Spik-NeRF: Spiking Neural Networks for Neural Radiance Fields

Gang Wan^{1,*}, Qinlong Lan^{1,*}, Zihan Li^{2,3}, Huimin Wang^{2,3},

Yitian Wu¹, Zhen Wang¹, Wanhua Li¹, Yufei Guo^{3,†}

¹Space Engineering University, ²Peking University

³Intelligent Science & Technology Academy of CASIC

casper_51@163.com, whulangl@whu.edu.cn, yfguo@pku.edu.cn

Abstract

Spiking Neural Networks (SNNs), as a biologically inspired neural network architecture, have garnered significant attention due to their exceptional energy efficiency and increasing potential for various applications. In this work, we extend the use of SNNs to neural rendering tasks and introduce Spik-NeRF (Spiking Neural Radiance Fields with Ternary Spike). We observe that the binary spike activation map of traditional SNNs lacks sufficient information capacity, leading to information loss and a subsequent decline in the performance of spiking neural rendering models. To address this limitation, we propose the use of ternary spike neurons, which enhance the information-carrying capacity in the spiking neural rendering model. With ternary spike neurons, Spik-NeRF achieves performance that is on par with, or nearly identical to, traditional ANN-based rendering models. Additionally, we present a re-parameterization technique for inference that allows Spik-NeRF with ternary spike neurons to retain the event-driven, multiplication-free advantages typical of binary spike neurons. Furthermore, to further boost the performance of Spik-NeRF, we employ a distillation method, using an ANN-based NeRF to guide the training of our Spik-NeRF model, which is more compatible with the our ternary neurons compared to the standard binary neurons and other neuron forms. We evaluate Spik-NeRF on both realistic and synthetic scenes, and the experimental results demonstrate that Spik-NeRF achieves rendering performance comparable to ANN-based NeRF models.

1 Introduction

Spiking Neural Networks (SNNs) [36, 3, 9, 10, 35, 18, 17], known for their energy efficiency compared to Artificial Neural Networks (ANNs), have garnered significant attention due to their event-driven computation mechanism and the energy-saving advantages of multiplication-free operations. SNNs have shown great potential in a wide range of applications. For instance, in [34], SNNs were applied to object detection and demonstrated substantial energy efficiency improvements, outperforming their ANN counterparts by orders of magnitude. In [16], SNNs were used to improve the image de-occlusion task. In [33], SNNs were employed for sequential learning, showing better performance and reduced energy consumption compared to ANNs with similar scale. Similarly, in [26], SNNs were utilized for Human Activity Recognition (HAR), achieving up to a 94% reduction in energy consumption while maintaining comparable accuracy to ANN-based models. Additionally, SNNs have been applied to pose tracking [45], 3D recognition [37], and even autonomous driving [39],

^{*}Equal Contributions.

[†]Corresponding Author.

where LaneSNNs demonstrated low power consumption (1 W) in lane detection using event-based cameras.

Given these successes, the question naturally arises: Can SNNs be adapted to the more complex task of neural rendering, such as rendering neural radiance fields (NeRF)?

In this paper, we introduce Spik-NeRF, a spiking neural network approach tailored for neural rendering tasks, the first one directly-trained SNN-based NeRF model building upon the initial NeRF framework [31]. However, we found that applying SNNs to neural rendering tasks led to suboptimal performance. This is primarily due to the limited information capacity of the binary spike activation maps in SNNs. Unlike the rich activation maps of ANNs, the binary spike maps in SNNs fail to retain enough useful information during the quantization process, resulting in significant information loss and a decrease in performance. A more detailed explanation is provided in Sec. 3.3.

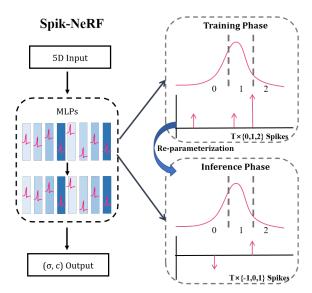


Figure 1: The overall workflow of the proposed Spik-NeRF, along with the ternary spike neuron and re-parameterization technique.

To address this challenge, we propose

the ternary spike neuron for the Spik-NeRF, which extends the traditional binary spike representation $(\{0,1\})$ to a ternary form $(\{0,1,2\})$. This new approach significantly increases the information capacity of SNNs, as detailed in Sec. 3.3. Furthermore, in the inference phase, we introduce a reparameterization technique that transforms the ternary spikes $(\{0,1,2\})$ into the set of $(\{-1,0,1\})$, preserving the multiplication-free and event-driven advantages of SNNs. The overall workflow of the proposed Spik-NeRF, along with the ternary spike neuron and re-parameterization technique, is illustrated in Fig. 1.

Additionally, to further improve the performance of Spik-NeRF, we propose using an ANN-based NeRF model for distillation. This technique, leveraging the superior capabilities of ANN-based NeRF models, is particularly well-suited for our ternary spike neuron, offering additional performance gains.

In summary, the main contributions of this work are as follows:

- We present Spik-NeRF, a spiking neural network for rendering neural radiance fields. To our best knowledge, this is the first directly-trained SNN model building on the original NeRF framework [31].
- We demonstrate, with theoretical justification, that binary spike activation maps in SNN-based NeRF are insufficient in carrying information, leading to performance degradation.
 To solve this issue, we propose the ternary spike neuron, which effectively increases the information capacity while retaining the multiplication-free and event-driven advantages of standard SNNs in the inference, aided by our re-parameterization technique.
- We introduce a distillation method using an ANN-based NeRF teacher, which is more suitable for our ternary neuron compared to other spike neurons, to further enhances the performance of Spik-NeRF.
- We evaluate Spik-NeRF on both realistic and synthetic scenes. The experimental results demonstrate that Spik-NeRF achieves rendering performance comparable to ANN-based NeRF models.

