

IMAGEDOCTOR: DIAGNOSING TEXT-TO-IMAGE GENERATION VIA GROUNDED IMAGE REASONING

Anonymous authors

Paper under double-blind review

ABSTRACT

The rapid advancement of text-to-image (T2I) models has increased the need for reliable human preference modeling, a demand further amplified by recent progress in reinforcement learning for preference alignment. However, existing approaches typically quantify the quality of a generated image using a single scalar, limiting their ability to provide comprehensive and interpretable feedback on image quality. To address this, we introduce ImageDoctor, a unified multi-aspect T2I model evaluation framework that assesses image quality across four complementary dimensions: plausibility, semantic alignment, aesthetics, and overall quality. ImageDoctor also provides pixel-level flaw indicators in the form of heatmaps, which highlight misaligned or implausible regions, and can be used as a dense reward for T2I model preference alignment. Inspired by the diagnostic process, we improve the detail sensitivity and reasoning capability of ImageDoctor by introducing a “*look-think-predict*” paradigm, where the model first localizes potential flaws, then generates reasoning, and finally concludes the evaluation with quantitative scores. Built on top of a vision-language model and trained through a combination of supervised fine-tuning and reinforcement learning, ImageDoctor demonstrates strong alignment with human preference across multiple datasets, establishing its effectiveness as an evaluation metric. Furthermore, when used as a reward model for preference tuning, ImageDoctor significantly improves generation quality—achieving an improvement of 10% over scalar-based reward models.

1 INTRODUCTION

With the rapid evolution of text-to-image (T2I) architectures (Goodfellow et al., 2014; Croitoru et al., 2023; Gu et al., 2023; Xie et al., 2024; Tian et al., 2024; Wang et al., 2025c), the quality of generated images has advanced significantly. Modern T2I systems can now produce highly realistic outputs that closely follow textual instructions, enabling a wide range of applications in areas such as art, design, and entertainment. These advances, however, give rise to a critical question: *how to reliably evaluate the quality of generated images that may suffer from poor instruction adherence, low aesthetic quality, or counterintuitive artifacts*. Furthermore, with the rise of reinforcement learning (Liu et al., 2025; Xue et al., 2025) and test-time scaling (Guo et al., 2025; Ma et al., 2025a), evaluators play an increasingly important role: not only can they serve as reward functions or verifiers to measure quality, but they are also expected to provide actionable feedback to improve generation.

Current human preference models, such as HPS (Wu et al., 2023b), ImageReward (Xu et al., 2023), and PickScore (Kirstain et al., 2023), mostly predict a single scalar score of quality. However, compressing the evaluation into a single scalar is often insufficient to capture the detailed flaws of the generated images. For instance, two images may receive the same score, yet differ substantially: one may be aesthetically pleasing but poorly aligned with the prompt, while the other may follow the prompt faithfully but contain unrealistic artifacts. Relying solely on a single score cannot disentangle these factors, limiting both the interpretability and the usefulness of the feedback for guiding model improvement. Moreover, existing evaluators can only provide an overall judgment of image quality but lack spatially grounded feedback, *i.e.*, they cannot identify *where* in the image the problems occur. In practice, many T2I failures stem from partial prompt adherence: while the majority of the prompt may be satisfied, fine-grained details are often missing or incorrect. This absence of localization further reduces the interpretability and actionability of these evaluators, especially when used as reward functions. These challenges highlight the need for evaluators that

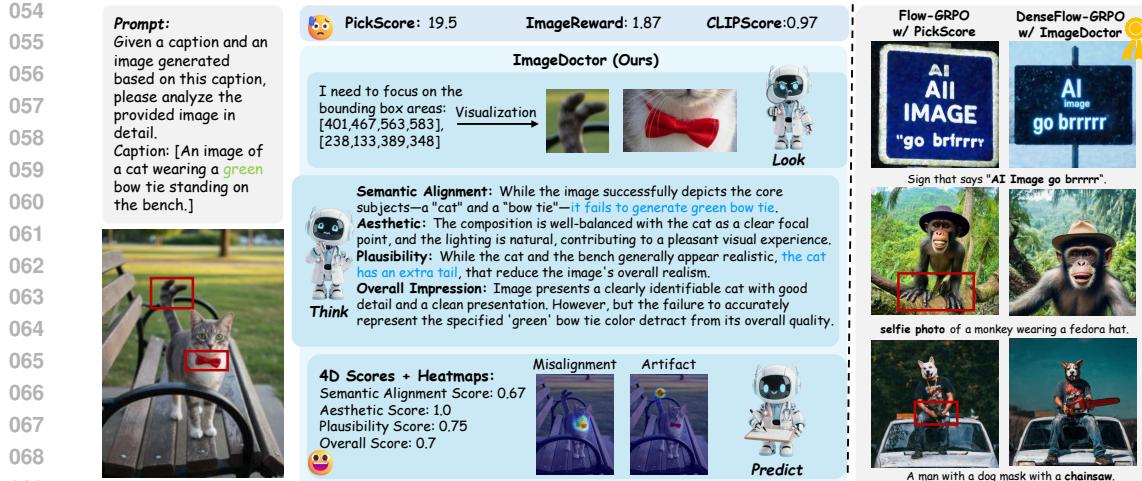


Figure 1: **Comparison between ImageDoctor and scalar-based reward functions.** *Left:* ImageDoctor follows a “*look-think-predict*” paradigm, providing rich feedback with four-dimensional scores and heatmaps that highlight misalignment and artifact locations. *Right:* Leveraging this fine-grained feedback, DenseFlow-GRPO (Sec. 4) generates images with more faithful and realistic local details, outperforming Flow-GRPO, which relies on the scalar-based reward PickScore.

can provide comprehensive feedback, offering both multi-dimensional quality scores and localized diagnostics—much like a doctor diagnosing the problems in an image.

In this work, we propose **ImageDoctor**, a unified evaluation framework that produces holistic scoring and spatially grounded feedback in the form of artifact and misalignment heatmaps. Steering the reasoning strengths and commonsense knowledge of multi-modal large language models (MLLMs), ImageDoctor is built on a fine-tuned MLLM backbone to achieve a deep joint understanding of images and prompts. To achieve flaw localization, we introduce a lightweight heatmap decoder that produces the heatmaps highlighting misalignment and artifact locations conditioned on the input prompt, image features, and the response generated by the MLLM. Inspired by the process of medical diagnosis, we further propose a “*look-think-predict*” paradigm as shown in Fig. 1. Before final judgment, ImageDoctor performs grounded image reasoning, which consists of two steps. First, it pinpoints potential flawed regions that require closer attention in the image (“*look*”). Then, it analyzes these regions by integrating the localized visual evidence with contextual understanding, generating structured reasoning that evaluates the image from multiple aspects (“*think*”). We incentivize this grounded image reasoning capability with cold start and reinforcement finetuning.

