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ABSTRACT

In contrastive learning, two views of an original image generated by different
augmentations are considered as a positive pair whose similarity is required to
be high. Moreover, two views of two different images are considered as a nega-
tive pair, and their similarity is encouraged to be low. Normally, a single similarity
measure given by a single projection head is used to evaluate positive and negative
sample pairs, respectively. However, due to the various augmentation strategies
and varying intra-sample similarity, augmented views from the same image are
often not similar. Moreover, due to inter-sample similarity, augmented views of
two different images may be more similar than augmented views from the same
image. As such, enforcing a high similarity for positive pairs and a low similarity
for negative pairs may not always be achievable, and in the case of some pairs,
forcing so may be detrimental to the performance. To address this issue, we pro-
pose to use multiple projection heads, each producing a separate set of features.
Our loss function for pre-training emerges from a solution to the maximum like-
lihood estimation over head-wise posterior distributions of positive samples given
observations. The loss contains the similarity measure over positive and negative
pairs, each re-weighted by an individual adaptive temperature that is regularized to
prevent ill solutions. Our adaptive multi-head contrastive learning (AMCL) can be
applied to and experimentally improves several popular contrastive learning meth-
ods such as SimCLR, MoCo and Barlow Twins. Such improvement is consistent
under various backbones and linear probing epoches and is more significant when
multiple augmentation methods are used.

1 INTRODUCTION

Contrastive learning is an important line of work in self-supervised learning (SSL) which offers a
promising path to leveraging large quantities of unlabeled data. Its main idea is to encourage two
views of the same image (positive pair) to have similar embeddings and thus a high similarity, and
those of different images (negative pair) to have a low similarity. As such, the similarity measure is
an important component influencing representation learning.

In literature, multiple augmentations are usually used to create a view of an image. For example,
rotation, scaling, translation, and flipping are used in SimCLR (Chen et al., 2020) and MoCo (He
et al., 2020). However, the use of multiple augmentations make positive pairs often look dissimilar
and negative pairs occasionally similar: examples are presented in Fig. 1(a). Therefore, there exists
non-negligible diversity in the distribution of similarity of image pairs. As shown in Fig. 1(b)-
(d), when the number of augmentations increases from 1, 3 to 5, the similarity distributions of
positive and negative pairs of the SimCLR method become more complex, e.g., the similarity of
more positive pairs drops below 0.5; thus, we observe increasingly significant overlapping regions,
indicating compromised similarity learning.

We identify two limitations of existing methods which prevent them from addressing the above-
mentioned problem. First, existing methods usually use a single feature projection head and a
single similarity measure (Chen et al., 2020; He et al., 2020; Chen & He, 2021). While this head is
supervised by standard metric loss such as contrastive loss, a single projection has a single mode of
image characterization which would be insufficient to describe the diverse image content caused by
multiple augmentations. A consequence is that positive pairs sometimes have low similarity scores.
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(a) Examples of augmented image pairs (STL-10).
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(b) 1 head+1 aug.
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(c) 1 head+3 aug.
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(d) 1 head+5 aug.
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(e) Ours+1 aug.
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(f) Ours+3 aug.
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(g) Ours+5 aug.

Figure 1: In (a), more augmentations make posi-
tive samples (green dots) look dissimilar and some-
times negative samples (red dots) similar. (b)-(d):
for traditional contrastive learning methods, when
increasing the number of augmentations from 1 to
5, similarities of more positive pairs drop below
0.5, causing more significant overlapping regions
between histograms of positive (orange) and nega-
tive (blue) sample pairs. In comparison, our multi-
head approach (e)-(d) yields better separation of
positive and negative sample pairs as more aug-
mentation types are used, e.g., (g) vs. (d).

Second, existing methods usually use a global
temperature to scale similarity, which, af-
ter careful tuning, is shown to improve fea-
ture alignment and uniformity (Wang & Isola,
2020). Under this scheme, the same scaling is
applied to all the pairs, which does not allevi-
ate overlapping exhibited in Fig. 1(d).

This paper aims to address the diversity is-
sue caused by multiple augmentations while
considering the limitations in existing prac-
tice. We propose adaptive multi-head con-
trastive learning (AMCL): it better captures
the diverse image content and gives similarity
scores that better separate positive and nega-
tive pairs. In a nutshell, instead of having a
single MLP and cosine similarity, AMCL uses
multiple repetitive MLPs and cosine similar-
ity measures before loss computation. Within
AMCL, we design an adaptive temperature
which depends on both the projection head
and the similarity of the current pair. We
show that the idea of multiple projection heads
and adaptive temperature can be applied to
popular contrastive learning frameworks and
yields consistent improvements. Consistent
with our motivation, we report more signifi-
cant improvements when using 4-5 augmenta-
tion types than 1-2 augmentation types.