2 Related Work

2.1 Spiking Neural Networks

There are generally three primary methods for training SNNs [13]: (1) spike-timing-dependent plasticity (STDP) [1] approaches, (2) ANN-to-SNN conversion approaches [22, 21, 29, 6, 8, 2, 19, 24], and (3) direct training methods [5, 32, 42, 35, 25, 41, 40].

The STDP method is biologically inspired [20, 7] and updates synaptic weights using an unsupervised learning algorithm called Hebbian learning [23]. However, this approach is still limited to small-scale datasets.

The ANN-to-SNN conversion method [6, 24, 22, 21] involves converting a well-trained ANN model to an SNN counterpart. This method is advantageous because training an ANN is faster than training an SNN. Consequently, the ANN-to-SNN conversion offers a quick way to obtain an SNN without using gradient descent. However, the converted SNN essentially mimics the original ANN and lacks learned features, thus not fully exploiting the benefits of SNNs. Additionally, this method typically requires many time steps to achieve high accuracy.

Direct training methods, on the other hand, aim to find an alternative function to replace the firing function of spiking neurons during backpropagation. These methods can significantly reduce the number of time steps needed, sometimes even to fewer than five [12, 25, 14], and have attracted considerable attention recently. However, finding an appropriate surrogate function for SNNs with large time steps remains a challenging problem. Our work focuses on addressing this issue.

2.2 Spiking Neural Networks for NeRF

Some research has explored applying SNNs to Neural Radiance Fields, but these studies differ from our approach. For instance, hybrid ANN-SNN models were proposed in Spiking NeRF [28] and Spiking Nerfacto [11]. These works employ non-linear, non-spike functions to post-process the density-related outputs of the original ANN-based NeRF models. In contrast, our work focuses on utilizing a fully SNN-based model for neural radiance fields. In Spiking-Nerf [27], an ANN-SNN model is proposed to develop energy-efficient spiking neural rendering using the ANN-to-SNN conversion approach, which, as mentioned earlier, requires many time steps. In comparison, our work concentrates on developing a direct training SNN method for NeRF. Another relevant study, SpikingNerf [43], presents a spiking neural radiance field model based on the DVGO [38] and TensoRF [4] frameworks. These frameworks enhance the original NeRF model by integrating various innovations. Except for these, this method requires numerous time steps as each sampled point on the ray is associated with a particular time step and represented in a hybrid manner.

Our approach, however, aims to develop a spiking neural radiance field model based on the original NeRF framework [31], which could pave the way for future advancements in this field. Additionally, we aim to achieve competitive performance with fewer time steps, which is directly related to the energy efficiency of the model.

3 Preliminary and Methodology

In this paper, we primarily apply the SNN to the NeRF framework [31], which is the first deep learning model that represents a scene as a neural radiance field and renders novel views from this representation. We then modify it to create Spik-NeRF. First, we provide a detailed introduction to NeRF and the widely used SNN neuron model, the Leaky Integrate-and-Fire (LIF) model. Subsequently, we address the information loss issue when applying SNN to NeRF. Finally, we present the Spik-NeRF model, which is based on ternary spike neurons to resolve the aforementioned problem, along with an isomorphic network knowledge distillation method to further enhance performance.

3.1 NeRF

In contrast to conventional explicit 3D reconstruction techniques that employ discrete voxel grids or point clouds, NeRF [31] introduces a novel continuous implicit representation through differentiable volumetric rendering. The core innovation lies in encoding the 3D scene as a 5D neural radiance

field using a multi-layer perceptron (MLP), which maps spatial coordinates $\mathbf{p}=(x,y,z)\in\mathbb{R}^3$ and viewing directions $\mathbf{v}=(\theta,\phi)\in\mathbb{S}^2$ to volume density $\sigma\in\mathbb{R}^+$ and view-dependent RGB color $\mathbf{c}=(r,g,b)\in[0,1]^3$. This parametric representation is formalized through two cascaded MLP components:

Geometry network:
$$F_{\theta} : \mathbf{p} \mapsto (\mathbf{e}, \sigma)$$
 (1)

Appearance network:
$$G_{\gamma}: (\mathbf{e}, \mathbf{v}) \mapsto \mathbf{c}$$
 (2)

where θ and γ denote network parameters, $\mathbf{e} \in \mathbb{R}^N$ represents intermediate feature embeddings, and σ corresponds to the differential opacity at point \mathbf{p} . These networks are all composed of several fully connected layers. Each fully connected layer implements the transformation:

$$\mathbf{h} = \text{ReLU}(\text{Linear}(\mathbf{a})) \tag{3}$$

where a is the activation from the previous layer.

The rendering process employs classical volume rendering principles [30] with neural adaptation. For a camera ray $\mathbf{r}(g) = \mathbf{o} + g\mathbf{d}$ with near/far bounds $[g_n, g_f]$, we sample K stratified points $\{g_i\}_{i=1}^K$ and compute the pixel color via numerical integration:

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{K} G_i \alpha_i \mathbf{c}_i \quad \text{where} \quad \begin{cases} G_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right) \\ \alpha_i = 1 - \exp(-\sigma_i \delta_i) \\ \delta_i = g_{i+1} - g_i \end{cases}$$
(4)

Here G_i represents the transmittance probability for ray segment $[g_n, g_i]$, and α_i denotes the alphacompositing weight for the *i*-th sample. The hierarchical sampling strategy combines coarse and fine networks to importance-sample along rays.