Reinforcement learning from human feedback (RLHF) (Xue et al., 2025; Liu et al., 2025) has been proven effective in enhancing both image quality and text-image alignment for T2I generation. Nevertheless, current RLHF approaches, such as Flow-GRPO (Liu et al., 2025), rely solely on sparse *image-level* rewards, which overlook spatially localized feedback and thus fail to provide fine-grained guidance during training. To address this limitation, we introduce **DenseFlow-GRPO**, a new RLHF framework that enhances T2I models with both *image-level* and *pixel-level* dense reward signals. By leveraging the rich diagnostic feedback from ImageDoctor, DenseFlow-GRPO delivers more precise and spatially aligned supervision, enabling T2I models to learn not only what constitutes a good image globally, but also how to refine local regions in a fine-grained manner.

Our experiments demonstrate that ImageDoctor achieves state-of-the-art alignment with human judgments, substantially improving score prediction accuracy across all dimensions (average PLCC 0.741 vs. 0.586 of the previous best on RichHF-18K). Beyond serving as a metric, ImageDoctor generalizes well to downstream applications: as a verifier, it reliably selects higher-quality generations in test-time scaling; as a reward model, it drives consistent gains in reinforcement learning. In particular, integrating ImageDoctor into Flow-GRPO yields superior preference alignment, and further utilizing the dense heatmap feedback in DenseFlow-GRPO achieves the strongest improvements and delivers images with more faithful local details.

The main contributions of this paper are summarized below:

- 108 • We propose ImageDoctor, a unified T2I evaluation model that produces dense feedback,
109 including multi-aspect scores and heatmaps localizing flaws, enabling interpretable and
110 fine-grained assessment.
- 111 • We introduce a “*look-think-predict*” paradigm that equips ImageDoctor with structured
112 reasoning by integrating visual grounding and textual analysis. ImageDoctor is further
113 refined through reinforcement finetuning with tailored reward functions, enhancing adher-
114 ence to human preferences while ensuring spatially grounded reasoning.
- 115 • We present DenseFlow-GRPO, a novel T2I reinforcement learning method that incorpo-
116 rates ImageDoctor’s dense spatial feedback into the reward signal, providing region-aware
117 supervision and leading to more robust improvements in image generation.
- 118 • Extensive experiments on human preference datasets demonstrate the ImageDoctor’s su-
119 perior alignment with human preference, and we further validate its effectiveness by applying
120 it to downstream tasks, serving as a verifier and a reward model.

2 RELATED WORK

2.1 TEXT-TO-IMAGE GENERATION

123 Text-to-image (T2I) generation is a core task in generative modeling. It aims to synthesize seman-
124 tically aligned images from natural language prompts, while balance the aesthetic quality and plau-
125 sibility. Early approaches based on Generative Adversarial Networks (GANs) (Goodfellow et al.,
126 2014) and Variational Auto-Encoders (VAEs) (Kingma & Welling, 2013) demonstrated feasibility
127 but were limited by low diversity and coarse details. More recently, diffusion models (Ho et al.,
128 2020; Nichol et al., 2021; Rombach et al., 2022) have emerged as a dominant paradigm, achiev-
129 ing significant gains in image quality and diversity. Flow-based models (Zhao et al., 2024; Esser
130 et al., 2024; Labs, 2024) provide another class of likelihood-based generative models, relying on
131 stochastic denoising steps, thereby enabling efficient sampling and reducing inference overhead. In
132 addition, autoregressive models (Tian et al., 2024; Xie et al., 2024) are gaining attention for their
133 compositionality and controllability, bridging vision and language more effectively.

2.2 T2I EVALUATION MODELS

134 With the rapid progress in T2I generation, evaluation models have also advanced, though the task
135 remains highly challenging. CLIPScore (Hessel et al., 2021) was one of the earliest automatic met-
136 rics that leverages pretrained CLIP to compute the similarity between the generated image and its
137 prompt. PickScore (Kirstain et al., 2023) and ImageReward (Xu et al., 2023) fine-tune CLIP (Rad-
138 ford et al., 2021) and BLIP (Li et al., 2022), respectively, on large-scale human preference datasets,
139 significantly improving alignment with subjective human judgments. The Human Preference Score
140 (HPS) series (Wu et al., 2023b;a; Ma et al., 2025b) expand the scale of annotations to enhance
141 preference alignment. In particular, **HPSv3** (Ma et al., 2025b) leverages an **MLLM** backbone to
142 capture rich semantic representations from images and captions and incorporates uncertainty-aware
143 ranking to learn human preferences from paired comparisons. **ICT-HP** (Ba et al., 2025) proposes
144 the **Image-Contained-Text** (ICT) and **High-Preference** (HP) models by finetuning a CLIP model to
145 evaluate both text-image alignment and the image aesthetics and detail quality. While both HPSv3
146 and ICT-HP demonstrate promising results in predicting image-level scalar scores, they do not pro-
147 vide localized evaluation and offer no interpretability regarding why an image is judged as good or
148 bad. Recently, UnifiedReward-think (Wang et al., 2025a) and VisualQuality-R1 (Tian et al., 2024)
149 explored reinforcement learning for evaluation model training for image quality score prediction.
150 RichHF (Liang et al., 2024) and HELM (Lee et al., 2023) attempt to broaden evaluation by consid-
151 ering multiple dimensions, moving beyond single-score preference modeling.

3 IMAGEDOCTOR

152 ImageDoctor aims to provide rich, interpretable, and accurate diagnoses for T2I generation. To this
153 end, we design a novel unified model architecture to generate both *image-level* scores and *pixel-level*
154 heatmap evaluations leveraging the strong image and text understanding capabilities of multimodal
155 large language models (MLLMs) (Sec. 3.1). To generate interpretable and accurate evaluations, we

