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Abstract

Spiking Neural Networks (SNNs), as a biologically inspired neural network archi-
tecture, have garnered significant attention due to their exceptional energy efficiency
and increasing potential for various applications. In this work, we extend the use
of SNNs to neural rendering tasks and introduce Spik-NeRF (Spiking Neural Radi-
ance Fields with Ternary Spike). We observe that the binary spike activation map of
traditional SNNs lacks sufficient information capacity, leading to information loss
and a subsequent decline in the performance of spiking neural rendering models.
To address this limitation, we propose the use of ternary spike neurons, which
enhance the information-carrying capacity in the spiking neural rendering model.
With ternary spike neurons, Spik-NeRF achieves performance that is on par with,
or nearly identical to, traditional ANN-based rendering models. Additionally, we
present a re-parameterization technique for inference that allows Spik-NeRF with
ternary spike neurons to retain the event-driven, multiplication-free advantages
typical of binary spike neurons. Furthermore, to further boost the performance
of Spik-NeRF, we employ a distillation method, using an ANN-based NeRF to
guide the training of our Spik-NeRF model, which is more compatible with the
our ternary neurons compared to the standard binary neurons and other neuron
forms. We evaluate Spik-NeRF on both realistic and synthetic scenes, and the
experimental results demonstrate that Spik-NeRF achieves rendering performance
comparable to ANN-based NeRF models.

1 Introduction

Spiking Neural Networks (SNNs) [36, 13} 9, [10, 35} [18} [17], known for their energy efficiency
compared to Artificial Neural Networks (ANNs), have garnered significant attention due to their event-
driven computation mechanism and the energy-saving advantages of multiplication-free operations.
SNNs have shown great potential in a wide range of applications. For instance, in [34]], SNNs
were applied to object detection and demonstrated substantial energy efficiency improvements,
outperforming their ANN counterparts by orders of magnitude. In [16], SNNs were used to improve
the image de-occlusion task. In [33]], SNNs were employed for sequential learning, showing better
performance and reduced energy consumption compared to ANNs with similar scale. Similarly,
in [26], SNNs were utilized for Human Activity Recognition (HAR), achieving up to a 94% reduction
in energy consumption while maintaining comparable accuracy to ANN-based models. Additionally,
SNNs have been applied to pose tracking [45]], 3D recognition [37], and even autonomous driving [39]],
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where LaneSNNs demonstrated low power consumption ( 1 W) in lane detection using event-based
cameras.

Given these successes, the ques-
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To address this challenge, we propose

the ternary spike neuron for the Spik-NeRF, which extends the traditional binary spike representation
({0,1}) to a ternary form ({0, 1,2}). This new approach significantly increases the information
capacity of SNNs, as detailed in Sec. 3.3. Furthermore, in the inference phase, we introduce a re-
parameterization technique that transforms the ternary spikes ({0, 1, 2}) into the set of ({—1,0,1}),
preserving the multiplication-free and event-driven advantages of SNNs. The overall workflow of
the proposed Spik-NeRF, along with the ternary spike neuron and re-parameterization technique, is
illustrated in Fig. [T}

Additionally, to further improve the performance of Spik-NeRF, we propose using an ANN-based
NeRF model for distillation. This technique, leveraging the superior capabilities of ANN-based NeRF
models, is particularly well-suited for our ternary spike neuron, offering additional performance
gains.

In summary, the main contributions of this work are as follows:

» We present Spik-NeRF, a spiking neural network for rendering neural radiance fields. To
our best knowledge, this is the first directly-trained SNN model building on the original
NeRF framework [31]].

* We demonstrate, with theoretical justification, that binary spike activation maps in SNN-
based NeRF are insufficient in carrying information, leading to performance degradation.
To solve this issue, we propose the ternary spike neuron, which effectively increases the
information capacity while retaining the multiplication-free and event-driven advantages of
standard SNNs in the inference, aided by our re-parameterization technique.

* We introduce a distillation method using an ANN-based NeRF teacher, which is more
suitable for our ternary neuron compared to other spike neurons, to further enhances the
performance of Spik-NeRF.

* We evaluate Spik-NeRF on both realistic and synthetic scenes. The experimental results
demonstrate that Spik-NeRF achieves rendering performance comparable to ANN-based
NeRF models.



2 Related Work

2.1 Spiking Neural Networks

There are generally three primary methods for training SNNs [13]]: (1) spike-timing-dependent
plasticity (STDP) [[L] approaches, (2) ANN-to-SNN conversion approaches [22} 21129116418, 2} |19} 24],
and (3) direct training methods [15} 132, 142} [35] 25/ 141}, 140].