The model is optimized through photometric reconstruction over a set of rays \Re using an L_2 loss between rendered and observed pixel colors:

$$\mathcal{L}_{\text{photo}} = \mathbb{E}_{\mathbf{r} \sim \mathcal{R}} \left[\|\hat{C}_c(\mathbf{r}) - C(\mathbf{r})\|_2^2 + \|\hat{C}_f(\mathbf{r}) - C(\mathbf{r})\|_2^2 \right]$$
 (5)

where \hat{C}_c and \hat{C}_f denote outputs from the coarse and fine networks respectively.

3.2 Vanilla SNN for NeRF (Denoted as Spiking NeRF)

SNNs use the spiking neuron, which is inspired by the brain's natural mechanisms, to transmit information. A spiking neuron will receive input spike trains from the previous layer neuron models along times to update its membrane potential, ${\bf u}$. In the paper, we adopt the widely used leaky integrate and fire (LIF) neuron model. The LIF neuron model governs membrane potential ${\bf u}(t)$ evolution through time t:

$$\tau_{\rm m} \frac{d\mathbf{u}}{dt} = -(\mathbf{u} - u_{\rm reset}) + R \cdot I(t), \quad \mathbf{u} < V_{\rm th}$$
 (6)

$$\mathbf{s}^t = \Theta(\mathbf{u}^t - V_{\text{th}}) \tag{7}$$

where $\Theta(\cdot)$ denotes the Heaviside step function, $\tau_{\rm m}$ is the membrane time constant, and $V_{\rm th}$ the firing threshold. For practical implementation, we adopt the discrete-time formulation:

$$\mathbf{v}^{t} = \mathbf{u}^{t-1} + \frac{1}{\tau} (\mathbf{W}\mathbf{s}^{t-1} - \mathbf{u}^{t-1} + u_{\text{reset}})$$
(8)

$$\mathbf{s}^t = \Theta(\mathbf{v}^t - V_{\text{th}}) \tag{9}$$

$$\mathbf{u}^t = \mathbf{v}^t \odot (1 - \mathbf{s}^t) + u_{\text{reset}} \mathbf{s}^t \tag{10}$$

where W denotes synaptic weights and \odot the Hadamard product. Parameters follow biological constraints: $\tau = 4$, $u_{\rm reset} = 0$, $V_{\rm th} = 0.5$ [25].

We transform NeRF's MLP layers to spiking domains through temporal unfolding and potential accumulation:

Spiking Geometry Network:
$$F_{\theta}^{t}: \mathbf{p}^{t} \mapsto (\mathbf{e}^{t}, \sigma^{t})$$
 (11)

Spiking Appearance Network:
$$G_{\gamma}^{t}: (\mathbf{e}^{t}, \mathbf{v}^{t}) \mapsto \mathbf{c}^{t}$$
 (12)

Each spiking MLP layer implements temporal-aware computation:

$$\mathbf{h}_k^t = \text{LIF}(\mathbf{W}_k \mathbf{s}_{k-1}^t + \mathbf{b}_k) \tag{13}$$

where \mathbf{s}_{k-1}^t denotes spike inputs from layer k-1 at timestep t. The membrane potential \mathbf{u}_k^t tracks temporal dependencies across layers.

The spiking radiance field outputs are integrated through:

$$\bar{\sigma} = \frac{1}{T} \sum_{t=1}^{T} \sigma^t \tag{14}$$

$$\bar{\mathbf{c}} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{c}^t \tag{15}$$

where T is the total timestep of the Spiking NeRF. Then volumetric rendering then follows Eq. (4) with $\sigma_i = \bar{\sigma}_i$ and $\mathbf{c}_i = \bar{\mathbf{c}}_i$.

3.3 Spik-NeRF

3.3.1 Information Loss in Spiking NeRF

While employing binary spike feature embeddings in Spiking NeRF offers substantial energy efficiency, it inherently has a limited representational capacity compared to the high-precision feature embeddings utilized in ANN-based NeRF. This limitation ultimately restricts its performance. To better illustrate this issue, we begin by providing a theoretical analysis based on the concept of entropy. Given a set X, its representational capability, denoted as $\mathcal{C}(X)$, can be quantified by the maximum entropy of X, as expressed below:

$$\mathcal{C}(\mathbf{X}) = \max \mathcal{H}(\mathbf{X}) = \max \left(-\sum_{x \in \mathbf{X}} p_{\mathbf{X}}(x) \log p_{\mathbf{X}}(x) \right), \tag{16}$$

where $p_{\mathbf{X}}(x)$ represents the probability of observing a sample x from \mathbf{X} . The following proposition can be easily derived:

Proposition: Given a set X, we have $\mathfrak{C}(X) = \max \mathfrak{H}(X) = \max \left(-\sum_{x \in X} p_X(x) \log p_X(x)\right)$. When the probability distribution is defined as $p_X(x) = \frac{1}{M}$, where M represents the total number of samples in X, the entropy $\mathfrak{H}(X)$ reaches its maximum value of $\log(M)$. Therefore, it follows that $\mathfrak{C}(X) = \log(M)$.