On the theoretical side, we derive the training
objective function of AMCL based on maximum likelihood estimation (MLE). We show this objec-
tive function can be reduced to many existing contrastive learning methods, that its regularization
term has interesting physical meaning, and that with it we are now able to connect temperature to
uncertainty. We summarize the main points below.

i. We propose adaptive multi-head contrastive learning (AMCL) which tackles intra- and inter-
sample similarity and an adaptive temperature mechanism re-weighting each similarity pair.

ii. We derive the objective function for AMCL as solution to the maximum likelihood estimation.
We also discuss its mathematical insights including connecting temperature to uncertainty.

iii. Our system consistently improves the performance of a few popular constrastive learning frame-
works, backbones, loss functions, and combinations of augmentation types, and is shown to be
particularly useful under more augmentation types.

2 RELATED WORK

Self-supervised learning (SSL) has been as a driving force behind unsupervised learning in com-
puter vision and natural language processing (NLP) (Balestriero et al., 2023). Its methods can be
grouped into 4 broad families: deep metric learning family (Chen et al., 2020; Dwibedi et al., 2021;
Du et al., 2021), self-distillation family (Grill et al., 2020; Chen & He, 2021; Caron et al., 2021; He
et al., 2020; Zhou et al., 2021; Koohpayegani et al., 2021; Oquab et al., 2023), canonical correlation
analysis family (Hotelling, 1936; Zbontar et al., 2021; Caron et al., 2020; Bardes et al., 2022), and
masked image modeling (MIM) (Bao et al., 2022; He et al., 2022; Xie et al., 2022). Since contrastive
learning and MIM can complement each other (Park et al., 2023), recent works have adopted a fu-
sion of both to improve representation quality and transfer performance over its traditional MIM
approaches (Huang et al., 2022b; Mishra et al., 2022; Wei et al., 2022; Jiang et al., 2023).

Metric learning is related to self-supervised learning (Balestriero et al., 2023). Commonly used
similarity measurements include the triplet loss (Hoffer & Ailon, 2015), cross-entropy loss (Zhang &
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Table 1: Standard contrastive learning methods and their loss functions.

Method Loss name Loss function

SimCLR, MoCo NT-Xent ℓNT-Xent =−log exp(sim(zi,z
+
i )/τ)∑N

n=1 exp(sim(zi,z
−
in)/τ)

(1.1)

SimSiam Negative cos. ℓSymNegCos=− 1
2 sim

(
zi, [h

+
i ]sg

)
− 1

2 sim
(
z+
i , [hi]sg

)
(1.2)

Barlow Twins Cross-corr. ℓCross-Corr =
∑d′

l=1(1− Cll)2 + λ
∑d′

l=1

∑d′

m̸=l C2
lm (1.3)

LGP, CAN InfoNCE ℓInfoNCE =−log exp(sim(zi,z
+
i )/τ)

exp(sim(zi,z
+
i )/τ)+

∑N
n=1 exp(sim(zi,z

−
in)/τ)

(1.4)

Sabuncu, 2018), and contrastive loss (Khosla et al., 2020). A contemporary work is multi-similarity
learning (Mu et al., 2023), where different attribute labels of an image are used in each level of
learning. Different from (Mu et al., 2023), our method is self-supervised, discusses the adaptive
temperature as a useful add-on, and derives interesting mathematical insights.

Uncertainty learning has been studied extensively (Abdar et al., 2021; Gawlikowski et al., 2023).
For example, Tao (2019) use multiple network copies trained with different parameter initializa-
tions to find various local minima. Bayesian neural networks (Goan & Fookes, 2020) and Monte
Carlo dropout (Gal & Ghahramani, 2016) handle uncertainty by design, where dropout layers are
equivalent to sampling weights from a posterior distribution over model parameters.

A more principled way is to capture aleatoric uncertainty (Matthies, 2007; Kendall & Gal, 2017;
Hüllermeier & Waegeman, 2021) of Euclidean distance or cosine similarity, e.g., heteroscedastic
aleatoric uncertainty (observation noise may vary with each pair of samples). To this end, we
model the maximum likelihood estimation over head-wise posterior distributions of positive sam-
ples given observations. This is a form of m-estimator (Huber et al., 1981) whose log-likelihood
employs Normal distributions a.k.a. Welsch functions by the uncertainty estimation community.

3 SELF-SUPERVISED LEARNING FRAMEWORKS: A REVISIT

Notations. A common contrastive learning framework typically consists of a data augmentation
module, a base encoder f(·), a projection head g(·) and a loss function. Stochastic data augmentation
transforms a given sample randomly, resulting in two views of the same sample denoted xi and x+

i ,
which are considered as a positive pair consisting of an anchor and positive sample, respectively.
Their visual representations are denoted as hi = f(xi) ∈ Rd and h+

i = f(x+
i ) ∈ Rd, where d

is feature dimension. The projection head g(·) maps these d-dim vectors to d′-dim vectors zi =

g(hi) ∈Rd′
and z+

i =g(h+
i ) ∈Rd′

, to which the contrastive learning loss is applied. Normally the
multi-layer perceptrons (MLPs) are used for projection. By analogy, negative samples for anchor xi

are denoted by x−
in (n=1, · · · , N , and N is the total number of negative samples per anchor), and

their features and projection head outputs are h−
in=f(x−

in) and z−
in=g(h−

in), respectively.

