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ABSTRACT
Recently, misinformation incorporating both texts and images has

been disseminated more effectively than those containing text alone

on social media, raising significant concerns for multi-modal fact-

checking. Existing research makes contributions to multi-modal

feature extraction and interaction, but fails to fully enhance the

valuable semantic representations or excavate the intricate entity

information. Besides, existing multi-modal fact-checking datasets

are primarily focused on English and merely concentrate on a sin-

gle type of misinformation, thereby neglecting a comprehensive

summary and coverage of various types of misinformation. Taking

these factors into account, we construct the first large-scale Chinese

Multi-modal Fact-Checking (CMFC) dataset which encompasses

46,000 claims. The CMFC covers all types of misinformation for fact-

checking and is divided into two sub-datasets, Collected Chinese

Multi-modal Fact-Checking (CCMF) and Synthetic Chinese Multi-

modal Fact-Checking (SCMF). To establish baseline performance,

we propose a novel Entity-enhanced and Stance Checking Network

(ESCNet), which includes Multi-modal Feature Extraction Module,

Stance Transformer, and Entity-enhanced Encoder. The ESCNet

jointly models stance semantic reasoning features and knowledge-

enhanced entity pair features, in order to simultaneously learn

effective semantic-level and knowledge-level claim representations.

Our work offers the first step and establishes a benchmark for

evidence-based, multi-type, multi-modal fact-checking, and signifi-

cantly outperforms previous baseline models.

CCS CONCEPTS
• Information systems→ Social networks; Multimedia infor-
mation systems.

KEYWORDS
Multi-modal fact-checking; Datasets; Knowledge graph

1 INTRODUCTION
Fact-checking, defined as the process of evaluating the veracity

of claims expressed in written or spoken language with the aid of

retrieved evidence, has become increasingly critical [17]. Numer-

ous reports suggest that fabrications can lead to the formation of

misconceptions about political candidates among citizens, manipu-

lation of stock prices, and threats to public health. Given the influx

of new information and the rapidity of its dissemination, manual

fact-checking has proven inadequate, emphasizing the need for

automated methods to verify claims and encourage the distribution

of truthful information on social media platforms [3, 2].

While significant strides have been made in text-based, single-

modal fact-checking task, the advent of multimedia technology has

created a new challenge. Perpetrators of rumours now frequently

exploit both visual and textual content to attract more attention and

(2) Collected Misinformation

Claim Image

Document Image

(1) Synthetic Misinformation
Claim Text:前意大利总理贝卢斯科尼去世，终年86岁。The former Italian 
Prime Minister Silvio Berlusconi has died at the age of 86 .

Document Text: 意大利总理乔治亚·梅洛尼 (Giorgia Meloni) 周三为她的政
府决定结束降低燃油税的决定辩护，该关税已经到位，以帮助人们应对高油
价。意大利安莎社报道，自新年伊始燃油税降减免结束以来，汽油和柴油价
格大幅上涨。“如果我们削减（燃料）关税，我们将无法增加健康基金，或
有资格获得援助以支付水电费的家庭数量……Italian Prime Minister Giorgia 
Meloni on Wednesday defended her government's decision to end a cut in fuel taxes 
that had been put in place to help people cope with high oil prices. The Italian news 
agency ANSA reports that gasoline and diesel prices have risen sharply since the 
end of fuel tax cuts at the start of the New Year."If we cut (fuel) tariffs, we won't be 
able to increase health funding, or the number of families eligible for assistance to 
pay utility bills, or (tax) credits for small and medium-sized businesses……

Document Image

Claim Text: 土耳其和叙利亚2月6日发生强烈地震后，接踵而来的海啸袭击
叙利亚海岸。After a powerful earthquake struck Turkey and Syria on 
February 6, a tsunami hit the Syrian coast.

Document Text:截取中文网络流传视频的画面，在谷歌进行图片反搜，可以在
推特上发现有相同画面的视频版本。该视频由推特用户Jamie Little
（@JamieLittleTV）发布于2023年1月7日。Jamie Little的身份简介是福克斯新
闻的记者。Jamie Little发布的视频更完整，长度为22秒。对比可见，中文网络
流传的所谓土耳其叙利亚大地震引发海啸的视频（上）与该视频（下）一致。
其实这段视频拍的是美国圣地亚哥······Intercept the Chinese Internet video 
footage, Google image reverse search, you can find the same picture on Twitter 
video version. The video was posted by Twitter user JamieLittle (@JamieLittleTV) 
on January 7, 2023. Jamie Little's profile is as a reporter for Fox News. Jamie Little 
posted a more complete video, which is 22 seconds long. In contrast, it can be seen 
that the video of the so-called tsunami caused by the massive earthquake in Turkey 
and Syria circulated on the Chinese network (top) is consistent with the video 
(bottom). In fact, this video was taken in San Diego, USA …..

Claim Image

Figure 1: Two types of misinformation from CMFC (Chinese
is translated into English). The source of misinformation
within two datasets is different and the entity used to perform
a search for irrelevant images is highlighted in yellow.

expedite dissemination on social media. Compared to single-modal

fact-checking, the learning of effective feature representation from

heterogeneous multi-modal information poses a greater challenge,

rendering multi-modal fact-checking as an intriguing new task [17].

Existing multi-modal misinformation datasets in fact-checking task

can generally be divided into two categories: synthetic misinfor-

mation [1] and collected misinformation. The difference lies in the

source of misinformation within the dataset: Synthetic misinforma-

tion refers to the artificially constructed dataset of misinformation

created by researchers. Both the text and image of the claim are

sourced from pristine news but are deliberately mismatched or

partially altered [29]. As shown in Figure 1, the entity ‘Italian Prime

Minister’ used to perform a search for images is highlighted in

yellow. A fabricated claim is constructed using the retrieved image

of the current Prime Minister, ‘Giorgia Meloni’, paired with the

claim text; While collected misinformation refers to the dataset

of misinformation directly gathered from social media platforms.

Despite available multi-modal fact-checking datasets primarily fo-

cusing on English, they only address one type of misinformation.

Moreover, existing multi-modal fact-checking detectors [46, 39, 14,

48] mostly model the basic multi-modal semantic relevance at the

feature level, employing concatenate operations [13], or attention

mechanisms [16] to capture such coarse semantic correlation and
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generate multi-modal representations. Regrettably, the importance

of the underlying high-order knowledge and semantic correlation

of multimedia content is often overlooked.

To address these challenges, we create the first large-scale Chi-

nese Multi-modal Fact-Checking (CMFC) dataset containing 46,000

claims, which covers two types of misinformation in multi-modal

fact-checking task, including Synthetic Chinese Multi-modal Fact-

checking (SCMF) and Collected Chinese Multi-modal Fact-checking

(CCMF) dataset. The CMFC dataset is of substantial size, with claims

and their corresponding evidence documents sourced from a diverse

range of platforms and domains.

To establish a baseline performance, we introduce a novel Entity-

enhanced and Stance Checking Network (ESCNet) for multi-modal

fact-checking task. This network jointly models both stance se-

mantic reasoning features and knowledge-enhanced entity pair

features, facilitating the learning of effective semantic-level and

knowledge-level claim representations. Specifically, ESCNet con-

sists of Multi-modal Feature ExtractionModule, Stance Transformer

and Entity-enhanced Encoder (EeE). Given a multi-modal claim

and its corresponding retrieved evidence, the Multi-modal Feature

Extraction Module initially extracts valuable clues, such as text, im-

ages, and entities. Subsequently, we employ three Stance Transform-

ers to simulate the human hierarchical reasoning process, checking

the consistency of different types of claims with the evidence. The

Stance Transformer first introduces a set of Shared Prototypes as

queries, guiding the reconstruction of feature representations of

the claim and corresponding evidence, thereby projecting the two

features into the common feature space and reducing computa-

tion. It then further utilizes a fusion layer to acquire three stance

semantic reasoning features. Furthermore, the EeE constructs a

cross-modal entity pair set and two uni-modal entity pair sets in

the multimedia posts, and designs a knowledge relevance reasoning

strategy to find the shortest semantic relevant path between each

pair of entities in external knowledge graph. By absorbing all com-

plementary contextual knowledge associated with the entities in

this path, the EeE refines knowledge-enhanced distance and entity

representations at an elevated knowledge level. It then selects the

bottom/top distance entity pairs as the most consistent/inconsistent

pairs and the selected entity pairs are further fused by employing a

signed attention mechanism to capture consistent and inconsistent

knowledge-enhanced entity pair features.

Overall, our main contributions can be summarized as follows:

(1) We establish the first large-scale, multi-domain Chinese multi-

modal fact-checking dataset, encompassing all types of misinfor-

mation in the multi-modal fact-checking task. (2) The proposed

ESCNet jointly model both stance semantic reasoning features and

knowledge-enhanced entity pair features, facilitating the learning

of effective semantic-level and knowledge-level claim representa-

tions. (3) We design a Entity-enhanced Encoder with a knowledge-

enhanced distance measurement strategy and a signed attention

mechanism to capture high-level entity information. (4) Extensive

experiments demonstrate the superiority of ESCNet.

