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ABSTRACT

Set prediction is about learning to predict a collection of unordered variables
with unknown interrelations. Training such models with set losses imposes the
structure of a metric space over sets. We focus on stochastic and underdefined
cases, where an incorrectly chosen loss function leads to implausible predictions.
Example tasks include conditional point-cloud reconstruction and predicting fu-
ture states of molecules. In this paper, we propose an alternative to training via
set losses by viewing learning as conditional density estimation. Our learning
framework fits deep energy-based models and approximates the intractable like-
lihood with gradient-guided sampling. Furthermore, we propose a stochastically
augmented prediction algorithm that enables multiple predictions, reflecting the
possible variations in the target set. We empirically demonstrate on a variety of
datasets the capability to learn multi-modal densities and produce different plausi-
ble predictions. Our approach is competitive with previous set prediction models
on standard benchmarks. More importantly, it extends the family of addressable
tasks beyond those that have unambiguous predictions.

1 INTRODUCTION

This paper strives for set prediction. Making multiple predictions with intricate interactions is es-
sential in a variety of applications. Examples include predicting the set of attributes given an image
(Rezatofighi et al., 2020), detecting all pedestrians in video footage (Wang et al., 2018) or predicting
the future state for a group of molecules (Noé et al., 2020). Because of their unordered nature, sets
constitute a challenge for both the choice of machine learning model and training objective. Models
that violate permutation invariance suffer from lower performance, due to the additional difficulty
of needing to learn it. Similarly, loss functions should be indifferent to permutations in both the
ground-truth and predictions. Additional ambiguity in the target set exacerbates the problem of
defining a suitable set loss. We propose Deep Energy-based Set Prediction (DESP) to address the
permutation symmetries in both the model and loss function, with a focus on situations where multi-
ple plausible predictions exist. DESP respects the permutation symmetry, by training a permutation
invariant energy-based model with a likelihood-based objective.

In the literature, assignment-based set distances are applied as loss functions (Zhang et al., 2019;
Kosiorek et al., 2020). Examples include the Chamfer loss (Fan et al., 2017) and the Hungarian
loss (Kuhn, 1955). Both compare individual elements in the predicted set to their assigned ground-
truth counterpart and vice-versa. While they guarantee permutation invariance, they also introduce
a structure over sets, in the form of a metric space. Choosing the wrong set distance can result in
implausible predictions, due to interpolations in the set space for underdefined problems. For exam-
ple, Fan et al. (2017) observe different set distances to lead to trade-offs between fine-grained shape
reconstruction and compactness, for 3d reconstruction from RGB images. As an additional short-
coming, optimizing for a set loss during training poses a limitation on the family of learnable data
distributions. More specifically, conditional multi-modal distributions over sets cannot be learned
by minimizing an assignment-based set loss during training. To overcome the challenges of imposed
structure and multi-modal distributions, we propose to view set prediction as a conditional density
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estimation problem, where P (Y |x) denotes the distribution for the target set Y given observed
features x.

In this work we focus on distributions taking the form of deep energy-based models (Ngiam et al.,
2011; Zhai et al., 2016; Belanger & McCallum, 2016):

Pθ(Y |x) =
1

Z(x;θ)
exp (−Eθ(x,Y )), (1)

with Z as the partition function and Eθ the energy function with parameters θ. The expressiveness
of neural networks (Cybenko, 1989) allows for learning multi-modal densities Pθ(Y |x). This sets
the approach apart from forward-processing models, that either require conditional independence
assumptions (Rezatofighi et al., 2017), or an order on the predictions, when applying the chain rule
(Vinyals et al., 2016). Energy-based prediction is regarded as a non-linear combinatorial optimiza-
tion problem (LeCun et al., 2006):

Ŷ = argmin
Y

Eθ(x,Y ), (2)

which is typically approximated by gradient descent for deep energy-based models (Belanger & Mc-
Callum, 2016; Belanger et al., 2017). We replace the deterministic gradient descent with a stochas-
tically augmented prediction algorithm, to account for multiple plausible predictions. We show that
our stochastic version outperforms standard gradient descent for set prediction tasks.

Our main contribution is DESP, a training and prediction framework for set prediction, that removes
the limitations imposed by assignment-based set losses. Sampling plays a key role in DESP. For
training, sampling approximates the intractable model gradients, while during prediction, sampling
introduces stochasticity. We show the generality of our framework by adapting recently proposed
permutation invariant neural networks as set prediction deep energy-based models. We demonstrate
that our approach (i) learns multi-modal distributions over sets (ii) makes multiple plausible predic-
tions (iii) generalizes over different deep energy-based model architectures and (iv) is competitive
even in non-stochastic settings, without requiring problem specific loss-engineering.

