuele La Malfa, Valentin Hofmann, Elle Michelle Yang, Anthony Cohn, and Janet B401

Pierrehumbert. Graph-enhanced large language models in asynchronous plan reasoning. arXiv402

preprint arXiv:2402.02805, 2024.403

Christopher Lohse, Diego Tsutsumi, Amadou Ba, Pavithra Harsha, Chitra Subramanian, Martin404

Straesser, and Marco Ruffini. Causal latency modelling for cloud microservices. In IEEE405

International Conference on Cloud Computing, 2025.406

Leonardo Mariani, Cristina Monni, Mauro Pezzé, Oliviero Riganelli, and Rui Xin. Localizing faults407

in cloud systems. In 2018 IEEE 11th International Conference on Software Testing, Verification408

and Validation (ICST), pages 262–273. IEEE, 2018.409

Vasilios Mavroudis. Langchain v0.3. Preprints, November 2024. doi: 10.20944/preprints202411.410

0566.v1. URL https://doi.org/10.20944/preprints202411.0566.v1.411

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,412

Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control413

through deep reinforcement learning. nature, 518(7540):529–533, 2015.414

Yipei Niu, Fangming Liu, and Zongpeng Li. Load balancing across microservices. In IEEE415

INFOCOM 2018-IEEE Conference on Computer Communications, pages 198–206. IEEE, 2018.416

Judea Pearl. Causal diagrams for empirical research. Biometrika, 82(4):669–688, 1995.417

Judea Pearl. Causality. Cambridge university press, 2009.418

Vighnesh Sachidananda and Anirudh Sivaraman. Erlang: Application-aware autoscaling for cloud419

microservices. In Proceedings of the Nineteenth European Conference on Computer Systems,420

EuroSys ’24, page 888–923, New York, NY, USA, 2024. Association for Computing Machinery.421

ISBN 9798400704376. doi: 10.1145/3627703.3650084. URL https://doi.org/10.1145/422

3627703.3650084.423

Alexander Timms, Abigail Langbridge, and Fearghal O’Donncha. Agentic anomaly detection for424

shipping. In NeurIPS 2024 Workshop on Open-World Agents, 2024.425

11

https://openreview.net/forum?id=jP59rz1bZk
https://doi.org/10.20944/preprints202411.0566.v1
https://doi.org/10.1145/3627703.3650084
https://doi.org/10.1145/3627703.3650084
https://doi.org/10.1145/3627703.3650084

Thomas Tournaire, Yue Jin, Armen Aghasaryan, Hind Castel-Taleb, and Emmanuel Hyon. Factored426

reinforcement learning for auto-scaling in tandem queues. In NOMS 2022-2022 IEEE/IFIP427

Network Operations and Management Symposium, pages 1–7. IEEE, 2022.428

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U. Balis, Gianluca De Cola, Tristan Deleu,429

Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, Rodrigo Perez-Vicente, Andrea430

Pierré, Sander Schulhoff, Jun Jet Tai, Hannah Tan, and Omar G. Younis. Gymnasium: A standard431

interface for reinforcement learning environments, 2024. URL https://arxiv.org/abs/2407.432

17032.433

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,434

Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,435

Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric436

Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,437

Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,438

Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0439

Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature440

Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.441

Eric Wallace, Olivia Watkins, Miles Wang, Kai Chen, and Chris Koch. Estimating worst-case frontier442

risks of open-weight llms. arXiv preprint arXiv:2508.03153, 2025.443

12

https://arxiv.org/abs/2407.17032
https://arxiv.org/abs/2407.17032
https://arxiv.org/abs/2407.17032

A Example of Injected Failures and Distribution Shifts444

Figure 4 shows the Behaviour of a two-service microservice environment with induced faults over445

max_steps=300. service1 can become degraded (degradation_probability=0.005,446

recovery_probability=0.02, degradation_latency_penalty=40) and de-447

velop a CPU leak (enable_cpu_leak=true, cpu_leak_probability=0.01,448

leak_recovery_probability=0.001, cpu_leak_rate=0.01 cores/step), while449

service2 can become degraded (degradation_latency_penalty=50) and develop450

a memory leak (enable_memory_leak=true, memory_leak_probability=0.01,451

leak_recovery_probability=0.005, memory_leak_rate=5 MB/step). Top-left: per-service452

latencies with degraded episodes highlighted and the SLO target at target_latency=20 ms. Top-453

right: CPU usage vs. limits showing gradual growth from the CPU leak in service1. Bottom-left:454

memory usage vs. limits showing gradual growth from the memory leak in service2. Bottom-right:455

the failure timeline (red = degraded, orange = leak) aligned to exogenous spikes (spike_schedule456

at steps 50 for service1 and 150 for service2, enable_random_spikes=false), and the457

corresponding step-wise reward signal (alpha=5.0, beta=1.0) reflecting SLO violations. In this458

example the Memory/CPU is scaled when reaching 80% usage.

