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Abstract: We develop a compact imaging system to enable simultaneous acquisition of the
spectral and depth information in real time. Our system consists of a spectral camera with
low spatial resolution and an RGB camera with high spatial resolution, which captures two
measurements from two different views of the same scene at the same time. Relying on an
elaborate computational reconstruction algorithm with deep learning, our system can eventually
obtain a spectral cube with a spatial resolution of 1920× 1080 and a total of 16 spectral bands in
the visible light section, as well as the corresponding depth map with the same spatial resolution.
Quantitative and qualitative results on benchmark datasets and real-world scenes show that our
reconstruction results are accurate and reliable. To the best of our knowledge, this is the first
attempt to capture 5D information (3D space + 1D spectrum + 1D time) with a miniaturized
apparatus and without active illumination.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

For decades, high dimensional imaging has attracted wide attention from both academia and
industry communities, among which spectrum and depth constitute two essential dimensions.
By capturing dozens of images in different electromagnetic bands, spectrum provides refined
information about texture and reflectance of an object, while depth describes the geometric
appearance of an object. Together they offer a nearly complete description of the target scene,
which facilitates object rendering with any given illumination and from any given perspective.
However, while stereo cameras are getting popular on smartphones, the acquisition of real-time,
high-resolution spectral images generally requires highly customized hardware. It can be predicted
that tremendous new applications would be opened up if fast and accurate spectral-depth imaging
can be realized with portable imagers that can be hand-held or easily integrated into consumer
electronics.
A few recent efforts have shown 3D imagers can be integrated with spectral imagers for

capturing high dimensional characteristics of the target scene, e.g., 3D imaging spectroscopy [1],
cross-modal stereo [2], and 5D hyperspectral imaging [3]. These pioneer works explored the
joint imaging of spectrum and depth and made encouraging progresses in this field. However,
directly combining one 3D imager and one spectral imager as in previous works is brute-force,
which either involves high-complexity spectral imager (e.g., CASSI) [1,2] or active illumination
based depth imager [1,3]. The resulting systems are thus not convenient to carry on or sensitive
to ambient light, both prohibiting the outdoor usage. Moreover, existing spectral-depth imagers
suffer from a limited resolution either in spatial or temporal dimension.

In this paper, we propose a novel compact system for spectral-depth imaging in real time and
with high resolution. Our system consists of an off-the-shelf spectral camera with low spatial
resolution (LR) and an RGB camera with high spatial resolution (HR), which captures two
measurements from two different views of the same scene at the same time, as shown in Fig. 1.
We then propose a novel two-stage scheme for jointly reconstructing a high-resolution spectral
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cube along with a depth map from the above one-shot measurements. The first stage is conducted
as follows. The obtained LR spectral measurement is super-resolved to the same spatial resolution
as the RGB measurement, and the output is called SR-spectral cube. The SR-spectral cube is
then synthesized into an RGB image to estimate a disparity map with the cooperation of the HR
RGB measurement. Before disparity estimation, a color transfer operation is performed here to
eliminate the color inconsistency between the synthesized RGB and the HR RGB measurement.
Once the disparity is obtained, the second stage is to warp the RGB measurement to the view
of the SR-spectral cube, i.e., they are aligned pixel to pixel. With the guidance of the aligned
RGB information, the SR-spectral cube can be further enhanced on texture details. Since deep
learning has demonstrated the strong capability of modeling the highly non-linear mapping in
related problems and achieved promising performance as well as fast inference speed during test
time, we implement the above super-resolution, disparity estimation, and texture enhancement
procedures through deep neural networks tailored for these tasks. External spectral and stereo
image datasets are used for training the networks [4,5]. Evaluation results on both simulated and
real-world scenes prove the effectiveness of our proposed deep learning based methods.

Fig. 1. Overview of the proposed system and reconstruction algorithm.

Relying on the efficient computational reconstruction algorithm with deep learning instead of
customized hardware, our proposed system can eventually obtain spectral images with a temporal
resolution up to 50fps, a spatial resolution of 1920 × 1080, and a total of 16 spectral bands
covering the wavelength range of 470 − 630nm, as well as the corresponding depth map of the
target scene with the same spatial resolution. The above resolutions are either competitive or
higher than existing systems, while neither high-complexity hardware nor active illumination
is required. Considering its compactness and easy manipulation, our proposed system offers
a practical solution for ubiquitous spectral-depth imaging in the wild, e.g., on smartphones or
UAVs.

