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ABSTRACT

Despite significant progress in post-hoc explanation methods for neural networks,
many remain heuristic and lack provable guarantees. A key approach for obtain-
ing explanations with provable guarantees is by identifying a (globally) cardinal-
minimal subset of input features which by itself is provably sufficient to determine
the prediction. However, for standard neural networks, this task is often compu-
tationally infeasible, as it demands a worst-case exponential number of verifica-
tion queries in the number of input features, each of which is NP-hard. In this
work, we show that for Neural Additive Models (NAMs), a recent and more in-
terpretable neural network family, we can efficiently generate explanations with
such guarantees. We present a new model-specific algorithm for NAMs that gen-
erates provably (globally) cardinal-minimal explanations using only a logarithmic
number of verification queries in the number of input features, after a parallelized
preprocessing step with logarithmic runtime in the required precision is applied to
each small univariate NAM component. Our algorithm not only makes the task of
obtaining (globally) cardinal minimal explanations feasible, but even outperforms
existing algorithms designed to find (locally) subset-minimal explanations — which
may be larger and less informative but easier to compute — despite our algorithm
solving a much more difficult task. Our experiments demonstrate that, compared
to previous algorithms, our approach provides provably smaller explanations than
existing works and substantially reduces the computation time. Moreover, we
show that our generated provable explanations offer benefits that are unattainable
by standard sampling-based techniques typically used to interpret NAMs.

1 INTRODUCTION

Various methods have been proposed to explain neural network predictions. Classic additive feature
attribution approaches — such as LIME (Ribeiro et al., 2016), SHAP (Lundberg & Lee, 2017), and
IG (Sundararajan et al.| 2017)) — assume near-linear behavior in a local region around the instance.
Other methods, like Anchors (Ribeiro et al., 2018)) and SIS (Carter et al.l 2019), aim to identify
a (nearly) sufficient subset of input features — referred to here as an explanation — that determines
the prediction. While Anchors and SIS rely on probabilistic sampling and lack provable sufficiency
guarantees, recent work has shown that neural network verification tools can serve as a backbone for
generating provably sufficient explanations (Wu et al., 2023 |Bassan & Katz, [2023; [La Malfa et al.,
2021} [Izza et al. 2024), making them particularly valuable in safety-critical domains (Marques-
Silva & Ignatiev, 2022). In this context, smaller sufficient explanations are typically preferred, as
minimality is considered an additional key interpretability property (Ignatiev et al., 2019} |Carter
et al.| [2019; Darwiche & Hirthl [2020; |[Ribeiro et al., 2018} Barceld et al., 2020b)).

However, while such explanations are highly desirable, generating them for standard neural net-
works is notoriously computationally challenging (Barceld et al.l [2020b)). In particular, obtaining
(globally) cardinal-minimal explanations, requires, in the worst case, an exponential number of neu-
ral network verification queries (Barcelo et al.| 2020b; [Ignatiev et al., 2019; [Bassan & Katz, 2023)),
each being NP-hard (Katz et al., 2017} Salzer & Langel 2021)), rendering the task infeasible even
for toy examples (Ignatiev et al.,|2019). Consequently, existing methods focus on (locally) subset-
minimal explanations (Wu et al., 2023; [Bassan & Katz, [2023} Bassan et al., [2025a), which are
typically suboptimal in size, potentially large, and thus less informative than their globally minimal
counterparts. Moreover, even these approaches remain limited to relatively small models, as they
still require a linear number of verification queries (Wu et al., [2023} [Bassan et al.,|2025b).
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Our contributions. Since computing (globally) cardinal-minimal sufficient explanations is prov-
ably intractable for general neural networks, a natural question arises: Can certain neural archi-
tectures with more interpretable structures enable efficient computation of such explanations? Al-
though this task remains challenging even for simplified models such as binarized neural networks
or those with a single hidden layer (Adolfi et al., 2025} Barcel¢ et al.,2020a; |Silzer & Langel |[2021)),
we show in this work that it becomes tractable for a different class of neural architectures previously
unexplored in this context: Neural Additive Models (NAMs) (Agarwal et al.| [2021). NAMs are a
widely adopted architecture that has received significant attention in recent years (Agarwal et al.
2021; Radenovic et al.| 2022} Bechler-Speicher et al., 2024; [Kim et al.l 2024} Zhang et al., [2024)).
By enforcing an additive structure over input features, NAMSs support interpretable, per-feature con-
tributions while maintaining the expressive capabilities of neural networks.

Our NAM-specific algorithm vs. previous algorithms. Unlike existing algorithms that require a
linear number of verification queries in the number of input features for locally minimal explanations
— or an exponential number for globally minimal ones — our approach exploits the additive struc-
ture of NAMs to compute provably globally minimal explanation subsets using only a logarithmic
number of verification queries. This is realized by introducing a highly parallelized preprocessing
step — each operating independently on a small univariate component of the NAM — enabling a sub-
stantial overall efficiency gain. As a result, our method yields explanations that are both provably
sufficient and cardinal-minimal, far more efficiently than standard algorithms typically applied to
neural networks. Experiments using state-of-the-art verifiers confirm that our algorithm generates
explanations substantially faster and produces notably smaller subsets than prior approaches.

Our provable NAM explanations vs. standard sampling interpretations. NAMs are typically
interpreted by sampling input points and visualizing the behavior of each univariate function (Agar-
wal et al., 2021; [Radenovic et al. [2022)). Thanks to their additive structure, these models allow
per-feature contributions to be examined individually. We show that purely sampling-based meth-
ods can yield misleading interpretations, whereas our provably sufficient explanations avoid this by
design, underscoring their importance in safety-critical domains.

Overall, our work advances explanations with provable guarantees in two ways: (i) it introduces the
first method for certifiable explanations in NAMs, boosting their trustworthiness in safety-critical
settings, and (ii) by efficiently generating provable explanations, NAMs — unlike general neural
networks — open a path toward interpretable architectures where such guarantees can be derived
at scale. A central challenge ahead is to design models that balance high expressivity and accuracy
with efficient provable explanations, and we view our work as a significant first step in that direction.

2 PRELIMINARIES

2.1 NOTATION

We denote scalars with lower-case letters, vectors with bold lower-case letters, and sets in calli-
graphic font. The i-th entry of a vector x is denoted by X(;). Forn € N, let [n] := {1,...,n}.

2.2 NEURAL NETWORK VERIFICATION

Neural network verification aims to verify certain input-output relationships of neural networks. For
aneural network f: R™ — R€, a neural network verifier formally proves that there does not exist an
input x € R™ where both an input specification i, (x), and an unsafe output specification 1oy (f(x))
hold at the same time. Although this problem is NP-hard (Katz et al.|[2017;|Silzer & Langel |[2021)),
these tools have seen rapid scalability improvements in recent years (Brix et al., 2024).

2.3 NEURAL ADDITIVE MODELS (NAMS).

A neural additive model (NAM) f for a regression task, where f : R™ — R, is defined as:

k
Fx) =B+ > filx), (1)

i=1
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where each f; : R — R is a univariate neural network, 5y € R is the intercept, and f denotes the
full NAM. For binary classification, we assume that an additional step function is applied: f(x) :=

step(Bo + Zle Ji(X())), where step(z) = 1if z > 0 and step(z) = 0 otherwise. In the multi-class
setting with ¢ classes, the logit for class j € [c] is given by f;(x) := B0 + Zle f5,i(X(3)), and the
model predicts f(x) := arg max; ¢4 f;(X).

In this work, we develop algorithms for all three settings — (i) regression, (ii) binary classification,
and (iii) multi-class classification — but for clarity, we focus the main presentation on the binary
classification case, with extensions for the other settings provided in Appendix[C]

3 PROVABLY SUFFICIENT EXPLANATIONS FOR NEURAL NETWORKS

We begin by reviewing standard algorithms developed for general neural networks that identify
provably locally or globally minimal sufficient explanations. We note that we focus on post-hoc
sufficient explanations for a specific input x € R™, i.e., for the output f(x), and post-hoc indicates
that the explanation is generated after the model has been trained.

Sufficient Explanations. A common method for interpreting the decisions of classifiers involves
identifying subsets of input features S C [n] such that fixing these features to their specific values
guarantees the prediction remains unchanged. Specifically, these techniques guarantee that the clas-
sification result remains consistent across any potential assignment within the complementary set
S = [n]\ S. While in the classic setting features in the complementary set S are allowed to take on
any possible feature values (Ignatiev et al.| 2019} |Darwiche & Hirthl 2020; Bassan & Katzl [2023)),
a more feasible and generalizable version restricts the possible assignments for S to a bounded €,,-
region (Wu et al., 2023; [La Malfa et al.,[2021} [zza et al., 2024). We use (xs;X5) € R™ to denote
an assignment where the features of S are set to the values of the vector x € R™ and the features of
S are set to the values of another vector X € R™ within the ¢,,-region.