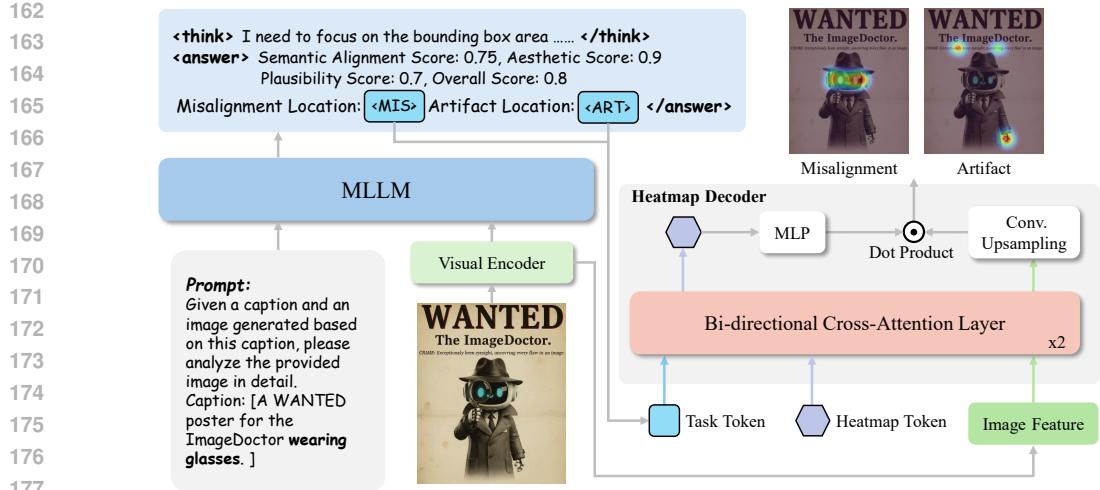


Figure 2: **ImageDoctor architecture.** Given a prompt-image pair, the MLLM follows a “*look-think-predict*” paradigm for T2I evaluation by localizing potential flaw regions, analyzing them, and generating holistic scores and special task tokens. The task token, with a learned heatmap token and image features are fed into the heatmap decoder to produce the misalignment and artifact heatmaps.

propose a “*look-think-predict*” paradigm, where the model first identifies possible local flaw regions and generates explicit reasoning about image details before providing final evaluations (Sec. 3.2).

3.1 MODEL DESIGN

Overview. The overall pipeline of ImageDoctor is shown in Fig. 2. The input text prompt P and the corresponding image $I \in \mathbb{R}^{H \times W}$ are passed into the MLLM backbone. ImageDoctor reasons about image details and image-text semantics to produce both holistic scores and localized diagnostic signals. Specifically, it outputs four scalar scores, *i.e.*, semantic alignment, aesthetics, plausibility, and overall scores $s_d, \forall d \in \{\text{align}, \text{aest}, \text{plau}, \text{over}\}$, which evaluate image quality from different aspects. In addition, it provides localized feedback by marking image regions that are implausible or misaligned with the text through the artifact and misalignment heatmaps $H_d \in \mathbb{R}^{H \times W}, \forall d \in \{\text{art}, \text{mis}\}$ generated by the heatmap decoder.

Heatmap Decoder. While scalar scores can be directly predicted via the text output of the MLLM backbone, generating pixel-wise heatmaps requires a unified model that supports both text and image outputs. To enable this, we design a lightweight heatmap decoder. The decoder takes the image features extracted by the visual encoder together with a learned heatmap token and a task token $t \in \{\langle \text{ART} \rangle, \langle \text{MIS} \rangle\}$ representing the artifact and the misalignment tokens, respectively. The task tokens are generated by the MLLM backbone and fused with the input image, text prompt, and reasoning chains to guide accurate heatmap prediction. Inspired by the SAM mask decoder (Kirillov et al., 2023), we adopt a bi-directional cross-attention design to fuse the token and image embeddings. The updated image features are passed through a series of convolution upsampling layers to upscale to the original image size, from which the updated heatmap token are used to dynamically predict the heatmap. The detailed architecture of the heatmap decoder can be found in Section A.

3.2 GROUNDED IMAGE REASONING

As shown in Fig. 1, ImageDoctor adopts a “*look-think-predict*” paradigm to generate its evaluations for a given image and text prompt. Instead of directly generating the final prediction, it first localizes potential flaw regions by predicting the flaw region bounding boxes (“*look*”), then analyzes and reasons about these flaws and overall image quality (“*think*”), and finally produces a conclusive judgment (“*predict*”), mimicking the image evaluation process of human. To enable the grounded image reasoning capability, we design a two-phase training pipeline. In the cold start phase, we conduct supervised fine-tuning to teach the model to predict image scores and heatmaps in the “*look-think-predict*” reasoning format. In the second phase, ImageDoctor adopts online re-

inforcement fine-tuning with Group Relative Policy Optimization (GRPO) (Shao et al., 2024) to further incentivize the reasoning ability to generate rich and reliable image feedback.

3.2.1 COLD START

Since MLLMs are designed for general image understanding, in the first cold start stage, we first finetune the MLLM backbone on the image evaluation task by training the model to directly predict the image evaluation scores. In the second cold start stage, we train ImageDoctor on chain-of-thought (CoT) data to learn the “*look-think-predict*” reasoning process for both score and heatmap predictions. To prepare the CoT data, we first detect the highlighted regions in the ground-truth artifact and misalignment heatmaps to generate flaw region bounding boxes. Then, we employ Gemini 2.5 Flash (Comanici et al., 2025) with carefully designed prompts to produce detailed reasoning between the image and corresponding human annotations. Finally, we organize the bounding boxes, reasoning traces, and ground-truth human annotations into the “*look-think-predict*” CoT format. The details can be found in Section B. The ImageDoctor model θ is optimized by:

$$\mathcal{L} = - \sum_i \log p_\theta(\mathbf{z}_i | \mathbf{z}_{<i}, \mathbf{I}, \mathbf{P}) + \sum_d \|\mathbf{H}_d - \tilde{\mathbf{H}}_d\|_2^2, \quad (1)$$

where \mathbf{z} is the CoT reasoning text, \mathbf{I} and \mathbf{P} are the input image and text prompts, \mathbf{H}_d and $\tilde{\mathbf{H}}_d$ are the ground-truth and predicted heatmaps, respectively.

3.2.2 REINFORCEMENT FINETUNING

After cold start, we further perform reinforcement finetuning (RFT) with GRPO (Shao et al., 2024) to enhance the reasoning ability of ImageDoctor. Given a pair of input (\mathbf{I}, \mathbf{P}) , ImageDoctor as the policy model π_θ , generates a group of N candidate responses $\{\mathbf{o}^1, \dots, \mathbf{o}^N\}$. For each response \mathbf{o}^i , we compute a reward score \mathcal{R}^i using a combination of reward functions. The rewards are normalized within the group to compute the group-normalized advantage. RFT allows the model to explore diverse reasoning paths, directing it toward reasoning trajectories with high reward signals and enhancing its generalization capability. The detailed GRPO formulation can be found in Section C.

We design a suite of verifiable rewards to encourage the model to focus on the correct flaw regions, produce accurate evaluation scores, and generate precise heatmaps, including a grounding reward (\mathcal{R}_G), a score reward (\mathcal{R}_S) and a heatmap reward (\mathcal{R}_H).

Grounding Reward (\mathcal{R}_G) aims to evaluate whether the model can accurately locate the flaw regions in an image. The model should ideally generate a compact set of bounding boxes, both in number and area, that effectively cover the potential flaw regions. The grounding reward \mathcal{R}_G has three complementary components: **1) Completeness**. The union of all bounding boxes should adequately cover the entire highlighted area in the artifact and misalignment heatmaps. We compute the ratio between the area covered by the union of all bounding boxes and the total intensity of the heatmaps. **2) Compactness**. Each bounding box should only cover flaw regions with minimal normal regions. We compute the average heatmap intensity within each predicted bounding box and then take the mean across all boxes, yielding higher rewards for bounding boxes with less normal regions. **3) Uniqueness**. The model should not predict redundant bounding boxes, and thus the overlap between any pair of boxes should be minimized. We measure the Intersection over Union (IoU) between each pair of bounding boxes and apply a penalty for large overlaps. Implementation details are in Section D.