Loss functions. The contrastive loss function typically tries to align the anchors with their positive
samples, and enlarge the distance between the anchors and their negative samples. Loss functions
of some popular SSL methods are summarized in able 1. Methods such as SimCLR and MoCo use
the NT-Xent loss, given in Eq. (1.1). NT-Xent is very similar to the InfoNCE loss but differs by
the normalizaton step. Function sim(·, ·) in equations of Table 1 represents the cosine similarity.
SimSiam uses the negative cosine similarity loss in Eq. (1.2), where [·]sg is the stop-gradient oper-
ation. Barlow Twins in Eq. (1.3) takes a different approach by utilizing the cross-correlation loss
to decorrelate the channels of both views. In Eq. (1.3), λ ≥ 0 is a hyperparameter that controls
the strength of decorrelation. C is the cross-correlation matrix computed between the outputs of two
identical networks along the batch dimension, i.e., Clm =

∑N
n=1 zln z

+
mn (Zbontar et al., 2021).

Differing from contrastive learning, masked image modeling (MIM) learns to reconstruct a corrupted
images where some parts of the image or feature map are masked out. As demonstrated in (Park
et al., 2023), contrastive learning and MIM are complementary strategies. Thus, recent works,
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Table 2: Loss functions of our multi-head variants of popular contrastive learning methods.

Method Loss function Regularization

SimCLR, MoCo ℓ†NT-Xent =
C∑

c=1

(
− 1

τc+
i

sim(zc
i ,z

c+
i )+ 1

τc−
in∗

max
n=1,··· ,N

sim(zc
i ,z

c−
in )+βΩ(τc+i )−βΩ(τc−in∗ )

)
(2.1)

SimSiam ℓ†SymNegCos=
C∑

c=1

(
− 1

2τc+
i

sim
(
zc
i , [h

+
i ]sg

)
− 1

2τc+̃
i

sim
(
zc+
i , [hi]sg

)
+βΩ(τc+i )+βΩ(τc+̃i )

)
(2.2)

Barlow Twins ℓ†Cross-Corr =
C∑

c=1

( d′∑
l=1

(1− 1

τc+
l

Cll)2+λ
d′∑
l=1

d′∑
m ̸=l

1

τc−
lm

C2
lm +β

d′∑
l=1

Ω(τc+l )−β
d′∑
l=1

d′∑
m ̸=l

Ω(τc−lm )
)

(2.3)

LGP, CAN ℓ†InfoNCE =
C∑

c=1

(
− 1

τc+
i

sim(zc
i ,z

c+
i )+ 1

τc−
in∗

max
n=1,··· ,N+1

sim(zc
i ,z

c±
in )+βΩ(τc+i )−βΩ(τc±in∗ )

)
(2.4)

LGP (Jiang et al., 2023) and CAN (Mishra et al., 2022), combine the MIM loss and the InfoNCE
loss in Eq. (1.4). Kindly notice our innovations apply to the contrastive losses rather than MIM.

4 APPROACH

4.1 ADAPTIVE MULTI-HEAD CONTRASTIVE LEARNING

Typical SSL methods incorporate a projection head g(·), often consisting of a 2- or 3-layer MLP with
ReLU activation. This projection head has proven to be highly beneficial as removing final layers of
a pre-trained deep neural network helps mitigate overfitting to the training task and helps learning
downstream tasks better (Balestriero et al., 2023). In AMCL we propose to apply C such projec-
tion heads, denoted g1(·), · · · , gC(·). The goal is to capture complementary aspects of similarity
between views. Our loss function takes the following general form:

ℓ† =

C∑
c=1

(
ℓContrast

(
zc
i , z

+
i , {z

c
in}Nn=1

)
+ βΩ

(
τ c+i )− βΩ

(
{τ c−in }Nn=1

))
, (3)

where τ c+i = σ
(
⟨ϕ(zc

i ), ϕ(z
+
i )⟩

)
and τ c−in = σ

(
⟨ϕ(zc

i ), ϕ(z
−
in)⟩

)
.

loss + 

Figure 2: Workflow of AMCL. Given two feature vectors
(extracted from the backbone) of an image pair, we first
obtain their projected feature vectors through C projection
heads. Here, the c-th projection head gives us two feature
vectors (anchor hi and its positive sample h+

i ) as well as neg-
ative samples (h−

i1, · · · ,h
−
iN ), which are then used to com-

pute the c-th positive and negative temperatures. The com-
puted temperatures and features of all positive and negative
pairs are fed into the loss functions as in Table 2.

In the above equation, β ≥ 0 con-
trols the temperature regularization
imposed by Ω(·). τ c+i and τ c−in de-
note the learnable adaptive pos-
itive and negative temperatures,
respectively. ⟨·, ·⟩ represents the dot
product. ϕ(·) : Rd′ → Rd′

is an
MLP layer1 shared among all heads.
Sigmoid function σ(r) = ι

1+exp(r)+

η controls the lower and upper lim-
its of the temperature, where ι and η
are hyperparameters.