Definition 1 (Sufficient Explanation). Given a neural network f, an input x € R"™, a perturbation
radius €, € Ry, and a subset S C [n], we say that S is a sufficient explanation concerning the
query (f, x, S, €,) on an Ly-norm ball By" of radius €, € R around x iff it holds that:

Vx € Bir(x):  f(xs;xg) = f(x), with By (x) = {x € R" | [lx — X[|, < ¢,}.

We define suff(f, x, S, €,) = 1 iff S constitutes a sufficient explanation with respect to the query
(f, x, S, €p), and suff(f, x, S, €,) = 0 otherwise.

Def. [T] can be formulated as a neural network verification query (Sec. [2.2). This method has been
proposed by prior studies, which employed these techniques to validate the sufficiency of specific
subsets (Wu et al.,[2023; |Bassan & Katz, [2023; |La Malfa et al.l 2021} [Izza et al., 2024).

Minimal Explanations. Evidently, selecting the entire input set as the subset S, that is, setting
S := [n], yields a sufficient explanation. Nonetheless, the prevailing consensus in the literature is
that smaller subsets tend to be more informative or meaningful (Ribeiro et al., |2018}; |Carter et al.,
2019; [Barceld et al.l [2020b; Ignatiev et al., 2019). Consequently, there is considerable interest in
identifying subsets that are not only sufficient but also satisfy some notion of minimality. We focus
on two specific minimality criteria: (global) cardinality minimality and (local) subset minimality.

Definition 2 (Minimal Sufficient Explanations). Given a neural network f, an input x € R™, and a
subset S C [n] that is a sufficient explanation concerning (f, x, S, €,) on B" of radius e, then:

1. We say that S is a (globally) cardinal-minimal sufficient explanation (Barcelo et al.l 20204}
Bassan et al.,|2024)) concerning (f, x, S, €,) iff there does not exist a sufficient explanation
S’ concerning (f, x, ', €,) with |S'| < |S]).

2. We say that S is a (locally) subset-minimal sufficient explanation (Arenas et al 2022}
Ignatiev et al.,[2019) concerning (f, x, S, €,) iffany S’ C S is not a sufficient explanation
concerning (f, x, S, €p).

Minimal sufficient explanations can also be determined using neural network verifiers. This process
requires executing multiple verification queries to ensure the minimality of the subset. Alg.[T]out-
lines such a procedure (Ignatiev et al.,[2019; |Wu et al., 2023; Bassan & Katz,|2023). The algorithm
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begins with an explanation S encompassing the entire feature set [n] and iteratively tries to exclude a
feature 7 from S, each time checking whether S \ {i} remains sufficient. If S\ {¢} is still sufficient,
feature ¢ is removed; otherwise, it is retained in the explanation. This process is repeated until a
subset-minimal sufficient explanation is obtained.

Algorithm 1 Greedy Subset Minimal Explanation Search
Input: Neural network f: R™ — R¢, input x € R", perturbation radius €, € R

1: S+ [n]

2: for each feature i € [n] do > suff(f, x, S, €,) holds
3 if suff(f, x, S\ {¢}, €,) then

4: S+ S\ {i}

5 end if

6: end for

7: return S > S is a subset-minimal explanation concerning (f, X, S, €,)

4 PROVABLY SUFFICIENT EXPLANATIONS FOR NAMS

While generating (globally) cardinal-minimal sufficient explanations is computationally expensive
for general neural networks, we present a highly efficient algorithm for NAMs in this section. NAMs
are generally considered very interpretable due to the univariate functions, but sufficient guarantees
can only be obtained through formal verification to avoid misleading conclusions (Fig. [T). Our
algorithm consists of two main stages: (i) As a preprocessing step, we compute an “importance”
interval for each feature i € [n] based on the univariate functions f; to obtain a total ordering.
(i1) This allows us to perform a binary search over the sorted intervals to identify the cardinal-
minimal sufficient explanation.

(a) (b)
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Figure 1: Sufficient explanations in NAMs: (a) Users must examine the neighborhood of an input
for proper interpretation; e.g, users might wrongly conclude that feature 1 from the FICO HELOC
dataset alone determines a positive output, but small changes in features 15 or 18 can flip the classi-
fication. (b) Outputs of continuous neighborhoods can be misleading if not verified, since sampling
may miss extrema; e.g., users might wrongly believe that only feature 1 yields negative outputs,
while feature 2 can also flip the classification.

4.1 STAGE 1 — PARALLEL INTERVAL IMPORTANCE SORTING

This subsection outlines the first stage of our algorithm, which involves determining an ordering of
the feature importance to be used in the subsequent phase. We define feature i € [n] as more “im-
portant” than feature j # 4 if perturbing feature ¢ leads to a greater deviation in the final prediction
f(x) compared to perturbing feature j. In particular, we measure the derivation towards the deci-
sion boundary to flip the classification. Thanks to the additive structure of the NAM, this analysis
can be conducted independently for each univariate component f;: R — R, allowing for a direct
comparison of their individual importance.
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Without loss of generality, let us assume that our binary classifier predicts f(x) = 1, meaning that

Bo + Zle fi(X@iy) > 0 (the case f(x) = 0 follows symmetrically). In this setting, we perturb the

input to each univariate component f; individually and measure how much the overall prediction

decreases, i.e., towards the decision boundary. Therefore, for each ¢ € [n], we want to find

() = arg min [i(X@))- 2
X)) EBY (x(3))

X

—~

Accurately determining these minimal values is usually computationally infeasible Katz et al.
(2017). Fortunately, we do not need to find the exact minimum but only bounds [I;, u;] C R such
that [; < fi(xz‘i)) < wu;, up to a precision such that a total order over the input features can be

obtained. The procedure is outlined in Alg.[2]

Algorithm 2 Parallel Interval Importance Sorting
Input: NAM f, input x € R", perturbation radius €, € R

1: for each feature ¢ € [n] in parallel do
2: Extract initial bounds o, 3; for f;(X;) such that X;) € B,” (X(;))

3: lz — Oy, Uy < ﬁl

4: while True do

6: if Verify( V)N(l S B;p (X(z)), fz (i(z)) > m; ) then

7: lz — m;

8: else

9: U <— My

10: end if

11: Al; +— fi(X(i)) —1l; ; Au; + fi(X(i)) — U;

12: if for all 4 # j it holds that: Au; > Al; or Au; > Al; then
13: break

14: end if

15: end while

16: end for

17: return arg sort([(Aly, Auq), ..., (Al,, Au,)]) in ascending order

Alg. [2] operates in parallel across each univariate component of the NAM. For each component,
the algorithm begins by issuing an incomplete verification query to obtain an initial lower bound
fi(X(5)), denoted by I; and u;, evaluated over the domain X(;) € B, (X(;). Subsequently, each
thread independently conducts a binary search using verification queries to iteratively refine [I;, u;],
narrowing in on the true lower bound fl(x’(*l)) To quantify the deviation of the unperturbed out-

put fi(X;)) from these bounds, we define the relative differences Al; and Awu;. After each iter-
ation within every parallel thread, the algorithm evaluates whether a full, non-overlapping sorting
of all pairs (Aly, Auy), ..., (Al,, Au,) is possible. If such an ordering cannot yet be achieved,
the bounds get iteratively refined. Finally, the ordering according to the determined importance is
returned.

While the initially computed bounds «;, 3; enclose the entire output domain of each component
i € [n], the binary search narrows the bounds down around the minimum f;(x{;)) (or maximum for

f(x) = 0); thus, no longer covering the entire domain. As fi(xfi)) is just a scalar, this total order
can be determined using a complete verifier.

This non-overlapping ordering provides a rigorous measure for the impact of perturbing a single
feature through its corresponding component function f;(xX(;)). This sorting forms the foundation
for the next phase of the algorithm, which identifies a provably cardinal-minimal sufficient subset.
The following proposition formalizes this first step of the argument:

Proposition 1. Given a NAM f, an input x € R" and a perturbation radius €, € R, let Alg. E]
return a total list order over the input features according to their importance. Then, the following
holds: For any sufficient explanation S that includes feature i, and for any feature j & S such that
i < j in the list ordering, the set S\ {i} U {j} is also a sufficient explanation.



Under review as a conference paper at ICLR 2026

All proofs are provided in Appendix [A] Intuitively, this proposition shows that for any two features
i and j, the ordering produced by Alg. [2] defines a notion of “importance” such that if feature i
appears in a sufficient explanation, and feature j does not, then feature 7 can always be replaced by
7. This implies that, in this context, j is at least as “important” as ¢. This property is crucial for later
leveraging the extracted ordering to construct provably cardinal-minimal explanations.