2. Related work

Due to the hardware restriction, it is difficult to directly capture spectral images with high spatial
and temporal resolution [6,7]. Scanning spectrometers sacrifice the temporal resolution and
cannot measure dynamic scenes. Snapshot spectral imagers generally multiplex the sensor
pixels for a number of spectral bands and suffer from low spatial resolution. As representative
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computational systems, CASSI [8] and PMIS [9], especially their updated dual-camera versions
[10–13] enable fast and accurate spectral reconstruction. However, the hardware involved is
of high complexity and not easy for manipulation. Another mainstream approach is called
pansharpening, which can be regarded as spectral image super-resolution guided by higher
resolution panchromatic/RGB images of the same scene [14]. Recently, relying on the power
of deep learning and external hyperspectral image datasets, spectral image super-resolution has
seen a notable improvement in performance [15].

By combining a 3D imager and a spectral imager together, geometry and spectrum of the target
scene can be captured simultaneously. Kim et al. first developed such a system by integrating a
laser scanner and the highly customized CASSI to capture high-resolution images for modeling
the appearance of birds, named 3D imaging spectroscopy [1]. While huge efforts are dedicated
to the system calibration and characterization, it takes hours for capturing a single scene, which
prohibits usage of this system in dynamic conditions. To get higher temporal resolution, Wang
et al. proposed a cross-modal stereo system [2] that keeps the CASSI for spectral imaging
and replaces the laser scanner with an ordinary grayscale camera. An iterative scheme is then
proposed to reconstruct the depth under the stereo configuration and improves the spectral
reconstruction from CASSI. On the other hand, Heist et al. utilized a structured light based depth
camera and two snapshot spectral imagers to realize joint spectral and depth imaging in real time
[3]. Specifically. the two spectral imagers can accommodate different wavelength ranges with
different band-pass filters. Despite of the encouraging results as achieved by the above systems,
the high-complexity hardware (e.g., CASSI) for spectral imaging or active illumination (e.g.,
structured light) for depth imaging greatly restricts their application scope especially for outdoor
usage. Relying on computational reconstruction algorithms with deep learning, the compact
imaging system developed in this paper not only relieves these restrictions but also achieves the
best performance when jointly considering the three dimensions, as summarized in Table 1.

Table 1. Comparison of representative spectral imagers.

Imager
Resolution

Depth
spectrum pixel framerate

3DIS [1] ˜12nm 4.0Mega 0.5hours X

Stereo-CASSI [2] ˜10nm 0.4Mega 15fps X

5Dhyperspectral [3] ˜10nm 0.1Mega 17fps X

Dual-CASSI [10] ˜10nm 0.4Mega 100fps ×

Dual-PMIS [12] ˜5nm 0.8Mega 15fps ×

Ours ˜10nm 2.1Mega 50fps X

3. Proposed algorithm

As shown in Fig. 1, our system consists of two branches, and the reflected light from the scene is
captured by both branches at the same time. The spectral camera captures an LR spectral cube
YLR and the RGB camera captures an HR RGB image YRGB. From these two measurements, we
finally reconstruct the HR spectral cube YHR along with the HR depth map D of the target scene.
Each step of our proposed reconstruction algorithm is described in detail below.

3.1. Spectral image super-resolution

We first adopt an end-to-end convolutional neural network, named SISR-Net, to enhance the
acquired spectral measurement in the spatial dimension. As shown in Fig. 2, SISR-Net takes
a spatially interpolated spectral cube as input and directly outputs a spectral cube with the
same spatial resolution as the RGB measurement. Compared with conventional RGB images,
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spectral images have more channels and larger dynamic range, which increase the learning costs
of the network. Therefore, we employed a residual network by only learning the difference
between the spatially interpolated spectral data and the ground-truth HR spectral data, where the
mean-square-error is adopted as the loss function.

Fig. 2. The SISR-Net architecture.

The SISR-Net is trained on a large public dataset named ICVL [4] with spectral cubes at an
original resolution of 1392× 1296× 519. To accommodate the spectral resolution (i.e., 16 bands)
of the spectral camera in our system, we first synthesize spectral images from original images
with 519 bands by employing the spectral response function of our own spectral camera, as
shown in Fig. 3 (left part). These spectral images are then spatially down-sampled to generate
the LR-HR spectral image pairs for training the SISR-Net. Afterwards, we obtain an SR-spectral
cube Ysr from YLR with SISR-Net, which has the same spatial resolution as YRGB. We can then
calculate the depth map from Ysr and YRGB under a cross-modal stereo configuration.