2 RELATEDWORK
SyntheticMisinformation inMulti-modal Fact-checking. Syn-
thetic misinformation [1] is one of the most straightforward and

Figure 2: Domain distribution of the two datasets.

Figure 3: The word clouds in falsified claims.

effective strategies that adversaries employ to spread falsified claims

[29]. Both the text and image of the statement are sourced from

pristine news but are deliberately mismatched or partially altered.

Prior work has delved into multi-modal synthetic misinformation:

Jaiswal et al. [21] directly matched images with titles of other ran-

dom images, creating its fabricated versions. In contrast, Sabir et al.
[34] introduced swaps of named entities related to persons, orga-

nizations, and locations. Regardless of whether the modifications

were made through naive swaps or named entity manipulations,

fabricated examples were either overly naive or contained linguis-

tic biases, making them easily detectable even by mere language

models [29]. As a result, Luo et al. [29] proposed fabricating exam-

ples by matching genuine images with genuine texts. They created

a large-scale dataset called NewsCLIPpings, which included both

pristine and convincingly falsified examples. These fabricated sam-

ples might have distorted the context, location, or people in the

images, presenting ‘out-of-context’[29]. Moreover, Sahar et al. [1]
compiled a comprehensive NewsCLIPpings dataset by gathering

multi-modal evidence from external web sources.

Collected Misinformation in Multi-modal Fact-checking.
Collected misinformation is directly gathered from the Internet,

often propagated as fake news on social media platforms. In recent

years, the detection of multi-modal collected misinformation have

emerged as a prominent area of focus within the academic commu-

nity. To address this challenge, a substantial number of researchers

dedicated significant efforts to the development and maintenance

of datasets that were specifically tailored for this particular field

of study [36, 9]. The Factify dataset [31] stood as an early con-

tribution, centered on multi-modal misinformation detection that

incorporated both text and image. It consisted of a vast array of

claims tagged with veracity labels, accompanied by corresponding

textual and visual evidence. Moreover, Factify2 [38] expanded the

2
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Table 1: Comparisons of fact-checking datasets. ‘Claims’ represents the number of claims.

Dataset Multi-modal Domain Claims Language Evidence Source Misinformation

SciFact [43] ✗ Science 1,409 English Text Paper -

PUBHEALTH [24] ✗ Health 11,832 English Text FACTWeb -

FEVER [40] ✗ Multiple 185,445 English Text Wiki -

FEVEROUS [4] ✗ Multiple 87,026 English Text/Table Wiki -

CHEF [20] ✗ Multiple 10,000 Chinese Text Internet -

FACTIFY [30] ! Multiple 50,000 English Text/Image FACTWeb Collected

FACTIFY2 [38] ! Multiple 50,000 English Text/Image FACTWeb Collected

NewsCLIPpings [1] ! Multiple 85,360 English Text/Image Internet Synthetic

MOCHEG [46] ! Multiple 21,184 English Text/Image FACTWeb Collected

MR2 [19] ! Multiple 14,700 Both Text/Image Internet Collected

CMFC ! Multiple 46,000 Chinese Text/Image Multiple Both

paradigm by introducing a more comprehensive set of features and

a more complex task framework. Hu et al. [19] collected relevant ev-
idence on multi-modal fake news and constructed the MR2 dataset.

MOCHEG [46] represented a large-scale fact-checking dataset, en-

compassing 21,184 claims, each assigned with corresponding evi-

dence. However, it is noteworthy that existing datasets mostly focus

on English and often narrowed down to a singular type of misin-

formation. Detailed information about the fact-checking detectors

can be found in the Supplementary Materials.
Knowledge Graph. Knowledge Graph (KG) is a structured rep-

resentation of information in the form of nodes and edges, where

nodes represent entities or concepts, and edges represent the re-

lationships between them [7]. Some studies [23, 15, 45] extract

structured triples (head, relation, tail) from the post contents, and

check them with the faithful triples in KG. However, existing fact-

checking approaches that utilize knowledge graphs for aggregating

entity knowledge and performing reasoning are limited to a single

textual modality [17]. In our work, both textual and visual modali-

ties of entity features from KG are taken into consideration.

3 THE CMFC DATASET
In contrast to previous work, we construct the first large-scale

Chinese Multi-modal Fact-Checking (CMFC) dataset, subdivided

into SCMF and CCMF. In these datasets, we assign each claim

with one of two labels: pristine or falsified (similar to previous

work [29, 1]). The construction of CMFC comprises three stages:

claim data construction, evidence retrieval, and data preprocessing

and analysis. During claim data construction, we select sources

from which we extract statements and accompanying images. The

process of evidence retrieval involves gathering relevant documents

or sentences as evidence. Finally, we clean and analyze the dataset

in the data preprocessing process.

3.1 Claim Data Construction
CCMF:We collect 10,000 fabricated claims that are naturally and

widely disseminated from all active fact-checking websites in China.

These claims encompass both text and image, along with authen-

ticity labels. Typically, these claims originate from online speeches,

public announcements, news articles, and social media platforms

such as Weibo, WeChat, DouYin (TikTok), or various blogs. Authen-

ticity labels are provided by fact-checkers. However, most claims

fact-checke d by fact-checkers are falsified, and solely relying on

these claims would result in an imbalanced dataset. Therefore, we

collect 16,000 real claims by scraping article titles or captions from

four official news commentarywebsites. Detailed information about

the source of claims can be found in the Supplementary Materials.
SCMF:While CCMF consists of real-world statements, the SCMF

contains artificially created claims, generated bymutating sentences

from real articles. In this type of threat, both the text and image

of the claim originate from authentic news sources but are inaccu-

rately matched, ensuring that unimodal text bias is not introduced

into the dataset, which could potentially be captured by language

models. We adopt a challenging, non-random image-text matching

method to construct the dataset. We initially collect 10,000 pristine

claims from real news websites. These statements include persons

(e.g., ‘Musk’, ‘Berlusconi’), places (e.g., ‘Shanghai’, ‘Italy’) or organi-
zations (e.g., ‘International Court’, ‘Tesla Factory’), and more. By

searching for this key information, we construct a corresponding

falsified claim for each pristine claim by retrieving out-of-context

misinformation images. It includes the following four types of fab-

rication: (1) By searching on the person entity, we retrieve news

images related to that person but irrelevant to the original claim

text; (2) By searching on the location entity, we retrieve news im-

ages related to the location mentioned in the original claim text

but irrelevant to the text content; (3) By searching on the organi-

zation entity, we retrieve news images related to the organization

mentioned in the original claim text but irrelevant to the text con-

tent; (4) An irrelevant image is randomly matched with the original

claim text. By adopting these four fabrication methods, we built

10,000 falsified claims. Visualizations of the four methods, along

with techniques to avoid retrieving images related to the text, are

in the Supplementary Materials.

3.2 Evidence Retrieval
When verifying a claim, reporters need to find evidence that is

relevant to the claim and help determine its authenticity label.

CCMF: Since the falsified claims in CCMF come from reliable

fact-checking websites, for each article on these websites, we collect

document text and document images corresponding to each claim.

For pristine claims originating from real news websites, we crawl

the corresponding news website documents. For a small number of

documents that do not include images, we develop scripts to obtain

3
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Figure 4: The overall architecture of the proposed ESCNet.

relevant images from the website by searching for documents and

attaching them as corresponding document images.

SCMF: To detect the authenticity of the claims in SCMF, which

include pristine and falsified (‘out-of-context’) images, we choose

to manually extract evidence from web sources and use image-text

pairs as queries to perform web searches. For text evidence, we use

the Google Vision API to retrieve text evidence in reverse search

mode using the claim image. The API returns the search result with

the highest retrieval rank associated with the image, and we use it

as text evidence. They may describe the content of the image and

the news in which this image appears. For visual evidence, we use

claim text as a text query to search for images. We use the Baidu

Search API to perform image searches, where the search results

are not always an exact match for the text query. Even if it is not

entirely related to the event, it can serve as a useful clue about the

type of image that might be associated with the topic.

3.3 Data Preprocessing and Analysis
The initial CMFC dataset has many crawling issues, such as be-

ing unable to retrieve articles, or the content not being text. We

remove such instances. Next, we check the dataset for duplicates

and all duplicates are included in the training split of the dataset.