0

25

50

75

100

La
te

nc
y

(m
s)

Service Latencies (Degradation = High Latency)

service1
service1 degraded
service2
service2 degraded
Target SLO

0.0

0.5

1.0

1.5

C
P

U

CPU Usage vs Limits (Leaks = Growing Usage)

service1 usage
service1 limit
service1 CPU leak
service2 usage
service2 limit

0

250

500

750

1000

M
em

or
y

(M
B

)

Memory Usage vs Limits (Leaks = Growing Usage)

service1 usage
service1 limit
service2 usage
service2 limit
service2 memory leak

Service1

Service2

S
er

vi
ce

s

Failure Timeline (Red=Degraded, Orange=Leak)

Degraded
Leak

0 50 100 150 200 250 300
Time Step

400

300

200

100

0

R
ew

ar
d

Step Rewards

Figure 4: Example of Induced System Failures for a two service System
459

13

B Environment Configuration460

B.1 Parameters of the Simulation461

Table 3: Parameters for SimulatedService and SpikeMicroserviceEnv.

Parameter Default Description
General Service Parameters
obs — Observation object containing the current environment

state.
name — Name of the service.
max_memory — Maximum memory allocation for the service.
max_cpu — Maximum CPU allocation for the service.
max_pods — Maximum number of pods for the service.
lat_func — Function for computing latency noise.
auto_regressive_coef 0.1 Coefficient for auto-regressive latency behaviour.
parent_services [] List of parent services that send requests to this service.
cpu_dependent True Whether the latency is more affected by CPU usage than

memory.
workload_config None Workload configuration for the service.
initial_load None Initial load, only for entry point service.
base_request_rate None Base request rate, only for entry point service.
services — List of simulated services in the environment.
terminal_service — Name of the terminal service in the environment.

Latency Parameters
pod_influence_decay 2 Exponential decay factor for the effect of pods on latency.
target_latency — Latency target for the environment.

Workload and Spike Parameters
enable_random_spikes True Whether random traffic spikes are enabled.
spike_schedule None Predefined schedule for traffic spikes.

Degradation Parameters
enable_degradation False Enable degradation events in the service.
degradation_probability 0.001 Probability of entering a degraded state at each step.
recovery_probability 0.01 Probability of recovering from degradation at each step.
degradation_latency_penalty 50.0 Additional latency (ms) when degraded.

Leak Parameters
enable_cpu_leak False Enable uncontrolled CPU usage growth.
enable_memory_leak False Enable uncontrolled memory usage growth.
cpu_leak_probability 0.001 Probability of starting CPU leak.
memory_leak_probability 0.001 Probability of starting memory leak.
leak_recovery_probability 0.005 Probability of fixing a leak per step.
cpu_leak_rate 0.002 CPU usage increase rate when leaking.
memory_leak_rate 2.0 Memory usage increase rate when leaking.

Environment Parameters
alpha 1.0 Reward function parameter α.
beta 1.0 Reward function parameter β.
max_steps 500 Maximum number of simulation steps.