Fig. 3. Image synthesis. Left part: from 519 bands to 16 bands using the spectral response
function of our spectral camera. Right part: from 16 bands to RGB using the spectral
response function of our RGB camera.

It is worth mentioning that the ICVL dataset provides two types of spectral images, one is
519-band raw spectral image and the other is 31-band synthesized spectral image. The 31-band
one is synthesized from the 519-band one by averaging adjacent bands instead of using any
specific spectral response function, which is mostly used in related research works. Here we
synthesize 16-band spectral images with the spectral response function of our own spectral
imager for training the correspondingly networks. This elaborate synthesis process guarantees
the generalization ability of the trained networks on real captured spectral data, which is justified
in the experiments (see Section 5.1.2).

3.2. Depth estimation

Depth provides the geometric characteristics of the target scene, which can be derived from the
disparity map according to D = b·f

d , where b denotes the baseline of the binocular system, f
denotes the focal length of the camera lens, and d is the disparity calculated from the stereo
matching algorithm.
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Before stereo matching, we should first deal with the difference of spectral resolution between
Ysr and YRGB. Here we conduct a color synthesis operation to get the stereo matching pair. Since
the spectral response function of our own RGB camera is known, the SR-spectral cube Ysr can be
synthesized to an RGB image Ysyn, as shown in Fig. 3 (right part). However, due to the different
built-in camera configurations of the spectral and RGB branches in practice, there is still a color
discrepancy between Ysyn and YRGB, as can be seen from Fig. 4(a) and 4(b). To address this issue,
we then conduct a color transfer procedure by employing the NDFlow algorithm [16] to transfer
the color style of YRGB to that of Ysyn.

Fig. 4. Color transfer. (a) Image captured by the RGB branch (source color). (b) Synthetic
RGB image from the spectral branch (target color). (c) NDFlow is applied to transfer source
color to target color.

Specifically, NDFlow is a nonlinear intensity normalization scheme based on density matching,
where the histograms are modeled as Gaussian mixtures. By minimizing the divergence between
source and target mixture models, NDFlow ensures the intensity distribution of source agrees
with that of target. The color transferred image, as shown in Fig. 4(c), is named Ytr. It is worth
mentioning that, while transferring the color style of Ysyn to that of YRGB is also feasible, we
choose the current way to facilitate the following RGB-guided texture enhancement. The reason
will be explained in Section 3.3.

So far, a synthetic RGB image Ysyn deriving from the spectral camera branch and its paired
image Ytr deriving from the RGB camera branch are obtained. Assuming that the two cameras
have been calibrated in advance, the disparity will only exist in the horizontal direction of
the image. We then adopt the MC-CNN algorithm [17] for stereo matching due to its robust
performance among deep learning based methods, which involves two steps: matching cost
calculation and post-processing. A convolution neural network is employed to get the matching
cost between the two images, and the network is trained on a large public stereo image dataset [5].
The post-processing step includes semi-global matching, left-right consistency check, sub-pixel
enhancement, median filtering, and bilateral filtering. Afterwards, we obtain the final disparity
map and the depth map D can be derived as mentioned above.

3.3. RGB-guided texture enhancement

The SR-spectral cube Ysr is obtained through learning from external spectral images. Although it
is at the target spatial resolution, the HR texture details in Ysr may still be missing, especially for
scenes drastically different from the training data. The HR image captured by the RGB camera
can provide supplementary spatial information of the target scene itself, relying on which we
then conduct RGB-guided texture enhancement, the most important step in our reconstruction
algorithm. Different from traditional pansharpening methods, this step is realized in a deep
learning way with registered spectral and RGB image pairs. The registration includes two aspects:
spatial alignment and spectral alignment.

After obtaining the disparity between Ysyn and Ytr, we can use the disparity map to warp Ytr to
the perspective of the spectral camera, resulting in a warped RGB image Ywp. However, due to
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the inherent occlusion effect under the stereo configuration, there will be missing pixel values in
certain areas around abrupt depth changes. Here we employ the image inpainting method in [18]
to repair the holes in Ywp caused by occlusion. After warping and inpainting, the RGB image Ywp
and the SR-spectral cube Ysr can be considered well aligned in the spatial dimension.