We clean the content of claim texts, removing keywords that could

leak information (such as ‘debunk’, ‘truth’, etc). Besides, Chinese
fact-checkers tend to express non-factual claims in rhetorical ques-

tions. To avoid the impact of tone and symbols, we convert these

into declarative statements. Finally, we built the Chinese Multi-

modal Fact Checking dataset (CMFC) containing 46,000 claims, of

which SCMF accounted for 20,000 and CCMF contained 26,000. As

shown in Figure 2, More than 30% of the claims in both datasets

belong to the health domain, as many of the Chinese-language

fact-checking articles focus on refuting falsified information re-

lated to ‘COVID-19’. The political domain account for the second,

reflecting the continued influence and attention of political topics

in society. Figure 3 proves the above observation. Moreover, we

compare the CMFC with other datasets in Table 1: ‘Multi-modal’

represents whether the dataset is multi-modal; ‘Domain’ repre-

sents the fields involved in the dataset; ‘Evidence’ means the type

of evidence used, which can be text (includes metadata), table or

image. ‘Source’ means where the evidence is collected from, such

as Wikipedia (Wiki), fact-checking websites (FACTWeb) and the

Internet. ‘Misinformation’ represents the source of misinformation

within the multi-modal dataset. Compared to other datasets, we

can attribute the strength of CMFC to several aspects: (1) The first

large-scale Chinese multi-modal fact-checking dataset; (2) Cover-

ing two types of misinformation in the multi-modal fact-checking

task; (3) The dataset is of substantial size, with claims and their

corresponding evidence document sourced from a diverse range of

platforms and domains. More analysis and examples can be found

in the Supplementary Materials.

4 METHOD
4.1 Model Overview
As illustrated in Figure 4, our ESCNet mainly consists of three

parts: Multi-modal Feature Extraction Module, Stance Transformer

and Entity-enhanced Encoder. The details about the three parts are

described in the following subsections.

4
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4.2 Multi-modal Feature Extraction Module
Given a source claim that includes images and text, we extract the

following four features: (1) Claim Text 𝑻𝑪 , i.e., the text portion of

the source claim. (2) Claim Textual Entities {𝑬 𝒊
𝒄𝒕 }, typically con-

taining named entities such as person and places. These entities

are crucial for understanding news semantics and aiding in fact-

checking. (3) Claim Visual Entities {𝑬 𝒊
𝒄𝒗}, which include named

entities in the claim images. Similar to text, news images also con-

tain visual entities that are vital for semantic understanding and

the detection of falsified claims. (4) Claim Image 𝑰𝑪 , which includes

the visual CNN features in the claim images. We utilize ResNet-

50, without the final layer, to encode the images as initial feature

maps, which are then transformed into visual feature sequences

through convolutional blocks and reshaping operations. Similarly,

we also extract the following features with the retrieved document

evidence: Document Text 𝑻𝑫 ; Document Textual Entities {𝑬 𝒊
𝒅𝒕
};

Document Visual Entities {𝑬 𝒊
𝒅𝒗
}; Document Image 𝑰𝑫 .

4.3 Stance Transformer
After extracting multi-modal cues, we employ three Stance Trans-

formers to simulate human hierarchical reasoning process and

model the high-order unimodal and cross-modal correlation, in-

cluding text reasoning (𝑻𝑪 and 𝑻𝑫 ), image reasoning (𝑰𝑪 and 𝑰𝑫 ),
and cross-modal reasoning (𝑻𝑪 and 𝑰𝑪 ). Taking text reasoning as
an example: the Stance Transformer first introduces a set of Shared

Prototypes as queries to guide the reconstruction of the feature

representations of the claim and its corresponding evidence. The

advantages are twofold: (1) Regardless of the length of the input

evidence document, the final output is the length of the Shared

Prototypes, which significantly reduces computational complexity

and prevents information loss due to excessively long evidence.

(2) By projecting the two features into the same vector space, we

promote a better comparison and fusion of features. Specifically, a

set of Shared Prototypes {𝑷 𝒊} are composed of 𝑘 vectors of length

𝐿, randomly initialized. A shared multi-head attention transformer

layer (𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑_𝑆ℎ𝑎𝑟𝑒𝑑) [42] is utilized to reconstruct the repre-

sentations. We take each prototype as a query, while the claim or

document features simultaneously as keys and values:

𝑇𝐶 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑_𝑆ℎ𝑎𝑟𝑒𝑑 ({𝑃𝑖 },𝑇𝐶 ,𝑇𝐶 )
𝑇𝐷 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑_𝑆ℎ𝑎𝑟𝑒𝑑 ({𝑃𝑖 },𝑇𝐷 ,𝑇𝐷 )

(1)

Then, we fuse the reconstructed claim feature representation 𝑻̂𝑪
with the evidence representation 𝑻̂𝑫 through the fusion layer, to

obtain the stance representation of the evidence 𝑻𝑫 towards the

claim 𝑻𝑪 in the text reasoning.

𝑓 𝑡𝑡 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑_𝐹𝑢𝑠𝑖𝑜𝑛(𝑇𝐶 ,𝑇𝐷 ,𝑇𝐷 ) (2)

where 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑_𝐹𝑢𝑠𝑖𝑜𝑛 is a multi-head attention transformer

layer. Following the above operations, we obtain the stance repre-

sentations 𝒇𝒗𝒗 in image branch and 𝒇 𝒕𝒗 in cross-modal branch.

4.4 Entity-enhanced Encoder
Multi-modal entity correlation is a key indicator of claims. Entity-

enhanced Encoder (EeE) links entities to acquire higher-order se-

mantic information fromKG, conductingmulti-modal fact-checking

at the knowledge level. Firstly, it identifies visual and textual en-

tities from images and texts originating from source claims and

evidence documents, followed by linking to generate a cross-modal

entity pair set 𝑬𝑻𝑽 , and two unimodal entities pair sets (𝑬𝑻𝑻 and

𝑬𝑽𝑽 ). A new knowledge-related reasoning strategy is proposed

to measure the knowledge-enhanced distance of each entity pair

sets and build knowledge-enhanced entity representations. Next,

it applies negative or positive signed attention mechanisms, using

the stance reasoning features from the Stance Transformer to select

entity pairs with semantic inconsistencies and consistencies.

Entity Pair Linking. By jointly considering the pairwise rela-

tionships within and across the entity sets of claim and document,

the intra-modal and cross-modal entity correlations are explored.

The EeE links all possible pairings into two intra-modal entity pair

sets 𝑬𝑻𝑻 and 𝑬𝑽𝑽 , respectively as follows:

𝐸𝑇𝑇 = (𝐸𝑖𝑐𝑡 , 𝐸
𝑗

𝑑𝑡
) : 1 ≤ 𝑖 ≤ 𝑁𝑐𝑡 , 1 ≤ 𝑗 ≤ 𝑁𝑑𝑡

𝐸𝑉𝑉 = (𝐸𝑖𝑐𝑣, 𝐸
𝑗

𝑑𝑣
) : 1 ≤ 𝑖 ≤ 𝑁𝑐𝑣, 1 ≤ 𝑗 ≤ 𝑁𝑑𝑣

(3)

where 𝑁𝑐𝑡 , 𝑁𝑑𝑡 , 𝑁𝑐𝑣 , and 𝑁𝑑𝑣 represent the number of entities in

the corresponding entity sets. Similarly, EeE constructs the cross-

modal entity pair set 𝑬𝑻𝑽 as follows:

𝐸𝑇𝑉 = (𝐸𝑖𝑐𝑡 , 𝐸
𝑗
𝑐𝑣) : 1 ≤ 𝑖 ≤ 𝑁𝑐𝑡 , 1 ≤ 𝑗 ≤ 𝑁𝑐𝑣 (4)

It then uses the following knowledge-enhanced reasoning strategy

to measure the knowledge-enhanced distance of each pair sets.

Knowledge-enhanced Distance Measurement. Given an en-

tity pair (𝐸𝑢 , 𝐸𝑣) from arbitary set of 𝑬𝑻𝑻 , 𝑬𝑽𝑽 or 𝑬𝑻𝑽 , we propose
a novel metric 𝑫 (𝐸𝑢 , 𝐸𝑣) to measure the knowledge-enhanced dis-

tance of the two entities on a pretrained knowledge gragh. Different

from the metrics in previous works that only considered pairwise

feature distance without background contextual knowledge in the

knowledge gragh, the metric 𝑫 is capable to leverage the feature

distance in the embedding space as well as the graph distance on

the KG topology, which is more appropriate to model the semantic

relevant. EeE firstly finds a shortest semantic relevant path 𝜋 in the

KG which connects 𝐸𝑢 and 𝐸𝑣 :

𝜋 : 𝐸𝑢 = 𝐸𝑤0 → 𝐸𝑤1 → . . .→ 𝐸𝑤𝑛 = 𝐸𝑣 (5)

Where 𝑛 denotes the number of the entities in 𝜋 . EeE realizes real-

time semantic relevant path searching in a large KGwith a modified

version of Floyd-Warshall algorithm [18] to trade off runtime ef-

ficiency, memory consumption and path optimality. More details
of the proposed algorithm can be found in Supplementary Materi-
als. After obtaining the optimal path 𝜋 , the module refines the

knowledge-enhanced entity representation ℎ𝑢 for entity 𝐸𝑢 :