Table 2 presents our specific multi-
head contrastive implementations.
The ‘†’ in Eq. (2.1)–(2.4) indicates
that these losses represent our multi-
head loss versions. The regularization is written as:

Ω(τ) = (d′/2) log(τ) + 1/τ, (4)

which encourages temperature τ to move towards τ = 2/d′. In Eq. (2.1), the asterisk ‘*’ in variable
τ c−in∗ indicates the index n∗=argmax

n=1,··· ,N
sim(zi, z

−
in). In Eq. (2.2), τ c+i =σ

(
⟨ϕ(zc

i ), ϕ([h
+
i ]sg)⟩

)
and

τ c+̃i =σ
(
⟨ϕ(zc+

i ), ϕ([hi]sg)⟩
)
. In Eq. (2.3), temperatures are formed as τ c+l =σ

(
⟨ϕ(zc

l:), ϕ(z
c+
l: )⟩

)
1This MLP layer is separate from the C MLP projection heads.
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and τ c−lm = σ
(
⟨ϕ(zc

l:), ϕ(z
c+
m: )⟩

)
where l ̸= m and operator ‘:’ simply indexes and concatenates

variable as zl: = [zl1, · · · , zlN ]T . In Eq. (2.4), zc±
in = zc−

in and τ c±in = τ c−in for n = 1, · · · , N , and
zc±
in =zc+

i and τ c±in =τ c+i if n=N+1. Finally, notice that for NT-Xent in Eq. (2.1), we have:

1

τc−in∗
max

n=1,··· ,N
sim(zc

i ,z
c−
in )−Ω(τc−in∗ )−(2π)d

′/2 ≈ log

N∑
n=1

1

(2π)d
′/2(τc−in )d

′/2
exp

( 1

τc−in

(
sim(zc

i ,z
c−
in )−1

))
.

(5)
The same approximation (with zc±

in in place of zc−
in ) holds for InfoNCE in Eq. (2.4). Using maxi-

mum in Eq. (5), Eq. (2.1) and Eq. (2.4) is somewhat restrictive as the soft-maximum, depending on
the temperature, will return the maximum similarity or interpolation over top few similarities close
to maximum. Thus, soft-maximum will tackle a group of negative samples closest to the anchor.
Indeed, we could use the above soft-maximum in place of maximum but then we have no easy way
of recovering the temperature τ c−in∗ . Thus, in our experiments we observed that the best choice is to
apply

∑κ
k=1

1
κτc−

in∗
k

[
TopMaxκ
n=1,··· ,N

sim(zc
i , z

c−
in )

]
k

which is the average over top-κ largest similarities.

As the top-κ maximum operation returns also corresponding indexes n∗
1, · · · , n∗

κ, the temperature
regularization can be easily computed as Ω

(
{n∗

k}κk=1

)
= log(τ c−in∗

1
· . . . · τ c−in∗

κ
) +

∑κ
k=1

1
τc−
in∗

k

.

4.2 DERIVING THE LOSS FUNCTION FROM MAXIMUM LIKELIHOOD ESTIMATION

This section details the derivation of our loss function based on the maximum likelihood estima-
tion over head-wise posterior distributions of positive samples given observations. We show that
our derivation is connected to an m-estimator (Huber et al., 1981) whose log-likelihood employs
Normal distributions a.k.a. Welsch functions that are known to model the observation noise via the
heteroscedastic aleatoric uncertainty (Matthies, 2007; Kendall & Gal, 2017; Hüllermeier & Waege-
man, 2021). Our adaptive temperature captures such an uncertainty. Tuning constant τ was shown
before to help learn good contrastive representations (Chen et al., 2020; He et al., 2020). Wang &
Liu (2021) also demonstrated that temperature τ controls the strength of penalties on the hard neg-
ative samples and established its relationship with uniformity, illustrating that a well-chosen τ can
strike a balance between the alignment and uniformity properties of contrastive loss. Kukleva et al.
(2023) have shown that in place of constant temperature, a cosine schedule can improve learning–a
seemingly minor modification with large impact on the learned embedding space.

For ℓ2 normalized vectors, the relationship between squared Euclidean distance ∥·∥22 and cosine
similarity measure is: ∥zi−zj∥22=2−sim(zi, zj). The Normal distribution N relies on the squared
Euclidean distance. To derive our multi-head NT-Xent loss, consider the following maximum like-
lihood estimation w.r.t. parameters given as P =

{
θ, {τ c+i }Cc=1, {{τ c−in }Nn=1}Cc=1

}
and β = 1:

P∗= argmax
P

C∏
c=1

N
(
2− 2sim(zc

i ,z
c+
i ); τc+i

)∑N
n=1 N

(
2− 2sim(zc

i ,z
c−
in ); τc−in

) (6)

= argmin
P

C∑
c=1

(
− logN

(
2− 2sim(zc

i ,z
c+
i ); τc+i

)
+ log

N∑
n=1

N
(
2− 2sim(zc

i ,z
c−
in ); τc−in

))

= argmin
P

C∑
c=1

(
−

1

τc+i
sim(zc

i ,z
c+
i ) + βΩ(τc+i ) + log

N∑
n=1

1

(2π)d
′/2(τc−in )d

′/2
exp

( 1

τc−in

(
sim(zc

i ,z
c−
in )− 1

))
.