Next, we calculate the representational capacities of the binary spike feature embeddings in Spiking NeRF and the real-valued feature embeddings in the ANN-based counterpart. Let $\mathbf{E}_{\mathrm{B}} \in \mathbb{B}^{C \times N}$ represent the binary feature embeddings of the Spiking NeRF, and $\mathbf{E}_{\mathrm{R}} \in \mathbb{R}^{C \times N}$ denote the real-valued feature embeddings of the ANN-based NeRF. A binary spike output s can be represented by 1 bit, with two possible samples from s. Therefore, the number of samples in \mathbf{E}_{B} is $2^{(C \times N)}$, and the corresponding representational capacity is:

$$\mathcal{C}(\mathbf{E}_{\mathrm{B}}) = \log\left(2^{(C \times N)}\right) = C \times N. \tag{17}$$

In contrast, a real-valued output requires 32 bits, leading to 2^{32} possible samples. Hence, the representational capacity for the real-valued embeddings is:

$$\mathcal{C}(\mathbf{E}_{R}) = \log \left(2^{32 \times (C \times N)}\right) = 32 \times C \times N. \tag{18}$$

This comparison clearly demonstrates that the representational capacity of the binary spike feature embeddings is substantially limited, which consequently results in degraded performance for Spiking NeRF.

3.3.2 Ternary Spike Neuron Mechanism for Spik-NeRF

Our theoretical analysis reveals that enhancing the information capacity of spike neuron activations directly correlates with improved task performance. To capitalize on this insight, we propose a novel

ternary spike neuron formulation that forms the foundation of our Spik-NeRF architecture. The membrane dynamics and spike generation mechanism operate through three distinct phases:

$$\mathbf{v}^{t} = \mathbf{u}^{t-1} + \frac{1}{\tau} \left(\mathbf{W} \mathbf{s}^{t-1} - \mathbf{u}^{t-1} + u_{\text{reset}} \right)$$
 (19)

$$\mathbf{s}^{t} = \begin{cases} 2, & \mathbf{v}^{t} > V_{\text{th}} + \Delta_{v} \\ 1, & V_{\text{th}} \leq \mathbf{v}^{t} \leq V_{\text{th}} + \Delta_{v} \\ 0, & \mathbf{v}^{t} < V_{\text{th}} \end{cases}$$
(20)

$$\mathbf{u}^{t} = \begin{cases} \mathbf{v}^{t}, & \mathbf{v}^{t} < V_{\text{th}} \\ u_{\text{reset}}, & \text{otherwise} \end{cases}$$
 (21)

where Δ_v represents our adaptive threshold margin (fixed at 1 in implementation). Obviously, this ternary formulation significantly enhances the representational capacity of Spik-NeRF. To quantitatively analyze the representational advantage, we also resort to the information entropy theory. Let $\mathbf{E}_T \in \mathbb{T}^{C \times N}$ denote as a ternary feature embedding in our Spik-NeRF. The ternary spike embeddings \mathbf{E}_T consists of $3^{C \times N}$ samples. Hence,

$$\mathcal{C}(\mathbf{E}_T) = \log_2 3^{C \times N} = C \times N \cdot \log_2 3 \approx 1.585 \cdot C \times N \tag{22}$$

The $\approx 58.5\%$ increase in theoretical information capacity directly translates to enhanced scene representation capabilities, which benefits performance improvement.

3.3.3 Training-Inference Decoupling via Spike Reparameterization

While ternary spike neurons enhance representational capacity, their direct implementation introduces computational challenges: the $\{0,1,2\}$ activation space prevents efficient conversion of weight-activation multiplications to additions, a critical advantage in SNN acceleration. To resolve this fundamental efficiency conflict, we propose a novel spike re-parameterization technique that preserves both the information richness of ternary signals and the computational benefits of binary networks.

Our solution employs a train-infer decoupling strategy with affine transformation of spike representations. During training, we maintain the native $\{0,1,2\}$ spike formulation for gradient stability. For inference, we apply a linear transformation to the spike tensor:

$$\hat{\mathbf{s}}^t = \mathbf{s}^t - \Delta \cdot \mathbf{1} \quad \text{where} \quad \Delta = 1$$
 (23)

This shifts the spike space to $\{-1,0,1\}$ while preserving ordinal relationships. The membrane potential update equations consequently adapt as follows:

Training:
$$\mathbf{v}^t = \mathbf{u}^{t-1} + \frac{1}{\tau} \left(\mathbf{W} \mathbf{s}^{t-1} - \mathbf{u}^{t-1} + u_{\text{reset}} \right)$$
 (24)

Inference:
$$\mathbf{v}^t = \mathbf{u}^{t-1} + \frac{1}{\tau} \left(\mathbf{W} \hat{\mathbf{s}}^{t-1} + \mathbf{w}_b - \mathbf{u}^{t-1} + u_{\text{reset}} \right)$$
 (25)

where $\mathbf{w}_b = \mathbf{W}\mathbf{1}$ constitutes a pre-computable bias term. Thus in the inference, the linear layer will only consist of addition operations and keep the event-driven advantage.

Note that we can also use the $\{-1,0,1\}$ activation spike [15] during training. However, we observe that its performance is inferior to that of the $\{0,1,2\}$ spike. Additionally, the $\{0,1,2\}$ spike activation resembles ReLU activation more closely, making it better suited for ANN-SNN distillation compared to the $\{-1,0,1\}$ spike activation. With these two reasons, we chose this form of neuron for our work.

3.3.4 Isomorphic Network Knowledge Distillation

To further increase the performance, we propose an isomorphic distillation framework that transfers knowledge from an ANN-based NeRF (teacher) to our Spik-NeRF (student). We establish direct supervision on both density and color predictions through mean squared error (MSE) distillation. For any 3D point **p** and viewing direction **v**,

$$\mathcal{L}_{\text{density}} = \mathbb{E}_{\mathbf{p} \sim \mathcal{P}} \left[\| \sigma^{\text{ANN}}(\mathbf{p}) - \bar{\sigma}^{\text{SNN}}(\mathbf{p}) \|_{2}^{2} \right]$$
 (26)

$$\mathcal{L}_{\text{color}} = \mathbb{E}_{(\mathbf{p}, \mathbf{v}) \sim \mathcal{P} \times \mathcal{V}} \left[\| \mathbf{c}^{\text{ANN}}(\mathbf{p}, \mathbf{v}) - \bar{\mathbf{c}}^{\text{SNN}}(\mathbf{p}, \mathbf{v}) \|_{2}^{2} \right]$$
(27)

The final training objective combines photometric reconstruction loss with distillation is

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{photo}} + \lambda_d \mathcal{L}_{\text{density}} + \lambda_c \mathcal{L}_{\text{color}}$$
 (28)

where λ_d and λ_c control the distillation strength for density and color respectively. We set them as 0.5 in the paper.