ℎ𝑢 =
1 − 𝛼

1 − 𝛼𝑛+1
𝑛∑︁
𝑖=0

𝛼𝑖𝑔𝑤𝑖
(6)

where 𝑔𝑤𝑖
is the feature embedding of entity 𝐸𝑤𝑖

in the path. 𝛼

denotes a weight coefficient (𝛼 = 0.9). It’s worth noting that ℎ𝑢

is a path-aware representation, i.e., a different pair (𝐸𝑢 , 𝐸𝑣′ ) with
path 𝜋 ′ will yield a different value of ℎ𝑢 . Intuitively, ℎ𝑢 absorbs

complementary contextual knowledge from all entities along the

path 𝜋 byweighted averaging their KG embeddings, with theweight

exponentially descending to dilute their contributions as the graph

5
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distance increases. Symmetrically, EeE refines the representation

ℎ𝑣 for entity 𝐸𝑣 as following:

ℎ𝑣 =
1 − 𝛼

1 − 𝛼𝑛+1
𝑛∑︁
𝑖=0

𝛼𝑛−𝑖𝑔𝑤𝑖
(7)

The knowledge-enhanced distance 𝐷 (𝐸𝑢 , 𝐸𝑣) is calculated as the

Euclidean distance between ℎ𝑢 and ℎ𝑣

𝐷 (𝐸𝑢 , 𝐸𝑣) = ∥ℎ𝑢 − ℎ𝑣 ∥2 (8)

The concatenated feature [ℎ𝑢 ;ℎ𝑣] is treated as the semantic rele-

vant entity representation for pair (𝐸𝑢 , 𝐸𝑣). The semantic relevant

entity representation and knowledge-enhanced distance are further

utilized in exploring feature fusion.

Feature Fusion with Signed Attention. The EeE models the

high-order knowledge-enhanced entity relevance in each entity

pair set by filtering the bottom/top𝑚 distance pairs as the most

consistent/inconsistent pairs and applying positive/negative signed

attention. Signed attention allows the model to not only consider

positive correlations between elements (e.g., queries and keys), but

also to recognize opposing or contrasting semantics, which can be

beneficial for the fact-checking task [37]. Taking the entity pair

𝑬𝑻𝑻 in the text branch as an example, we introduce our enhanced

method: First, we use a knowledge graph to encode each entity and

measure their knowledge-enhanced distance for each pair of entity

representations in 𝑬𝑻𝑻 . We retain the𝑚 pairs with the smallest

distance as the consistency entity pair subset {𝑬 𝒊
𝒄𝒐} and their corre-

sponding distance values {𝑫 𝒊
𝒑𝒐𝒔 }, and the𝑚 pairs with the largest

distance as the inconsistency entity pair subset {𝑬 𝒊
𝒊𝒄 } and their

corresponding distance values {𝑫 𝒊
𝒏𝒆𝒈}. Then, we further fuse the

selected knowledge-enhanced entity representations with stance

reasoning features by utilizing the signed attention mechanism, so

as to simultaneously capture high-order consistent and inconsistent

entity relevance. Specifically, the EeE first adopts positive attention

to capture consistent relevance, relative to the latter content. It

takes the text reasoning feature 𝒇 𝒕 𝒕 from the Stance Transformer

as the query to calculate the consistent relevance as follows:

𝛼𝑖𝑝𝑜𝑠 = Softmax

(
𝑓 𝑡𝑡 {𝐸𝑖𝑐𝑜 }

𝑇 /
√︁
𝑑𝑒

)
𝑓 𝐸𝑡𝑡𝑝𝑜𝑠 =

( 𝑘∑︁
𝑖=1

𝛼𝑖𝑝𝑜𝑠

𝐷𝑖
𝑝𝑜𝑠

{𝐸𝑖𝑐𝑜 }
)/ ( 𝑘∑︁

𝑖=1

𝛼𝑖𝑝𝑜𝑠

𝐷𝑖
𝑝𝑜𝑠

)
(9)

where 𝑑𝑒 is the dimension of {𝑬 𝒊
𝒄𝒐}. 𝛼𝑖𝑝𝑜𝑠 denotes the positive

attention coefficients. A larger 𝛼𝑖𝑝𝑜𝑠 indicates that the entity pair

is more positively semantically associated with the post content.

Note that we re-weight the coefficients with {𝑫 𝒊
𝒑𝒐𝒔 } to incorporate

semantic relevant distances into the consistency representation.

The entity pairs with shorter semantic relevant distances have a

greater impact on the learning of consistency relevance.

Simultaneously, the EeE utilizes negative attention to estimate

the inconsistency representation 𝒇𝑬𝒕𝒕𝒏𝒆𝒈 .

𝛼𝑖𝑛𝑒𝑔 = −Softmax

(
−𝑓 𝑡𝑡 {𝐸𝑖𝑖𝑐 }

𝑇 /
√︁
𝑑𝑒

)
𝑓 𝐸𝑡𝑡𝑛𝑒𝑔 =

( 𝑘∑︁
𝑖=1

𝛼𝑛𝑒𝑔𝐷
𝑖
𝑛𝑒𝑔{𝐸𝑖𝑖𝑐 }

)/ ( 𝑘∑︁
𝑖=1

𝛼𝑛𝑒𝑔𝐷
𝑖
𝑛𝑒𝑔

)
(10)

Table 2: Performance comparison to the state-of-the-art
methods on CCMF, SCMF and NewsCLIPpings datasets.

Methods Acc Prec Rec F1

C
C
M
F

UofA-Truth 0.745 0.749 0.761 0.755

Logically 0.737 0.724 0.720 0.722

CCN 0.793 0.853 0.738 0.791

MAFN 0.813 0.851 0.767 0.807

INO 0.826 0. 842 0. 791 0. 816

END 0.834 0.825 0.835 0.830

Triple-Check 0.832 0.823 0.829 0.826

ESCNet 0.862 0.857 0.852 0.854

SC
M
F

UofA-Truth 0.702 0.711 0.702 0.706

Logically 0.717 0.732 0.717 0.724

CCN 0.767 0.770 0.767 0.769

MAFN 0.782 0.773 0.783 0.778

INO 0.804 0.811 0.804 0.807

END 0.810 0.826 0.810 0.818

Triple-Check 0.813 0.829 0.812 0.820

ESCNet 0.849 0.840 0.844 0.842

N
ew

sC
LI
Pp

in
gs

UofA-Truth 0.768 0.768 0.768 0.768

Logically 0.786 0.791 0.786 0.788

CCN 0.847 0.853 0.852 0.852

MAFN 0.802 0.813 0.802 0.808

INO 0.823 0.834 0.823 0.828

END 0.833 0.838 0.833 0.835

Triple-Check 0.848 0.850 0.851 0.851

ESCNet 0.879 0.872 0.875 0.874

We re-weight the coefficients with {𝑫 𝒊
𝒏𝒆𝒈} to incorporate rele-

vant distances into the inconsistency representation, where entity

pairs with larger relevant distances have a greater impact on the

learning of inconsistency relevance. Finally, the representations

𝒇𝑬𝒕𝒕𝒏𝒆𝒈 and 𝒇𝑬𝒕𝒕𝒑𝒐𝒔 are concatenated to form the knowledge-enhanced

entity pair reasoning feature 𝒇𝑬𝒕𝒕 of the entity pair set 𝑬𝑻𝑻 . Simi-

larly, EeE obtains the relevant representations 𝒇𝑬𝒗𝒗 , 𝒇𝑬𝒕𝒗 of 𝑬𝑽𝑽
and 𝑬𝑻𝑽 with the same mechanism. The extracted features 𝒇 𝒕 𝒕 ,
𝒇𝒗𝒗 , 𝒇 𝒕𝒗 , 𝒇𝑬𝒕𝒕 , 𝒇𝑬𝒗𝒗 and 𝒇𝑬𝒕𝒗 are finally contacted and fed into

the Classifier for fact-checking. The details of the Classifier are

provided in the Supplementary Materials.

5 EXPERIMENTS
5.1 Experimental Settings

Dataset. We evaluate the proposed method ESCNet on our two

datasets which contain both pristine and falsified claims. In or-

der to evaluate our ESCNet more comprehensively, we introduce

a large-scale English fact-checking dataset, NewsCLIPpings. We

divide these datasets into training, validation and testing sets ac-

cording to 6:2:2 and apply the accuracy score, precision, recall and

F1 score as our evaluation metric, which is widely used for binary

classification tasks. The statistical details of NewsCLIPpings are

reported in Supplementary Materials.
Implementation Details. Regarding image content, we employ

the Baidu platform APIs to recognize and extract these entities,

which are treated as visual entity mentions and are linked to the
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corresponding entities in the Knowledge Graph (KG). Regarding

text content, the named entity linking tools bert-base-chinese-ner

[35] and Tagme are applied to link the ambiguous entity mentions

in the texts. Freebase [5] is introduced as the background KG, where

the pre-trained embeddings of the entities with 50 dimensions are

provided by the method [6]. Moreover, in the textual backbone, we

set the length of the input text to at most 512 tokens, and utilize

the pre-trained Chinese BERT model [11] to initialize the word

embeddings with 768 dimensions. We use the pre-trained ResNet-

50 model as visual backbone. In terms of parameter setting, we set

the learning rate of the overall framework to 2𝑒−4. The batch size

of the input is 64. The value of𝑚 is selected from {1, 2, 3, 4, 5}.