14

B.2 Example Initialization of a small environment462

1 service1 = SimulatedService(# Service 1: Can develop CPU leaks463

2 Observation(464

3 cpu_limit =0.5,465

4 memory_limit =512.0 ,466

5 n_pods=1,467

6 latency=1,468

7 memory_use =100.0 ,469

8 cpu_use =0.05 ,470

9 energy_use =0,471

10),472

11 name="service1",473

12 max_memory =2048,474

13 max_cpu =2.0,475

14 max_pods=3,476

15 lat_func=partial(truncexpon.rvs , loc=0, size=1, b=1, scale =0.5),477

16 initial_load =30.0,478

17 enable_degradation=True ,479

18 degradation_probability =0.005 ,480

19 recovery_probability =0.02,481

20 degradation_latency_penalty =40.0,482

21 enable_cpu_leak=True ,483

22 cpu_leak_probability =0.01,484

23 leak_recovery_probability =0.001 ,485

24 cpu_leak_rate =0.01 , # 0.01 cores per step486

25 base_request_rate =5,487

26)488

27 service2 = SimulatedService(# Service 2: Can develop memory leaks489

28 Observation(490

29 cpu_limit =0.3,491

30 memory_limit =512,492

31 n_pods=1,493

32 latency=1,494

33 memory_use =100,495

34 cpu_use =0.03 ,496

35 energy_use =0,497

36),498

37 name="service2",499

38 max_memory =1028,500

39 max_cpu =1.0,501

40 max_pods=3,502

41 lat_func=partial(truncexpon.rvs , loc=0, size=1, b=1, scale =0.5),503

42 parent_services =[service1],504

43 initial_load =30.0,505

44 enable_degradation=True , # Degradation506

45 degradation_probability =0.005 ,507

46 recovery_probability =0.02,508

47 degradation_latency_penalty =50.0, # Memory leak509

48 enable_memory_leak=True ,510

49 memory_leak_probability =0.01,511

50 leak_recovery_probability =0.005 ,512

51 memory_leak_rate =5.0, # 5MB per step513

52 base_request_rate =5,514

53)515

54 env = SpikeMicroserviceEnv(516

55 services =[service1 , service2],517

56 terminal_service="service2",518

57 target_latency =20.0,519

58 alpha =5.0,520

59 beta =1.0,521

60 max_steps =300,522

61)523

Listing 1: Example Initilaization of Environemnt

15

C Example Environments524

C.1 Simple525

The simple simualtion vizualised in Figure 5 is a small-scale online shop system wit 5 services and 5526

edges in a mostly linear chain. The inventory-db (memory-dependent) is the root, feeding both527

shopping-cart and product-catalog (CPU-dependent). The api-gateway (CPU-dependent)528

aggregates both and sends results to the terminal frontend (CPU-dependent), where latency is529

measured. Target latency ltarget = 30 ms. Random spikes (enable_random_spikes=True) are530

enabled, but no degradation (enable_degradation=False) or leaks (enable_cpu_leak=False,531

enable_memory_leak=False) occur. System is slightly underprovisioned. Scaling central services532

like shopping-card yields the largest SLO impact.

frontend

api-gateway

product-catalog

inventory-db

shopping-cart

Latency Graph - Terminal: frontend
(Arrows show latency flow toward terminal)

Terminal Service (frontend)
CPU-Dependent
Memory-Dependent

Figure 5: Causal Graph of the easy Simulation
533

16

C.2 Intermediate534

Social Media System with 9 services and 11 edges in a more complex causal graph as535

shown in Figure 6. The terminal web-frontend (CPU-dependent) receives traffic via536

load-balancer, which aggregates from feed-generator, user-service, content-service,537

and notification. Backends include auth-db and media-storage (memory-dependent),538

message-queue (memory-dependent, enable_degradation=True), and multiple CPU-dependent539

services. The user-service has a high cpu_leak_probability=0.5, making it the main SLO540

risk. Target latency ltarget = 35 ms, with enable_random_spikes=True. The system does not541

initially violate the SLO, but sustained CPU leaks or degradation events require targeted scaling,542

particularly of user-service.

web-frontend

load-balancer

content-service

user-service

media-storage

auth-db

notification

message-ueue

feed-generator

Latency Graph - Terminal: web-frontend
(Arrows show latency flow toward terminal)

Terminal Service (web-frontend)
CPU-Dependent
Memory-Dependent

Figure 6: Causal Graph of the intermediate Simulation
543

17

C.3 Hard544

Enterprise Financial Platform System with 12services and 17 edges in a multi-tier DAG. The545

terminal api-gateway (CPU-dependent) aggregates from auth-service, trading-engine,546

payment-processor, and reporting-service. Backends include memory-dependent user-db,547

transaction-db, price-feed, ml-model, and compliance-db. The platform is inten-548

tionally underprovisioned: with enable_random_spikes=True it tends to breach the SLO549

ltarget = 100 ms unless scaled. Two injected failures dominate: compliance-db can degrade550

(enable_degradation=True) and fraud-detection can leak CPU (enable_cpu_leak=True,551

cpu_leak_probability=0.2, cpu_leak_rate=0.09). The gold-standard policy prioritizes scal-552

ing across tiers: increase pods for a healthy ml-model, add pods when compliance-db is degraded,553

and raise fraud-detection CPU while leaking.554

System with 12 services and 17 edges in a multi-tier DAG. The terminal api-gateway555

(CPU-dependent) aggregates from auth-service, trading-engine, payment-processor,556

and reporting-service. Backends include memory-dependent user-db, transaction-db,557

price-feed, ml-model, and compliance-db. The platform is intentionally underprovisioned:558

with enable_random_spikes=True it tends to breach the SLO ltarget = 100 ms unless scaled.559