Table 1: Per-scene quantitative results from the synthetic dataset

Metric	Method	Chair	Drums	Ficus	Hotdog	Lego	Materials	Mic	Ship	Avg.
PSNR↑	ANN-based NeRF	34.15	25.64	29.15	36.85	31.48	29.34	33.12	29.42	31.15
	Spiking-NeRF	12.24	11.14	13.98	14.85	9.81	10.36	9.81	13.22	11.93
	Spiking NeRF	31.98	24.51	24.00	34.55	29.33	27.75	31.65	27.85	28.95
	Spik-NeRF	33.40	25.21	26.05	35.99	30.82	28.86	32.78	28.75	30.23
	ANN-based NeRF	0.979	0.929	0.966	0.979	0.965	0.958	0.978	0.874	0.953
SSIM↑	Spiking NeRF	0.963	0.907	0.891	0.969	0.940	0.937	0.969	0.838	0.927
	Spik-NeRF	0.973	0.921	0.929	0.976	0.957	0.950	0.975	0.856	0.942
	ANN-based NeRF	0.014	0.053	0.022	0.015	0.020	0.024	0.023	0.086	0.032
LPIPS↓	Spiking NeRF	0.034	0.086	0.119	0.032	0.039	0.047	0.043	0.126	0.066
	Spik-NeRF	0.021	0.065	0.063	0.021	0.027	0.033	0.028	0.105	0.045

Table 2: Per-scene quantitative results from the realistic dataset

Metric	Method	Room	Fern	Leaves	Fortress	Orchids	Flower	T-Rex	Horns	Avg.
PSNR↑	ANN-based NeRF	31.38	26.25	21.98	31.35	21.20	27.51	27.27	28.10	26.88
	Spiking-NeRF	17.07	15.91	9.68	14.51	9.12	10.35	15.05	13.05	13.09
	Spiking NeRF	30.12	25.08	20.75	30.07	20.51	26.19	25.26	26.34	25.54
	Spik-NeRF	30.90	25.70	21.46	30.79	20.94	26.94	26.15	27.16	26.26
·	ANN-based NeRF	0.931	0.836	0.790	0.896	0.734	0.853	0.896	0.877	0.851
SSIM↑	Spiking NeRF	0.904	0.769	0.691	0.837	0.644	0.782	0.825	0.800	0.781
	Spik-NeRF	0.920	0.802	0.744	0.869	0.688	0.820	0.862	0.835	0.817
	ANN-based NeRF	0.049	0.101	0.119	0.059	0.122	0.075	0.062	0.078	0.083
LPIPS↓	Spiking NeRF	0.098	0.207	0.203	0.130	0.223	0.134	0.135	0.166	0.162
	Spik-NeRF	0.066	0.164	0.157	0.092	0.170	0.101	0.095	0.123	0.121

4 Experiment

We assess the rendering performance of Spik-NeRF on both synthetic and real-world datasets [31]. The synthetic dataset includes eight scenes featuring different objects. For each scene, there are 100 views used for training and 200 views for testing, with each view image having a resolution of 400×400 pixels. The real-world dataset consists of eight scenes captured with mobile phones. Each scene contains between 20 and 60 images, and the images are resized to 400×400 pixels in this paper. Additionally, one-eighth of the images are reserved for testing.

The network architecture follows the design outlined in NeRF [31]. All models are trained using the Adam optimizer for 300,000 iterations with a batch size of 1,024 rays. We initialize the learning rate at 5×10^{-4} , which is decayed exponentially as training progresses. For synthetic scenes, the number of sampled points is set to 64 for the coarse network and 128 for the fine network. Similarly, for real-world scenes, 64 and 128 sampled points are used for the coarse and fine networks, respectively. The total number of timesteps for both Spiking NeRF and our Spik-NeRF is set to 2, while for the Spiking-NeRF, it is 8 timesteps. Since our Spik-NeRF with 2 timesteps achieves rendering performance comparable to the ANN-based NeRF model, we did not explore larger timesteps.

4.1 Rendering Performance

We evaluate the rendering performance of Spik-NeRF both quantitatively and qualitatively. Tables 1 and 2 present per-scene quantitative results from the synthetic and realistic datasets, respectively.

As mentioned earlier, although previous work has explored the application of SNNs to NeRF, these studies differ from our approach. Spiking-NeRF [27], an ANN-SNN hybrid model, uses the same NeRF [31] framework as ours, and is thus selected for comparison. Additionally, we implemented the original NeRF [31] and a spiking NeRF based on a vanilla binary spike neuron for comparison, referred to as ANN-based NeRF and Spiking NeRF, respectively.

For performance evaluation, we adopt standard metrics: PSNR and SSIM (higher values are better), and LPIPS [44] (lower values are better), as used in NeRF [31]. Since Spiking-Nerf [27] only reports PSNR, we present SSIM and LPIPS results for ANN-based NeRF, Spiking NeRF, and Spik-NeRF.