Algorithm 1 Spectral-depth reconstruction
Input: LR spectral image YLR and HR RGB image YRGB
1: Stage 1:
2: super-resolve spectral image YLR on spatial dimension, get Ysr;
3: synthesize spectral image Ysr to RGB, get Ysyn;
4: color transfer from YRGB to Ytr;
5: stereo matching between Ysyn and Ytr, get disparity map D.
6: Stage 2:
7: warp Ytr to the view of spectral branch using D, get Ywp;
8: use Ywp to guide Ysr for texture enhancement, get YHR.

Output: HR spectral image YHR and disparity map D

To train a deep network for RGB-guided texture enhancement (EnhanceNet for short hereafter),
we need a large number of spectral images and their corresponding RGB images. The dataset
we use for spectral image super-resolution does contain such image pairs, however, the spectral
response function for generating the RGB images in the dataset is unknown and it is unlikely to
match that of the RGB camera in our system. To address this issue, we synthesize the required
RGB images using the spectral response function of our own RGB camera, as shown in Fig. 3.
Note that, similar to spectral image super-resolution, the RGB images are synthesized from the
spectral images with 16 bands. Since the EnhanceNet is trained on synthetic RGB images, it is
better to be consistent in the inference phase. Therefore, we transfer YRGB to the style of Ysyn
(instead of the opposite) during depth estimation, and the spectral alignment is guaranteed in this
way.

As shown in Fig. 5, the EnhanceNet can be divided into two stages: feature extraction and
feature fusion. The features of the spectral and RGB images are first extracted individually, and
then fused together to obtain the final reconstruction. In both stages, we use the advanced channel
attention residual blocks [19], and the mean-square-error is adopted as the loss function. This
EnhanceNet, once trained, takes the SR-spectral cube Ysr and the warped RGB image Ywp as
input, and generates the HR spectral cube YHR as output. The whole reconstruction process is
now complete, which is summarized in Algorithm 1.

Fig. 5. (a) The architecture of EnhanceNet. (b) Channel attention residual block.

4. Hardware implementation

4.1. Hardware system setup

As shown in Fig. 6(a), our system merely consists of a spectral camera and an RGB camera.
Both cameras are of small size and the whole system is compact. The spectral camera is
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a commercial product with model XIMEAMQ022HG-IM-SM4X4-VIS [20]. Based on the
Fabry-Pérot interference (FPI) principle [21], the spectral camera is snapshot [22,23] and operates
at a speed up to 170fps. The sensor has a total spatial resolution of 2048 × 1024 and a spectral
resolution of 16 bands. The spatial resolution is actually multiplexed by the 16 spectral bands
in the wavelength range of 470 − 630nm (restricted by the band-pass filter) at an interval of
∼10nm. That is to say, for each band, the effective spatial resolution is 512 × 256. The focal
length of the objective lens on the spectral camera is fixed at 8mm. The RGB camera is PointGrey
FL3-U3-32S2C-CS with a spatial resolution of 1920 × 1080 and a temporal resolution up to
50fps, which is equipped with a 8mm fixed-focus lens. The two cameras are placed in parallel
with a baseline distance of 5cm, and the target scene is about 50 − 70cm in front of the system.
The final reconstruction generates a spectral cube with a resolution of 1920 × 1080 × 16 and a
disparity map of the same spatial resolution. The temporal resolution of the whole system is up
to 50fps, given sufficient ambient illumination.

Fig. 6. (a) Hardware prototype. (b) Spectral curves of different light sources.

4.2. Illumination selection

We consider the following requirements for choosing an optimal light source for laboratory
illumination: (a) sufficient intensity to illuminate different surface structures and textures in
the target scene; (b) active and flat spectral response within the effective wavelength range
of the spectral camera; and (c) easy manipulation and low cost. To this end, we test several
alternative light sources as shown in Fig. 6(b) for comparison. Among them, sunlight is closest
to the ideal light source, but it is not easy to control and much influenced by weather conditions.
The spectral curve of the fluorescent lamp is not smooth and uniform enough, and the spectral
curve of the halogen lamp in the visible cold light section is not as good as that of the white
LED. The white LED employing the sunlike technology [24] can approach natural light as far
as possible in the visible light section, while the intensity and direction of light can be easily
controlled. Therefore, we choose the white LED as the light source for laboratory illumination in
the following experiments.