The STDP method is biologically inspired [20} [7]] and updates synaptic weights using an unsupervised
learning algorithm called Hebbian learning [23]]. However, this approach is still limited to small-scale
datasets.

The ANN-to-SNN conversion method [6} 24,22} 21]] involves converting a well-trained ANN model
to an SNN counterpart. This method is advantageous because training an ANN is faster than training
an SNN. Consequently, the ANN-to-SNN conversion offers a quick way to obtain an SNN without
using gradient descent. However, the converted SNN essentially mimics the original ANN and lacks
learned features, thus not fully exploiting the benefits of SNNs. Additionally, this method typically
requires many time steps to achieve high accuracy.

Direct training methods, on the other hand, aim to find an alternative function to replace the firing
function of spiking neurons during backpropagation. These methods can significantly reduce the
number of time steps needed, sometimes even to fewer than five [12} 25 [14], and have attracted
considerable attention recently. However, finding an appropriate surrogate function for SNNs with
large time steps remains a challenging problem. Our work focuses on addressing this issue.

2.2 Spiking Neural Networks for NeRF

Some research has explored applying SNNs to Neural Radiance Fields, but these studies differ from
our approach. For instance, hybrid ANN-SNN models were proposed in Spiking NeRF [28]] and
Spiking Nerfacto [11]]. These works employ non-linear, non-spike functions to post-process the
density-related outputs of the original ANN-based NeRF models. In contrast, our work focuses on
utilizing a fully SNN-based model for neural radiance fields. In Spiking-Nerf [27], an ANN-SNN
model is proposed to develop energy-efficient spiking neural rendering using the ANN-to-SNN
conversion approach, which, as mentioned earlier, requires many time steps. In comparison, our
work concentrates on developing a direct training SNN method for NeRF. Another relevant study,
SpikingNerf [43], presents a spiking neural radiance field model based on the DVGO [38] and
TensoRF [4] frameworks. These frameworks enhance the original NeRF model by integrating various
innovations. Except for these, this method requires numerous time steps as each sampled point on the
ray is associated with a particular time step and represented in a hybrid manner.

Our approach, however, aims to develop a spiking neural radiance field model based on the original
NeRF framework [31]], which could pave the way for future advancements in this field. Additionally,
we aim to achieve competitive performance with fewer time steps, which is directly related to the
energy efficiency of the model.

3 Preliminary and Methodology

In this paper, we primarily apply the SNN to the NeRF framework [31]], which is the first deep
learning model that represents a scene as a neural radiance field and renders novel views from this
representation. We then modify it to create Spik-NeRF. First, we provide a detailed introduction to
NeRF and the widely used SNN neuron model, the Leaky Integrate-and-Fire (LIF) model. Subse-
quently, we address the information loss issue when applying SNN to NeRF. Finally, we present the
Spik-NeRF model, which is based on ternary spike neurons to resolve the aforementioned problem,
along with an isomorphic network knowledge distillation method to further enhance performance.

3.1 NeRF

In contrast to conventional explicit 3D reconstruction techniques that employ discrete voxel grids or
point clouds, NeRF [31] introduces a novel continuous implicit representation through differentiable
volumetric rendering. The core innovation lies in encoding the 3D scene as a 5D neural radiance



field using a multi-layer perceptron (MLP), which maps spatial coordinates p = (z,y, z) € R? and
viewing directions v = (6, $) € S? to volume density o € R* and view-dependent RGB color
c = (r,g,b) € [0,1]3. This parametric representation is formalized through two cascaded MLP
components:

Geometry network: Fy : p — (e, o) )
Appearance network: G : (e,v) — ¢ 2)
where @ and v denote network parameters, e € R” represents intermediate feature embeddings, and

o corresponds to the differential opacity at point p. These networks are all composed of several fully
connected layers. Each fully connected layer implements the transformation:

h = ReLU(Linear(a)) 3)
where a is the activation from the previous layer.
The rendering process employs classical volume rendering principles [30] with neural adaptation. For

a camera ray r(g) = o + gd with near/far bounds [g,,, g], we sample K stratified points {g;} X,
and compute the pixel color via numerical integration:

R K G1 = exp (— Z;;ll Uj5j>
C(I‘) = Z Giaici where o; =1-— eXp(*O'i(Si) 4)
= 0i = Git1 — Yi

Here G, represents the transmittance probability for ray segment [g,,, g;], and «; denotes the alpha-
compositing weight for the i-th sample. The hierarchical sampling strategy combines coarse and fine
networks to importance-sample along rays.