Complexity. The complexity of Alg.[2]is governed by the use of p parallel processors, where each
processor independently carries out a binary search. This binary search iteratively partitions based
on the Au; and Al; bounds and terminates once the bounds of two distinct univariate components
no longer overlap. Given the initial gap between the upper and lower bounds, a; — f;(X(;)), for
each component f;, and the precision for component f; defined by its minimal separation from the
adjacent features in the sorted ordering — namely, &; := min{|Ali+1 — Aui|, |Ali — Au;_q |}, with
Al 0, Aug denoting the bounds in the last iteration. We can now prove that the number of neural
network verifier calls is bounded by a (parallelized) logarithmic term, as formalized in the following
proposition. Limitations and optimizations are further discussed in Appendix

Proposition 2. Given p parallelized processors, Alg. |2| performs an overall number of T,(n) =

&i &i
fier, each on a f;(-) component, where & := min{|Al; 11 — Aug|, |Al; — Au;_y]}.

o ((%)log( maXig[n}(BrO” )) p_}—n> O(log( maXie[n](ﬁiiai )) calls to the neural network veri-

4.2 STAGE 2 — FEATURE SELECTION BASED ON THE DERIVED FEATURE INTERVALS

In this subsection, we will describe the second part of our algorithm that can obtain a provably
cardinal-minimal sufficient explanation, given the derived interval orderings that were obtained from
Alg.[2] To the total order, we can apply a binary search to obtain the explanation, resulting in a
logarithmic number of verification queries in the number of input features. However, to simplify
the presentation of this algorithm, we will start by presenting a naive greedy approach that runs in
a linear number of steps, and then move on to presenting the binary-search approach. The naive
approach is depicted in Alg.

Algorithm 3 Greedy Cardinal-Minimal Linear Explanation Search
Input: NAM f, input x € R", perturbation radius €, € R

1: S+ [n]

2: for each feature i € [n], ordered by Alg. do > suff(f, x, S, €,) holds
3: if suff(f, x, S\ {¢}, €p) then

4: S+ S\ {i}

5: end if

6: end for

7: return S > S is a cardinal-minimal explanation concerning (f, X, S, €p)

Alg. [3] closely mirrors the operation of Alg. [T} It begins by initializing the explanation S to the
full feature set [n], and then iteratively removes features, updating S < S\ {4}, until reaching a
minimal explanation. However, unlike Alg. [I] which is only guaranteed to converge to a (locally)
subset-minimal explanation, Alg. [3]is designed to converge to the more challenging objective of
finding a (globally) cardinal-minimal sufficient explanation. This stronger guarantee is enabled by

the total ordering (ﬁli, Aui)?:l computed by Alg. 2| which ranks the features by their importance.
This leads to the following proposition:

Proposition 3. Given a NAM f, an input x € R", and a perturbation radius €, € R, Alg.
performs O(n) queries and returns a cardinal-minimal sufficient explanation. This stands in contrast
to Alg.[I] which is only guaranteed to return a subset-minimal sufficient explanation.

Alg. 3| can be significantly enhanced by replacing the linear ordering with a binary search strategy
(Alg.[4). Crucially, this step is not possible with the naive, unsorted approach (Alg.[I)), as it does not
guarantee convergence to a cardinal-minimal explanation, and may not even yield a subset-minimal
explanation. This is because, in an arbitrary feature ordering, there may be multiple points at which
a non-sufficient subset becomes sufficient, making the binary search unreliable. In contrast, the
preprocessing step in Alg. 2]imposes a structured sorting of features, which allows Alg.[4]to reliably
converge to a cardinal-minimal sufficient explanation using only a logarithmic number of queries.
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Algorithm 4 Greedy Cardinal-Minimal Logarithmic Explanation Search
Input: NAM f, input x € R", perturbation radius €, € R
1: F' < total order of features (Alg.

2:0l+1;u<+n

3: while [ # u do

4: m <+ [

5: if suff(f, x, {F[1],...F[m]}, €,) then
6: < m

7 else

8: u+—m-—1

9: end if

10: end while
11: S« {F[1],... F[m|}
12: return S > S is a cardinal-minimal explanation concerning (f, X, S, €;)

Proposition 4. Given a NAM f, an input x € R", and a perturbation radius €, € R, Alg.
performs O(log(n)) queries and returns a cardinal-minimal sufficient explanation.

Overall complexity results. By combining Alg. [2|with Alg.[d] we obtain a cardinal-minimal expla-
nation for (f, X, €,). This unified algorithm yields a substantial efficiency gain, reducing the worst-
case requirement of an exponential number of verification queries to only a logarithmic number of
(parallelized) queries. The first segment of these queries operate by running verification queries on
univariate components f; of the model, which are far smaller, and hence more efficient to verify
than direct queries to f. The resulting complexity bound is formalized in the following theorem:
Theorem 1. Running Alg. |2| and Alg. W| obtains a cardinal-minimal sufficient explanation with
O ((%)log(maxie[n] (ﬁga )) m O (10g( MaX;cpn] (5;3‘ )) queries to f;(-) components, plus
O(logn) queries to f(-). In contrast, standard algorithms require O(2™) verification queries to f(+)
Sor a cardinal-minimal explanation, or O(n) verification queries to f(-) for only a subset-minimal
explanation.

5 EVALUATION

Experimental Setup. We implemented our main algorithmic approach (Alg. 2] followed by Alg.
using a-3-CROWN as the backend verifier, the current state-of-the-art in neural network verifica-
tion (Wang et al., [2021; [Zhou et al., 2024} [Kotha et al., |2023}; Brix et al.| 2024} (Chiu et al., [2025).
We conducted extensive experiments on four widely used tabular-data benchmarks in the context of
NAMs (Agarwal et al., [2021} Radenovic et al., [2022): (i) Breast Cancer, (ii) CREDIT, (iii) FICO
HELOC, all of which are prominent in safety-critical domains. We adopted the same model architec-
tures as prior work in the NAM literature (Agarwal et al.,|2021; [Radenovic et al., 2022)). Evaluation
details, additional experiments, and ablation studies are in Appendix @}

5.1 OUR ALGORITHM VS. PREVIOUS ALGORITHMS

We begin by comparing our results with prior algorithms proposed in the literature for obtaining
provably minimal sufficient explanations. Since our method targets the much stronger notion of
(globally) cardinal-minimal sufficient explanations for the first time, any naive baseline — that com-
putes such explanations by exhaustively enumerating all 2" input subsets, verifies their sufficiency,
and selects the one with the smallest cardinality — would not finish with reasonable timeouts. Thus,
we compare our approach to the more scalable task of finding (locally) subset-minimal explana-
tions, a weaker notion of minimality, using the standard greedy algorithm employed by previous
works (Wu et al.,|2023; Bassan et al., [2025a}; [Izza et al.,|2024; Ignatiev et al.}2019;La Malfa et al.,
2021) (Alg.[I). Because subset-minimal explanations depend on feature orderings, we consider two
setups: (i) a basic lexicographic ordering of features, and (ii) a more sophisticated reverse-sensitivity
ordering, following prior approaches (Wu et al., 2023} Bassan et al., [2025a} Izza et al.| [2024; [Wu
et al., [2024).
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Table 1: Comparison of average explanation size and computation time.

Breast Cancer CREDIT FICO HELOC
Method Size (1) Time [s] ({) Size (1) Time [s] ({) Size (1) Time [s] ({)
Ours 4.00+4.24 35.60+1.34 3.76+£2.62 132.67+36.76 5.59+1.80  317.92+222.07
Lexicographic 16.58+5.44  634.92+77.23 12.42+6.45 473.63£128.38 15.60+7.53 146.16+188.07
Sensitivity 16.274+5.57  636.79+87.44 3.82+1.84  407.93+126.63 9.45+5.90  250.09+148.44
(a) Breast Cancer (b) CREDIT (c) FICO HELOC
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Figure 2: Explanation size over time for all datasets.

The results in Tab. [T|demonstrate that our proposed algorithm achieves substantial improvements in
both computation time and explanation size over previous algorithms. Beyond reducing explanation
size compared to standard subset-minimal explanation algorithms (which follows by necessity, since
we enforce a stronger notion of minimality), our method also achieves substantial runtime gains,
despite solving a much harder task. This advantage stems from our NAM-specific algorithm, which
requires only a logarithmic number of parallelized queries — rather than a linear number — executed
over univariate components f;, which are much faster to verify.

5.2 EXPLANATION PROGRESSION IN TIME

To further assess the advantages of our algorithm over prior methods, we analyze the explanation
sizes produced by our approach in comparison to subset-minimal methods and track their evolu-
tion over time. This analysis is illustrated in Fig.[2] The results show that while subset-minimal
approaches converge slowly and often stagnate in local minima. Our method — though it begins
later due to the preprocessing step in Alg. [2] which sorts features with only a logarithmic number
of parallelized queries — quickly outpaces them once sorting is complete. At this point, it requires
significantly fewer queries, relying only on a binary search over the sorted features as in Alg.
This second phase is not only substantially faster but also provably attains the cardinal-minimal
explanation, i.e., the global optimum, unlike subset-minimal approaches.