5.2 Comparison to State-of-the-Art Approaches
In order to evaluate the ESCNet, we compare it with the follow-

ing state-of-the-art methods on different fact-checking datasets,

including END [46], CCN [1], UofA-Truth [13], MAFN [39], INO

[48], Triple-Check [14] and Logically [16]. In Table 2, we can ob-

serve that the proposed ESCNet achieves the best performance

of 86.2%, 84.9% and 87.9% accuracy respectively on three datasets.

The results demonstrate the effectiveness of the proposed method.

Among these compared methods, Logically and INO obtain rel-

atively high performance on these datasets, demonstrating the

powerful ability to capture consistency between texts and images

with pre-trained CLIP [33]. END pairs each piece of evidence with

the input claim and detects the stance of the evidence towards the

claim. CCN achieves a relatively high score by adopting a checking

architecture, demonstrating the importance of introducing external

complementary knowledge information (such as entities). MAFN

experiments with a inter-modality and intra-modality fusion of

textual and visual embeddings. UofA-Truth breaks the task into

text and image entailment sub-tasks, using sentence BERT for text

embeddings and Xception for image embeddings. These models

achieve good performance by using BERT as the backbone. Triple-

Check proposes a model that employs pre-trained DeBERTa for

text embeddings and Swinv2 for image embeddings, fused through

a co-attention block. It outperforms most of the compared methods,

demonstrating the effectiveness of enhancing the features with the

attention network. Compared to the aforementioned methods, we

can attribute the strength of ESCNet to several aspects: 1) The usage

of the BERT model as a part of the backbone networks, results in a

strong textual representation. 2) We extract six types of reasoning

information from source claims and retrieved evidence, which are

more suitable for fact-checking. 3) The Stance Transformer module

can effectively detect the stance of the evidence towards the claim

for different types of evidence modalities. 4) The EeE links entities

from the texts and images to the KG to acquire high-level entity

information and conduct fact-checking at the knowledge level.

5.3 Ablation Studies
Analysis of detailed features. The results in Table 3 show the

influence of different detailed features. The six columns from top to

bottom correspond to without the six features in Figure 4: the stance

semantic reasoning features 𝒇 𝒕 𝒕 , 𝒇𝒗𝒗 , 𝒇 𝒕𝒗 and the knowledge-

enhanced entity pair features𝒇𝑬𝒕𝒕 ,𝒇𝑬𝒗𝒗 and𝒇𝑬𝒕𝒗 . We demonstrate

0.842

0.849

0.862

0.855

0.842

0.837

0.843

0.854

0.846

0.834

The Number of Entity Pairs

Figure 5: Evaluation of the number of entity pairs on CCMF.

Table 3: Evaluation of the influence of different features of
ESCNet on CCMF dataset.

Methods Acc Prec Rec F1
w/o f_tt 0.744 0.749 0.762 0.755

w/o f_vv 0.801 0.799 0.815 0.806

w/o f_tv 0.817 0.813 0.797 0.805

w/o f_Ett 0.832 0.825 0.840 0.832

w/o f_Evv 0.844 0.838 0.830 0.834

w/o f_Etv 0.853 0.845 0.846 0.845

ESCNet 0.862 0.857 0.852 0.854

Table 4: Evaluation of the influence of different components
of Stance Transformer on the CCMF dataset.

Methods Acc Prec Rec F1
w/o Stance 0.819 0.836 0.782 0.808

w/o Shared-P 0.834 0.838 0.808 0.823

w/o Fusion 0.854 0.850 0.840 0.845

ESCNet 0.862 0.857 0.852 0.854

Table 5: Evaluation of the effectiveness of Entity-enhanced
Encoder on the SCMF dataset.

Methods Acc Prec Rec F1
w/o Entity Pos 0.809 0.834 0.768 0.799

w/o Entity Neg 0.823 0.819 0.836 0.828

w/o Enhanced Path 0.830 0.827 0.811 0.819

ESCNet 0.849 0.840 0.844 0.842

the benefits of each decision feature, which highlights the impor-

tance of integrating all modalities for multi-modal fact-checking.

Removing text stance reasoning features𝒇 𝒕 𝒕 or image stance reason-

ing features 𝒇𝒗𝒗 significantly reduces performance, which demon-

strates the importance of these two features. The impact of re-

moving entities is relatively smaller and might be because some

redundant information is present in the evidence document text, or

sometimes generic named entities do not contribute to the checking

of the claim statements.
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Figure 6: Visualization of entity pair attention distribution in Entity-enhanced Encoder.

Analysis of Stance Transformer. We conduct experiments

to analyze the effectiveness of the proposed Stance Transformer

in Table 4. w/o Stance denotes ESCNet without using the Stance

Transformer for feature fusion (replacing with concatenate oper-

ation), w/o Shared-P refers to Stance Transformer without using

Shared Prototypes to reconstruct claim and document representa-

tions (replacing with a shared FC layer). w/o Fusion denotes Stance

Transformer without using fusion layer (replacing with concatenate

operation). We observe that the Stance Transformer contributes to

performance improvement. The comparative results highlight the

advantages of projecting both features into the same vector space,

which facilitates a comprehensive feature fusion.

Analysis of Entity-enhanced Encoder. The experimental re-

sults in Table 5 show that the Entity-enhanced Encoder improves

performance. w/o Entity Pos represents Entity-enhanced Encoder

without using the subset and features of consistent entity pairs,

while w/o Entity Neg represents EeE without using the subset and

features of inconsistent entity pairs. The results suggest that the

signed attention network can effectively capture and fuse the consis-

tency and inconsistency of knowledge-enhanced entity pairs, each

of which holds significant influence for multi-modal fact-checking.

w/o Enhanced Path denotes EeE without using the knowledge-

enhanced distance (replacingwith direct Euclidean distance), demon-

strating the benefits of knowledge-enhanced distance measurement.

We also tried different values of Top 𝑚, i.e., the number of the

top/bottom distance entity pairs. A small𝑚 increases the risk of

discarding entity pairs’ information, while a large𝑚 increases the

risk of introducing irrelevant noise. As shown in Figure 5,𝑚 = 3

leads to the best performance.

5.4 Qualitative Evaluation
Figure 6 (The corresponding evidence documents can be found

in Figure 8) shows 𝑚 (𝑚 = 3) pairs of entities with the top (bot-

tom) knowledge-enhanced distance and the corresponding distribu-

tion of negative attention scores (distribution of positive attention

scores) across varying entity pair sets. We can find that: (1) For

falsified claims, the differences between entity pairs are large re-

gardless of whether they are the entity with the largest distance

or the entity with the smallest distance, and the distribution of

negative attention scores corresponding to top 𝑚 entity pairs is

not balanced and tends to be concentrated in the most inconsistent

entity pairs (e.g., ‘Putin-tree’), whereas the distribution of positive

attention scores corresponding to bottom 𝑚 entity pairs is rela-

tively balanced. (2) For pristine claims, whether it is the entity with

the largest distance or the entity with the smallest distance, the

difference between entity pairs is relatively small, and even du-

plicate entity pairs (e.g., ‘bus-bus’) are often found. Top𝑚 entity

pairs correspond to relatively balanced negative attention scores,

while bottom𝑚 entity pairs correspond to an unbalanced distri-

bution of positive attention scores, which tend to be concentrated

in the most consistent entity pairs (e.g., ‘bus-bus’). This suggests

that the Entity-enhanced Encoder can effectively capture and fuse

the consistency and inconsistency of knowledge-enhanced entity

pairs, each of which holds significant influence for multi-modal

fact-checking. Additional qualitative experiments and discussions

can be found in the Supplementary Materials.

6 CONCLUSION
In this work, we construct the first large-scale, multi-domain Chi-

nese Multi-modal Fact-Checking (CMFC) dataset. The CMFC covers

all types of misinformation and is divided into two sub-datasets,

CCMF and SCMF. To establish a baseline performance, we introduce

a novel Entity-enhanced and Stance Checking Network (ESCNet),

which includes Multi-modal Feature Extraction Module, Stance

Transformer, and Entity-enhanced Encoder (EeE). The proposed

ESCNet jointly model both stance semantic reasoning features and

knowledge-enhanced entity pair features, facilitating the learning

of effective semantic-level and knowledge-level claim representa-

tions. Extensive experiments on Chinese and English fact-checking

datasets demonstrate the effectiveness of the proposed method.
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A CLASSIFICATION
ESCNet leverages stance semantic reasoning features and knowledge-

enhanced entity pair features to jointly perform multi-modal fact-

checking. We perform average pooling on all features along the

sequence dimension. The stance semantic reasoning features 𝒇 𝒕 𝒕 ,
𝒇𝒗𝒗 , 𝒇 𝒕𝒗 and the knowledge-enhanced entity pair features 𝒇𝑬𝒕𝒕 ,
𝒇𝑬𝒗𝒗 and 𝒇𝑬𝒕𝒗 are finally concatenated to form the discriminative

claim representation, which is further transformed by an FC layer

with Softmax activation function to predict results as following:

𝑦 = 𝜎 (𝑊𝑇
𝑐 [𝑓 𝑡𝑡 ; 𝑓 𝑣𝑣 ; 𝑓 𝑡𝑣 ; 𝑓 𝐸𝑡𝑡 ; 𝑓 𝐸𝑣𝑣 ; 𝑓 𝐸𝑡𝑣] + 𝑏𝑐 ) (11)

where𝑊𝑐 and 𝑏𝑐 are the parameters of the classifier layer. We then

use the cross-entropy loss function as the loss for the whole model,

which is formulated as described below:

L = −
|𝑀 |∑︁
𝑖=1

𝑦𝑖 log (𝑦𝑖 ) (12)

where𝑀 refers to the number of distinct label categories.