Score Reward (\mathcal{R}_S) evaluates how well the predicted scores \tilde{s}_d align with ground-truth human scores s_d . We use ℓ_1 distance and design $\mathcal{R}_S = \sum_d 1 - \|s_d - \tilde{s}_d\|_1$, which encourages the model to produce score predictions that are close to human judgments.

Heatmap Reward (\mathcal{R}_H) measures the similarity between predicted heatmaps $\tilde{\mathbf{H}}_d$ and human annotated heatmaps \mathbf{H}_d . We use ℓ_2 distance and define $\mathcal{R}_H = \sum_d 1 - \|\mathbf{H}_d - \tilde{\mathbf{H}}_d\|_2^2$. This formulation assigns higher rewards when the predicted maps closely match the annotations, thereby encouraging the model to produce precise and sharp flaw localization heatmaps.

The total reward is the combination of the three rewards: $\mathcal{R} = \mathcal{R}_G + \mathcal{R}_S + \mathcal{R}_H$.

270 **4 DENSEFLOW-GRPO: IMAGEDOCTOR AS DENSE REWARD**
 271

272 Reinforcement learning from human feedback (RLHF) (Xue et al., 2025; Liu et al., 2025) has
 273 demonstrated great success in improving image quality and image-text alignment for T2I genera-
 274 tion. However, existing RLHF methods such as Flow-GRPO (Liu et al., 2025) adopt an *image-level*
 275 formulation without fine-grained supervision. Specifically, given a prompt \mathbf{c} , the flow model p_ϕ
 276 samples a group of G individual images $\{\mathbf{x}_0^i\}_{i=1}^G$ and the corresponding reverse-time trajectories
 277 $\{(\mathbf{x}_T^i, \mathbf{x}_{T-1}^i, \dots, \mathbf{x}_0^i)\}_{i=1}^G$. Flow-GRPO optimizes the flow model by maximizing the following:
 278

$$279 \mathcal{J}_{\text{Flow-GRPO}}(\phi) = \frac{1}{G} \sum_{i=1}^G \frac{1}{T} \sum_{t=0}^{T-1} \left(\min \left(r_t^i(\phi) \hat{A}_t^i, \text{clip} \left(r_t^i(\phi), 1-\varepsilon, 1+\varepsilon \right) \hat{A}_t^i \right) - \beta D_{\text{KL}}(p_\phi || p_{\phi_{\text{ref}}}) \right), \quad (2)$$

282 where the likelihood ratio $r_t^i(\phi)$ and normalized advantage \hat{A}_t^i of the i -th image are computed as:
 283

$$284 \quad r_t^i(\phi) = \frac{p_\phi(\mathbf{x}_{t-1}^i | \mathbf{x}_t^i, \mathbf{c})}{p_{\phi_{\text{old}}}(\mathbf{x}_{t-1}^i | \mathbf{x}_t^i, \mathbf{c})}, \quad \hat{A}_t^i = \frac{R(\mathbf{x}_0^i, \mathbf{c}) - \text{mean}(\{R(\mathbf{x}_0^i, \mathbf{c})\}_{i=1}^G)}{\text{std}(\{R(\mathbf{x}_0^i, \mathbf{c})\}_{i=1}^G)}. \quad (3)$$

287 In Eq. (3), both $r_t^i(\phi)$ and reward R are computed on the image level. The reward signal is applied
 288 uniformly across all pixels in the image, treating every region equally, regardless of its quality. Finer-
 289 grained supervision is more desirable, as it allows low-quality regions to be penalized more, while
 290 encouraging high-quality areas. To fill this gap, we propose **DenseFlow-GRPO**, which enables both
 291 *image-level* and *pixel-level* fine-grained dense reward signals for flow model RL training, leveraging
 292 the rich image feedback generated by ImageDoctor. We first reformulate the likelihood ratio at each
 293 trajectory step to allow pixel-wise advantage customization:

$$294 \quad s_t^i(\phi, h, w) = \text{sg}[r_t^i(\phi)] \cdot \frac{p_\phi(\mathbf{x}_{t-1}^i | \mathbf{x}_t^i, \mathbf{c})_{h,w}}{\text{sg}[p_\phi(\mathbf{x}_{t-1}^i | \mathbf{x}_t^i, \mathbf{c})_{h,w}]}, \quad (4)$$

297 where $p_\phi(\mathbf{x}_{t-1}^i | \mathbf{x}_t^i, \mathbf{c})_{h,w}$ is the pixel-wise likelihood, h, w denote the pixel location, and $\text{sg}[\cdot]$
 298 is the stop-gradient operation that only takes the numerical value, corresponding to `detach` in
 299 PyTorch. We can then apply the dense pixel-wise advantage that combines *image-level* reward R
 300 and *pixel-level* reward R_P :

$$301 \quad \hat{A}_t^i(h, w) = \frac{R_D(\mathbf{x}_0^i, \mathbf{c}, h, w) - \text{mean}(\{R_D(\mathbf{x}_0^i, \mathbf{c}, h, w)\}_{i=1}^G)}{\text{std}(\{R_D(\mathbf{x}_0^i, \mathbf{c}, h, w)\}_{i=1}^G)}. \quad (5)$$

304 where $R_D(\mathbf{x}_0^i, \mathbf{c}, h, w) = R(\mathbf{x}_0^i, \mathbf{c}) + R_P(\mathbf{x}_0^i, \mathbf{c}, h, w)$ is the dense reward function.
 305

306 The DenseFlow-GRPO objective is defined as:
 307

$$308 \mathcal{J}_{\text{Dense}}(\phi) = \frac{1}{GTHW} \sum_{i,t,h,w} \left(\min \left(s_t^i(\phi, h, w) \hat{A}_t^i(h, w), \text{clip} \left(s_t^i(\phi, h, w), 1-\varepsilon, 1+\varepsilon \right) \hat{A}_t^i(h, w) \right) \right), \quad (6)$$

312 where we omit the KL regularization term for brevity. Note that in Eq. (4), $s_t^i(\phi, h, w)$ is numerically
 313 equal to $r_t^i(\phi)$ but allows the pixel-wise advantage to backpropagate to the local image regions
 314 through $p_\phi(\cdot)_{h,w}$. This is similar to the GSPO-token (Zheng et al., 2025) formulation, and we find
 315 it more stable than directly computing the pixel-wise likelihood ratio.