2 DEEP ENERGY BASED SET PREDICTION

2.1 TRAINING

Our goal is to train a deep energy based model for set prediction, such that all plausible sets are
captured by the model. Regression models with a target in the Rd space, that are trained with
a root mean-square error (RMSE) loss, implicitly assume a Gaussian distribution over the target.
Analog to the RMSE, assignment-based set losses assume a uni-modal distribution over the set
space. Training with the negative log-likelihood (NLL) circumvents the issues of assignment-based
set losses. Notably, NLL does not necessitate explicit element-wise comparisons, but treats the set
holistically. We reformulate the NLL for the training data distribution PD as:

E(x,Y )∼PD [− log(Pθ(Y |x))] = E(x,Y )∼PD [Eθ(x,Y )] + Ex∼PD [log(Z(x;θ))] . (3)

The gradient of the left summand is approximated by sampling a mini-batch of n tuples
{(xi,Y +

i )}i=0..n from the training set. The gradient of the right summand is approximated by
solely sampling input features {xi}i=0..m. Directly evaluating ∂

∂θ log(Z(x;θ)) is intractable; in-
stead we approximate the gradient by sampling {Y −j }j=0..k from the model distribution:

∂

∂θ
log(Z(x;θ)) = −EY ∼Pθ

[
∂

∂θ
Eθ(x,Y )

]
≈ −

k∑
j=0

∂

∂θ
Eθ(x,Y

−
j ). (4)

The resulting approximate NLL objective is equivalent to contrasting the energy value for real and
synthesized targets, with the former being minimized and the latter maximized. The objective is
reminiscent of the discriminator’s loss in generative adversarial networks (Goodfellow et al., 2014),
where a real sample is contrasted to a sample synthesized by the generator network. In practice,
setting k=1 suffices.

The Langevin MCMC algorithm allows for efficient sampling from high dimensional spaces (Geman
& Geman, 1984; Neal et al., 2011). Access to the derivative of the unnormalized density function
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provides sufficient information for sampling. We apply the following modified transition function
and keep only the last sample:

Y (t+1) = Y (t) − ∂Eθ(x,Y
(t))

∂Y
+U (t), (5)

with U (t) ∼ N (0, εI), ε > 0, Y (0) ∼ N (0, εI) a sample from a fixed initial distribution and
Y (T ) the final sample. The proper formulation of the Langevin MCMC algorithm multiplies the
gradient in Equation 5 by a factor ε and further requires a Metropolis-Hastings acceptance step
(Neal, 1993). We forgo both of these components in favor of increased efficiency, but at the cost of
forfeiting theoretical guarantees for desirable properties such as not being trapped in a subset of the
sampling space, i.e., ergodicity. Discarding all but the last sample Y (T ) of each chain constitutes
a non typical usage that undermines the usual importance of ergodicity. Notably, this weakens the
hard to meet requirement for the sampler to mix between multiple modes in a single MCMC chain,
making it sufficient for independently sampled chains to find different local modes. Although the
fixed cutoff at T and missing Metropolis-Hastings update result in a biased sampler, previous works
have demonstrated the feasibility of training generative models on images with similar Langevin
MCMC methods (Xie et al., 2016; 2018; Nijkamp et al., 2020; Du & Mordatch, 2019; Grathwohl
et al., 2019).

The model density from Equation 1 approaches the data distribution PD while training, leading
to an increased ability in distinguishing between synthesized sets Y − from real sets Y +. This in
turn enhances the samples Y − to be closer to the ground-truth, making it harder for the model to
discriminate between real and fake. In practice, it is necessary to smooth out the data distribution.
Otherwise, the deep energy-based model would be required to fit a distribution with zero density
everywhere except the training examples. Any gradient based sampling and prediction algorithm
would be rendered useless. Additional Gaussian distributed noise on the data samples Y + alleviates
this issue and facilitates stable training.

2.2 PREDICTION

Prediction from an energy-based viewpoint corresponds to finding the set with the lowest energy
value. One approach addresses this intractable optimization problem by approximating a local min-
imum via gradient descent (Belanger & McCallum, 2016; Belanger et al., 2017). Learning a multi-
modal distribution is clearly not sufficient, as the deterministic gradient descent algorithm would not
be able to cover all possible sets. This would make the learning process pointless, except for a single
local minimum in the energy function. We propose to augment the gradient descent optimizer with
additional Gaussian noise during the first n steps:

Y (t+1) = Y (t) − ∂

∂Y
Eθ(x,Y

(t)) +U (t), for t ≤ S, (6a)

Y (t+1) = Y (t) − ∂

∂Y
Eθ(x,Y

(t)), for S < t ≤ T. (6b)

For simplicity we choose the same maximum number of steps T , both for training and prediction.
One interpretation of the prediction procedure is: 1. Langevin MCMC sample Y (S) based on the
energy Eθ and 2. Refine the sample via gradient descent, such that Y (T ) is a local minimum of
Eθ that is close to Y (S). Note that the partial derivative ∂

∂Y Eθ(x,Y
(t)) is not stochastic and

can be computed independent of a mini-batch. Thus the sole source of randomness lies with the
addition of U , resulting in a prediction procedure that allows for different predictions given the
same observation.