5.3 COMPARISON TO PURELY SAMPLING-BASED METHODS

NAMs are generally viewed as very interpretable as their univariate functions f; for each feature al-
low for simple visualizations (such as in Fig.[T). Most commonly, these visualizations are obtained
through sampling over the respective feature domain to get a good approximation of each univariate
function. However, we show in this experiment that this discretization through sampling and the
resulting interpretations can be misleading. Peaks and other extrema that are missed through sam-
pling can lead to insufficient explanations, which can be fatal in safety-critical domains. An extreme
case is abstractly depicted in Fig.[Tp, but we have also observed insufficient explanations in practice.
To demonstrate this, we evaluate 1,000 evenly-spaced samples instead of each verification query.
After the explanations are generated, we test their sufficiency using o, 3-CROWN (Tab. [2): On the
CREDIT and FICO HELOC datasets, more than half of the explanations obtained through sampling
could not be verified. In contrast, all our explanations are sufficient by construction.
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Table 2: Comparison against a purely sampling-based approach.

CREDIT FICO HELOC
Method Size (}) Time [s] () Sufficiency [%] (1) Size (}) Time [s] (}) Sufficiency [%] (1)
Ours 3.76+£2.62 132.67+36.76 100.00 5.59+1.80 317.924222.07 100.00
Sampling 2.67+3.10 5.10+0.26 31.37 3.04+3.05 6.891+2.57 25.49

6 RELATED WORK

Formal XAI Our work relates to the field of formal XAI (Marques-Silval 2023)), which seeks ex-
planations with provable guarantees. Prior efforts have developed sufficient explanations for models
such as decision trees (Huang et al.| 2021; Bounia & Koriche} 2023), linear models (Marques-Silva
et al.| 2020; [Subercaseaux et al., [2025)), monotonic classifiers (Marques-Silva et al., [2021)), and tree
ensembles ([zza & Marques-Silva, 2021; Ignatiev et al., 2022;|Audemard et al.}[2022;[2023)). Closer
to our setting are works on minimal sufficient explanations for neural networks (La Malfa et al.,
2021; [Wu et al.| 2023} [[zza et al.| [2024; Bassan et al., 2025a)), which rely on neural network veri-
fication queries. While such verifiers have become more scalable in recent years, computing such
explanations is still costly, often requiring many (linear or exponential) verification queries (Ignatiev
et al.,[2019). Our method takes a first step toward reducing this cost by focusing on neural network
families with interpretable structure, and in particular on NAMs.

Neural Additive Models (NAMs). NAMs extend Generalized Additive Models (GAMs) (Hastie,
2017; Nelder & Wedderburn, [1972)), a classic interpretable family of ML models (Caruana et al.,
2015} [Zhong et al., [2023} |Liu et al., 2022} Bordt & von Luxburg, [2023 [Enouen & Liul 2025} |(Chen
et al.l 2020), by replacing each univariate component with a neural network, thereby combining in-
terpretability with expressivity. First introduced by (Agarwal et al., | 2021)), NAMs achieved compet-
itive accuracy on tabular tasks and were applied in healthcare and COVID-19 modeling. Subsequent
works suggested potential refinements of their training and architecture (Radenovic et al.| 2022}
Chang et al., 2021} Bouchiat et al.| [2024; [Xu et al.,2023)) and proposed additional variants (Bechler-
Speicher et al., 2024} [Jiao et al.||[2024)) and applications (Thielmann et al., [2024)).

7 LIMITATIONS

Like all methods that obtain provably minimal and sufficient explanations, our approach depends
on invoking neural network verification queries, which do not yet scale to state-of-the-art models.
Still, neural network verification has advanced rapidly in recent years (Brix et al., [2024), and the
scalability of our approach will improve alongside it. Importantly, our method offers two substan-
tially critical improvements: (i) it reduces the number of queries from exponential (or linear, in
relaxed tasks) to logarithmic, and (ii) it operates on univariate components f;, where verification is
far cheaper since the certified models are small and more interpretable by design compared to the
entire large model f. Together, these make our algorithm far more practical for NAMs, and we show
that it indeed efficiently produces explanations on standard benchmarks where prior algorithms fail.

8 CONCLUSION

Provably minimal and sufficient explanations represent a highly desirable goal in explainability,
as they offer certifiable guarantees on both faithfulness and conciseness. For standard neural net-
works, however, this task is computationally prohibitive, requiring an exponential number of verifi-
cation queries. We present a NAM-specific algorithm that reduces the complexity from exponential
to logarithmic parallelized queries, achieving dramatic gains in both speed and explanation size.
Moreover, we show that these explanations reveal insights into NAMs that sampling-based methods
cannot capture. Our work thus makes provable explanations feasible in practice and opens the door
to extending them across other interpretable neural network families.



Under review as a conference paper at ICLR 2026

REFERENCES

Federico Adolfi, Martina Vilas, and Todd Wareham. The Computational Complexity of Circuit
Discovery for Inner Interpretability. In Proc. 13th Int. Conf. on Learning Representations (ICLR),
2025.

Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich, Rich Caruana,
and Geoffrey E Hinton. Neural Additive Models: Interpretable Machine Learning with Neural
Nets. Advances in neural information processing systems (NeurlPS), 34:4699-4711, 2021.

Marcelo Arenas, Pablo Barcel6, Miguel Romero Orth, and Bernardo Subercaseaux. On Computing
Probabilistic Explanations for Decision Trees. In Proc. 35th Int. Conf. on the Advances in Neural
Information Processing Systems (NeurlPS), pp. 28695-28707, 2022.

Gilles Audemard, Steve Bellart, Louenas Bounia, Frédéric Koriche, Jean-Marie Lagniez, and Pierre
Marquis. Trading Complexity for Sparsity in Random Forest Explanations. In Proc. 36th AAAI
Conf. on Artificial Intelligence, pp. 5461-5469, 2022.

Gilles Audemard, Jean-Marie Lagniez, Pierre Marquis, and Nicolas Szczepanski. Computing Ab-
ductive Explanations for Boosted Trees. In Proc. Int. Conf. on Artificial Intelligence and Statistics
(AISTATS), pp. 46994711, 2023.

P. Barcel6, M. Monet, J. Pérez, and B. Subercaseaux. Model interpretability through the lens of
computational complexity. Advances in Neural Information Processing Systems (NeurlPS), pp.
15487-15498, 2020a.

Pablo Barcel6, Mikaél Monet, Jorge Pérez, and Bernardo Subercaseaux. Model Interpretability
Through the Lens of Computational Complexity. Proc. 33rd Int. Conf. on Advances in Neural
Information Processing Systems (NeurlPS), pp. 15487-15498, 2020b.

Shahaf Bassan and Guy Katz. Towards Formal XAI: Formally Approximate Minimal Explanations
of Neural Networks. In Proc. 29th Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pp. 187-207, 2023.

Shahaf Bassan, Guy Amir, and Guy Katz. Local vs. Global Interpretability: A Computational
Complexity Perspective. In Proc. 41st Int. Conf. on Machine Learning (ICML), pp. 3133-3167,
2024.

Shahaf Bassan, Yizhak Yisrael Elboher, Tobias Ladner, Matthias Althoff, and Guy Katz. Explaining,
Fast and Slow: Abstraction and Refinement of Provable Explanations. In Forty-second Interna-
tional Conference on Machine Learning (ICML), 2025a.

Shahaf Bassan, Ron Eliav, and Shlomit Gur. Explain Yourself, Briefly! Self-Explaining Neural
Networks with Concise Sufficient Reasons. In Proc. 13th Int. Conf. on Learning Representations
(ICLR), 2025b.

Maya Bechler-Speicher, Amir Globerson, and Ran Gilad-Bachrach. The Intelligible and Effective
Graph Neural Additive Network. Advances in Neural Information Processing Systems (NeurlPS),
37:90552-90578, 2024.

Sebastian Bordt and Ulrike von Luxburg. From Shapley Values to Generalized Additive Models and
Back. In International Conference on Artificial Intelligence and Statistics, pp. 709-745, 2023.

Kouroche Bouchiat, Alexander Immer, Hugo Yeche, Gunnar Ratsch, and Vincent Fortuin. Improv-
ing neural additive models with bayesian principles. In International Conference on Machine
Learning (ICML), pp. 4416-4443,2024.

Louenas Bounia and Frederic Koriche. Approximating Probabilistic Explanations via Supermodular
Minimization. In Proc. 39th Int. Conf. on Uncertainty in Artificial Intelligence (UAI), pp. 216—
225, 2023.

Christopher Brix, Stanley Bak, Taylor T Johnson, and Haoze Wu. The fifth international verifica-
tion of neural networks competition (VNN-COMP 2024): Summary and results. arXiv preprint
arXiv:2412.19985, 2024.