The model is optimized through photometric reconstruction over a set of rays R using an Lo loss
between rendered and observed pixel colors:

Lonoto = Ernse [[Ce(r) = C(@)[I3 + [Cs(x) — Cx)13 ®)
where €, and C’f denote outputs from the coarse and fine networks respectively.

3.2 Vanilla SNN for NeRF (Denoted as Spiking NeRF)

SNNs use the spiking neuron, which is inspired by the brain’s natural mechanisms, to transmit
information. A spiking neuron will receive input spike trains from the previous layer neuron models
along times to update its membrane potential, u. In the paper, we adopt the widely used leaky
integrate and fire (LIF) neuron model. The LIF neuron model governs membrane potential u(t)
evolution through time ¢:

d
de7]: :*(u*urcsct)+R'I(t)a u < V;:h (6)
s' = O(u' — Vin) @)

where O(+) denotes the Heaviside step function, 7, is the membrane time constant, and V;y, the firing
threshold. For practical implementation, we adopt the discrete-time formulation:

1

Vt — ut*1 —+ 7(Wst71 — u“l + ureset) (8)
T

s' =0 — Vi) )

U.t = Vt O] (1 — St) + uresetst (]O)

where W denotes synaptic weights and ® the Hadamard product. Parameters follow biological
constraints: 7 = 4, Upeset = 0, Vin = 0.5 [25]).

We transform NeRF’s MLP layers to spiking domains through temporal unfolding and potential
accumulation:

Spiking Geometry Network: Fj : p’ + (e, 0") (11)
Spiking Appearance Network: Gt7 (e, v!) = ¢ (12)



Each spiking MLP layer implements temporal-aware computation:
h! = LIF(Wys._, + by) (13)

where s!,_ | denotes spike inputs from layer k£ — 1 at timestep ¢. The membrane potential uf, tracks
temporal dependencies across layers.

The spiking radiance field outputs are integrated through:

1 X

T > ot (14)
t=1

T

Z as)

where T is the total timestep of the Spiking NeRF. Then volumetric rendering then follows Eq. @)
with o; = ¢; and ¢; = C;.
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3.3 Spik-NeRF
3.3.1 Information Loss in Spiking NeRF

While employing binary spike feature embeddings in Spiking NeRF offers substantial energy effi-
ciency, it inherently has a limited representational capacity compared to the high-precision feature
embeddings utilized in ANN-based NeRF. This limitation ultimately restricts its performance. To
better illustrate this issue, we begin by providing a theoretical analysis based on the concept of
entropy. Given a set X, its representational capability, denoted as C(X), can be quantified by the
maximum entropy of X, as expressed below:

C(X) = max H(X) = max ( pr ) log px ( )) , (16)

zeX

where px(z) represents the probability of observing a sample 2 from X. The following proposition
can be easily derived:

Proposition:  Given a set X, we have C(X) = maxﬂf( ) = max (— Y, oy px(x) log px(z)).

When the probability distribution is defined as px(x) = M, where M represents the total number
of samples in X, the entropy H(X) reaches its maximum value of log(M). Therefore, it follows that
C(X) = log(M).

Next, we calculate the representational capacities of the binary spike feature embeddings in Spiking
NeRF and the real-valued feature embeddings in the ANN-based counterpart. Let Eg € BE*Y
represent the binary feature embeddings of the Spiking NeRF, and Eg € RE*¥ denote the real-
valued feature embeddings of the ANN-based NeRF. A binary spike output s can be represented by 1
bit, with two possible samples from s. Therefore, the number of samples in Eg is 2(CxN) "and the
corresponding representational capacity is:

C(Ep) = log (2<CxN>) —CxN. (17)

In contrast, a real-valued output requires 32 bits, leading to 232

representational capacity for the real-valued embeddings is:

possible samples. Hence, the

C(ER) = log (23“(0”)) =32xC x N, (18)

This comparison clearly demonstrates that the representational capacity of the binary spike feature
embeddings is substantially limited, which consequently results in degraded performance for Spiking
NeRF.