From the set prediction point of view, the noise term addresses an optimization problem that is spe-
cific to set functions. Commonly used set neural networks (Zaheer et al., 2017), require permutation
invariant pooling operators. Examples include sum or mean pooling. Both of these result in identical
partial gradients for identical elements:

∂

∂yi
Eθ(x,Y ) =

∂

∂yj
Eθ(x,Y ), (7)

where yi and yj are two different elements in Y with identical value, i.e., yi=yj . Although we
consider set, not multi-set prediction; in practice the set Y needs to be stored as a tensor of numbers
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with limited precision. For the purpose of successfully sampling Y from Eθ, we restrict the param-
eters θ to energy functions with numerically stable derivatives. Specifically, the difference in the
gradients of two elements in Y is limited by the difference between the same two elements. This
poses the additional difficulty for the optimizer of separating different elements that are too close,
next to the original task of moving the element to the correct position. It is reasonable to assume
several elements in close vicinity for problems where the set size is much larger than the number
of features. The independently sampled noise term helps disambiguate such proximal elements and
speeds up the optimization procedure.

A naive alternative would be to solely initialize the set Y (0) with the constraint of a minimal distance
between each element. While this approach addresses the problem at step t=0, it is ignored in the
subsequent steps t > 0, where two elements may have collapsed. Our proposed prediction procedure
adds independently sampled noise at several steps; thus removing some of the responsibility, for
separating elements, from the gradient-based optimizer.

3 SET ENERGY

The energy-based viewpoint constitutes an immediate advantage for incorporating symmetry into the
neural network architecture. Neural networks that are permutation invariant with respect to the input
can be straightforwardly adapted for our purpose. Permutation invariant energy functions have the
advantage of being able to define densities directly on sets. Set densities do not require normalization
over all possible permutations, as two sequences that are equivalent up to permutation are also
equivalent in the sample space. In this section we formulate two different energy functions based on
recently proposed permutation invariant neural network architectures that are both compatible with
our training and prediction framework.

Deep Sets DeepSets (Zaheer et al., 2017) first applies an MLP on each element, followed by a
permutation invariant aggregator and a second MLP. This model is shown to be a universal approx-
imator of continuous permutation invariant functions (Zaheer et al., 2017; Qi et al., 2017). For the
set prediction setting, we adopt the following energy function:

EDS(x,Y ) = f(
⊕
y∈Y

g([h(x);y])), (8)

with f, g denoting MLPs, h a neural network acting on the input, [· ; · ] the concatenation operator
and

⊕
a permutation invariant aggregator. We treat both the observed features and the prediction as

input to the neural network, resulting in an energy function that is permutation invariant with respect
to the target Y .

Set Encoder An alternative set neural network is studied by Zhang et al. (2019). They propose to
separately map the observed features and the prediction into a shared latent space. In their case, the
distance in the latent space is minimized as a part of the loss function during training. We re-interpret
this loss as the energy function:

ESE(x,Y ) = Lδ(g(Y )− h(x)), (9)

with g denoting a permutation invariant neural network, h a neural network acting on the observed
features and Lδ the Huber loss. A minimal energy is reached, when both x and Y map to the same
point in the latent space. This energy function stands in contrast toEDS, where the observed features
directly interact with individual elements in the predicted set.

4 RELATED WORK

Our framework is closely related to the works of Belanger & McCallum (2016) and Mordatch
(2018), which also take on an energy-based viewpoint. However, they obtain predictions by mini-
mizing the energy via (deterministic) gradient descent and require memory-intensive backpropaga-
tion through the unrolled inner optimization during training (Domke, 2012; Belanger et al., 2017).
Similarly, deep set prediction network (DSPN) (Zhang et al., 2019) applies the bi-level optimization
scheme (Domke, 2012) for learning. Instead of an energy function, DSPN minimizes the distance
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between the input and the predicted set in a shared latent space. Our energy-based viewpoint does
not require a latent vector space bottleneck between input and prediction, resulting in a broader
choice of models. In addition, our prediction algorithm handles multi-modal distributions through
additional stochasticity.

Most prior set prediction approaches rely on fixed (Fan et al., 2017) or learned orders (Vinyals
et al., 2016). They run into the problem, as identified by Zhang et al. (2020b; 2019), that small
changes in the set space may require large changes in the neural network outputs, leading to lower
performance. Other approaches require the assumption of independent and identically distributed
set elements (Rezatofighi et al., 2017; 2020). Some very recent works (Kosiorek et al., 2020; Carion
et al., 2020; Locatello et al., 2020; Karl et al., 2020) respect the permutation symmetry in the model,
by applying the Transformer (Vaswani et al., 2017; Lee et al., 2019) without position embedding and
a non-autoregressive decoder. Nonetheless, the work of Karl et al. (2020) is limited to set generation.
Both Carion et al. (2020) and Locatello et al. (2020) rely on the Hungarian loss as a permutation
invariant objective function. Kosiorek et al. (2020) deploy the Chamfer loss augmented with an
additional set cardinality objective. By casting learning as conditional density estimation, we forgo
the necessity of task specific loss-engineering.

5 EXPERIMENTS

The experiments answer two overarching questions: 1. Can our density estimation perspective im-
prove over discriminative training via assignment-based losses? and 2. Can our stochastic prediction
algorithm yield multiple plausible sets for multi-modal densities? The experiments also demonstrate
the applicability of our approach to a variety of energy functions and a range of set prediction tasks:
point-cloud generation, set auto-encoding, object detection and anomaly detection. Code is available
at: https://github.com/davzha/DESP.