(7)
In Eq. (7), we simply use expansion:

− log

(
1

(2π)d
′/2(σ2)d

′/2
exp

(
−

2− 2s

2σ2

))
= d′/2 log(2π) + (d′/2) log(σ2) + 1/σ2 − s/σ2, (8)

where variance σ2 = τ . We drop the constant (no impact on optimization) and are left with −s/τ
and Ω(τ) = (d′/2) log(τ)+1/τ . We apply approximation in Eq. (5) to Eq. (7) (rightmost part) and
readily obtain Eq. (2.1). To derive multi-head InfoNCE loss, we solve a slightly modified problem:

P∗= argmax
P

C∏
c=1

N
(
2− 2sim(zc

i ,z
c+
i ); τc+i

)
N

(
2− 2sim(zc

i ,z
c+
i ); τc+i

)
+

∑N
n=1 N

(
2− 2sim(zc

i ,z
c−
in ); τc−in

) (9)

= argmax
P

C∏
c=1

N
(
2− 2sim(zc

i ,z
c+
i ); τc+i

)∑N+1
n=1 N

(
2− 2sim(zc

i ,z
c±
in ); τc±in

)= argmax
P

C∏
c=1

p(zc+
ic |zc

i ) = argmax
P

C∏
c=1

p(zc
i |z

c+
ic )p(zc+

ic )

p(zc
i )

,
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where p(zc
i )=

∑N+1
n=1 N

(
2 − 2sim(zc

i , z
c±
in ); τ c±in

)
, p(zc+

ic ) is a constant, e.g., 1, and p(zc
i |z

c+
ic ) =

N
(
2−2sim(zc

i , z
c+
i ); τ c+i

)
. Thus, the ratio of Gaussians in Eq. (9) can be interpreted as maximizing

head-wise posterior distributions of positive samples given observations.

4.3 DISCUSSION

Why not use multiple backbones to improve feature learning? This idea was explored in su-
pervised learning (Tao, 2019). However, training multiple backbones imposes prohibitive computa-
tional costs in SSL with no guarantee on complementarity of such backbones.

Connecting uncertainty to temperature. Eq. 6 uses the variance τ of the distribution of pair-wise
distances. Eq. 6 derives Eq. 7, where τ weighs the similarity, making it effectively the temperature.
Because variance is usually treated as uncertainty (Zhang et al., 2021; Wang & Koniusz, 2022), we
build natural correspondence between uncertainty and temperature.

Connecting our loss function to existing contrastive learning methods. Our loss function con-
sists of three terms: (i) positive temperature-weighted similarities for positive pairs (ii) negative
temperature-weighted similarities for negative pairs, and (iii) a regularization term for positive and
negative temperatures. As identified in previous works (Wang & Isola, 2020; Wang & Liu, 2021),
the alignment (closeness) of features from positive pairs and the uniformity of the induced distribu-
tion of the (normalized) features on the hypersphere are the two key properties in contrastive loss.
Our loss function also optimizes these properties and further improves the contrastive learning per-
formance through parameterized pair-wise temperature via re-weighting the positive and negative
similarities. Our loss function is a more general form, and when we set the temperature to be a
global constant, the constant regularization term no longer affect optimization, and thus the loss
function reduces to the traditional contrastive loss.

Physical meaning of the regularization term Ω(·) in Eq. (3). The regularization term consists
of regularizing both the positive and negative temperatures. During optimisation, the log τ term en-
courages lower positive temperatures and higher negative temperatures, whereas the reverse function
term 1

τ is in favour of higher positive temperatures and lower negative temperatures. Hence this reg-
ularization term balances the learning of positive and negative temperatures. As we jointly optimize
network parameters and the temperature via MLE, this problem naturally becomes decomposed in
the maximization of similarities for positive pairs (minimization for negative pairs) weighted by the
temperature. However, if τ was to reach 0 for positive pairs, one would attain a trivial solution. Ω(·)
prevents that trivial solution. Intuitively, one can be very certain in similarity of sample pair but
there is a price to pay for that certainty, imposed by Ω(·) resulting from the Welsch function. This
Ω(·) expresses the prior belief or preference on temperature values.

Adaptive temperature vs. attention learning. The latter assigns varying weights to different com-
ponents or parts of an object according to a specific design (Bahdanau et al., 2015; Chorowski et al.,
2015; Caron et al., 2021). The learnable positive and negative temperatures reweigh the similarities
by considering diverse image content resulting from multiple augmentations. This correction re-
places the global temperature, allowing the backbone and multiple projection heads to focus on cap-
turing different aspects of image content. Moreover, pair-wise weighted similarities on ‘alignment’
and ‘uniformity’ allow various similarity relations to contribute differently to contrastive learning,
similar to an attention learning mechanism.