316 **5 EXPERIMENTS**
 317

318 **5.1 EXPERIMENTAL SETUP**
 319

320 **Datasets.** We train and evaluate ImageDoctor on the *RichHF-18K* (Liang et al., 2024) dataset.
 321 RichHF-18K is a subset of Pick-a-Pic (Kirstain et al., 2023), consisting of 16K training samples,
 322 1K validation samples, and 1K test samples. For each text-image pair, it provides two heatmaps and
 323 four fine-grained scores annotated by a total of 27 annotators. To further assess the generalizability
 of ImageDoctor, we also test it on the *GenAI-Bench* (Li et al., 2024) and *TIFA* (Hu et al., 2023).

324
325
326 Table 1: Performance comparison of score prediction on RichHF-18K.
327
328

Method	Plausibility		Aesthetics		Semantic Alignment		Overall		Average	
	PLCC \uparrow	SRCC \uparrow	PLCC \uparrow	SRCC \uparrow	PLCC \uparrow	SRCC \uparrow	PLCC \uparrow	SRCC \uparrow	PLCC \uparrow	SRCC \uparrow
ResNet-50 (He et al., 2016)	0.495	0.487	0.370	0.363	0.108	0.119	0.337	0.308	0.328	0.319
CLIP (Radford et al., 2021)	0.390	0.378	0.357	0.360	0.398	0.390	0.353	0.352	0.374	0.370
PickScore (Kirstain et al., 2023)	0.010	0.028	0.131	0.140	0.346	0.340	0.202	0.226	0.172	0.183
RichHF (Liang et al., 2024)	0.693	0.681	0.600	0.589	0.474	0.496	0.580	0.562	0.586	0.582
ImageDoctor (Ours)	0.727	0.711	0.681	0.662	0.808	0.799	0.745	0.725	0.741	0.724

332
333 Table 2: Performance comparison of heatmap prediction on RichHF-18K.
334

Method	Artifact				Misalignment					
	All data		GT = 0		All data		GT = 0			
	MSE \downarrow	MSE \downarrow	CC \uparrow	KLD \downarrow	SIM \uparrow	MSE \downarrow	MSE \downarrow	CC \uparrow	KLD \downarrow	SIM \uparrow
ResNet-50 (He et al., 2016)	0.00996	0.00093	0.506	1.669	0.338	-	-	-	-	-
CLIP Gradient (Simonyan et al., 2013)	0.00920	0.00095	0.556	1.652	0.409	0.00817	0.00551	0.015	3.844	0.041
RichHF (Liang et al., 2024)	0.00920	0.00095	0.556	1.652	0.409	0.00304	0.00006	0.212	2.933	0.106
ImageDoctor (Ours)	0.00891	0.00076	0.571	1.477	0.412	0.00299	0.00003	0.225	2.863	0.108

342 **Evaluation Metrics.** We follow the official evaluation protocols of the datasets. For score prediction,
343 we employ Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Correlation
344 Coefficient (SRCC), which measure how well the predicted scores correlate with human annotations.
345 For heatmap prediction, we report the Mean Squared Error (MSE) between predictions and
346 ground truth. Additionally, we adopt standard heatmap metrics (Liang et al., 2024) including KL
347 Divergence (KLD), Similarity (SIM), and Correlation Coefficient (CC), providing a comprehensive
348 assessment of spatial prediction quality.

349 **Implementation Details** All experiments are conducted on four AMD MI250 GPUs. We adopt
350 Qwen2.5-VL-3B (Bai et al., 2025) as the MLLM backbone. Training is performed for 5 epochs in
351 cold start stage 1 and 3 epochs in stage 2. We train for 400 steps for RFT. Learning rates are set to
352 1×10^{-5} for cold start and 1×10^{-6} for RFT. Training images are resized to 512×512 .

353 5.2 MAIN RESULTS

355 **Results on RichHF-18K.** Table 1 shows the score prediction results across four dimensions on
356 RichHF-18K. We compare with ResNet-50 (He et al., 2016), CLIP (Radford et al., 2021) models
357 fine-tuned on the RichHF-18K dataset, as well as the off-the-shelf PickScore (Kirstain et al., 2023)
358 model. In addition, we compare with the RichHF model (Liang et al., 2024), which is trained on
359 RichHF-18k and is able to generate both score and heatmap predictions. ImageDoctor achieves
360 the best performance across all dimensions, substantially improving semantic alignment (PLCC:
361 0.808 vs. 0.474) and raising the average PLCC from 0.586 to 0.741 compared to the previous best
362 method RichHF, demonstrating much stronger correlation with human judgment. These gains also
363 extend to heatmap prediction results in Table 2, where ImageDoctor achieves the best performance,
364 highlighting its ability to precisely localize flaws in generated images.

365 **Results on GenAI-Bench and TIFA.** Table 3 presents the results on the GenAI-Bench and TIFA
366 datasets. To assess the generalizability of ImageDoctor, we evaluate the model trained solely
367 on RichHF-18K without any fine-tuning on these two benchmarks. Despite differences in image
368 sources and the inherent subjectivity of annotators, ImageDoctor consistently outperforms previous
369 human preference models, achieving higher correlations with human annotations.

370 **Heatmap Visualization.** In Fig. 3, we present qualitative examples of heatmap predictions gener-
371 ated by ImageDoctor. For the misalignment heatmaps (Fig. 3 (a)), our model accurately localizes
372 objects that fail to correspond to the prompt while producing fewer false positives. For the arti-
373 fact heatmap (Fig. 3 (b)), ImageDoctor effectively highlights all the regions containing artifacts,
374 demonstrating precise spatial grounding of visual flaws. More examples are provided in Section E.4.

375 5.3 ABLATION STUDY

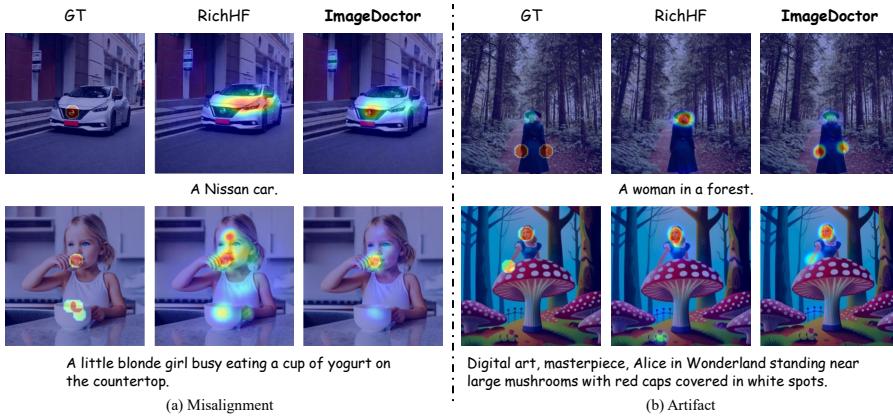
376 We conduct ablation experiments on the RichHF-18K dataset to analyze the contribution of each
377 proposed module in ImageDoctor. The results are shown in Table 4.