4.3. Calibration and correction

In a stereo configuration, the spectral camera and the RGB camera needs to be calibrated in
advance to facilitate the subsequent disparity calculation. Here we adopt a classical strategy
similar to the one in [25] to calibrate the two cameras with a black-white checkerboard, and
get intrinsic matrix, extrinsic matrix, and distortion coefficients of the two cameras. During
the calibration process, we also obtain the scaling factor between the two cameras. This factor
reflects the real resolution gap between the spectral and RGB measurements, and once obtained,
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will be fixed for generating the training data of the corresponding networks. The correction
includes reflection correction and spectral correction. The former can eliminate the influence of
sensor transmission efficiency, and the latter can reduce the influence of the channel crosstalk,
so as to obtain the real spectral attributes of the object surface [26]. We have conducted an
additional experiment to justify the necessity of spectral correction for preventing crosstalk (see
Section 5.1.3).

5. Experimental results

5.1. Spectral output evaluation

The evaluation of spectral reconstruction includes two aspects: spectral image super-resolution and
RGB-guided texture enhancement. We quantitatively and qualitatively evaluate the reconstruction
performance of spectral images from benchmark datasets as simulation and real-world scenes
captured by the proposed system. The evaluation is conducted in terms of both spatial and
spectral fidelity metrics.

5.1.1. Training settings

For spectral image super-resolution, we adopt the SISR-Net which enhances the spatial resolution
of a spectral cubewith a scaling factor of 4.45. This scaling factor is obtained during the calibration
process, which reflects the real resolution gap between the spectral and RGB measurements after
calibration. As mentioned above, we use the ICVL spectral image dataset [4] with high spatial
(1392 × 1296) and spectral (519 bands) resolution to train the SISR-Net. We synthesize data
from 519 bands to 16 bands using the spectral response function of our spectral camera. The
synthesized dataset is divided into two groups for training and validation. There are 70 images in
the training set and 14 images in the validation set.
For RGB-guided texture enhancement, we adopt the EnhanceNet to introduce the HR spatial

information from the RGB image into the spectral image. The dataset for training the EnhanceNet
is also generated from ICVL [4]. As mentioned above, we first synthesize spectral images from
519 bands to 16 bands and then synthesize corresponding RGB images from 16 bands to RGB.
There are 70 images selected for training and 14 images for validation. Since the output of the
SISR-Net will be the input of the EnhanceNet in practice, the training images for the two networks
should be strictly non-overlapping. The validation images are kept the same as SISR-Net.

5.1.2. Simulation results

To verify the reconstruction algorithm in principle, we first conduct a simulation on the ICVL
dataset, where the spectral images in the validation set are spatially down-sampled to serve as the
LR test images. Each test image is super-resolved by the SISR-Net followed by the EnhanceNet.
The input of the EnhanceNet consists of the output of the SISR-Net (i.e., the SR-spectral cube)
and its corresponding HR RGB image, and the output of EnhanceNet is an HR spectral image
with enriched texture information.

Note that the warped RGB imagemay suffer from occlusion in practice, and here we simulate the
occlusion effect by adding random masks with 30% occluded (missing) pixels when synthesizing
RGB images from 16-band spectral cubes. These pixels are then recovered by the inpainting
method as mentioned above. This 30% occlusion ratio is an approximation obtained from a real
stereo dataset [27]. Besides this model trained from data with simulated occlusion, We also
synthesize RGB images without any occluded pixels for training an ideal model, which serves as
the upperbound.
Table 2 gives the quantitative results while Fig. 7 shows the qualitative results at different

reconstruction stages. We adopt the PSNR and RMSE metrics for evaluating the spatial and
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spectral accuracy respectively. The PSNR between cube x and cube x′ is defined as

PSNR(x, x′) =
1
λ

∑
λ

(20log
MaxValue√

1
HW

∑
H
∑

W (x − x′)2
) (1)

and RMSE is defined as

RMSE(x, x′) =
1

HW

∑
H

∑
W

√
1
λ

∑
λ

(x − x′)2 (2)

where H,W and λ denote the spatial and spectral resolutions of the cube, respectively. As can
be seen, the output of SISR-Net improves 1.97dB in PSNR and 19.36% in RMSE averagely
over the bicubic interpolation result, which demonstrates the effectiveness of spectral image
super-resolution through deep learning. Moreover, the output of EnhanceNet significantly
improves the SISR-net result by 3.06dB in PSNR and 24.42% in RMSE averagely, which validates
the effectiveness of RGB-guided texture enhancement through deep learning. The qualitative
results in Fig. 7 provide consistent evidences. As shown in Fig. 7(a), compared to interpolation,
SISR-Net notably improves the spatial details in the spectral image, yet not as significantly as
EnhanceNet. Figure 7(b) shows the spectral reconstruction error at different wavelengths, which
demonstrates the superiority of EnhanceNet again.