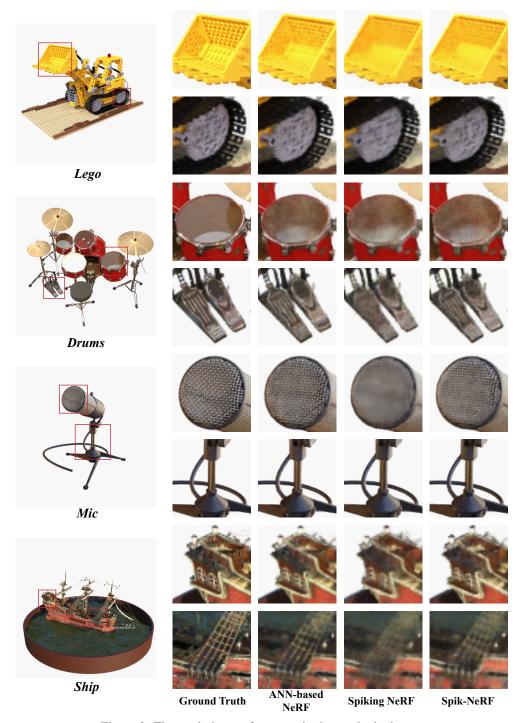


Figure 2: The rendering performance in the synthetic dataset.

On the synthetic dataset, Spiking-NeRF with 8 timesteps achieved an average PSNR of 11.93. In comparison, our directly trained Spiking NeRF achieved a significant improvement with an average PSNR of 28.95. More notably, our Spik-NeRF, utilizing ternary spikes, further boosts the average PSNR to 30.23, approaching the performance of the ANN-based NeRF (31.15 PSNR). Furthermore, in every scene, Spik-NeRF consistently outperforms both Spiking-NeRF and Spiking NeRF, highlighting the effectiveness of our approach.

On the realistic dataset, our method also surpasses Spiking-NeRF and Spiking NeRF. For instance, Spik-NeRF achieves a PSNR of 26.26, outperforming Spiking-NeRF and Spiking NeRF by 13.17 and 0.72 PSNR, respectively. In terms of SSIM and LPIPS, Spik-NeRF achieves scores of 0.817 and 0.121, while Spiking NeRF achieves 0.781 and 0.162, respectively.

Figure 2 illustrates the rendering results from synthetic datasets, including Lego, Drums, Mic, and Ship, for ANN-based NeRF, Spiking NeRF, and Spik-NeRF. It is evident that our method recovers fine details in both geometry and appearance, comparable to the ANN-based NeRF. This includes features such as the Drums' pedal, the Microphone's mesh grille, and the Ship's rigging. In contrast, Spiking NeRF produces blurry and distorted renderings, particularly for the Microphone's mesh grille.

We also include the rendering results for the realistic dataset in the appendix. As seen in the figures, our method consistently represents fine geometry more accurately across rendered views than Spiking NeRF.

4.2 Ablation Study for Knowledge Distillation

In this section, we evaluate the performance of our method with the proposed isomorphic network knowledge distillation on complex scenes, such as Room, Orchids, and Drums. The results are presented in Tab. 3.

As illustrated in Tab. 3, applying knowledge distillation to Spik-NeRF results in a noticeable improvement in performance, bringing its results much closer to those of the ANN-based NeRF. The quantitative analysis reveals two important findings: (1) Knowledge distillation effectively narrows the performance gap between Spik-NeRF and ANN-based NeRF, as demonstrated by the improvement in both PSNR and SSIM metrics. (2) Even in challenging scenes that involve specular reflections, such as Orchids, our method achieves rendering quality comparable to ANN-based NeRF, suggesting that knowledge distillation is

Table 3: Per-scene quantitative results for knowledge distillation.

Metric	Method	Room	Orchids	Drums
	ANN-based NeRF	31.38	21.20	25.64
PSNR↑	Spik-NeRF	30.90	20.94	25.21
	Spik-NeRF with KD	31.12	21.09	25.40
	ANN-based NeRF	0.931	0.734	0.929
SSIM↑	Spik-NeRF	0.920	0.688	0.921
	Spik-NeRF with KD	0.924	0.692	0.924
	ANN-based NeRF	0.049	0.122	0.053
LPIPS↓	Spik-NeRF	0.066	0.170	0.065
	Spik-NeRF with KD	0.064	0.165	0.063

beneficial in maintaining high-quality renderings in complex environments.

These findings also highlight the compatibility of our Spik-NeRF with the ternary spike neuron model and the isomorphic network knowledge distillation, which appears to facilitate the optimization process and enhance performance significantly.

5 Conclusion

We present Spik-NeRF, achieving ANN-comparable rendering quality. Theoretical analysis reveals binary spikes' limited representational capacity for SNN-based NeRF. To address limitations of binary spike neurons based Spiking NeRF, we propose the ternary spike neuron for Spik-NeRF, which increase representational capacity by 58.5% using three activation states. We also propose a train-infer decoupling via spike reparameterization technique to keep the energy efficiency of SNNs. In addition, we also propose the isomorphic distillation method, which transfers knowledge from ANN-based NeRF to compensate for information loss. Our experiments show that Spik-NeRF achieves PSNR metric within 2.9% of ANN baselines with only 2 timesteps, while retaining energy efficiency through multiplication-free operations. Our work bridges the efficiency-performance gap in neural fields, enabling future energy-efficient 3D reconstruction.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2024YDLN0013) and the National Natural Science Foundation of China (No. 12202412).