We investigate the effectiveness of our approach, by comparing against Chamfer and Hungarian
loss based training, with predictions formed by deterministic gradient descent. The Chamfer loss
assigns every element in the prediction Ŷ ={yi}i=1..k to the closest element in the ground-truth Y
and vice-versa:

LC(Ŷ ,Y ) =
∑
i

min
j
d(ŷi,yj) +

∑
j

min
i
d(ŷi,yj), (10)

where d is a vector distance instantiated as the Huber loss in the subsequent experiments. The
Hungarian loss is computed by solving the linear assignment problem between the two sets:

LH(Ŷ ,Y ) = min
π∈Sk

∑
i

d(ŷi,yπ(i)), (11)

where Sk is the set of all permutations on sets of size k. We refer to Appendix A for further details
on assignment-based set losses.

5.1 COMPUTATIONAL COMPLEXITY ANALYSIS

DESP offers non-trivial computation cost trade-offs, when we compare it to a baseline trained via
assignment-based set losses. We identify three main factors that are crucial and specific to our anal-
ysis: 1. Number of transition steps T , 2. Complexity of the set neural network and 3. Complexity
of the loss function. Similar to baselines that form predictions with an inner optimization (Zhang
et al., 2019; Belanger & McCallum, 2016), DESP’s training and inference time scale linearly with
T . Though, in practice DESP requires a larger T to achieve reliable sampling quality, potentially
resulting in longer training and inference times. The complexity of the set neural network is crucial
for determining the computation cost on large set sizes c. By choosing a set neural network with time
and memory complexity in O(c), such as DeepSets (Zaheer et al., 2017), DESP can accommodate
large set sizes. In comparison to the baselines, DESP avoids the additional computational burden
imposed by an assignment-based set loss, which is in O(c2) for the Chamfer loss and in O(c3) for
the Hungarian loss.
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Figure 1: Data examples and predictions for (a) Polygons and (b) Digits. Training with Hun-
garian loss leads to plausible polygons of correct cardinality, while training with Chamfer loss fails
to construct a polygon of the desired size. The reverse occurs for Digits, where the Hungarian
loss leads to implausible sets. Our method performs favourably on both datasets, by not implicitly
interpolating between data examples during training.

5.2 GENERATION OF POLYGONS AND DIGITS

Considering set prediction as density estimation can be critical. To illustrate this, we point out
fundamental limitations of set loss based training that become apparent when multiple plausible sets
exist. In terms of probability densities, each plausible set translates to a local maxima. To study
different types of randomness in isolation, we create two synthetic datasets:

• Polygons Generate the set of vertices of a convex n-sided regular polygon, given the size
x=n. This task is inherently underdefined; any valid set of vertices can be arbitrarily
translated or rotated and remain valid. We limit the scope of permissible answers slightly,
by fixing a constant center and radius. Each sample from this dataset has a uniformly
randomized angle.

• Digits Generate a point-cloud, taking the shape of the digit given by x. Point-clouds are
sets of low dimensional vectors, describing the spatial arrangement of one or more objects.
We limit the digits to x ∈ {one, seven}, because they are similar and each has different
forms, following the most common writing styles (Ifrah, 2000). The shape determines the
area from which the set of pointsY are sampled. The number of points varies with different
shapes, facilitating evaluation of different set sizes and spatial arrangements.

In both datasets the observed feature is kept simple, as our focus lies on predicting sets with non-
trivial interrelations. Each example in the dataset consists of a discrete input and a set of 2d vectors as
the target, as illustrated in Figure 1. More examples can be found in Appendix B. Both datasets share
the notion that several correct sets are permissible, such as an offset in rotation for polygons. The
difference between the two datasets lies in the relation that connects different plausible predictions.

Model We use the energy function EDS defined in Equation 8 for both datasets. A 3-layer MLP
forms the set equivariant part, followed by a permutation invariant pooling operation and a second
3-layer MLP. We choose FSPool (Zhang et al., 2020b) over more simple aggregators such as sum
or mean, as it exhibits much faster convergence rates in preliminary experiments. To accommodate
different cardinalities, we zero-pad all sets to a fixed maximum size, similar to Zhang et al. (2019).
By ensuring that all non-padding elements are unequal to the zero vector, padding can simply be
filtered out from the predictions by setting a threshold around a small area around zero.

Results We report the Chamfer loss for the Digits dataset and Hungarian loss for the Polygons
dataset in Table 1. The metrics are chosen in a way that aligns with a qualitative assessment (Fig-
ure 1) of the performance for each dataset respectively. While the baseline with the Chamfer loss
objective performs better on Digits, the Hungarian baseline outperforms the former on Polygons.
This result reveals a trade-off when picking set loss functions as training objectives for different
types of datasets. Our framework improves over both baselines on both datasets, but more impor-
tantly, we do not observe a similar performance discrepancy between the two datasets.
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Table 1: Results for Polygons and Digits Performance measured in [10−5] as Chamfer loss for
Digits and Hungarian loss for Polygons. Lower is better. Training with the Chamfer loss fails
on Polygons, while training with the Hungarian loss fails on Digits. The trade-off in the type of
randomness that can be handled by an assignment-based set loss does not occur for our approach.