Fig. 7. (a) Reconstruction results on the ICVL dataset. Spectral images are synthesized
into RGB for visualization. (b) Spectral reconstruction error on the ICVL dataset.

We also conduct another experiment to justify the causality of the spectral data from [4] and
our own spectral imager. Following [4], we synthesize a new set of 16-band images by averaging
the adjacent bands from the 519-band raw images, relying on which we retrain the SISR-Net and
get a new model denoted as AVE. The model trained from synthesized data using the spectral
response function of our own spectral imager is denoted as SRF. On the same test set in Table 2,
the SRF model outperforms the AVE model by 0.33dB in PSNR, which proves the necessity of
our data synthesis process.

5.1.3. Real-world results

To further verify the reconstruction algorithm on our proposed system, we conduct extensive
experiments on representative real-world scenes. Figure 8 shows the reconstruction results of
three captured scenes containing drastically different object surfaces. As can be seen, compared
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Table 2. Quantitative results of spectral reconstruction through different methods on the ICVL
dataset.

Test Image
Spatial Metric (PSNR) Spectral Metric (RMSE)

Bicubic SISR-Net EnhanceNet Upperbound Bicubic SISR-Net EnhanceNet Upperbound

BGU_1113 34.47 37.41 39.94 56.44 34.86 25.26 21.81 5.30

BGU_1217 40.40 43.01 45.24 60.09 23.28 17.22 14.15 3.77

Lehavim_1627 37.51 39.51 42.59 58.55 25.22 21.19 16.41 4.37

Lehavim_1716 40.11 41.57 44.98 59.88 24.75 21.26 14.67 3.73

BGU_1439 37.58 39.80 43.41 59.02 27.01 21.48 15.58 3.99

Eve_1551 37.70 39.74 42.72 58.43 27.79 21.75 17.72 4.50

Gavyam_0944 33.77 35.84 38.95 57.81 43.31 33.53 24.77 4.63

Lehavim_1600 35.49 37.66 40.64 59.19 36.95 29.56 20.21 4.10

Nachal_1117 35.57 37.39 40.78 58.63 33.00 26.34 19.74 4.32

Negev_1003 33.30 33.98 37.50 56.67 48.24 44.37 29.85 5.15

Omer_1104 35.18 37.30 39.86 55.09 35.82 29.04 24.93 5.95

Omer_1135 35.52 37.51 40.56 58.16 31.77 25.32 19.69 4.36

Rsh_1356 33.46 35.24 38.41 55.77 50.80 40.74 30.01 5.69

Sat_1157_1135 37.54 39.18 42.48 57.45 29.94 25.16 18.64 4.75

Average 36.26 38.23 41.29 57.94 33.77 27.23 20.58 4.62

to the LR input, SISR-Net improves the spatial details to a certain extent, but also introduces
artifacts sometimes. The underlying reason is that SISR-Net only learns from external data,
which may be irrelevant with the target scene. By exploiting the RGB image of the same scene
under a cross-modal stereo configuration, EnhanceNet reconstructs the spatial details much more
faithfully.
To evaluate the spectral reconstruction quantitatively, we use a standard 24-colorchecker as

the target scene (as shown in Fig. 4). The ground-truth spectral signatures at 24 locations
corresponding to the center of each color are measured by a Stellar-Net BLK-CXR-SR-50 probe
spectrometer with 1.3nm spectral resolution. The reconstructed spectral images are evaluated
against the ground-truth signatures. As shown in Fig. 9, the proposed system along with the
reconstruction algorithm achieves less than 3.5% RMSE averagely in terms of different colors
on the checkerboard, which is competitive to existing snapshot spectral cameras [10]. This
real-world result also confirms the fidelity of resolution enhancement through our proposed
method.
Furthermore, to demonstrate the effectiveness of spectral correction as mentioned in Section

4.3, we conduct another experiment on the checkerboard scene by deliberately omitting the
spectral correction. We then get an RMSE of spectral signature over 8.5% while the original
result with spectral correction has an RMSE of less than 3.5%. Therefore, the necessity of
spectral correction on minimizing the crosstalk error can be verified.