5 EXPERIMENTS

We choose popular datasets that are widely used in evaluating the SSL models, including CIFAR-10,
CIFAR-100, STL-10, Tiny-ImageNet and ImageNet. The dataset details are provided in Appendix
A. Below, we describe the experimental setup and evaluation protocols.

5.1 SETUP

We conduct experiments on the aforementioned datasets following practices outlined by Huang et al.
(2022a). We consider five different types of transformations for data augmentations: random crop-
ping, random Gaussian blur, color dropping (i.e., randomly converting images to grayscale), color
distortion, and random horizontal flipping. For pre-training, we employ ResNet18 (R18) (He et al.,
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Table 3: Impact of AMCL when applied to popular and state-of-the-art SSL methods. On CIFAR-
10, CIFAR-100, Tiny-ImageNet, and ImageNet, models are first pretrained for 1,000, 1,000, 800,
and 100 epochs, respectively and then evaluated using linear probing. Backbones are highlighted.

Datasets Accuracy Avg.
SimCLR MoCo SimSiam B.Twins CAN LGP gain

CIFAR-10 baseline 89.9 R18 90.4 R18 90.7 R18 87.4 R18 - - ↑2.43ours 92.2 92.9 93.0 90.0 - -

CIFAR-100 baseline 57.6 R18 64.4 R18 63.6 R18 58.2 R18 - - ↑4.58ours 61.8 69.3 68.9 62.1 - -

Tiny-ImageNet baseline 48.1 R50 46.4 R50 46.7 R50 46.8 R50 53.2 ViT-B 56.7 ViT-B ↑1.65ours 50.0 47.8 49.0 48.3 54.9 57.8

ImageNet baseline 66.5 R50 67.4 R50 68.1 R50 70.0 R50 70.5 ViT-B 73.8 ViT-B ↑1.67ours 68.1 69.3 69.6 72.7 71.6 75.0

2016) for SimCLR (Chen et al., 2020), MoCo (He et al., 2020), SimSiam (Chen & He, 2021), and
Barlow Twins (Zbontar et al., 2021) on CIFAR-10, CIFAR-100 and STL-10. For Tiny-ImageNet
and ImageNet, we use ResNet50 (R50) variants, ViT-B and ViT-L. Other settings, such as the ar-
chitecture of the projection head, remain consistent with the original algorithm configurations. We
select C projection heads in range from 2 to 6. We set the temperature bounds (η and ι of sigmoid)
in range [1e− 5, 2] on smaller datasets and [1e− 5, 5] for ImageNet and Tiny-ImageNet. For Bar-
low Twins, the regularization parameter λ = 5e−3. The temperature regularization parameter β is
varied from 1e− 5 to 10. Each model is trained with a batch size of 512 and 1000 epochs for small
datasets, e.g., STL-10; for large-scale datasets, e.g., Tiny-ImageNet and ImageNet, we train for up
to 800 epochs. To assess the quality of the encoder, we follow the KNN evaluation protocol (Wu
et al., 2018) on small datasets. For large datasets, we use linear probing. For MIM-based methods
such as CAN2 and LGP3, we select the standard ViT-B and ViT-L as the backbone encoder, with
a token size 16×16. Other settings, including projection head architecture and hyperparameters,
followed the original algorithm configurations. Both models are evaluated using a linear probe.

5.2 EVALUATION

AMCL consistently improves popular and state-of-the-art SSL methods. We apply AMCL to
SimCLR, MoCo, SimSiam, Barlow Twins, CAN, and LGP. As shown in Table 3, on CIFAR-10,
CIFAR-100, Tiny ImageNet and ImageNet datasets, average improvements across the baselines are
2.43%, 4.58%, 1.65%, 1.67%, respectively. In the case of MIM-based methods such as CAN and
LGP, our multi-head approach improves them by 1.7% and 1.1%, respectively, on Tiny-ImageNet.
The improvements over CAN and LGP on ImageNet are 1.1% and 1.2%, respectively.

Effectiveness of AMCL under different backbones and training epochs. We evaluate model
capacity using the ImageNet dataset. We choose ResNet-50 with three different hidden layer widths

2https://github.com/bwconrad/can
3https://github.com/VITA-Group/layerGraftedPretraining ICLR23
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Figure 3: Impact of different backbones and
training epochs on AMCL for (left) SimCLR
and (right) CAN on the ImageNet dataset. All
the reported accuracies use a linear probe.
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Table 4: Comparing adaptive tem-
perature with two state-of-the-art
temperature methods on STL-10.
Baseline (Base.) uses one pro-
jection head and global tempera-
ture, and the rest methods 3 heads.
TaU (Zhang et al., 2021) views
temperature as uncertainty, and
TS (Kukleva et al., 2023) uses co-
sine schedule for temperature.