B KNOWLEDGE-ENHANCED DISTANCE
In this section, we elaborate the detail of shortest path finding al-

gorithm mentioned in Section 4.4. Given an unweighted undigraph

𝑮 = (𝑽 , 𝑬) and a pair of vertices 𝑣𝑠 , 𝑣𝑡 ∈ 𝑽 as query, it yields a

sub-optimally shortest path 𝜋 : 𝑣𝑠 → . . .→ 𝑣𝑡 with time complex-

ity Θ( |𝜋 |) and relatively low memory consumption. Considering

the KG we adopt is quite large (with over 3 million vertices), the

algorithm is composed of two steps. In the first step, we perform a

hierarchical Floyd-Warshall algorithm offline to extract and store es-

sential path reconstruction metadata. In the second step, we use the

extracted metadata to find the path for each vertex pair efficiently

online. This section will first briefly review the Floyd-Warshall al-

gorithm, and further introduce the metadata extraction strategy

and the pair-wise path finding strategy in our algorithm.

The Floyd-Warshall Algorithm. Given an unweighted graph

𝑮 = (𝑽 , 𝑬) with 𝑛 vertices 𝑽 = {𝑣𝑖 }𝑛𝑖=1, the Floyd-Warshall algo-

rithm [12] computes the pair-wise shortest distance matrix 𝑫 ∈
R𝑛×𝑛 and the path reconstruction matrix 𝑪 ∈ R𝑛×𝑛 with time com-

plexity Θ(𝑛3) as illustrated in Algorithm 1. Each element 𝑫 (𝑖, 𝑗)
of 𝑫 stores the shortest distance between vertex pair (𝑣𝑖 , 𝑣 𝑗 ). The
matrix 𝑪 contains information for path reconstruction, with which

one can reconstruct the actual path between two connected ver-

tices, as illustrated in Algorithm 2. In general, we can pre-compute

the reconstruction matrix 𝑪 for a graph 𝑮 offline, and adopt it for

efficient online path finding with linear time complexity and Θ(𝑛2)
space complexity.

Offline Path Reconstruction Metadata Extraction. Since
the adopted KG is in large scale, it’s impractical to perform the

standard Floyd-Warshall algorithm on the whole graph. We instead

partition the graph 𝑮 into several smaller sub-graphs, and record

the path reconstruction metadata within and among sub-graphs for

better runtime and memory efficiency, which are further adopted

for online path finding.

Specifically, the vertex set 𝑽 of graph 𝑮 is partitioned into

𝑀 = 94406 disjoint groups {𝑽𝑖 }𝑀𝑖=1, such that (1) the size of each

group |𝑽𝑖 | ≤ 512, and (2) all vertices within a group 𝑽𝑖 is pair-
wisely connected. The partition process is conducted by first sorting

Algorithm 1: The Floyd-Warshall Algorithm

Input: 𝑮 = (𝑽 , 𝑬).
Output: 𝑫 ∈ R𝑛×𝑛 and 𝑪 ∈ R𝑛×𝑛 .

⊲ Initialize 𝑫 and 𝑪 Fill 𝑫 with∞; Fill 𝑪 with 0;

for (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝑬 do
𝑫 (𝑖, 𝑗) ← 1; 𝑪 (𝑖, 𝑗) ← 𝑗 ;

end
for 𝑣𝑖 ∈ 𝑪 do

𝑫 (𝑖, 𝑖) ← 0; 𝑪 (𝑖, 𝑖) ← 𝑖;

end
⊲ Standard Floyd-Warshall Algorithm for 𝑘 ← 1 . . . 𝑛 do
for 𝑖 ← 1 . . . 𝑛 do

for 𝑗 ← 1 . . . 𝑛 do
if 𝑫 (𝑖, 𝑗) > 𝑫 (𝑖, 𝑘) + 𝑫 (𝑘, 𝑗) then

𝑫 (𝑖, 𝑗) ← 𝑫 (𝑖, 𝑘) + 𝑫 (𝑘, 𝑗);
𝑪 (𝑖, 𝑗) ← 𝑪 (𝑖, 𝑘);

end
end

end
end
return 𝑫 and 𝑪 ;

all vertices by their degrees in ascending order and then greedily

merging connected vertex pairs to form the groups. We define two

groups 𝑽𝑖 , 𝑽𝑗 are adjacent if there exists an edge (𝑢, 𝑣) ∈ 𝑬 such

that 𝑢 ∈ 𝑽𝑖 , 𝑣 ∈ 𝑽𝑗 , or connected if there exists a path 𝑢 → . . .→ 𝑣

such that 𝑢 ∈ 𝑽𝑖 , 𝑣 ∈ 𝑽𝑗 . Moreover, we categorize the groups into

two types based on their scale, i.e., the big group with size ≥ 100,

and the small group with size < 100, satisfying that (1) every two

big groups are connected and (2) each small group is adjacent to at

least one big group. The total number of big groups is𝑀𝑏 = 2364.

With this partition, we then compute the path reconstruction

metadata for the whole KG. Particularly, we first perform the Floyd-

Warshall algorithm for each group 𝑽𝑖 to obtain corresponding re-

construction matrix 𝑪𝑖 . Furthermore, we create a hyper-graph
˜𝑮

with all big groups {𝑽𝑖 }𝑀𝑏

𝑖=1
as its hyper-vertices, and perform Floyd-

Warshall algorithm on the hyper-graph
˜𝑮 to obtain its reconstruc-

tion matrix
˜𝑪 ∈ R𝑀𝑏×𝑀𝑏

. Lastly, we store (1) the adjacent matrix

of hyper-graph
˜𝑮 , (2) the edges between each small group and all

its adjacent big groups and (3) the reconstruction matrices {𝑪𝑖 } and
˜𝑪 as the path reconstruction metadata of our adopted KG, which

overall occupies 1.3GB memory.

Online Path Finding.With the extracted path reconstruction

metadata, we are able to find the shortest path 𝜋 for a vertex pair

𝑣𝑠 , 𝑣𝑡 ∈ 𝑽 with efficiency online. The process is simply a path tra-

versal in each group and in the hyper-graph under the guidance of

the reconstruction matrices {𝑪𝑖 } and ˜𝑪 , which can be demonstrated

by the pseudo code in Algorithm 3. Since each vertex in 𝜋 is visited

exactly once, the path finding achieves linear time complexity of

Θ( |𝜋 |). The obtained path is not guaranteed to be optimal, but is

reasonable enough for calculating knowledge-enhanced distance.

To avoid potentially extra long path in practice, we perform path

finding simultaneously from both 𝑣𝑠 and 𝑣𝑡 , and prematurely stop

the process if current path contains more than 40 vertices. Such
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Algorithm 2: Path Reconstruction with 𝑪

Input: Vertex pair query 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑽 .
Output: The shortest path 𝜋 ⊂ 𝑽 connecting 𝑣𝑖 , 𝑣 𝑗 .

if 𝑪 (𝑖, 𝑗) = 0 then // not connected
return empty path;

end
𝜋 ← [𝑣𝑖 ];
while 𝑣𝑖 ≠ 𝑣 𝑗 do

𝑖 ← 𝑪 (𝑖, 𝑗);
Append 𝑣𝑖 to 𝜋 ;

end
return 𝜋 ;

(b) A missile attack on a residential 
building in a central Ukrainian city 
has left 3 dead and 25 injured 

(a) On eve of court appearance 
over 'classified documents', Trump 
teases 'no guilty plea'

(c) Three policemen injured in 
explosion at a police station in 
Naypyidaw, Myanmar

(d) Ukrainia Officials Say Water 
Levels Continue to Drop in Kherson 
Region

Figure 7: Four types of falsified information from SCMF (Chi-
nese is translated into English). Entities used to perform a
search for images are highlighted in yellow.

strategy does not affect the calculation of knowledge-enhanced

distance since vertices with overly large graph distance have negli-

gible contribution due to the exponential decay of their weights. In

rare cases where 𝑣𝑠 and 𝑣𝑡 are not connected, we simply aggregate

adjacent vertices in respective neighbor for semantic relevance mea-

surement. We implement the whole algorithm with the Cython
1

language for lower latency and better parallelism.