Training loss Performance on Datasets

Chamfer Hungarian Polygons Digits

Direct risk minimization X 1195.0±6.8 2.4±0.3

Direct risk minimization X 14.8±5.3 48.0±2.3

Density estimation (This paper) 8.8±1.5 1.8±0.1

We confirm in Figure 1 that both baselines handle the multi-modal data distribution, by interpolating
between different target sets. The set loss choice can lead to implausible predictions. While in this
case both datasets are designed to be simple for transparency reasons, the choice of set loss becomes
a non-trivial trade-off for more complex datasets. Our approach prevents implicit interpolation and
consequently does not incur the same trade-off cost. In contrast to purely deterministic optimizers,
which always converge to the same local minimum, our stochastic version finds multiple energy
minima. Figure 4 and Figure 5 in the appendix demonstrate the ability to cover different modes,
where several predictions result in differently rotated polygons and distinctly shaped digits. Each
prediction represents an independently sampled trajectory of transitions described in Equation 6.
This experiment is tailored towards the special case, when there exist multiple plausible target sets
and exemplifies both the short-comings of training with assignment-based set losses and the ability
of our approach to predict multiple sets. Whether the results in this simplified experiment will also
reflect the superiority of the proposed approach on a real-world problem remains to be tested.

5.3 POINT-CLOUD AUTO-ENCODING

Point-cloud auto-encoding maps a variable sized point-cloud to a single fixed-size vector, with the
requirement of being able to reconstruct the original point-cloud solely from that vector. Following
the setup from Zhang et al. (2019), we convert MNIST (LeCun et al., 2010) into point-clouds, by
thresholding pixel values and normalizing the coordinates of the remaining points to lie in [0, 1]. We
compare against two variations of DSPN (Zhang et al., 2019): 1. Chamfer and 2. Hungarian loss
based training. For a fair comparison, we use the energy function ESE defined in Equation 9, with
the same padding scheme and hyper-parameters as Zhang et al. (2019). Both baselines average over
all intermediate set losses, based on intermediate prediction steps. The padding scheme consists
of zero-padding sets to a fixed maximum set size and adding a presence variable for each element,
which indicates if the element is part of the set or not. Furthermore, we compare against C-DSPN
and TSPN (Kosiorek et al., 2020) on their set size estimation task. They optimize for set size root-
mean-squared error (RMSE), in combination with the Chamfer loss. We evaluate our approach
based on a single prediction per example.

Results Table 2 shows that our approach outperforms C-DSPN and TSPN (Kosiorek et al., 2020)
on set size RMSE. We conjecture that this is caused by a conflict between the two objectives: 1. Set
size RMSE and 2. Chamfer loss, under limited capacity. While the former requires a cardinality
aware representation, the latter does not benefit from a precise cardinality estimation at all. In
contrast, our approach does not treat set size as a variable separate from the constituents of the set.
Table 3 shows that our approach outperforms both DSPN (Zhang et al., 2019) baselines, even when
comparing against the same metric that is used for training the baselines. We explain the increased
performance by an ambiguity during reconstruction, induced from the bottleneck in auto-encoding.

Table 2: Point-cloud auto-encoding Set size root-mean-
square error (RMSE) for set MNIST. Both C-DSPN and
TSPN (Kosiorek et al., 2020) first infer the set size, before
generating the set. Our approach outperforms both base-
lines, without explicit set size supervision.

Set size RMSE ↓

C-DSPN 0.300±0.130

TSPN 0.800±0.080

This paper 0.002±0.003
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Table 3: Point-cloud auto-encoding Performance measured in Chamfer and Hungarian loss in units
of [10−4] for set MNIST. The Chamfer/Chamfer result is from (Zhang et al., 2019), other numbers
based on author-provided code. Our approach outperforms both DSPN baselines on both metrics,
despite the baselines being directly trained with Chamfer or Hungarian loss.

Training loss Performance metric

Chamfer Hungarian Chamfer ↓ Hungarian ↓

DSPN X 0.9±0.1 1600.2±162.7

DSPN X 2.8±0.8 3.2±0.8

This paper 0.6±0.1 0.6±0.1

As we have observed in the previous experiment, the baselines handle underdefined problems by
interpolation in the set space, leading to potentially unrealistic reconstructions. The results indicate
that our approach is beneficial even when the underlying data is not explicitly multi-modal. Training
the DSPN model with Hungarian loss, instead of Chamfer loss, deteriorates training stability and
the reconstructed shape, but captures the set size and point density more faithfully. Augmenting the
loss function with set size RMSE alleviates some of the issues with set size, but leads to decreases
in shape reconstruction performance (Kosiorek et al., 2020). Our approach does not require any
loss-engineering and performs well on all metrics.