10



Under review as a conference paper at ICLR 2026

Brandon Carter, Jonas Mueller, Siddhartha Jain, and David Gifford. What Made You Do This?
Understanding Black-Box Decisions with Sufficient Input Subsets. In Proc. 22nd Int. Conf. on
Artificial Intelligence and Statistics (AISTATS), pp. 567-576, 2019.

Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad. Intelli-
gible Models for Healthcare: Predicting Pneumonia Risk and Hospital 30-day Readmission. In
Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and
data mining, pp. 1721-1730, 2015.

Chun-Hao Chang, Rich Caruana, and Anna Goldenberg. Node-gam: Neural generalized additive
model for interpretable deep learning. In International Conference on Learning Representations
(ICLR), 2021.

Hong Chen, Yingjie Wang, Feng Zheng, Cheng Deng, and Heng Huang. Sparse Modal Additive
Model. IEEE Transactions on Neural Networks and Learning Systems, 32(6):2373-2387, 2020.

Hong-Ming Chiu, Hao Chen, Huan Zhang, and Richard Y Zhang. Sdp-crown: Efficient bound
propagation for neural network verification with tightness of semidefinite programming. In Forty-
second International Conference on Machine Learning, 2025.

Adnan Darwiche and Auguste Hirth. On the Reasons Behind Decisions. In Proc. 24th European
Conf. on Artifical Intelligence (ECAI), pp. 712720, 2020.

James Enouen and Yan Liu. InstaSHAP: Interpretable Additive Models Explain Shapley Values
Instantly. In The Thirteenth International Conference on Learning Representations (ICLR), 2025.

Trevor J Hastie. Generalized additive models. In Statistical models in S, pp. 249-307. Routledge,
2017.

Xuanxiang Huang, Yacine Izza, Alexey Ignatiev, and Joao Marques-Silva. On Efficiently Explaining
Graph-Based Classifiers. In Proc. 18th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR), 2021.

Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. Abduction-Based Explanations for
Machine Learning Models. In Proc. AAAI Conf. on Artificial Intelligence, pp. 1511-1519, 2019.

Alexey Ignatiev, Yacine Izza, Peter Stuckey, and Joao Marques-Silva. Using MaxSAT for efficient
explanations of tree ensembles. In Proc. 36th AAAI Conf. on Artificial Intelligence, pp. 3776—
3785, 2022.

Yacine Izza and Joao Marques-Silva. On Explaining Random Forests with SAT. In Proc. 30th Int.
Joint Conf. on Artifical Intelligence (IJCAI), 2021.

Yacine Izza, Xuanxiang Huang, Antonio Morgado, Jordi Planes, Alexey Ignatiev, and Joao Marques-
Silva. Distance-Restricted Explanations: Theoretical Underpinnings & Efficient implementation.
In Proc. 21st Int. Conf. on Principles of Knowledge Representation and Reasoning (KR), pp.
475-486, 2024.

Yining Jiao, Carlton J Zdanski, Julia S Kimbell, Andrew Prince, Cameron Worden, Samuel Kirse,
Christopher Rutter, Benjamin Shields, William Dunn, Jisan Mahmud, et al. NAISR: A 3D Neural
Additive Model for Interpretable Shape Representation. In International Conference on Learning
Representations (ICLR), 2024.

Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
Efficient SMT Solver for Verifying Deep Neural Networks. In Proc. 29th Int. Conf. on Computer
Aided Verification (CAV), pp. 97-117, 2017.

Young Kyung Kim, Juan Matias Di Martino, and Guillermo Sapiro. Generalizing Neural Additive
Models via Statistical Multimodal Analysis. Transactions on Machine Learning Research, 2024.

Suhas Kotha, Christopher Brix, J. Zico Kolter, Krishnamurthy Dvijotham, and Huan Zhang. Prov-
ably bounding neural network preimages. volume 36, pp. 80270-80290, 2023.

11



Under review as a conference paper at ICLR 2026

Emanuele La Malfa, Agnieszka Zbrzezny, Rhiannon Michelmore, Nicola Paoletti, and Marta
Kwiatkowska. On Guaranteed Optimal Robust Explanations for NLP Models. In Proc. Int. Joint
Conf. on Artificial Intelligence (IJCAI), pp. 2658-2665, 2021.

Jiachang Liu, Chudi Zhong, Margo Seltzer, and Cynthia Rudin. Fast Sparse Classification for Gen-
eralized Linear and Additive Models. Proceedings of machine learning research, 151:9304, 2022.

Scott M. Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions. In Proc.
30th Int. Conf. on Advances in Neural Information Processing Systems (NeurIPS), 2017.

J. Marques-Silva, T. Gerspacher, M. Cooper, A. Ignatiev, and N. Narodytska. Explaining Naive
Bayes and Other Linear Classifiers with Polynomial Time and Delay. In Proc. 33rd Int. Conf. on
Advances in Neural Information Processing Systems (NeurlPS), pp. 20590-20600, 2020.

Joao Marques-Silva. Logic-Based Explainability in Machine Learning. In Reasoning Web. Causal-
ity, Explanations and Declarative Knowledge: 18th Int. Summer School 2022, Berlin, Germany,
September 27-30, 2022, Tutorial Lectures, pp. 24—104. 2023.

Joao Marques-Silva and Alexey Ignatiev. Delivering Trustworthy Al Through Formal XAI. In Proc.
36th AAAI Conf. on Artificial Intelligence, pp. 12342-12350, 2022.

Joao Marques-Silva, Thomas Gerspacher, Martin Cooper, Alexey Ignatiev, and Nina Narodytska.
Explanations for monotonic classifiers. In Proc. 38th Int. Conf. on Machine Learning (ICML),
pp. 7469-7479, 2021.

John Ashworth Nelder and Robert WM Wedderburn. Generalized Linear Models. Journal of the
Royal Statistical Society Series A: Statistics in Society, 135(3):370-384, 1972.

Filip Radenovic, Abhimanyu Dubey, and Dhruv Mahajan. Neural Basis Models for Interpretability.
Advances in Neural Information Processing Systems (NeurIPS), 35:8414-8426, 2022.

M. Ribeiro, S. Singh, and C. Guestrin. “Why Should I Trust You?" Explaining the predictions of
any classifier. In Proc. 22nd Int. Conf. on Knowledge Discovery and Data Mining (SIGKDD), pp.
1135-1144, 2016.

M. Ribeiro, S. Singh, and C. Guestrin. Anchors: High-Precision Model-Agnostic Explanations. In
Proc. 32nd AAAI Conf. on Artificial Intelligence, 2018.

Marco Silzer and Martin Lange. Reachability is NP-Complete even for the Simplest Neural Net-
works. In Proc. 15th Int. Conf. on Reachability Problems (RP), pp. 149-164, 2021.

Bernardo Subercaseaux, Marcelo Arenas, and Kuldeep Meel. Probabilistic Explanations for Linear
Models. In Proc. 39th AAAI Conference on Artificial Intelligence, pp. 20655-20662, 2025.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic Attribution for Deep Networks. In
Proc. 34th Int. Conf. on Machine Learning (ICML), pp. 3319-3328, 2017.

Anton Frederik Thielmann, René-Marcel Kruse, Thomas Kneib, and Benjamin Sifken. Neural
additive models for location scale and shape: A framework for interpretable neural regression
beyond the mean. In International Conference on Artificial Intelligence and Statistics, pp. 1783—
1791, 2024.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J. Zico Kolter.
Beta-Crown: Efficient Bound Propagation with Per-Neuron Split Constraints for Neural Network
Robustness Verification. In Proc. 34th Int. Conf. on Advances in Neural Information Processing
Systems (NeurIPS), pp. 29909-29921, 2021.

Min Wu, Haoze Wu, and Clark Barrett. Verix: Towards Verified Explainability of Deep Neural Net-
works. Proc. 36th Int. Conf. on Advances in Neural Information Processing Systems (NeurlPS),
2023.

Min Wu, Xiaofu Li, Haoze Wu, and Clark Barrett. Better Verified Explanations with Applications
to Incorrectness and Out-of-Distribution Detection. arXiv preprint arXiv:2409.03060, 2024.

12



Under review as a conference paper at ICLR 2026

Shiyun Xu, Zhiqi Bu, Pratik Chaudhari, and Ian J Barnett. Sparse neural additive model: Inter-
pretable deep learning with feature selection via group sparsity. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pp. 343-359, 2023.

Wei Zhang, Brian Barr, and John Paisley. Gaussian Process Neural Additive Models. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 38, pp. 16865-16872, 2024.

Chudi Zhong, Zhi Chen, Jiachang Liu, Margo Seltzer, and Cynthia Rudin. Exploring and Interact-
ing with the Set of Good Sparse Generalized Additive Models. Advances in neural information
processing systems (NeurIPS), 36:56673-56699, 2023.

Duo Zhou, Christopher Brix, Grani A Hanasusanto, and Huan Zhang. Scalable neural network ver-
ification with branch-and-bound inferred cutting planes. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024.