3.3.2 Ternary Spike Neuron Mechanism for Spik-NeRF

Our theoretical analysis reveals that enhancing the information capacity of spike neuron activations
directly correlates with improved task performance. To capitalize on this insight, we propose a novel



ternary spike neuron formulation that forms the foundation of our Spik-NeRF architecture. The
membrane dynamics and spike generation mechanism operate through three distinct phases:

1
vi=ut"t4 = (Wst_1 —ut 4 ureset) (19)
T
2; Vt > V:ch + Av
=141, Vi <vi<Viy+A, (20)
Oa Vt < ‘/th

t t
ut _ {V ) v < ‘/th (21)

Upeset, Otherwise

where A, represents our adaptive threshold margin (fixed at 1 in implementation). Obviously,
this ternary formulation significantly enhances the representational capacity of Spik-NeRF. To
quantitatively analyze the representational advantage, we also resort to the information entropy
theory. Let Ez € T denote as a ternary feature embedding in our Spik-NeRF. The ternary spike
embeddings E consists of 3¢~ samples. Hence,

C(Er) =log, 39N = O x N -log, 3~ 1.585-C x N (22)

The ~ 58.5% increase in theoretical information capacity directly translates to enhanced scene
representation capabilities, which benefits performance improvement.

3.3.3 Training-Inference Decoupling via Spike Reparameterization

While ternary spike neurons enhance representational capacity, their direct implementation introduces
computational challenges: the {0, 1,2} activation space prevents efficient conversion of weight-
activation multiplications to additions, a critical advantage in SNN acceleration. To resolve this
fundamental efficiency conflict, we propose a novel spike re-parameterization technique that preserves
both the information richness of ternary signals and the computational benefits of binary networks.

Our solution employs a train-infer decoupling strategy with affine transformation of spike representa-
tions. During training, we maintain the native {0, 1, 2} spike formulation for gradient stability. For
inference, we apply a linear transformation to the spike tensor:

§8=s"—A-1 where A=1 (23)
This shifts the spike space to {—1,0, 1} while preserving ordinal relationships. The membrane
potential update equations consequently adapt as follows:

1
Training: v/ =u"""+ = (Ws'™' —u'™" + wege) (24)
T

1
Inference: v'=u'"'+ . (W8 +wy, — u'™! + tyeser) (25)

where w;, = W1 constitutes a pre-computable bias term. Thus in the inference, the linear layer will
only consist of addition operations and keep the event-driven advantage.

Note that we can also use the {—1, 0, 1} activation spike [L3]] during training. However, we observe
that its performance is inferior to that of the {0, 1, 2} spike. Additionally, the {0, 1, 2} spike activation
resembles ReLLU activation more closely, making it better suited for ANN-SNN distillation compared
to the {—1, 0, 1} spike activation. With these two reasons, we chose this form of neuron for our work.

3.3.4 Isomorphic Network Knowledge Distillation

To further increase the performance, we propose an isomorphic distillation framework that transfers
knowledge from an ANN-based NeRF (teacher) to our Spik-NeRF (student). We establish direct
supervision on both density and color predictions through mean squared error (MSE) distillation. For
any 3D point p and viewing direction v,

Laensity = Epno [l (p) — % (p)]13] (26)
Leotor = E(puypxv [[€4N (D, v) — N (p, v) 3] 27)

The final training objective combines photometric reconstruction loss with distillation is
Ltotal = Lphoto + )\deensity + )\cﬁcolor (28)

where A4 and A, control the distillation strength for density and color respectively. We set them as
0.5 in the paper.



Table 1: Per-scene quantitative results from the synthetic dataset

Metric  Method Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.
ANN-based NeRF  34.15  25.64 29.15 36.85 3148 29.34 33.12 2942 31.15
PSNRY Spiking-NeRF 1224 11.14 1398  14.85 9.81 10.36 9.81 1322 1193
Spiking NeRF 3198 2451 24.00 3455 2933 27.75 31.65 27.85 2895
Spik-NeRF 3340 2521 26.05 3599 30.82 28.86 3278 2875 30.23
ANN-based NeRF  0.979 0929 0966 0979  0.965 0.958 0.978 0.874 0.953
SSIMt  Spiking NeRF 0963 0907 0.891 0.969 0.940 0.937 0.969 0.838 0.927
Spik-NeRF 0973 0921 0929 0976 0.957 0.950 0975 0.856 0.942
ANN-based NeRF  0.014  0.053 0.022 0.015 0.020 0.024 0.023  0.086 0.032
LPIPS] Spiking NeRF 0.034 0.086 0.119 0.032 0.039 0.047 0.043  0.126  0.066
Spik-NeRF 0.021  0.065 0.063 0.021  0.027 0.033 0.028 0.105 0.045