378
379
380
381 Table 3: Quantitative comparison on the
382 GenAI-Bench and TIFA datasets.
383
384
385
386
387

Method	GenAI-Bench		TIFA		RichHF	
	PLCC	SRCC	PLCC	SRCC	PLCC	SRCC
CLIPScore	0.164	0.309	0.300	0.302	0.057	
ImageReward	0.350	0.633	0.621	0.329	0.274	
PickScore	0.354	0.413	0.392	0.346	0.340	
HPSv2	0.139	0.380	0.365	0.258	0.187	
VQAScore	0.499	0.659	0.695	0.409	0.483	
EvalMuse	0.498	0.712	0.749	0.549	0.518	
HPSv3	0.139	0.485	0.484	0.205	0.184	
ImageDoctor	0.514	0.740	0.764	0.808	0.799	

388
389
390
391
392
393
394
395
396
397
398
399
400
398 Table 4: **Ablation study** of the proposed modules.

Settings	Average		Artifact		Misalignment	
	PLCC \uparrow	SRCC \uparrow	CC \uparrow	KLD \downarrow	CC \uparrow	KLD \downarrow
Cold Start Stage 1	0.660	0.656	-	-	-	-
+ Heatmap	0.655	0.650	0.532	1.597	0.165	3.031
+ Heatmap w/o task token	0.653	0.645	0.508	1.728	0.123	3.231
Cold Start Stage 2	0.720	0.707	0.558	1.533	0.224	2.982
w/o “look”	0.714	0.705	0.534	1.599	0.160	3.131
w/o “think”	0.708	0.698	0.542	1.592	0.190	3.038
Reinforcement Finetuning	0.741	0.724	0.571	1.477	0.225	2.863
w/o grounding reward	0.734	0.718	0.566	1.507	0.225	2.865

401
402 Figure 3: Visualization of misalignment and artifact heatmaps.
403
404
405
406
407
408

Task token for heatmap decoder. We introduce the special task tokens in the MLLM backbone to guide the heatmap prediction in the heatmap decoder. To demonstrate its effectiveness, we finetune the ImageDoctor model after cold start stage 1 on both score and heatmap prediction tasks with and without the task tokens. As shown in Table 4 (rows 2 and 3), removing the task tokens results in notable decrease of heatmap prediction performance, *e.g.*, CC drops by 0.024 and 0.042 for artifact and misalignment, respectively.

Effect of “look” and “think”. We propose a “*look-think-prediction*” paradigm for T2I evaluation, where the model first localizes potential flawed regions by predicting bounding boxes (“*look*”), and then analyzes and reasons about these flaws (“*think*”) before making predictions. We conduct ablation studies assessing their contribution in Table 4 (rows 5 and 6). Removing either component leads to a performance drop. In particular, “*think*” plays a more critical role in score accuracy, with PLCC decreasing from 0.720 to 0.708 without “*think*”, while “*look*” provides stronger benefits for heatmap prediction, where misalignment CC falls from 0.224 to 0.160 without “*look*”. These results highlight the complementary roles of “*look*” and “*think*”: the former enhances spatial localization of flaws, while the latter strengthens semantic reasoning for accurate evaluation.

Effect of grounding reward. We introduce a grounding reward in reinforcement finetuning to encourage the model to accurately localize flawed regions. As shown in Table 4 (row 8), removing the grounding reward leads to a decline in score prediction performance. Moreover, it also causes a notable drop in artifact heatmap quality. These results highlight the importance of grounding reward.

6 APPLICATION IN DOWNSTREAM TASKS

To further demonstrate the effectiveness of ImageDoctor’s rich feedback, we explore its application in downstream tasks, specifically as a verifier in test-time scaling and a reward function for reinforcement learning of T2I model.

6.1 IMAGEDOCTOR AS A VERIFIER FOR TEST-TIME SCALING

Recent works have explored test-time scaling (Ma et al., 2025a; Guo et al., 2025) for improving diffusion model performance by generating multiple samples during inference and searching for the

best candidate. This approach requires a verifier to distinguish subtle differences among generated images and reliably select the best candidate. We test ImageDoctor as an image verifier, where we sample 16 images for a given prompt and select the best candidates leveraging the four-dimensional scores. The images are generated at a resolution of 1024×1024 using the Flux-dev (Labs, 2024) model. Visualization results in Fig. 4 show that ImageDoctor reliably selects images that better align with the prompt, often preferring those with more realistic and coherent details.

6.2 IMAGEDOCTOR AS A REWARD FUNCTION

Setup. We use Stable Diffusion 3.5-medium as the base model and demonstrate the results of using ImageDoctor as a reward function in Flow-GRPO as well as the proposed DenseFlow-GRPO (Sec. 4). We train the models for 1,300 iterations on the Pick-a-Pic prompts (Kirstain et al., 2023). We evaluate the base and finetuned model performance on DrawBench (Saharia et al., 2022) using ImageReward (Xu et al., 2023), CLIPScore (Hessel et al., 2021) and UnifiedReward (Wang et al., 2025b) as the metrics.

Results with Flow-GRPO. Flow-GRPO adopts score-only reward functions for training T2I model. We use ImageDoctor predicted scores as the reward function, and compare the performance of using PickScore (Kirstain et al., 2023) and RichHF (Liang et al., 2024). As shown in Table 5, using ImageDoctor as the reward function consistently offers the highest gain across all evaluation metrics thanks to its strong ability in predicting accurate image evaluation scores.

Table 5: Performance on human preference scores when ImageDoctor serves as a reward function.

Reward	ImageReward	CLIPScore	UnifiedReward
Base	0.818	0.951	2.903
Flow-GRPO			
PickScore	1.002	0.941	2.940
RichHF	0.879	0.944	2.921
ImageDoctor	1.029	0.956	2.960
DenseFlow-GRPO			
ImageDoctor	1.100	0.969	3.000

Figure 4: Qualitative comparison on selected images by different verifiers in test-time scaling. ImageDoctor picks the images that faithfully reflect the text prompt (*top*) and preserve realistic object scale (*bottom*).

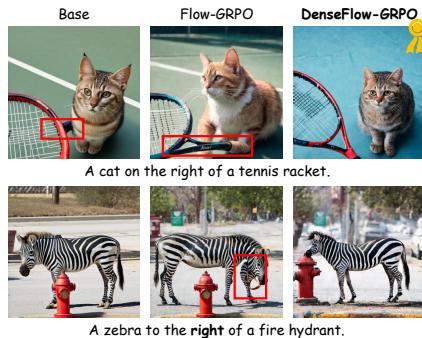


Figure 5: Flow-GRPO vs. DenseFlow-GRPO. The artifacts are **boxed**.