13



Under review as a conference paper at ICLR 2026

Appendix

The appendix contains all proofs, optimizations, additional settings, and additional experiments that
were mentioned throughout the paper:

Appendix [A] contains the proofs of Prop. [T]to

Appendix Bfcontains a theoretical discussion and practical optimizations on the importance sorting.
Appendix |C|contains extensions to multi-class classification and regression tasks.

Appendix [D|contains all experimental details and ablation studies.

Appendix [E] contains an LLM usage disclosure.

A  PROOFS

A.1 PROOF OF PROPOSITION[]]

Proposition 1. Given a NAM f, an input x € R™ and a perturbation radius €, € R, let Alg. [Z]
return a total list order over the input features according to their importance. Then, the following
holds: for any sufficient explanation S that includes feature i, and for any feature j & S such that
i < j in the list ordering, the set S\ {i} U {j} is also a sufficient explanation.

Proof. We recall that we have assumed in Alg. [2| that f(x) yields a positive prediction, i.e., it is
classified as 1. Accordingly, the final list of bounds [(Aly, Auy), (Aly, Aug), ..., (Al,, Auy)] is
derived by taking the minimum possible value of each f;(X;) and computing lower and upper bounds
for fi(X(s)) — fi(Xs). The proof we present applies symmetrically to the case where the prediction
is negative: in that case, we instead take the maximum value of f;(X;) and bound f;(X;) — fi(Xs)).
We defer a detailed discussion of that case to later. Since we are assuming f(x) > 0, the condition
that S is a sufficient explanation with respect to (f, X, €,,) means that:

VX € B (x). f(xs;Xs)

min f(xs;Xg)
XEB,P (x)

>
> 3)

0 <=
0

The value of f(xs;X3) is obtained by fixing the features in S to x and perturbing the complementary
features S to values from x. Owing to this construction, and to the additive form of the NAM f,
which can be expressed as f(x) 1= >_,,,) f:(X¢), we can establish the following statements:

ZAlt_ fe(xt) min th Xt) <2Aut <—

teS B (9 (5 teS
ZAlt < Z ft Xt m{l}l)l ft Xt + Z ft Xt ft(xt)) < ZAUt <
tes tes (x) tes tes @
STALSY FR) =Y fx) =D min (%) ) <> Ay =
teS t€ln] tes teS xeB,” teS
Zﬁltg(f(x)— min  f(xs;X3)) <ZAut
€p
tes XeB," (%) tes

Given our earlier assumption in Equation |3} we know that ), s Au; > 0. Now define & :=
SU{j}\ {i}. By applying the same line of reasoning as before, we obtain:

Z Al < (f(x) — min  f(xs;Xg)) Z Auy =

€p
teS’ XeBy” (x) teS’

ZAZt + Alj —Al; < (f(x) = min f(xs;Xg)) < ZAAut + Auj — Au,.

o en
teS XeBy” (x) teS

(&)

14



Under review as a conference paper at ICLR 2026

Since we assume that ¢ < j in the ordering of [(All, Aul) (Aly, Aug) ., (Al,, Au,)] and that
the bounds are non-intersecting, it follows that Al — Al; > 0and Auj Aul > 0. Consequently,
we obtain that (f(x) —ming Brx S (xs7;%g/)) is bounded both above and below by smaller values

than (f(x) — ming

%€ B (x) f(xs, X5)). This in turn implies that:

(f(x) = min f(xs;Xs)) = (f(x) = min f(xs;X5)) <0 <

XEB,P (x) XEB,P (x)
(6)
min  f(xs;Xg) — min f(xs;Xg) < 0.
XEB,P (x) XEB,P (x)

Moreover, since ming per () f(xs;X3) is non-negative by Equation 3| it follows that:

min  f(Xs;Xg/) > min  f(xs;Xg) >0 =
XEB,P (x) XEB,P (x) 7)

VX € B;p( ) f(Xg/;f(g/) > 0.

which establishes that S” constitutes a sufficient explanation for (f,x, €,), thereby concluding this
part of the proof.

We now turn to the symmetric case, where f(x) < 0. In this setting, Alg. is applied symmetrically
by taking the maximum admissible value of each f;(X;) and deriving corresponding upper and lower
bounds for f;(X;)— fi(X(;))- [(Aly, Auy), (Aly, Auy), ..., (Al,, Auy,)] is now sorted in descending
importance values, instead of ascending. Given the assumption that f(x) < 0, the requirement that
S constitutes a sufficient explanation with respect to (f, X, €,) can be expressed as:

Vx € Bpr(x). f(xs;Xg) <0 <
max f(xs;Xg5) < 0. ®)
XEB,P (x)

Analogous to the earlier case, leveraging the additive structure of the NAM f, which can be written
as f(X) := > 4cpn) fe(Xe), together with the definitions of f(xs;Xz) and of the bounds Al; and Au;,
we can derive the following chain of statements:

ZAlt < Z max ft Xt) ft(Xt)) S ZAA’LLt e

REBLP (x)

teS teS teS
ZAlt < Z max fe(xe) — fe(xe)) + Z(ft(xt) — fi(xt)) < ZAAW —
teS tes p’ () tes teS )
ZAlt < Z max ft Xt + th Xt Z ft(xt) S ZAA’LLt e
teS tes XEB" (¥ tes ten] teS
ZAZt < ( max f(xs;Xg)— ) < ZAUt
ol XEB,P (x)
teS teS

Since we know that ), s Auy > 0, and by defining S’ := S U {;j} \ {i} as before, we can now
derive that:

Z Al < (~Erggpx( )f(xsl;ig,) —f(x) < Z Ay =
P tes’ ) (10)

ZAAlt + Al — Alj < ((max  f(xs;Xg) — f(x)) < ZAAut + Au; — Au;.
teS XEB,” (x) teS

As before, since we assume i < j in the ordering of [(Aly, Auy), (Aly, Aug), ..., (Al,, Auy,)),

and given that the bounds are non-intersecting, together with our assumption that this list is sorted
by decreasing values, it follows that Al; — Al; > 0 and Au; — Au; > 0. Consequently, we obtain
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a different outcome: namely, maxg, per () (f(xs;Xg) — f(x)) is bounded above and below by

strictly larger values than maxg v () (f(xs;Xg5) — f(x)). This in turn implies that:

(max f(xsriks) — f(x) = ( max f(xsiks) — f(x) <0 =
xe B, (x) XEB,P (x)
- - (D
max f(xs;Xg)— max f(xs;Xg) <O0.
XEB.P (x) XEBLP (x)

Moreover, since Equation [8|ensures that MaXge per (x) f(xs;X3) is negative, we obtain:

max f(Xg/;igl) < max f(Xg;f(g) <0 =
REBLP (x) %€BP (x) (12)

Vx € B;p(X). f(XS’§iS/) < 0.

This establishes that S’ is a sufficient explanation for {f, X, €,). With this, the negative case for f(x)
is resolved, and together with the positive case, the proof is complete.

O

A.2 PROOF OF PROPOSITION 2]

Proposition 2. Given a NAM f, an input x € R", and a perturbation radius €, € R, Alg.
performs O(n) queries and returns a cardinal-minimal sufficient explanation. This stands in contrast
to Alg.[I} which is only guaranteed to return a subset minimal sufficient explanation.

Proof. We begin by noting that the algorithm proceeds iteratively, making |n| calls to the query
suff(f, x, S \ {i}, €p). Each such query can be encoded using a neural network verifier, which
implies that the algorithm requires O(n) invocations in total. We now turn to proving that Alg.
indeed produces a cardinal-minimal sufficient explanation with respect to (f,x,¢,). First, let us
prove that Alg. [3| provides a valid sufficient explanation. This result is straightforward since the last
condition that is checked is that: suff(f, x, S\ {#}, €,), and after this condition is met S is updated
to be S\ {i} and is returned. Hence, by definition, the sufficiency of the returned subset is satisfied.

We will now demonstrate that the generated set S is a cardinal-minimal sufficient explanation with
respect to (f,X, €,). Let 1 < ¢ < n represent the last feature added to S in line 2?2 of Alg. Then,
for S’ := S\ {¢}, it follows that: suff(f, x, S’, €,) does not hold true, implying that S" is not a
sufficient explanation for (f, X, ;). We begin by proving a first lemma that will help us proving our
proposition:

Lemma 1. Given a NAM f, let Alg. return the sorted, non-intersecting list of pairs:
[(Aly, Auy), (Aly, Aus), ..., (Al,, Auy,)]. Then, the following holds: if S that denotes the top
|S| features ordered by [(Aly, Auy), (Aly, Auy), ..., (Al,, Auy)] is not a sufficient explanation
concerning (f,x, €,), then any subset S’ C [n] of size |S| is also not a sufficient explanation con-
cerning (f,x,€p).