C MORE ANALYSIS ABOUT THE CMFC
C.1 Data Source
As shown in Table 6, we cover all active fact-checking websites

in China. These websites include ’Piyao’, ’Mingcha’, ’Youjv’, and

others, which have verified falsified claims across various platforms.

They cover different domains and provide compelling documents

and verdicts. Furthermore, to establish a comprehensive CCMF

1
https://cython.org/

Algorithm 3: Path Finding in the KG

Input: Vertex pair query 𝑣𝑠 , 𝑣𝑡 ∈ 𝑽 .
Output: The shortest path 𝜋 ⊂ 𝑽 connecting 𝑣𝑠 , 𝑣𝑡 .

if either of 𝑣𝑠 , 𝑣𝑡 is isolated vertex then
return empty path;

end
𝜋 ← empty path;

𝑽𝑖𝑠 , 𝑽𝑖𝑡 ← the groups that contain 𝑣𝑠 , 𝑣𝑡 ;

if 𝑖𝑠 = 𝑖𝑡 then // in the same group
Reconstruct 𝜋 : 𝑣𝑠 → 𝑣𝑡 with 𝑪𝑖𝑠 ;

return 𝜋 ;

end
⊲ Handle edge cases where either 𝑽𝑖𝑠 or 𝑽𝑖𝑡 is small group if
𝑽𝑖𝑠 is a small group then

Randomly choose an edge (𝑢,𝑤) that connects 𝑽𝑖𝑠 and a

large group 𝑽𝑘 ;

Reconstruct 𝜋 ′ : 𝑣𝑠 → 𝑢 with 𝑪𝑖𝑠 ;

Append 𝜋 ′ to 𝜋 ;
𝑣𝑠 ← 𝑤 ; 𝑖𝑠 ← 𝑘 ;

end
𝜋𝑟 ← empty path; // potential residual path

if 𝑽𝑖𝑡 is a small group then
Randomly choose an edge (𝑢,𝑤) that connects a large
group 𝑽𝑘 and 𝑽𝑖𝑡 ;

Reconstruct 𝜋𝑟 : 𝑤 → 𝑣𝑡 with 𝑪𝑖𝑡 ;

𝑣𝑡 ← 𝑢; 𝑖𝑡 ← 𝑘 ;

end
⊲ Now 𝑽𝑖𝑠 and 𝑽𝑖𝑡 are both large groups while 𝑖𝑠 ≠ 𝑖𝑡 do
𝑘 ← ˜𝑪 (𝑖𝑠 , 𝑖𝑡 ); // the next hyper-vertex
Randomly choose an edge (𝑢,𝑤) that connects 𝑽𝑖𝑠 and
𝑽𝑘 ;

Reconstruct 𝜋 ′ : 𝑣𝑠 → 𝑢 with 𝑪𝑖𝑠 ;

Append 𝜋 ′ to 𝜋 ;
𝑣𝑠 ← 𝑤 ; 𝑖𝑠 ← 𝑘 ;

end
Append 𝜋𝑟 to 𝜋 ;

return 𝜋 ;

Table 6: Statistics of data sources.

Website Domain URL Label

Mingcha Multiple www.factpaper.cn falsified

Youjv Politics chinafactcheck.com falsified

Piyao Multiple www.piyao.org.cn falsified

Kexue Science piyao.kepuchina.cn falsified

Shanghai Multiple piyao.jfdaily.com falsified

Jiaozhen Health vp.fact.qq.com falsified

Pengpai Multiple www.thepaper.cn pristine

Chinanews Multiple m.chinanews.com pristine

Xinhua Multiple www.news.cn pristine

Huanqiu Multiple www.huanqiu.com pristine
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www.factpaper.cn
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Claim Text Claim Image  Text Evidence  Image Evidence Truthfulness
Russian President Vladimir Putin attended a ceremony in the 
Kremlin on December 12 to award medals to "Heroes of 
Labor" and state medals in the fields of science, technology, 
literature and the arts, the TASS news agency, 
Komsomolskaya Pravda and many other Russian media 
reported. He praised the Russian movie "Challenge" at the 
ceremony, calling the movie shot in space "a breakthrough in 
the global film industry. According to a Kremlin release…

#1: Ukrainia Officials Say 
Water Levels Continue to 
Drop in Kherson Region

Outstanding Women In Ukrainian History… Women are 
gracefulStock Photos, Royalty... Young girls in ethnic clothes 
walking in fields. Fashion photo, folklore style…

#2: A missile attack on a 
residential building in a 
central Ukrainian city has 
left 3 dead and 25 injured 

On December 30, Foreign Ministry spokesman Wang Wenbin 
chaired a regular press conference. A reporter asked, WHO 
Director General Tandace said that due to the lack of 
comprehensive information from China, it is understandable that 
countries impose restrictive measures on travelers entering China 
in a way that they believe can protect their own populations. 
What does the spokesperson have to say about this….

#3: Tandesse says many 
countries understandably 
impose restrictive 
measures on Chinese 
inbound travelers, 

#4: A late-night rollover 
of a wedding bus in 
Australia has left 10 
dead and 25 injured.

At least 10 people were killed and 25 others were injured 
when a bus carrying wedding guests rolled down a slope 
at a roundabout in Australia's New South Wales state on 
June 11, local time, Reuters reported. The cause of the 
accident is under investigation. According to reports, the 
accident occurred near the town of Greta in the Hunter 
Valley, located about 180 kilometers northwest of Sydney, 
at about 11:30 p.m. local time that night. …

Falsified

Pristine

Pristine

Falsified

Figure 8: Examples of Synthetic Chinese Multi-modal Fact-Checking dataset (Chinese is translated into English).

Claim Text Claim Image  Text Evidence  Image Evidence Truthfulness
July 27, the Yangtze River Three Gorges Hub Project opened 
the flood relief deep hole flood discharge. August 4, Typhoon 
"Hegebi" landed in Zhejiang, by the impact of the typhoon, 
Wenzhou, serious flooding. Although many places have set a 
"small goal" to ensure that 2020 to eliminate urban flooding, 
however, 2020 since the beginning of the flood, from 
Guangzhou to Tianjin, from Wenzhou to Chongqing, "the city 
to see the sea" difficult to go. Our reporter checked….

#1: Three Gorges Dam 
release makes flooding in 
areas downstream of the 
dam "worse"

Now with the heat and rainstorms in some places mosquitoes 
arrogant raging in many places have sounded the alarm of 
dengue fever prevention and at the same time, about the 
dengue fever rumors have begun to "stupid", triggering public 
concern. Here, "Zhen Zhen" and you explore those things 
about dengue fever - 1. Dengue fever can be spread through 
the air? Dengue fever is not airborne. Dengue fever is….

#2: Dengue fever is 
airborne

According to Japan's Kyodo News Agency reported on the 24th, 
Japan's Ministry of Agriculture, Forestry and Fisheries recently 
implemented a questionnaire survey, planting sunshine rose 
grapes in 46 prefectures, there are 30 areas of grapes, "non-
flowering disease". The Japanese government is conducting an 
urgent study, and strive to come up with countermeasures before 
the problem becomes serious. Kyodo News Agency said…

#3: Sunny rose grapes 
sicken in many parts of 
Japan, government studies 
countermeasures

#4: Supercharged DNA 
Repair Keeps Bowhead 
Whales Safe From 
Cancer

New Scientist website reported on the 22nd, bowhead 
whales are the world's longest-living mammals, rarely 
affected by cancer. U.S. scientists found in a new study, 
bowhead whale cells seem to be able to repair DNA more 
quickly and efficiently than human or mouse cells, which 
may explain why they can live to more than 200 years old 
and have a lower incidence of cancer. In the latest study, 
University of Rochester scientists….

Falsified

Pristine

Pristine

Falsified

Figure 9: Examples of Collected Chinese Multi-modal Fact-Checking dataset (Chinese is translated into English).
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dataset, we collect pristine claims and their corresponding docu-

ments from official websites such as ’Xinwen’, ’Xinhua’, ’Huanqiu’,

and others.

C.2 Visualization of Matching Methods
In Figure 7, we present four instances of falsified claims from our

constructed SCMF dataset:

• By searching for the person entity ‘Trump’, we retrieve

unrelated news event images.

• Searching for the location entity ‘Ukrainian’ leads us to the

image of Ukrainian women that is entirely unrelated to the

original text.

• Searching for the organization entity ‘police station’ yields

an image of a police station not located in Myanmar.

• The image is randomly matched with the text; we can ob-

serve that the image ‘Putin’ is entirely unrelated to the

mention of ‘Kherson Region’ in the text.