Base. ours TaU TS

10 61.0 71.1 64.3 64.3
20 68.5 76.4 70.4 71.3
50 73.5 79.4 74.6 76.4
100 76.5 81.4 77.7 78.4
200 78.6 81.9 79.4 80.0
500 80.6 83.7 80.0 81.7

10 20 50 100 200 500
Number of labeled images

65.0
67.5
70.0
72.5
75.0
77.5
80.0
82.5
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cu

ra
cy

 (%
)

global const. 
const. pos. , adapt. neg. 
const. neg. , adapt. pos. 
adapt.  from head 1 only
fully adaptive 

Figure 5: Comparing variants of adaptive temperature on STL-
10. The pre-trained model is linear-probed with various num-
bers of labeled data. Number of heads is 3. “Const. pos. τ ,
adapt. neg. τ” uses constant temperature for positive pairs and
adaptive for negative ones. Analogy goes for “Const. neg. τ ,
adapt. pos. τ”. “Adapt. τ from head 1 only” copies adaptive
temperatures from the first head to the other heads.

(width multipliers of 1×, 2×, and 4×), ViT-B, and ViT-L, which are widely used in SSL. In Fig.
3, under each epoch number, our AMCL yields consistent improvement to various backbones for
SimCLR and CAN. Additionally, we observe that model capacity heavily depends on the choice of
backbone. For ViT-L backbone encoder, SimCLR achieves the highest linear probe performance on
ImageNet at 73.9%. When combined with AMCL, accuracy of SimCLR further increases by 0.6%.

Impact of the number of projection heads is presented in Fig. 4 (left) on the STL-10 dataset.
ResNet18 is used as backbone, coupled with SimCLR. Adaptive temperature is always used. On
STL-10, 3-5 projection heads are most effective, while other numbers also beat the baseline (except
for C = 1). Considering the performance gain and the computational cost, we use 3 heads in our
paper. Note that this is not a hyperparameter selection process but rather hyperparameter sensitiv-
ity evaluation. Instead, we choose hyperparameters using Hyperopt (Bergstra et al., 2015) on the
validation set of each dataset.

TopMax-κ vs. Softmax in loss function. In Fig. 4 (right), we compare using Top-κ and Softmax
when selecting negative pairs. Using Top-κ is slightly better than Softmax when κ = 100, 150. In
practice, κ is chosen by Hyperopt (Bergstra et al., 2015) on the validation set of each dataset.

Impact of number of labeled data for linear probing. We train a logistic regression model on the
STL-10 dataset with various numbers of labeled images: 10, 20, 50, 100, 200, and all 500 examples
per class. We also use SimCLR for pre-training and linear-probe a standard ResNet-18 model (with
random initialization) on the labeled training set of STL-10 (500 samples per class). Results are
presented in Table 4 and Fig. 5. We have two observations. First, AMCL consistently improves
SimCLR under different numbers of labeled data. Under 10, 50, and 200 labeled images, the im-
provement is 10.1%, 5.9%, and 3.3%, respectively. Second, compared with the fully supervised
baseline with 73.3% accuracy, linear probing with 20 samples per class (1/25 of the whole labeled
data) with our method is already superior (76.4%). This clearly demonstrates the advantages of
self-supervised pretraining and our method.

Comparing with temperature variants and state-of-the-art temperature schemes. In Fig. 5, we
compare the proposed adaptive temperature (fully adaptative τ ) with four variants, including making
temperature of negative/positive pairs constant, copying adaptive temperature from one head to the
others, and having global temperature. It is clear from the figure that our method is the best. In
Table 4, we compare adaptive temperature with temperature as uncertainty (TaU) (Zhang et al.,
2021) and temperature cosine schedule (TS) (Kukleva et al., 2023) under multiple heads, where
adaptive temperature is also superior. In fact, the cosine temperature scheme is not adaptive to
individual pairs, while ‘temperature as uncertainty’ is directly dependent on features not similarity.
Being adaptive to individual pairs, their similarity and projection heads, our adaptive temperature is
very well optimized under the derived loss function and thus exhibits very competitive performance.
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Augmentations Accuracy Avg.
(a) (b) (c) (d) (e) SC MC SS BT gain

✓
base. 26.3 39.9 26.4 33.7 ↑0.69ours 27.0 40.3 27.0 34.7

✓ ✓
base. 28.0 40.2 26.6 34.2 ↑0.80ours 29.0 40.9 27.3 35.1

✓ ✓ ✓
base. 44.4 57.3 51.5 49.8 ↑2.74ours 46.2 61.0 55.4 51.3

✓ ✓ ✓ ✓
base. 55.4 62.7 60.7 55.0 ↑4.12ours 58.5 66.3 67.0 58.4

✓ ✓ ✓ ✓ ✓
base. 57.6 64.4 63.6 58.2 ↑4.59ours 61.8 69.3 68.9 62.1

Table 5: Comparing AMCL with baselines un-
der various numbers of augmentations. SC,
MC, SS and BT denote SimCLR, MoCo, Sim-
Siam and Barlow Twins, respectively. We re-
port linear probing accuracy on CIFAR-100,
where (a), (b), (c), (d), and (e) correspond to
random cropping, random Gaussian blur, color
dropping (e.g., randomly converting images to
grayscale), color distortion, and random hori-
zontal flipping, respectively. ✓ denotes the cor-
responding augmentation is applied. Average
improvement is shown in red.
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Figure 6: Distribution of similarity scores for positive and negative pairs. The baseline uses one
projection head and global temperature, while our method has three projection heads and adaptive
temperature. We use SimCLR for pre-training with the ResNet-18 backbone on STL-10. After
pre-training, we choose 500 positive pairs and 500 negative pairs from the validation to compute
the cosine similarity. In (a) and (b), similarity score (temperature scaled) is computed between the
128-dim features extracted from the projection head (s). In (c) and (d), cosine similarity score is
computed between the 512-dim features extracted from the backbone.