Effect of stochastic prediction We study the impact of the proportion of stochastic steps S
T , as

defined in Equation 6, on the reconstruction performance in Figure 2. Over all runs, the most
common minimum energy is approximately at S

T=0.8. All results reported for our method apply
this 0.8 ratio during prediction. Notably, adding stochastic steps improves the energy optimization,
in comparison to the fully deterministic gradient descent (ST=0). Furthermore, the high correlation
between the energy value and the performance leads us to the conclusions that DESP learns more
than a simple sampler and that optimization improvements result in increased performance. Our
approach is able to produce different plausible predictions at no performance cost.

0.0 0.2 0.4 0.6 0.8 1.0
S
T

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

Energy

0.00006

0.00007

0.00008

0.00009

0.00010

0.00011

Hungarian Chamfer

Figure 2: Effect of stochastic prediction Test
results on set MNIST for different values of S

T
(Equation 6). Both energy values (left scale) and
set losses (right scale) are optimal, when combin-
ing stochastic and deterministic prediction steps.
Improvements in the optimizer translate well to
increases in performance, as indicated by high
correlation between energy and set losses.

5.4 OBJECT SET PREDICTION ON CLEVR

In terms of set prediction, object detection tasks the model with learning to predict the set of object
locations in an image. Following the previous set prediction literature (Zhang et al., 2019; Kosiorek
et al., 2020), we benchmark our method on the CLEVR dataset. While our specific contribution
addresses stochastic and underdefined set prediction problems, our method is in principle not lim-
ited to those cases. We adopt the same neural network architecture, hyper-parameters and padding
scheme as Zhang et al. (2019), to facilitate a fair comparison. The padding scheme is the same as in
the previous experiment. The Relation Network (Santoro et al., 2017) in combination with FSPool
(Zhang et al., 2020b) takes on the role of the set encoder for ESE, described in Equation 9. We
compare against different variations of Chamfer and Hungarian loss based training. Our approach is
evaluated based on a single prediction per image.

Results Performance, as seen in Table 4, is measured in average precision (AP) for various
intersection-over-union (IoU) thresholds. Similar to the previous experiments, we observe a large
discrepancy between training with Chamfer and Hungarian loss. While the Chamfer loss based
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Table 4: Object set prediction on CLEVR Baselines from Kosiorek et al. (2020) and Zhang et al.
(2019) show mixed performance for different intersection-over-union (IoU), whereas our results are
consistent and competitive.

Training loss Performance for different IoU

Chamfer Hungarian AP50 ↑ AP60 ↑ AP70 ↑ AP80 ↑ AP90 ↑

C-DSPN X 67.7±5.5 - - - 7.4±0.9

TSPN X 81.2±1.0 - - - 20.7±0.2

DSPN† X 94.0±0.4 90.6±0.6 82.2±1.4 58.9±3.4 16.0±2.4

This paper 96.2±0.5 92.5±1.0 80.9±1.8 54.3±3.4 17.4±1.6

†The DSPN numbers are from the updated appendix of Zhang et al. (2020a)

training generally outperforms the Hungarian loss for set auto-encoding, the reverse appears to be
true for object detection. In comparison, our approach performs consistently on both tasks for all
metrics, indicating suitability for general set prediction tasks, beyond multi-modal problems.

5.5 SUBSET ANOMALY DETECTION

The objective here is to discover all anomalous faces in a set of images. We re-purpose CelebA
(Liu et al., 2015) for subset anomaly detection, by training on randomly sampled sets of size 5
with at least 3 images constituting the inliers, by possessing two or more shared attributes. The set
energy function is solely supervised by outlier subset detections, without direct access to attribute
values. The challenge during inference lies with implicitly ascertaining the shared attributes, while
simultaneously detecting the outliers, including the case where none are present. We examine our
method specifically on ambiguous cases, constructed such that different attribute combinations may
be considered distinctive for the inliers. Zaheer et al. (2017) consider a similar task, but assume
exactly one outlier. Their method can be extended to subsets of variable sizes, by replacing the
softmax with a sigmoid (Zaheer et al., 2017), yielding an F1 score of 0.63 on our task. Nonetheless,
such an approach is limited to predicting element-wise probabilities, which ignores dependencies
between individual predictions. Our approach of learning probabilities over sets is able to address
this challenge, as demonstrated in Figure 3. Given the same set, our method produces multiple valid
subset predictions, reflecting an implicit inference of different attribute pairs. This advantage allows
DESP to considerably outperform the baseline with an F1 score of 0.76. Further details can be
found in Appendix C.

(a) male and
no beard

(b) male and
eyeglasses

(c) bald and
male

(d) bald and
eyeglasses

Figure 3: Subset anomaly detection
Four different outlier subset detections,
marked by blue dash-dotted frames, em-
phasize the ambiguity of what consti-
tutes an anomaly. Inliers share at least
two common attributes, e.g., bald and
eyeglasses, while outliers lack one or
both. Depending on the considered at-
tributes, different subsets are anoma-
lous.