Proof.  We begin by noting that S C [n] is not a sufficient explanation with respect to
(f,X,€p). Assume, for contradiction, that there exists some S’ # S of the same cardinality
as S that is a sufficient explanation with respect to (f,x,¢,). Since both S and S’ have equal
size, we can map each feature in S’ with one in S according to their position in the ordering

[(Aly, Auy), (Aly, Aug), ..., (Aly, Auy)].

By definition, S consists of the top |S| features in this ordering. Consequently, under the mapping,
each feature in S’ is mapped to a feature of strictly higher or equal rank in S. Now consider a
sequence of replacements: at each step, replace a feature of S’ with its corresponding equivalent
or higher-ranked feature from S. Prop.[I]ensures that each such replacement preserves sufficiency,
since a “lower-ranked” feature is being swapped for a “higher-ranked” one. Iterating this process
eventually transforms S’ into S, while preserving sufficiency throughout. Thus, S must itself be a
sufficient explanation with respect to (f, X, ¢,) — contradicting the initial assumption that it is not.
This completes the proof.
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O

From Lemma |1} since the features in S’ \ {¢} are the features with the highest |S'| = |S| — 1
orderings, it holds that any subset 8" C [n] of size |S’| is not a sufficient explanation. To conclude
the remaining parts of our proof, we now will make use of another lemma:

Lemma 2. Let there be some f, x, and €. Then if S € [n] is not a sufficient explanation concerning
(f,x,€p), then any S” C S is not a sufficient explanation w.r.t (f,x, €,).

Proof. If S C [n] is not a sufficient explanation with respect to (f, X, ¢,), then:

Jz € Br(x). f(xs;zg) # f(x). (13)

Assume, towards contradiction, that there exists some S’ C S which is a sufficient explanation. In
other words:

ke By (x). flxsiks) = f(x). (14)

However, consider a vector z’ obtained by fixing the features in S’ to x, the features in S \ S also to
X, and setting all remaining coordinates according to z. By the earlier implication from Equation [T4}
we must then have that: f(xs/;2s,) # f(x) and this contradicts the assumption that S’ is sufficient
(Equation [T3).

O

We now proceed with the remaining part of proving our proposition. Since we know that there is
no explanation of size |S’| = |S| — 1 concerning (f, X, €,) from the previous part of the proof, we
now can use the result in Lemma to conclude that none of the subsets of these subsets of size |S’|
is not a sufficient explanation too, which implies that there does not exist any explanation of size
lower or equal to |S’| — 1 which is a sufficient explanation of (f, X, €,), which proves that S is a
cardinal-minimal sufficient explanation, hence concluding the proof.

O

A.3 PROOF OF PROPOSITION[3]

Proposition 3. Given p parallelized processors, Alg. |2} performs an overall number of T,(n) =

&i &i
fi(-) component, where & := min{|Al; ;1 — Aug|, |AlL; — Aui_q]}.

(9((%)log(maxie[n](ﬂi_“")) }H—n> O(log(maxie[n](ﬂ"’__““)) calls to the verifier, each on a

Proof. The algorithm terminates once no two univariate functions f; and f; have overlapping
bounds. Because the procedure relies on binary search, each phase divides the current interval into
two. Initially, the gap between the upper and lower bounds for a feature 7 is exactly a; — f;(X(;))-
The precision achieved for feature i is limited by the smaller of the two distances: either the distance
to the bound of the feature directly above it in the ordering (¢ + 1) or the one directly below it ( — 1).
Accordingly, we denote the overall precision for feature ¢ by &; as:

fi = min{|Ali+1 - AA’U,1|, |AAlz - AA’U/i_l‘}. (15)

Overall, given the binary-search procedure, where the interval is split at each iteration, we define the
number of splits k; performed for a single feature i as:

Bi — oy
ki

kigcf)(log(ﬁig%)-

Consequently, the feature on which the maximum number of splits is carried out, denoted by kax,
is:

<& =
(16)
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B; —
kmazgo(g%(log( &O‘))). (17)

Each feature i € [n] is therefore bounded by at most k., verification queries. Consequently, the
total workload is upper bounded by n - k4., and when distributed across p threads, this yields the
following parallelized complexity result T, (n):

T,(n) < 0((%) Kmaz) < 0((%) 1og(§2%(%)). (18)

This completes the proof.

A.4 PROOF OF PROPOSITION[4]

Proposition 4. Given a NAM f, an input x € R", and a perturbation radius €, € R, Alg.
performs O(log(n)) queries and returns a cardinal-minimal sufficient explanation.

Proof. We will show that, given the ordering of features [(Aly, Auy), (Aly, Aus), .. ., (Al,, Auy,)]
there exists exactly one index i € [n] such that S = [i + 1] is a sufficient explanation while S’ = [i]
is not. Moreover, this statement holds for any ordering. Our proof follows as a consequence of a
lemma closely related to Lemma[2] which we restate and establish below:

Lemma 3. Let there be some f, x, and €,. Then if S € [n] is a sufficient explanation concerning
(f,x,€p), then any S’ for which S C S’ is also a sufficient explanation w.r.t (f,x, €p).

Proof. This follows directly from Lemma Since S is known to be a sufficient explanation,
assume for contradiction that there exists some S’ C [n] with S C S’ such that S’ is not a sufficient
explanation. By Lemma[2} this would imply that no subset S” C S’ could be a sufficient explanation
— contradicting the fact that S C S’ is sufficient.

O

To conclude the proof of the proposition, consider iterating over the features sequentially according
to their ordering. We begin with the empty set () and test whether it is a sufficient explanation with
respect to (f, X, €,). If it is not, we proceed by adding features one at a time: first {1}, then {1,2},
then {1, 2, 3}, and so forth. Eventually, we encounter some feature ¢ € [n] such that [¢] is sufficient
with respect to (f, X, €,). By Lemmal3| any S satisfying [i] C S is also sufficient. Hence, the unique
transition from insufficiency to sufficiency occurs between [i — 1] and [i], and there can be no later
index j > 4 for which [j] reverts to being non-sufficient before becoming sufficient again.

Since we have already established this claim, it follows that the binary search in Alg. 4] which halts
upon identifying the first feature ¢ where [¢] is sufficient but [¢ — 1] is not, will return the same
subset as the iterative “naive” Alg.|3] which incrementally traverses features in a greedy manner and
outputs [¢]. Moreover, Prop. shows that Alg. always converges to a cardinal-minimal explanation.
Consequently, Alg. ] must also converge to this same cardinal-minimal explanation, but with only
O(log(n)) sufficiency checks rather than O(n). This completes the proof.

O

B ON THEORY AND PRACTICE OF IMPORTANCE SORTING

B.1 THEORETICAL LIMITS OF IMPORTANCE SORTING

We observe that, just as in any neural network verification task, where the derived bounds may
coincide exactly with the certification constraints, the same phenomenon can arise in our approach.
Hence, in principle, &; can be arbitrarily small and, in the corner case of the two networks having
the same deviation for the ball centered in a particular X(4), even zero. In such a case, the bounds
intervals never become disjoint using Alg.[2| and the preorder is not resolved into a total order.

18



Under review as a conference paper at ICLR 2026

However, if the networks do not behave identically, this only happens for finitely many isolated
points, hence with zero probability if we consider the input points X(;) drawn randomly from R.
For theoretical purposes, one could thus derive our logarithmic complexity bound for the expected
runtime independent of &;, which we refrain from both for presentation reasons and for the practical
irrelevance of the corner cases.

For all practical purposes, the required precision, the &;, and the respective timeout for this procedure
can be set according to the numerical precision of the verifiers or the machine precision due to
floating point arithmetics. Optimizations that partially overcome this limitation are also discussed

in Appendix

B.2 PRACTICAL OPTIMIZATIONS FOR IMPORTANCE SORTING

While analyzing the behavior of Alg. [2]in practice, we noticed that the algorithm makes unnec-
essarily many verifier calls in certain edge cases. We briefly mention these here, along with our
optimizations. As in Sec. we consider the case where f(z) = 1, which requires us to find
bounds [l;, u;] for the minimum value f;(z7;)) for each feature i € [n]. The case f(xz) = 1 follows

symmetrically.

Let us first consider the edge case where I; = fl(x’(*z)) In this case, Alg. 2| cuts the bounds in half
in each iteration towards /; but never reaches it. We commonly saw this behavior in the experiments
for irrelevant features where I; = f; (xa)) = 0 but w; > 0. If multiple features have such bounds

[0, u;], Alg. [2| struggles to find a total order until the timeout is reached, which is unfortunate given
it is due to features that barely contribute to the classification. However, we found that a simple
trick to overcome this issue is drawing samples X/(i), either drawn randomly from the domain or

use the counterexample returned by the verifier, and potentially reducing the domain by setting
u; = min{u;, fi(x(;))}. This works well in practice for the case [0,u;] on NAMs with ReLU

activations, as x’(i) just has to hit the same piece-wise linear region containing X>(ki)’ which gets
mapped to 0 through f;.