In order to prevent the retrieval of images that remain related

to the claim text, we adopt the following technique: During the

image retrieval process using the Baidu Search API
2
, we retain the

caption or sentence from the link associated with the bottom of the

image, which often describes the image’s content. Subsequently,

we leverage the state-of-the-art sentence-transformers, specifically

all-MiniLM-L6-v2
3
, to compute the semantic similarity between

the retrieved sentence and the claim text. By setting a threshold

of 0.5, we retain text-image pairs with similarity scores below this

threshold to acquire fabricated claims.

C.3 Case Study
We show some data cases from both the CCMF and SCMF datasets in

Figure 8 and Figure 9. We can observe that: (1) In the CCMF dataset,

the falsified claims come from rumors on Internet platforms, and

their claim text is often fabricated. Conversely, in the SCMF dataset,

falsified claims have both claim text and claim images derived from

real news, albeit incorrectly matched. (2) Evidence documents in

the CCMF dataset are often sourced from fact-checking websites

and contain discerning statements. In contrast, evidence documents

in the SCMF dataset are sourced from textual content returned by

Google API searches on images.

D PARAMETER ANALYSIS
In our ESCNet, the backbone parameters used to extract the basic

features are frozen and we only train the Strance Transformer,

Entity-enhanced Encoder and Classifier. As shown in Figure 10,

in comparison to several other models, our ESCNet significantly

reduces the number of parameters while maintaining a leading

performance, affirming the efficiency of our model design. This

suggests that:

• The ESCNet jointly models both stance semantic reasoning

features and knowledge-enhanced entity pair features, facil-

itating the learning of effective semantic-level and knowledge-

level claim representations.

2
https://image.baidu.com/

3
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

109

27

212

226

250

Figure 10: Comparison of the number of parameters between
ESCNet and other models.

意大利前总理贝卢斯科尼去
世，终年86岁
Former Italian Prime Minister 
Berlusconi Dies at 86

Source Claim
Claim Text ��

Former Italian Prime Minister 
Silvio Berlusconi Dies at 86

Claim Image  �� 

Claim Textual Entities{���
� }

Italian  Berlusconi.

… …

Claim Visual Entities{���
� }

Italian Giorgia Meloni

 woman …

意大利总理乔治亚·梅洛尼 周三为她的
政府决定结束降低燃油税的决定辩护，
该关税已经到位，以帮助人们应对高油
价…Italian Prime Minister Giorgia 
Meloni on Wednesday defended her 
government's decision to end a reduction 
in fuel taxes that had been put in place to 
help people cope with high oil prices…

Retrieved Evidence
Document Text ��

Italian Prime Minister Giorgia Meloni on 
Wednesday defended her government‘s decision 
to end a reduction in fuel taxes that had been 
put in place to help people cope with high …..

Italian Government

 Giorgia Meloni …

flags Silvio Berlusconi

 … …

Document Image  �� 

Document Visual Entities{���
� }

Document Textual Entities{���
� }

Figure 11: Visualization of extracting multi-modal cues in
Multi-modal Feature Extraction Module.

• The Stance Transformer adeptly discerns the stance of evi-

dence in relation to the claim across varying modalities.

• The Entity-enhanced Encoder connects entities from texts

and images to the Knowledge Graph (KG), thereby acquir-

ing high-level semantic insights and enabling fact-checking

at the knowledge level.
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E MORE RELATEDWORK
E.1 Fact-checking Models on Text.
Fact-checking in texts has always received widespread attention:

and researchers regard it as a kind of Recognizing Textual Entail-

ment (RTE) task [17], where the goal is to predict whether the

text proves or disproves the claim. FEVER [41] was a fact verifica-

tion method that employs bidirectional long short-term memory

networks (Bi-LSTM) to encode claims and evidence separately;

DeClarE model used a convolutional neural network (CNN) and

attention mechanism to process text data, capturing the correla-

tion between claims and evidence [32]; BERT-based fact-checking

methods leveraged the pre-trained BERT (Bidirectional Encoder

Representations from Transformers) model to provide powerful

text representations for fact-cheking tasks; Zhang et al. [47] de-
veloped a model that utilizes dual emotion features to detect fake

news online. They found that both publisher emotion and social

emotion played significant roles in distinguishing fake news from

real news. Cheng et al. [10] developed VRoC, a tweet-level varia-

tional autoencoder-based rumor classification system, to address

the negative impacts of rumors spread through social media. And

there were also many fact-cheking models that utilize graph neural

networks [27, 28].

E.2 Multi-modal Fact-checking Models.
While most existing research primarily focus on analyzing text,

there are initial attempts to explore the integration of multi-modal

information [8]. Khattar et al. [22] developed the Multimodal Varia-

tional Autoencoder (MVAE), an end-to-end network for fake news

detection. MVAE combined a bimodal variational autoencoder with

a binary classifier to learn shared representations of textual and

visual information. Zhang et al. [48] used a structure coherence-

based approach with components such as textual feature similarity,

textual semantic similarity, text length and image similarity. Sahar

et al. [1] proposed the consistency-checking network (CCN), which
mimicked layered human reasoning across the same and differ-

ent modalities and utilized diverse multimodal clues. Yao et al. [44]
adopted the ensemble method by using different pre-trained models

and several co-attention modules. Yao et al. [46] used the CLIP en-

coder and adopted a stance detection framework. Dhankar et al. [13]
used a straightforward approach that concatenated the claim and

documented textual (visual) representations and their cosine simi-

larity. Du et al. [14] proposed a model with pre-trained DeBERTa

for text and Swinv2 for image embeddings, that are combined using

a co-attention fusion block. Gao et al. [39] experimented with a

inter-modality and intra-modality fusion of textual and visual em-

beddings using the co-attention mechanism for their classification

model and refered to this architecture as Multimodal Attention and

Fusion Network (MAFN). Zhuang et al. [49] integrated disturbance

on the embedding layer, a new loss function, and data augmenta-

tion by sequential dropout layers into the vanilla RoBERTa. Lee

et al. [25] proposed a unifying textual and visual matching layer

to confuse the two modality information. Gao et al. [16] proposed
an ensemble model architecture by extracting various information

for each modality individually. They applied multiple attention

mechanisms to learn the multimodal interaction between visual

and textual content pairs.

Dataset. A single example in the dataset consist of the 
following:

● A claim image I.
● A claim text T.
● Visual evidence:

○ A list of images:  I = [I, …, I].
● Textual evidence:

○ A list of entities:  ENT = [E, …, E].
○ A list of sentences:  

S = [S, …, S].
Task. Classify {I, T} to: Pristine or Falsified.

Figure 12: NewsCLIPpings dataset.

F MORE QUALITATIVE EXPERIMENTS
As shown in Figure 11, we show the process of extracting multi-

modal cues in the Multi-modal Feature Extraction Module: Regard-

ing text entities extraction, the named entity linking tools bert-base-

chinese-ner [35] and Tagme are applied to link the ambiguous entity

to their corresponding entities in Freebase [5]. Regarding image

entity extraction, due to the high precision required for pre-trained

models, we exploit the APIs from the Baidu OpenAI platform to

identify the objects and celebrities from the images.

G NEWSCLIPPINGS DATASET
Luo et al. [29] proposed a method that automatically, yet non-

trivially, matches images accompanying real news with other real

news captions. They used trained language and vision models to

retrieve a close and convincing image given a caption. While this

work contributes to misinformation detection research by automat-

ically creating datasets, but it also amplifies the risk of generating

falsified data on a large scale. The dataset [1] use the NewsCLIP-

pings [29] that contains both pristine and falsified (‘out-of-context’)

images. It is built on the VisualNews [26] corpus that contains news

pieces from 4 news outlets: The Guardian, BBC, USA Today, and The

Washington Post. The NewsCLIPpings dataset contains different

subsets depending on the method used to match the images with

captions (e.g., text-text similarity, image-image similarity, etc.). We

use the ‘balanced’ subset that has representatives of all matching

methods and consists of 71,072 train, 7,024 validation, and 7,264

test examples. The NewsCLIPpings dataset components and task

are summarized as Figure 12. Our model is applicable to evidence

that contains multiple images, but for simplification, we assume

that only a single image is present in a piece of evidence.

H DISCUSSION AND LIMITATION
Overall, we have proposed a multi-modal fact-checking framework

that achieves state-of-the-art performance on three datasets. How-

ever, this task still faces numerous challenges, and relying solely on

automatic fact-checking tools can have dangerous consequences:

on one hand, incorrectly labeling original posts as rumours can

negatively affect the spread of digital content, potentially impacting

the revenue-generating capabilities of individuals or organizations
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disseminating information. On the other hand, the adverse effects

on social stability are even greater when rumour-laden posts are

mistakenly labeled as truthful due to uncontrolled dissemination.

Through the analysis of failed cases, we discover an interesting

phenomenon: when the text or image evidence provided in the

dataset is missing, irrelevant, or even mislabeled, ESCNet may not

be able to make the correct judgment of the claim through the

learned parameters. This also shows that this task still faces many

challenges, and relying solely on automated fact-checking tools

can have dangerous consequences. This motivates us to solve such

problems in future work.
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