References

- [1] Bi, G.-q. and Poo, M.-m. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. *Journal of neuroscience*, 18(24): 10464–10472, 1998.
- [2] Bu, T., Ding, J., Yu, Z., and Huang, T. Optimized potential initialization for low-latency spiking neural networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 11–20, 2022.
- [3] Carnevale, N. T. and Hines, M. L. *The NEURON book*. Cambridge University Press, 2006.
- [4] Chen, A., Xu, Z., Geiger, A., Yu, J., and Su, H. Tensorf: Tensorial radiance fields. In *European conference on computer vision*, pp. 333–350. Springer, 2022.
- [5] Cheng, X., Hao, Y., Xu, J., and Xu, B. Lisnn: Improving spiking neural networks with lateral interactions for robust object recognition. In *IJCAI*, pp. 1519–1525, 2020.
- [6] Deng, S. and Gu, S. Optimal conversion of conventional artificial neural networks to spiking neural networks. *arXiv preprint arXiv:2103.00476*, 2021.
- [7] Diehl, P. U. and Cook, M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. *Frontiers in computational neuroscience*, 9:99, 2015.
- [8] Ding, J., Yu, Z., Tian, Y., and Huang, T. Optimal ann-snn conversion for fast and accurate inference in deep spiking neural networks. *arXiv preprint arXiv:2105.11654*, 2021.
- [9] Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and Tian, Y. Incorporating learnable membrane time constant to enhance learning of spiking neural networks. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 2661–2671, 2021.
- [10] Ghosh-Dastidar, S. and Adeli, H. Spiking neural networks. *International journal of neural systems*, 19(04):295–308, 2009.
- [11] Gu, Y., Wang, Z., Ye, D., and Xu, R. Sharpening your density fields: Spiking neuron aided fast geometry learning. *arXiv* preprint arXiv:2412.09881, 2024.
- [12] Guo, Y., Zhang, L., Chen, Y., Tong, X., Liu, X., Wang, Y., Huang, X., and Ma, Z. Real spike: Learning real-valued spikes for spiking neural networks. In *Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XII*, pp. 52–68. Springer, 2022.
- [13] Guo, Y., Huang, X., and Ma, Z. Direct learning-based deep spiking neural networks: a review. *Frontiers in Neuroscience*, 17:1209795, 2023.
- [14] Guo, Y., Zhang, Y., Chen, Y., Peng, W., Liu, X., Zhang, L., Huang, X., and Ma, Z. Membrane potential batch normalization for spiking neural networks. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 19420–19430, October 2023.
- [15] Guo, Y., Chen, Y., Liu, X., Peng, W., Zhang, Y., Huang, X., and Ma, Z. Ternary spike: Learning ternary spikes for spiking neural networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pp. 12244–12252, 2024.
- [16] Guo, Y., Peng, W., Chen, Y., Zhou, J., and Ma, Z. Improved event-based image de-occlusion. *IEEE Signal Processing Letters*, 2024.
- [17] Guo, Y., Peng, W., Liu, X., Chen, Y., Zhang, Y., Tong, X., Jie, Z., and Ma, Z. Enof-snn: Training accurate spiking neural networks via enhancing the output feature. *Advances in Neural Information Processing Systems*, 37:51708–51726, 2024.
- [18] Guo, Y., Zhang, Y., Jie, Z., Liu, X., Tong, X., Chen, Y., Peng, W., and Ma, Z. Reverbsnn: Reversing bit of the weight and activation for spiking neural networks. *arXiv preprint arXiv:2506.07720*, 2025.

- [19] Han, B., Srinivasan, G., and Roy, K. Rmp-snn: Residual membrane potential neuron for enabling deeper high-accuracy and low-latency spiking neural network. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 13558–13567, 2020.
- [20] Hao, Y., Huang, X., Dong, M., and Xu, B. A biologically plausible supervised learning method for spiking neural networks using the symmetric stdp rule. *Neural Networks*, 121:387–395, 2020.
- [21] Hao, Z., Bu, T., Ding, J., Huang, T., and Yu, Z. Reducing ann-snn conversion error through residual membrane potential. *arXiv preprint arXiv:2302.02091*, 2023.
- [22] Hao, Z., Ding, J., Bu, T., Huang, T., and Yu, Z. Bridging the gap between anns and snns by calibrating offset spikes. *arXiv preprint arXiv:2302.10685*, 2023.
- [23] Hebb, D. O. The organization of behavior: A neuropsychological theory. Psychology press, 2005.
- [24] Li, Y., Deng, S., Dong, X., Gong, R., and Gu, S. A free lunch from ann: Towards efficient, accurate spiking neural networks calibration. In *International Conference on Machine Learning*, pp. 6316–6325. PMLR, 2021.
- [25] Li, Y., Guo, Y., Zhang, S., Deng, S., Hai, Y., and Gu, S. Differentiable spike: Rethinking gradient-descent for training spiking neural networks. *Advances in Neural Information Processing Systems*, 34:23426–23439, 2021.
- [26] Li, Y., Yin, R., Park, H., Kim, Y., and Panda, P. Wearable-based human activity recognition with spatio-temporal spiking neural networks. *arXiv preprint arXiv:2212.02233*, 2022.
- [27] Li, Z., Ma, Y., Zhou, J., and Zhou, P. Spiking-nerf: Spiking neural network for energy-efficient neural rendering. ACM Journal on Emerging Technologies in Computing Systems, 20(3):1–23, 2025.
- [28] Liao, Z., Liu, Y., Zheng, Q., and Pan, G. Spiking nerf: Representing the real-world geometry by a discontinuous representation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 13790–13798, 2024.
- [29] Liu, F., Zhao, W., Chen, Y., Wang, Z., and Jiang, L. Spikeconverter: An efficient conversion framework zipping the gap between artificial neural networks and spiking neural networks. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 March 1, 2022, pp. 1692–1701. AAAI Press, 2022. URL https://ojs.aaai.org/index.php/AAAI/article/view/20061.
- [30] Max, N. Optical models for direct volume rendering. *IEEE Transactions on visualization and computer graphics*, 1(2):99–108, 2002.
- [31] Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., and Ng, R. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications of the ACM*, 65(1):99–106, 2021.
- [32] Neftci, E. O., Mostafa, H., and Zenke, F. Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks. *IEEE Signal Processing Magazine*, 36(6):51–63, 2019.
- [33] Ponghiran, W. and Roy, K. Spiking neural networks with improved inherent recurrence dynamics for sequential learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 8001–8008, 2022.
- [34] Qu, J., Gao, Z., Zhang, T., Lu, Y., Tang, H., and Qiao, H. Spiking neural network for ultra-low-latency and high-accurate object detection, 2023.
- [35] Rathi, N. and Roy, K. Diet-snn: Direct input encoding with leakage and threshold optimization in deep spiking neural networks. *arXiv preprint arXiv:2008.03658*, 2020.