5.2. Depth output evaluation

Besides the spectral image with high spatial resolution, our system also generates the depth
map of the target scene with the same spatial resolution. As mentioned above, we adopt the
pretrained model of MC-CNN [17] on the KITTI dataset [5] to calculate the disparity from a pair
of synthesized/color-transferred RGB images.
We conduct two experiments to evaluate the performance of depth estimation. The first

experiment quantitatively evaluates the depth accuracy, which is widely adopted for depth camera
evaluation in literature [28–30]. We place a set of planes in front of the system at different
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Fig. 8. Reconstructed spectral images of real-world scenes. From top to bottom: real-world
scene at selected bands, zoom-in results of bicubic, SISR-Net, and EnhanceNet. (Please
refer to the electronic version on a bright display for better visualization.)

Fig. 9. Recovered spectral signatures of a standard 24-colorchecker.

distances (texture on the plane surface is shown in Fig. 8, last column). At each distance, a
plane is fitted to the 3D points and the RMSE between the reconstructed points and the fitted
plane is calculated. As can be seen from Fig. 10, the depth reconstruction error increases as the
distance increases, yet the error is less than 2mm at a distance of 0.6m, which is competitive to
mainstream real-time depth cameras [31]. It is worth mentioning that, we add two steps (color
transfer and RGB synthesis) before estimating disparity to eliminate the inconsistency between
the cross-modal image pair, which could improve the reliability of stereo matching.
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Fig. 10. Evaluation of depth estimation. (a) Point clouds of a set of planes at different
distances. (b) Accuracy of estimated depth maps in terms of RMSE.

In the second experiment, we adopt “warping error” as an auxiliary metric to evaluate the
fidelity of depth estimation. The jet color map is used to display the error in Fig. 11. We can see
that there is a distinct disparity between the spectral image and the RGB image before warping,
which results in severe ghosting effect in the error maps. On the other hand, after warping with
the disparity calculated through MC-CNN, the error between the two images is largely eliminated
and there are no more ghosting in the error maps. Note that the remaining visible pixels in the
error maps are due to color inconsistency between the spectral and RGB cameras even after color
transfer (see Section 3.2). This experiment again demonstrates the superior accuracy of our depth
estimation results. More point cloud results of real-world scenes are shown in Fig. 12.

Fig. 11. Warping error for disparity evaluation. (a) RGB measurements before (top) and
after (bottom) warping. (b) Error maps between two stereo views before (top) and after
(bottom) warping. (c) & (d) for another scene.

Fig. 12. Point cloud results of a real-world scene (texture on the surface shown in Fig. 8,
first column) from different views.
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6. Conclusion and discussion

In this paper, we present a compact system for joint spectral and depth imaging in real time
and with high resolution. Instead of developing highly customized hardware that is generally
of high complexity, our system only ensembles two off-the-shelf cameras and relies on deep
learning based computational reconstruction to achieve state-of-the-art imaging performance.
The proposed system can eventually obtain spectral images with a temporal resolution up to 50fps,
a spatial resolution of 1920 × 1080, and a total of 16 spectral bands covering the wavelength
range of 470 − 630nm, as well as the corresponding depth map of the target scene with the same
spatial resolution. This work allows 5D information (3D space + 1D spectrum + 1D time) of
the target scene to be captured with a miniaturized apparatus and without active illumination.
Considering its compactness and easy manipulation, the proposed system offers a practical
solution for ubiquitous spectral-depth imaging in the wild, e.g., on smartphones or UAVs.

Still, there are several aspects to further improve our current system, which are considered as
our future work. First, we now simulate the training data with digital downsampling which may
not reflect the real degradation of LR images in practice. The networks trained in this way might
have certain deviation from the groundtruth during the resolution enhancement process. This is a
common problem for existing learning-based super-resolution methods, and has been studied in
recent works [32]. It requires more efforts to address this issue in the scenario of our system,
and we will follow this direction to improve the system accuracy. Second, we would like to test
the generalization capability of the proposed reconstruction algorithm under different camera
configurations, e.g., real image data with different spatial and spectral resolutions.
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