Similarly, if u; ~ f(x(;)*, the bounds get cut in half from the other direction. However, in this
case, randomly drawing samples no longer resolves it if u; # 0, or if non-ReLU activations are
applied. Here, it helps to directly test if u; — J can still be reached for some small § € R instead
of waiting until [; converges there. A good heuristic to switch to this test is if the verifier concludes
that f (xfi)) € [my, u;] but is unable to return a counterexample demonstrating this (as the verifier

has to hit u; more or less exactly given it’s close proximity to f (xz‘i))).

These two optimizations often reduce the number of verifier calls described in Prop. [2]to very few
verifier calls. In practice, we have seen that often only 3 verifier calls per feature are required to
determine the total ordering.

C EXTENSIONS TO ADDITIONAL SETTINGS

C.1 EXTENSION TO MULTI-CLASS CLASSIFICATION

For multi-class classification, let us assume the winner class t = f(z) = argmax;c( f;(X)
(Sec. @ Then, we can distinguish between two cases: (i) winner-vs.-all explanations, and (ii)
all pair-wise winner-vs.-one explanations, where each case can be reduced to a binary classification

task, where the new binary network in (i) is given by f(x) = f,(x) — max; f;(x), and for (ii) by
fi(x) = fi(x) — f;(x), j € [n], with the class 1 corresponding to the original winner class ¢. Then,
we can apply Alg. [Z]and Alg.[d]to generate the respective explanations.

C.2 EXTENSION TO REGRESSION
Let us assume we want to find the subset S that is sufficient to determine that the prediction will

always be larger than some deviation § € R to the original output (the same result for finding the
same guarantee for a prediction which is smaller will be symmetricly opposite). The first part of
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the algorithm will be identical to the case of binary classification with a positive outcome (the other
use-case will align with a negative outcome).

Algorithm 5 Regression: Parallel Interval Importance Sorting
Input: NAM f, input x € R", perturbation radius €, € R
1: for each feature ¢ € [n] in parallel do

2: Extract initial bounds «;, §3; for fi(X;) such that X;) € By” (x(;))
3: l; + oy, u; < Bz

4: while True do

6 if Verify( Vi(l) c B;p (X(,L))7 fz (iz) > m; )then

7 lz — m;

8: else

9: U; < My

10: end if

11: All — fZ(X(i)) —1; AUZ — fZ(X(z)) — U,

12: if for all ¢ # j it holds that: Awu; > Al; or Au; > Al; then
13: Break

14: end if

15: end while

16: end for

17: return arg sort([(Aly, Auy), ..., (Al,, Au,)]) in ascending order

Now we move on to the second part of the algorithm for the regression case:

Algorithm 6 Regression: Greedy cardinal-minimal Linear Explanation Search
Input: NAM f, input x € R", perturbation radius €, € R, output deviation § € Ry
1: S+ [n]

2: for each feature i € [n], ordered by Alg. d0 > suff(f, x, S, J, €,) holds
3: if suff(f, x, S\ {i}, 6, ¢,) then

4: S+ S\ {i}

5: end if

6: end for

7: return S > S is a cardinal-minimal explanation concerning (f, X, 9, €,)

which is the same algorithm we used for binary classification (Alg. [3), but where now the evaluation
of suff evaluates to checking whether fixing the feature subset S ensures that the output remains
larger than the original input by less than §. Given this results, this can be extended to our logarithmic
version (Alg.[) as well:

Algorithm 7 Regression: Greedy Cardinal-Minimal Logarithmic Explanation Search

Input: NAM f, input x € R", perturbation radius €, € R, output deviation § € R
1: F < total order of features (Alg.[5)

220+ 1;u+n

3: while [ # u do

4: m |

5: if suff(f, x, {F[1],... F[m]}, 0, €,) then
6: l<m

7: else

8: u+—m-—1

9: end if

10: end while
11: S+ {F[1],... F|m]}
12: return S > S is a cardinal-minimal explanation concerning (f, X, ¢, €,)
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Table 3: Varying perturbation radius € on all datasets.

Breast Cancer CREDIT FICO HELOC
€ Size (1) Time [s] ({) Size () Time [s] () Size (1) Time [s] ()

0.01 4.00£4.24  35.60£1.34 — — — —

0.1 4.45%3.98 115.084+73.48 1.79£1.07  76.76+88.21 2.77+£1.62 131.314+141.90
0.2 6.29£3.50 143.81£121.27 2.80+2.07  97.16+34.45 3.88+1.58 136.82+77.97
0.5 9.76£2.75 146.01+£64.76  3.76+2.62 132.67+36.76 5.59+1.80 317.92+222.07

D EXPERIMENTAL DETAILS AND ABLATION STUDIES

D.1 DATASET AND EXPERIMENTAL DETAILS

Datasets. We evaluate our approach on four widely used benchmark datasets (Agarwal et al., 2021}
Radenovic et al.| [2022). covering both classification and regression tasks. The Breast-Cancer dataset
contains 569 samples with 30 numeric features per sample. to classify tumors as malignant or
benign. The CREDIT dataset includes 1,000 samples with 20 attributes each, for assessing loan
repayment probability. The FICO HELOC dataset comprises 10,459 samples with 23 financial
and demographic features, for predicting creditworthiness. These datasets collectively allow us
to evaluate the performance and robustness of our method across different problem types, input
dimensions, and domain characteristics. Models. We trained 3 binary classification NAMSs on the
first three datasets, and a regression NAM on the last model. We follow the standard architectures in
(Agarwal et al.,|2021; Radenovic et al.,|[2022), and train for each feature a network with hidden layers
of size (64, 64, 32). The accuracy of the models for Breast Cancer, CREDIT, and FICO HELOC are
97.37%, 94.92%, and 69.02%, respectively.

Evaluation. All presented results are averaged over 50 samples with a time out of 600s, perturba-
tions are w.r.t to the {,,-norm on the normalized input and a perturbation radius ¢ = 0.5 is used if
not stated otherwise. We filtered trivial samples where, e.g., all features are returned as an expla-
nation. For the Breast Cancer dataset, we use € = 0.01 for an interesting comparison to the local
strategies. Our experiments are running on a Ubuntu 24.04 machine with 64GB RAM and 13th Gen
Intel(R) Core(TM) 17-1365U. The CREDIT experiments are run on a Ubuntu 24.04 machine with
a Intel(R) Xeon(R) Platinum 8380 CPU @ 2.30GHz and two NVIDIA A100-PCIE with 40GB. If
not otherwise specified, all experiments were limited to 32 CPU threads. In figures, we show the
median along with a shaded region depicting the 25/75% quantiles.

D.2 ABLATING THE PERTURBATION RADIUS

In formal XAI, the generated explanations heavily depend on the chosen perturbation radius €. In
Tab. 3] we show how the size and generation time of the explanation change with varying . Gener-
ally, the explanation size and the generation time increase with €, which is expected as previously ob-
tained minimal explanations indeed become insufficient and the verification queries become harder
to solve as € is increased. Please note that for ¢ = 0.01, insufficiently many samples for proper
averages were found where the explanation is non-trivial on CREDIT and FICO.

D.3 NUMBER OF PROCESSED FEATURES OVER TIME

In this experiment, we demonstrate how our approach — after the initial sorting phase — processes
the features much quicker to obtain a (globally) cardinal-minimal explanation, as it only requires a
logarithmic number of verification queries to do so. This even outperforms approaches that obtain
(locally) subset-minimal approaches, including the time needed to sort the features (Fig. [3).
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(a) Breast Cancer

(b) CREDIT

(c) FICO HELOC
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Figure 3: Number of processed features over time.

D.4 UNDERSTANDING THE PARALLELIZATION: ABLATING THE NUMBER OF PROCESSORS

A key factor influencing the runtime of our approach — particularly the sorting of univariate com-
ponent importances in Alg. 2]is the number of processors allocated for parallelizing the logarithmic
binary search. To assess this effect, we conducted an ablation study with varying processor counts.

Fig. [] illustrates the impact of parallelization
on both explanation size and computation time.
In particular, the time to sort the features ac- ‘
cording to their importance (Alg. [2) can be
reduced as the number of processors p in-
creases, as the bound refinement can be par-
allelized. In contrast, the subsequent expla-
nation generation (Alg. [) is barely impacted
by the number of processors p. Importantly,
even with only a single processor (i.e., no paral-
lelization), our algorithm still computes cardi-
nally-minimal explanations — a harder task than
subset-minimal ones — thus improving explana-
tion size and computation time by design (com-

pare to Fig.[2).

CREDIT

Explanation size

\ \
100 200
Time [s]

300

Figure 4: A comparison of explanation generation
with different number of processors p.

E DISCLOSURE: USE OF LARGE LANGUAGE MODELS (LLMS)

A large language model (LLM) was engaged solely as a writing aid to polish language and enhance
expression. It played no role in generating research ideas, designing the study, conducting the
analysis, or interpreting results. These aspects were performed entirely by the authors.
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