6 CONCLUSION

We introduced a new training & prediction framework for set prediction, based on a probabilistic
formulation of the task. Our approach addresses the crucial problem of stochastic or underdefined
set prediction tasks, where training with assignment-based set losses performs unfavourably. We
demonstrated the ability of Deep Energy based Set Prediction (DESP) to learn and predict multi-
ple plausible sets on synthetic data. On non-stochastic benchmarks our method is comparable to
previous works, showcasing broad applicability to general set prediction tasks. Finally, we exem-
plify on the new task of subset anomaly detection the capacity to address tasks beyond those with
unambiguous predictions.
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A ASSIGNMENT-BASED SET LOSS

Assignment-based set losses compare the predicted set Ŷ ={ŷ1, . . . , ŷk} with the ground-truth set
Y ={y1, . . . ,yl} by element-wise assignments:

LA(Ŷ ,Y ) =
∑
i

d(ŷi,yπ(i)) +
∑
j

d(ŷσ(j),yj), (12)

where d is a vector distance function and π : {k} 7→ {l}, σ : {k} 7→ {l} are the assignment
functions, which map from one sets’ indices to the other. Due to the orderless nature of sets, it is
not obvious which element ought to be compared with which. Different assignment-based set losses
differ mainly in the assignment strategies, reflected in the choices for π and σ.

The Chamfer loss assigns every element in Ŷ to the closest element in Y and vice-versa and can be
defined by π(i)= argminj d(ŷi,yj) and σ(j)= argmini d(ŷi,yj), resulting in:

LC(Ŷ ,Y ) =
∑
i

min
j
d(ŷi,yj) +

∑
j

min
i
d(ŷi,yj) (13)

For the Hungarian loss π and σ constitute the inverse functions of each other, thus requiring equal
set sizes n=m:

LH(Ŷ ,Y ) =
1

2

(
min
π∈Sk

∑
i

d(ŷi,yπ(i)) + min
σ∈Sk

∑
i

d(ŷσ(j),yj)

)
(14)

= min
π∈Sk

∑
i

d(ŷi,yπ(i)), (15)

where Sk is the set of all permutations on sets of size k.

The differences in assignment strategies result in different metric spaces on sets, as illustrated in
subsection 5.2. Both the Chamfer and the Hungarian loss exhibit distinct advantages and disadvan-
tages. While the asymptotic compute cost for the Chamfer loss scales in O(kl) with a set sizes k, l,
computing the Hungarian loss is much more expensive with a complexity in O(k3). The lack of
one-to-one assignments for the Chamfer loss, puts it at a disadvantage when comparing multi-sets
or sets with multiple similar (up to numerical precision) elements. On the other hand, the strict
requirement for bijective assignments for the Hungarian loss disqualifies it when comparing sets of
different sizes, i.e., k 6=l.

B MULTI-MODAL PREDICTIONS

Both Figure 4 and Figure 5 display evidence for the ability of Deep Energy based Set Prediction
(DESP) to learn and predict multiple sets for the same input. This ability is important, when we
consider datasets with multi-modal target distributions, such as the varying rotation angle for Poly-
gons (Figure 4a) or different writing styles for Digits (Figure 5a). The datasets are described in
subsection 5.2.
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{6} {8} {4} {6} {6} {7} {5} {6}

{7} {7} {8} {4} {5} {8} {4} {7}

{7} {7} {6} {7} {4} {8} {6} {4}

{5} {4} {8} {7} {8} {6} {4} {5}

(a) Polygons dataset examples
{6} {8} {4} {6} {6} {7} {5} {6}

{7} {7} {8} {4} {5} {8} {4} {7}

{7} {7} {6} {7} {4} {8} {6} {4}

{5} {4} {8} {7} {8} {6} {4} {5}

(b) Model samples by this paper

Figure 4: Multi-modal Polygons (a) Polygons of the same cardinality vary in a rotation angle
around the center. (b) Our method generates polygons of correct cardinality and estimates varying
rotation angles.
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one one seven one seven one one seven

seven one one seven seven one one one

one seven seven one one seven seven seven

seven seven seven one one seven seven one

(a) Digits dataset examples
one one seven one seven one one seven

seven one one seven seven one one one

one seven seven one one seven seven seven

seven seven seven one one seven seven one

(b) Model samples by this paper

Figure 5: Multi-modal Digits (a) The digits one and seven exhibit two different shapes, reflecting
differences in writing style. (b) Our method manages to capture both modes for both digits and
generate sets from each style respectively.
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C SUBSET ANOMALY DETECTION

Dataset preparation Individual training instances are sampled from CelebA (Liu et al., 2015)
with the following procedure: 1. Sample two attributes a, b 2. Sample 3-5 images that all have
attributes a and b 3. Fill the remaining slots with images that do not have both a and b or skip if there
are already 5 images. The result of the sampling procedure is an orderless set of 5 images, where
the samples from the 2nd and 3rd step constitute the inliers and outliers, respectively. We qualify
any subset of images as valid inliers, if they share at least two attributes, which are not possessed
simultaneously by any outlier. In order to limit the amount of valid outlier subsets, we restrict the
attributes to the following list: Bald, Bangs, Blond Hair, Double Chin, Eyeglasses, Goatee, Gray
Hair, Male, No Beard, Wearing Hat, Wearing Necktie. Notably, the training data does not explicitly
supervise for attributes and only exposes a single valid subset detection for each training instance.