- [36] Rathi, N., Srinivasan, G., Panda, P., and Roy, K. Enabling deep spiking neural networks with hybrid conversion and spike timing dependent backpropagation. arXiv preprint arXiv:2005.01807, 2020.
- [37] Ren, D., Ma, Z., Chen, Y., Peng, W., Liu, X., Zhang, Y., and Guo, Y. Spiking pointnet: Spiking neural networks for point clouds. *arXiv preprint arXiv:2310.06232*, 2023.
- [38] Sun, C., Sun, M., and Chen, H.-T. Direct voxel grid optimization: Super-fast convergence for radiance fields reconstruction. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 5459–5469, 2022.
- [39] Viale, A., Marchisio, A., Martina, M., Masera, G., and Shafique, M. Lanesnns: Spiking neural networks for lane detection on the loihi neuromorphic processor. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 79–86. IEEE, 2022.
- [40] Wu, J., Chua, Y., Zhang, M., Li, G., Li, H., and Tan, K. C. A tandem learning rule for effective training and rapid inference of deep spiking neural networks. *IEEE Transactions on Neural Networks and Learning Systems*, 2021.
- [41] Wu, J., Xu, C., Han, X., Zhou, D., Zhang, M., Li, H., and Tan, K. C. Progressive tandem learning for pattern recognition with deep spiking neural networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(11):7824–7840, 2021.
- [42] Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. Direct training for spiking neural networks: Faster, larger, better. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33, pp. 1311–1318, 2019.
- [43] Yao, X., Hu, Q., Liu, T., Mo, Z., Zhu, Z., Zhuge, Z., and Cheng, J. Spikingnerf: Making bio-inspired neural networks see through the real world. *arXiv preprint arXiv:2309.10987*, 2023.
- [44] Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang, O. The unreasonable effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 586–595, 2018.
- [45] Zou, S., Mu, Y., Zuo, X., Wang, S., and Cheng, L. Event-based human pose tracking by spiking spatiotemporal transformer, 2023.

A Technical Appendices and Supplementary Material

A.1 Rendering Performance in Realistic Dataset

Figure 3 presents the rendering results from realistic datasets, including Flower, Room, T-rex, and Horns, for ANN-based NeRF, Spiking NeRF, and Spik-NeRF. As shown, our method captures fine details in both geometry and appearance, achieving results comparable to those of the ANN-based NeRF. In contrast, Spiking NeRF produces blurry and distorted renderings in certain areas.

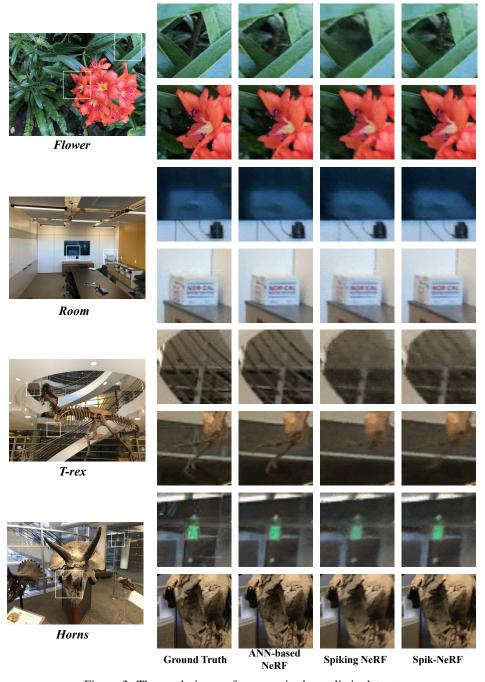


Figure 3: The rendering performance in the realistic dataset.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes].

Justification: We clearly state the claims made and the contributions made in both the abstract and introduction.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [NA].

Justification: We find no limitation which we feel must be specifically highlighted here.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes].

Justification: We provide the full set of assumptions and complete proofs in the Section 3.3. Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes].

Justification: We provide the detail experiment settings in the Section 4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes].

Justification: We provide open access to the data and code with sufficient instructions in the supplemental material.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new
 proposed method and baselines. If only a subset of experiments are reproducible, they
 should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes].

Justification: All implementations are described in the experiments section.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [NA].

Justification: Error bars are not reported because it would be too computationally expensive.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).

- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes].

Justification: The computation resources description is provided in the experiment section.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes].

Justification: The research conducted with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [No].

Justification: There is no societal impact of the work performed.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA].

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes].

Justification: The original paper for datasets we used are all cited.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

 If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA].

Justification: We adopt public datasets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA].

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA].

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA].

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.