Impact of the number of data augmentation types. In Table 5, under only 1-2 augmentations
during SSL pretraining, the improvements in linear probing over the baselines are around 1%. When
we further increase the number of augmentations, linear probing performance improves; importantly,
AMCL becomes more and more useful: average improvement becomes as large as 4.59% when five
types of data augmentation are used. This suggests the existence of multiple similarity relations
when many data augmentations are applied, validating our motivation and method design.

Visualization of pair similarity distributions. In Fig. 6, we draw the similarity distributions of
negative pairs and positive pairs, under the baseline (1 head + global temperature) and our method
(multiple heads + adaptive temperature). When we use the average similarity across the output from
the multiple heads, shown in Fig. 6(a) and (b), we can clearly observe better separability brought by
our method. It indicates that our method allows for more effective similarity learning of the positive
and negative pairs. On the other hand, if we compute the cosine similarity between features extracted
right after the backbone, shown in Fig. 6(c) and (d), better separability can again be observed. It
illustrates that better similarity learning further benefits representation learning, finally leading to
improved linear probing proformance.

6 CONCLUSION

We are motivated by the complex pair similarity distributions under multiple augmentation types.
We introduce adaptive multi-head contrastive learning (AMCL), which leverages multiple projection
heads, each generating a distinct set of features, and a pair-wise adaptive temperature scheme. We
derive our loss function and provide interesting insights such as the relationship between the variance
of pair distance distribution and temperature, as well as physical meanings of regularization term.
We show pair similarity distribution is better separated with our method. AMCL can be applied
to and experimentally improve popular SSL methods with various backbones, numbers of labeled
samples for linear probing, and augmentation types. AMCL is particularly useful under multiple
augmentation types, consistent with our motivation.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad
Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra Acharya, et al. A
review of uncertainty quantification in deep learning: Techniques, applications and challenges.
Information fusion, 76:243–297, 2021. 3

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Yoshua Bengio and Yann LeCun (eds.), 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-
ference Track Proceedings, 2015. URL http://arxiv.org/abs/1409.0473. 6

Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom Goldstein,
Florian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, et al. A cookbook of self-
supervised learning. arXiv preprint arXiv:2304.12210, 2023. 2, 4

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEit: BERT pre-training of image trans-
formers. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=p-BhZSz59o4. 2

Adrien Bardes, Jean Ponce, and Yann LeCun. VICReg: Variance-invariance-covariance regulariza-
tion for self-supervised learning. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=xm6YD62D1Ub. 2

James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David D Cox. Hyperopt: a
python library for model selection and hyperparameter optimization. Computational Science &
Discovery, 8(1):014008, 2015. URL http://stacks.iop.org/1749-4699/8/i=1/a=
014008. 8

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in neural
information processing systems, 33:9912–9924, 2020. 2

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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A DATASET DETAILS

We choose popular datasets that are widely used in evaluating the SSL models.

CIFAR-10 (Krizhevsky, 2009) consists of 60,000 32×32 colour images divided into 10 classes, each
containing 6,000 images. The dataset is split into 50,000 training images and 10,000 test images.

CIFAR-100 is similar to CIFAR-10 but comprises 100 classes, each with 600 images. There are
500 training images and 100 testing images per class. The 100 classes in CIFAR-100 (Krizhevsky,
2009) are grouped into 20 superclasses. Each image is labeled with both a ‘fine’ label (indicating its
specific class) and a ‘coarse’ label (indicating its superclass).

STL-10 (Coates et al., 2011) is similarly to CIFAR-10 and includes images from 10 classes: air-
plane, bird, car, cat, deer, dog, horse, monkey, ship, truck. This dataset is relatively large and fea-
tures a higher resolution (96×96 pixels) compared to CIFAR10. It also provides a substantial set of
100, 000 unlabeled images that are similar to the training images but are sampled from a wider range
of animals and vehicles. This makes the dataset ideal for showcasing the benefits of self-supervised
learning.

Tiny-ImageNet (Le & Yang, 2015) contains 100,000 images of 200 classes (500 for each class)
downsized to 64×64 colored images. Each class has 500 training images, 50 validation images, and
50 test images.

ImageNet (Deng et al., 2009) (a.k.a.ImageNet-1K) contains 14,197,122 annotated images accord-
ing to the WordNet hierarchy. Since 2010 the dataset is used in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), a benchmark in image classification and object detection. The
publicly released dataset contains a set of manually annotated training images.
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