Two injected failures dominate: compliance-db can degrade (enable_degradation=True)560

and fraud-detection can leak CPU (enable_cpu_leak=True, cpu_leak_probability=0.2,561

cpu_leak_rate=0.09). The gold-standard policy prioritizes scaling across tiers: increase pods562

for a healthy ml-model, add pods when compliance-db is degraded, and raise fraud-detection563

CPU while leaking—capturing the need for diagnosis and targeted mitigation in a complex graph.564

api-gateway

auth-service

user-db

trading-engine

market-data

price-feed

risk-engine

compliance-db

payment-processor

fraud-detection

ml-model

transaction-db

reporting-service

Latency Graph - Terminal: api-gateway
(Arrows show latency flow toward terminal)

Terminal Service (api-gateway)
CPU-Dependent
Memory-Dependent

Figure 7: Causal Graph of the hard Simulation

18

D LLM Prompts and Response565

D.1 Prompt566

567

"""You are an expert in Microservice System Analysis and your task is to identify568

which services need scaling actions the most.569

The system consists of multiple services that are connected and propagate latency570

through the system. Our aim is to keep the latency in the571

terminal service, {state[’terminal_service’]}, below the Service Level Objective572

(SLO) threshold of {state[’target_latency’]}ms. At the same time,573

we want to waste as little resources as possible. Scaling up or down is not always574

sufficient if the SLO is already satisfied by a high margin (over 10%575

satisfied).576

Doing as little interventions as possible is desirable.577

578

Consider service dependencies (the causal graph) when prioritizing services.579

580

CURRENT SITUATION:581

- SLO Status: {’VIOLATED’ if impact[’slo_violated’] else ’SATISFIED’} (target:582

{state[’target_latency’]}ms, actual: {impact[’terminal_latency’]}ms)583

- Terminal Service: {state[’terminal_service’],}584

585

CAUSAL GRAPH of latency dependencies (’parent’, ’child’):586

{state[’causal_graph’]}587

588

RESOURCE ISSUES:589

- Critical (>80% of limit): {[s[’service’] for s in resources[’critical_services’]]}590

- High (>60% of limit): {[s[’service’] for s in resources[’high_util_services’]]}591

- Moderate and low usage services usually do not need scaling unless latency is592

near SLO.593

594

TASK: Select the TOP 3 services that need scaling action, considering:595

1. Services with resource leaks need high attention.596

2. High-impact services affecting SLO the most should be prioritized.597

3. Services with critical resource usage need scaling to reduce resource pressure.598

4. Only recommend scaling if SLO is violated or near violation, keeping scaling599

costs in mind. Also recommend scaling if headroom can save resources.600

Listing 2: Prompt provided to reasoning agent

19

D.2 Example Response of Reasoning Agent601

{602

"services_to_scale":[603

{604

"service":"frontend",605

"priority":1,606

"reason":"The frontend service is currently violating the SLO threshold607

and has a high impact score, indicating that it is affecting the overall608

latency of the system."609

},610

{611

"service":"api-gateway",612

"priority":2,613

"reason":"The api-gateway service has a significant impact on the system’s614

latency and is also a critical component in terms of downstream dependencies."615

},616

{617

"service":"product-catalog",618

"priority":3,619

"reason":"The product-catalog service has a moderate impact score and is620

also experiencing high CPU utilization, which could be indicative of resource621

leaks or inefficiencies that need to be addressed."622

}623

],624

"system_status":{625

"slo_violated":true,626

"terminal_latency":25.254812240600586,627

"target_latency":25.0628

},629

"analysis_summary":{630

"total_services":5,631

"unhealthy_services":0,632

"top_bottleneck":"frontend"633

},634

"debug_info":{635

"impact_node":{636

"terminal_latency":25.254812240600586,637

"slo_violated":true,638

"num_services_analyzed":5639

},640

"resource_node":{641

"critical_count":0,642

"high_count":0,643

"leaking_count":0,644

"degraded_count":0645

},646

"llm_response":"Based on the provided data, I would recommend the following647

services for scaling actions:\n\n[\n {\n \"service\": \"frontend\",\n648

\"priority\": 1,\n \"reason\": \"The frontend service is currently649

violatin..."650

}651

}652

Listing 3: Response example

20

	Introduction
	Background
	Related Work
	Simulation Setup
	Simulation Process
	Injected System Failures
	Reinforcement Learning Problem Formulation
	Simulation Design Choices

	Assessing Agents in the Environment
	Set-up
	Results

	Discussion, Conclusion and Future Work
	Example of Injected Failures and Distribution Shifts
	Environment Configuration
	Parameters of the Simulation
	Example Initialization of a small environment

	Example Environments
	Simple
	Intermediate
	Hard

	LLM Prompts and Response
	Prompt
	Example Response of Reasoning Agent