Table 2: Per-scene quantitative results from the realistic dataset

Metric Method Room Fern Leaves Fortress Orchids Flower T-Rex Horns Avg.
ANN-based NeRF  31.38 2625 21.98 31.35 21.20 27.51 2727  28.10 26.88
PSNRT Spiking-NeRF 17.07 1591 9.68 14.51 9.12 10.35 15.05 13.05 13.09
Spiking NeRF 30.12  25.08 20.75 30.07 20.51 26.19 2526 2634 2554
Spik-NeRF 3090 25770 21.46 30.79 20.94 2694  26.15 27.16 26.26
ANN-based NeRF 0931 0.836  0.790 0.896 0.734 0.853  0.896 0.877 0.851
SSIM?T  Spiking NeRF 0904 0.769 0.691 0.837 0.644 0.782  0.825 0.800 0.781
Spik-NeRF 0920 0.802 0.744 0.869 0.688 0.820 0.862 0.835 0.817
ANN-based NeRF  0.049 0.101  0.119 0.059 0.122 0.075 0.062 0.078 0.083
LPIPS]  Spiking NeRF 0.098 0.207 0.203 0.130 0.223 0.134  0.135 0.166 0.162
Spik-NeRF 0.066 0.164 0.157 0.092 0.170 0.101  0.095 0.123 0.121

4 Experiment

We assess the rendering performance of Spik-NeRF on both synthetic and real-world datasets [31].
The synthetic dataset includes eight scenes featuring different objects. For each scene, there are 100
views used for training and 200 views for testing, with each view image having a resolution of 400 x
400 pixels. The real-world dataset consists of eight scenes captured with mobile phones. Each scene
contains between 20 and 60 images, and the images are resized to 400 x 400 pixels in this paper.
Additionally, one-eighth of the images are reserved for testing.

The network architecture follows the design outlined in NeRF [31]. All models are trained using the
Adam optimizer for 300,000 iterations with a batch size of 1,024 rays. We initialize the learning rate
at 5 x 10~4, which is decayed exponentially as training progresses. For synthetic scenes, the number
of sampled points is set to 64 for the coarse network and 128 for the fine network. Similarly, for
real-world scenes, 64 and 128 sampled points are used for the coarse and fine networks, respectively.
The total number of timesteps for both Spiking NeRF and our Spik-NeRF is set to 2, while for
the Spiking-NeRF, it is 8 timesteps. Since our Spik-NeRF with 2 timesteps achieves rendering
performance comparable to the ANN-based NeRF model, we did not explore larger timesteps.

4.1 Rendering Performance

We evaluate the rendering performance of Spik-NeRF both quantitatively and qualitatively. Tables T]
and 2] present per-scene quantitative results from the synthetic and realistic datasets, respectively.

As mentioned earlier, although previous work has explored the application of SNNs to NeRF, these
studies differ from our approach. Spiking-NeRF [27], an ANN-SNN hybrid model, uses the same
NeRF [31] framework as ours, and is thus selected for comparison. Additionally, we implemented
the original NeRF [31] and a spiking NeRF based on a vanilla binary spike neuron for comparison,
referred to as ANN-based NeRF and Spiking NeRF, respectively.

For performance evaluation, we adopt standard metrics: PSNR and SSIM (higher values are better),
and LPIPS [44] (lower values are better), as used in NeRF [31]]. Since Spiking-Nerf [27] only reports
PSNR, we present SSIM and LPIPS results for ANN-based NeRF, Spiking NeRF, and Spik-NeRF.
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Figure 2: The rendering performance in the synthetic dataset.

On the synthetic dataset, Spiking-NeRF with 8 timesteps achieved an average PSNR of 11.93. In
comparison, our directly trained Spiking NeRF achieved a significant improvement with an average
PSNR of 28.95. More notably, our Spik-NeRF, utilizing ternary spikes, further boosts the average
PSNR to 30.23, approaching the performance of the ANN-based NeRF (31.15 PSNR). Furthermore, in
every scene, Spik-NeRF consistently outperforms both Spiking-NeRF and Spiking NeRF, highlighting
the effectiveness of our approach.



On the realistic dataset, our method also surpasses Spiking-NeRF and Spiking NeRF. For instance,
Spik-NeRF achieves a PSNR of 26.26, outperforming Spiking-NeRF and Spiking NeRF by 13.17
and 0.72 PSNR, respectively. In terms of SSIM and LPIPS, Spik-NeRF achieves scores of 0.817 and
0.121, while Spiking NeRF achieves 0.781 and 0.162, respectively.