Results with DenseFlow-GRPO. ImageDoctor is capable of generating spatial heatmaps and scalar scores, making it well-suited for pixel-level feedback. To leverage this property, we introduce DenseFlow-GRPO, which incorporates heatmap-guided dense rewards for more fine-grained optimization. As shown in Table 5, by combining scalar scores with heatmaps, DenseFlow-GRPO achieves the best overall results and outperforms the Flow-GRPO variant with ImageDoctor score prediction as the reward function. These findings demonstrate that ImageDoctor’s dense, multi-aspect feedback provides fine-grained supervision and leads to consistently stronger alignment with human preference. We provide a visual comparison of Flow-GRPO and DenseFlow-GRPO in Fig. 5. Flow-GRPO adopts an image-level formulation that is often insufficient for removing localized artifacts, as the reward signal provides a sparse global score for the entire image, while DenseGRPO’s heatmap-based dense reward design can target and refine local details to eliminate such flaws.

486 7 CONCLUSION
487

488 In this work, we introduce ImageDoctor, a unified evaluation framework for text-to-image genera-
489 tion that produces both multi-aspect scores and spatially grounded heatmaps. To enhance the eval-
490 uation accuracy and interpretability, we propose a “*look-think-predict*” paradigm, which localizes
491 flaws, analyzes them, and delivers a final judgment. Furthermore, we propose DenseFlow-GRPO
492 that utilizes the dense rewards generated by ImageDoctor for finetuning T2I model. Extensive exper-
493 iments demonstrate its versatility—serving as a metric, verifier, and reward function—showing that
494 ImageDoctor provides robust, interpretable, and human-aligned feedback for generated images.
495

496 REFERENCES
497

498 Ying Ba, Tianyu Zhang, Yalong Bai, Wenyi Mo, Tao Liang, Bing Su, and Ji-Rong Wen. Enhancing
499 reward models for high-quality image generation: Beyond text-image alignment. In *ICCV*, 2025.

500 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
501 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
502 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
503 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv*
504 preprint *arXiv:2502.13923*, 2025.

505 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
506 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
507 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
508 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

509 Florinel-Alin Croitoru, Vlad Hondu, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models in
510 vision: A survey. *PAMI*, 2023.

511 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
512 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
513 high-resolution image synthesis. In *ICML*, 2024.

514 Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
515 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *NeurIPS*, 2014.

516 Jitao Gu, Shuangfei Zhai, Yizhe Zhang, Joshua M Susskind, and Navdeep Jaitly. Matryoshka
517 diffusion models. In *ICLR*, 2023.

518 Ziyu Guo, Renrui Zhang, Chengzhuo Tong, Zhizheng Zhao, Peng Gao, Hongsheng Li, and Pheng-
519 Ann Heng. Can we generate images with cot? let’s verify and reinforce image generation step by
520 step. *arXiv preprint arXiv:2501.13926*, 2025.

521 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
522 nition. In *CVPR*, 2016.

523 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
524 reference-free evaluation metric for image captioning. In *EMNLP*, 2021.

525 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*,
526 2020.

527 Yushi Hu, Benlin Liu, Jungo Kasai, Yizhong Wang, Mari Ostendorf, Ranjay Krishna, and Noah A
528 Smith. Tifa: Accurate and interpretable text-to-image faithfulness evaluation with question an-
529 swering. In *CVPR*, 2023.

530 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
531 *arXiv:1312.6114*, 2013.

532 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
533 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *CVPR*,
534 2023.

540 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
 541 a-Pic: An open dataset of user preferences for text-to-image generation. In *NeurIPS*, 2023.
 542

543 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

544 Tony Lee, Michihiro Yasunaga, Chenlin Meng, Yifan Mai, Joon Sung Park, Agrim Gupta, Yunzhi
 545 Zhang, Deepak Narayanan, Hannah Teufel, Marco Bellagente, et al. Holistic evaluation of text-
 546 to-image models. In *NeurIPS*, 2023.

547

548 Baiqi Li, Zhiqiu Lin, Deepak Pathak, Jiayao Li, Yixin Fei, Kewen Wu, Xide Xia, Pengchuan Zhang,
 549 Graham Neubig, and Deva Ramanan. Evaluating and improving compositional text-to-visual
 550 generation. In *CVPR*, 2024.

551 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 552 training for unified vision-language understanding and generation. In *ICML*, 2022.

553

554 Youwei Liang, Junfeng He, Gang Li, Peizhao Li, Arseniy Klimovskiy, Nicholas Carolan, Jiao Sun,
 555 Jordi Pont-Tuset, Sarah Young, Feng Yang, et al. Rich human feedback for text-to-image genera-
 556 tion. In *CVPR*, 2024.

557

558 Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan,
 559 Di Zhang, and Wanli Ouyang. Flow-grpo: Training flow matching models via online rl. *arXiv*
 560 preprint *arXiv:2505.05470*, 2025.

561

562 Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang,
 563 Yandong Li, Tommi Jaakkola, Xuhui Jia, and Saining Xie. Scaling inference time compute for
 564 diffusion models. In *CVPR*, 2025a.

565

566 Yuhang Ma, Xiaoshi Wu, Keqiang Sun, and Hongsheng Li. Hpsv3: Towards wide-spectrum human
 567 preference score. *arXiv preprint arXiv:2508.03789*, 2025b.

568

569 Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
 570 Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
 571 text-guided diffusion models. *arXiv preprint arXiv:2112.10741*, 2021.

572

573 Yuwei Niu, Munan Ning, Mengren Zheng, Weiyang Jin, Bin Lin, Peng Jin, Jiaqi Liao, Kunpeng
 574 Ning, Chaoran Feng, Bin Zhu, and Li Yuan. Wise: A world knowledge-informed semantic eval-
 575 uation for text-to-image generation. *arXiv preprint arXiv:2503.07265*, 2025.

576

577 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 578 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 579 models from natural language supervision. In *ICML*, 2021.

580

581 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 582 resolution image synthesis with latent diffusion models. In *CVPR*, 2022.

583

584 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 585 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 586 text-to-image diffusion models with deep language understanding. In *NeurIPS*, 2022.

587

588 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 589 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 590 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

591

592 Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Vi-
 593 sualising image classification models and saliency maps. *arXiv preprint arXiv:1312.6034*, 2013.

594

595 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
 596 Scalable image generation via next-scale prediction. In *NeurIPS*, 2024.

597

598 Yibin Wang, Zhimin Li, Yuhang Zang, Chunyu Wang, Qinglin Lu, Cheng Jin, and Jiaqi Wang.
 599 Unified multimodal chain-of-thought reward model through reinforcement fine-tuning. *arXiv*
 600 preprint *arXiv:2505.03318*, 2025a.

594 Yibin Wang, Yuhang Zang, Hao Li, Cheng Jin, and Jiaqi Wang. Unified reward model for multi-
 595 modal understanding and generation. *arXiv preprint arXiv:2503.05236*, 2025b.
 596

597 Ze Wang, Hao Chen, Benran Hu, Jiang Liu, Ximeng Sun, Jialian Wu, Yusheng Su, Xiaodong Yu,
 598 Emad Barsoum, and Zicheng Liu. Instella-t2i: Pushing the limits of 1d discrete latent space image
 599 generation. *arXiv preprint arXiv:2506.21022*, 2025c.