Experimental setup Each image in the input set is represented by a fixed 128-dimensional feature
vector, extracted from the penultimate layer of a ResNet-34 (He et al., 2016) that is optimized for
facial attribute detection. We forgo any image augmentation during training and treat the extracted
features as a highly informative, albeit flawed, representation of the image. The representation has
an accuracy of roughly ∼90%, as measured by a logistic regression model, for individual attributes
and constitutes a source of uncertainty. In addition to each feature vector, we introduce indicator
variables oi ∈ {−1,+1} that constitute the targets and signify if an image is an outlier or not.
In order to apply our framework to the discrete targets, we optimize and sample over a convex
relaxation of the target domain: oi ∈ [−1,+1]. We apply an instance of the energy function EDS
(Equation 8) on the set of feature vectors, concatenated with the outlier indicator variables. Both g
and f are instantiated as 2-layer MLPs with 256 hidden dimensions. FSPool (Zhang et al., 2020b)
is applied as the permutation invariant aggregator. As part of finalizing the predictions, the outlier
variables oi are rounded towards −1 or +1.

As the baseline, we employ a 4-layer permutation equivariant DeepSets (Zaheer et al., 2017). We
use the same extracted features as in our DESP setup as inputs and match the number of parameters.
The model is trained with a binary cross-entropy loss that acts on the scalar outputs of the network.

Evaluation The performance is measured on the CelebA test partition images (Liu et al., 2015).
Each test example is associated with the full collection of valid subsets, exclusively for evaluation
purposes. We consider two distinct test setups: 1. Test instances are sampled the same way as during
training, resulting in both unambiguous and ambiguous instances, and 2. Only ambiguous instances
are used. The first case results in an average number of valid target subsets of ∼1.7, including both
ambiguous and unambiguous instances. The second case has an average number of valid target
subsets of ∼2.3, with a minimum of 2 valid subset targets.

We measure the proportion of correct predictions per test example as a frequency weighted preci-
sion. The frequency of each predicted subset corresponds to the number of appearances across all
individual predictions. Recall measures the proportion of all valid subsets that the model manages
to predict per test example. We approximate precision and recall in this experiment with 10 predic-
tions, by leveraging the ability of DESP to output multiple subsets. The F1 score is based on the
average precision and recall.

Results The performance is reported in Table 5. When solely evaluating on ambiguous cases, the
baseline exhibits an F1 performance drop of ∼26%, as opposed to only ∼13% for our method. This
highlights the advantage of learning distributions over sets in combination with the ability to produce
multiple predictions. Figure 8 and Figure 7 showcase a positive and negative example prediction of
our model, respectively. These examples highlight the difficulty of simultaneously determining the
shared commonality between the inliers and ascertaining a discrepancy of the outliers.

We examine the effect of varying proportions of stochastic steps in the prediction procedure in
Figure 6. Similar to what we observe in the other experiments, ST=0.8 offers the best F1 score. For
the fully deterministic case, every predicted set is identical to one another, which is reflected in the
low recall score at ST=0.
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Table 5: Subset Anomaly Detection Performances for the two test setups: 1. Unambiguous +
Ambiguous and 2. Ambiguous only. Our method outperforms the baseline, which we derived from
DeepSets (Zaheer et al., 2017), on all metrics.

Ambiguous Unambiguous + Ambiguous

Precision ↑ Recall ↑ F1 ↑ Precision ↑ Recall ↑ F1 ↑
Baseline 0.75±0.02 0.34±0.01 0.47±0.01 0.73±0.02 0.56±0.01 0.63±0.01

This paper 0.76±0.02 0.58±0.01 0.66±0.00 0.74±0.02 0.78±0.01 0.76±0.01

0.0 0.2 0.4 0.6 0.8 1.0
S
T

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82
F1 Precision Recall

Figure 6: Anomaly detection ablation Test re-
sults on subset anomaly detection for different
values of S

T (Equation 6). Inclusion of stochas-
ticity in the prediction procedure significantly im-
proves the recall performance compared to the
fully deterministic case (ST=0). The F1 score is
highest at S

T=0.8, representing the best trade-off
point between recall and precision.

(a) necktie and
eyeglasses

(b) male and
necktie

(c) hat and
necktie

(d) hat and
eyeglasses

(e) necktie and
no beard

Figure 7: Subset anomaly detection negative example (a)-(d) Four correct outlier subset detec-
tions, marked by blue dash-dotted frames, predicted by the model. The subset (e), marked by red
dash-dotted frames, constitutes and error, because it is a valid prediction, that is missed by the model.
Multiple subset possibilities showcase how challenging the subset anomaly detection task is.
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(a) hat and
eyeglasses

(b) no beard
and eyeglasses

Figure 8: Subset anomaly detection positive example Two different outlier subset detections
marked by blue dash-dotted frames predicted by the model. While the inliers in both rows share
the no beard attribute, (a) reflects the case where the defining feature instead consists of wearing a
hat and eyeglasses. The empty subset prediction in (b) reflects a case, where the model correctly
predicts the absence of outliers.
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