Figure [2illustrates the rendering results from synthetic datasets, including Lego, Drums, Mic, and
Ship, for ANN-based NeRF, Spiking NeRF, and Spik-NeRF. It is evident that our method recovers
fine details in both geometry and appearance, comparable to the ANN-based NeRF. This includes
features such as the Drums’ pedal, the Microphone’s mesh grille, and the Ship’s rigging. In contrast,
Spiking NeRF produces blurry and distorted renderings, particularly for the Microphone’s mesh
grille.

We also include the rendering results for the realistic dataset in the appendix. As seen in the figures,
our method consistently represents fine geometry more accurately across rendered views than Spiking
NeRF.

4.2 Ablation Study for Knowledge Distillation

In this section, we evaluate the performance of our method with the proposed isomorphic network
knowledge distillation on complex scenes, such as Room, Orchids, and Drums. The results are
presented in Tab. 3]

As illustrated in Tab. [3] applying knowl-
edge distillation to Spik-NeRF results in  Taple 3: Per-scene quantitative results for knowledge
a noticeable improvement in performance, {igtillation.

bringing its results much closer to those

of the ANN-based NeRF. The quantitative ~ Metric  Method Room Orchids Drums
analysis reveals two important findings: (1) ANN-based NeRF 3138 21.20  25.64
PSNR{  Spik-NeRF 30.90 20.94 25.21

Knowledge distillation effectively narrows

. Spik-NeRF with KD 31.12 21.09 25.40
the performance gap between Spik-NeRF PR !

and ANN-based NeRF, as demonstrated by ANN-based NeRF 0931 0734 0929
he i tin both PSNR and SSINT ~ SSIMT  Spik-NeRF 0920  0.688  0.921
the improvemen Spik-NeRF with KD 0.924  0.692  0.924

metrics. (2) Even in challenging scenes

that involE/e) specular reﬂectiogns gsuch as ANN-based NeRF 0.049° 0.122 - 0.053
. t ’ . LPIPS| Spik-NeRF 0.066 0.170 0.065

Orchids, our method achieves rendering Spik-NeRF with KD~ 0.064  0.165 0.063

quality comparable to ANN-based NeRF,

suggesting that knowledge distillation is

beneficial in maintaining high-quality renderings in complex environments.

These findings also highlight the compatibility of our Spik-NeRF with the ternary spike neuron model
and the isomorphic network knowledge distillation, which appears to facilitate the optimization
process and enhance performance significantly.

5 Conclusion

We present Spik-NeRF, achieving ANN-comparable rendering quality. Theoretical analysis reveals
binary spikes’ limited representational capacity for SNN-based NeRF. To address limitations of
binary spike neurons based Spiking NeRF, we propose the ternary spike neuron for Spik-NeRF,
which increase representational capacity by 58.5% using three activation states. We also propose
a train-infer decoupling via spike reparameterization technique to keep the energy efficiency of
SNNs. In addition, we also propose the isomorphic distillation method, which transfers knowledge
from ANN-based NeRF to compensate for information loss. Our experiments show that Spik-NeRF
achieves PSNR metric within 2.9% of ANN baselines with only 2 timesteps, while retaining energy
efficiency through multiplication-free operations. Our work bridges the efficiency-performance gap
in neural fields, enabling future energy-efficient 3D reconstruction.
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A Technical Appendices and Supplementary Material

A.1 Rendering Performance in Realistic Dataset

Figure 3] presents the rendering results from realistic datasets, including Flower, Room, T-rex, and
Horns, for ANN-based NeRF, Spiking NeRF, and Spik-NeRF. As shown, our method captures fine
details in both geometry and appearance, achieving results comparable to those of the ANN-based
NeRF. In contrast, Spiking NeRF produces blurry and distorted renderings in certain areas.

ANN-based

Ground Truth NeRF

Spiking NeRF Spik-NeRF

Figure 3: The rendering performance in the realistic dataset.
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Justification: We provide the full set of assumptions and complete proofs in the Section 3.3.
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Justification: We provide the detail experiment settings in the Section 4.
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to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes] .

Justification: We provide open access to the data and code with sufficient instructions in the
supplemental material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
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6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .
Justification: All implementations are described in the experiments section.
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA] .
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
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* The method for calculating the error bars should be explained (closed form formula,
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10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .
Justification: The computation resources description is provided in the experiment section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes] .
Justification: The research conducted with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
Justification: There is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .
Justification: The original paper for datasets we used are all cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .
Justification: We adopt public datasets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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