600 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 601 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
 602 image synthesis. *arXiv preprint arXiv:2306.09341*, 2023a.

603

604 Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, and Hongsheng Li. Human preference score: Better
 605 aligning text-to-image models with human preference. In *CVPR*, 2023b.

606 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 607 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 608 to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024.

609

610 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 611 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
 612 In *NeurIPS*, 2023.

613

614 Zeyue Xue, Jie Wu, Yu Gao, Fangyuan Kong, Lingting Zhu, Mengzhao Chen, Zhiheng Liu, Wei
 615 Liu, Qiushan Guo, Weilin Huang, et al. Dancegrpo: Unleashing grpo on visual generation. *arXiv
 preprint arXiv:2505.07818*, 2025.

616

617 Wenliang Zhao, Minglei Shi, Xumin Yu, Jie Zhou, and Jiwen Lu. Flownano: Towards real-time
 618 flow-based image generation with velocity refiner. In *NeurIPS*, 2024.

619

620 Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
 621 Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. *arXiv preprint
 arXiv:2507.18071*, 2025.

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

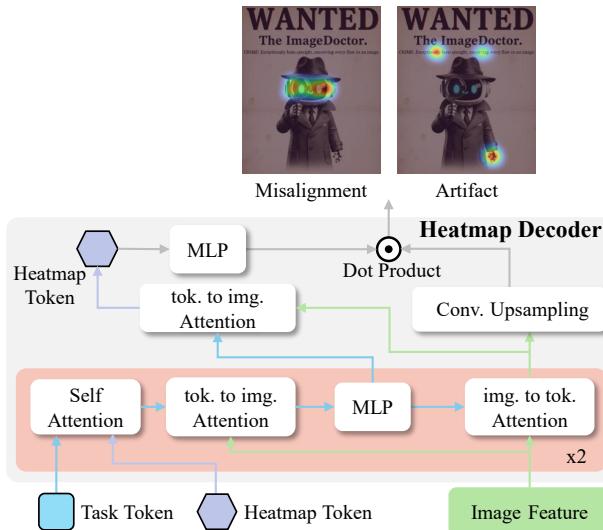
645

646

647

648 APPENDIX
649650 A DETAILS OF HEATMAP DECODER
651

653 To equip the MLLM with the ability to generate accurate heatmaps, we design a lightweight heatmap
654 decoder. The decoder takes image features extracted by the visual encoder, along with a learned
655 heatmap token and a task token that specifies the type of heatmap to be produced. First, the special
656 tokens (task and heatmap) serve as queries to attend over image embedding, after which a multi-layer
657 perceptron (MLP) updates all special tokens. Next, the updated special tokens are used as keys and
658 values to and the image embeddings act as queries to refine the image features. The updated image
659 embeddings are then passed through a series of convolution and deconvolution layers to upscale to
660 the original image size. Finally, before applying the sigmoid activation, we introduce an additional
661 token-to-image attention: the updated image embeddings attend once more to the special token
662 embeddings. The attended heatmap token features are projected through another MLPs, and their
663 outputs are combined with the upsampled image embeddings via a spatial point-wise product. This
664 design strengthens the role of the task tokens in guiding the final heatmap prediction, ensuring that
665 both semantic reasoning and localized visual evidence contribute to the spatial diagnosis. \Rightarrow Back
666 to main paper Section 3.1.

685 Figure 6: The architecture of heatmap decoder.
686687
688 B GROUNDING IMAGE REASONING GENERATION
689

690 For reasoning path generation in Stage 2 of the cold start phase, we employ Gemini-flash with
691 carefully designed prompts to produce detailed reasoning that bridges the image and its human
692 annotations. Since advanced VLMs possess strong visual grounding capabilities, we enrich the input
693 beyond the original image–prompt pair by also providing human-annotated heatmaps indicating the
694 locations of artifacts and misalignments. To preserve the fidelity of the original image, we highlight
695 these flawed regions using circled outlines derived from the heatmaps, rather than directly overlaying
696 them, which enables the VLM to more accurately localize unsatisfactory regions. By combining
697 these localized observations with human-provided scores, Gemini 2.5 Flash generates reasoning
698 that is more precise and relevant to the evaluated image. This high-quality reasoning chain is then
699 used to fine-tune Qwen2.5-VL, equipping it with structured and grounded evaluation capabilities.
700 \Rightarrow Back to main paper Section 3.2.2.
701

702
703

Prompt for Gemini 2.5 Flash 2.5 for Reasoning Data Generation

704
705
706
707
708
709
710

You are a multi-modal AI assistant tasked with generating a reasoning process for a human evaluation of a generated image. I am providing three images in a specific order:

1. **The First Image provided is the 'Original Image'**: This is the image generated by a text-to-image model based on the input prompt "PROMPT". **This Original Image is the SOLE subject of your evaluation.**

2. **The Second Image provided is the 'Artifact Heatmap Image'**: This image is a visual aid. It is the Original Image with an overlay that **ONLY serves to visually pinpoint the artifact locations**. Its **ONLY purpose is to help you locate the specified coordinates on the Original Image and then describe the visual characteristics of the artifact locations *on the Original Image***.

3. **The Third Image provided is the 'Misalignment Heatmap Image'**: This image is a visual aid. It is the Original Image with an overlay that **ONLY serves to visually pinpoint the misalignment locations**. Its **ONLY purpose is to help you locate the specified coordinates on the Original Image and then describe the visual characteristics of the misalignment locations *on the Original Image***.

Below, you will find the human evaluation data of the Original Image for several dimensions, including scores, keyword alignment status.. Your goal is to analyze the **Original Image** and articulate a plausible step-by-step reasoning that would lead to the given scores, speaking from the perspective of the evaluator.

Human Evaluation Results:

* **Semantic Alignment**: How well the image content corresponds to the original caption.

* Score: MISALIGNMENT SCORE

* **Aesthetics**: Assessment of composition, color usage, and overall artistic quality.

* Score: AESTHETIC SCORE

* **Plausibility**: Realism and visual fidelity of the **Original Image**, including distortions or unnatural details.

* Score: ARTIFACT SCORE

* **Overall Impression**: General subjective assessment of the image's quality.

* Score: OVERALL SCORE

Your Task: For each of the four evaluation dimensions (Semantic Alignment, Aesthetics, Plausibility, and Overall Impression), please provide a paragraph explaining your reasoning for the score, as if you were the original human evaluator assessing the **Original Image**.

* Refer to specific visual elements of the **Original Image** that support your reasoning.

* For the "Plausibility" or "Semantic Alignment" dimension: Refer to the **Second Image (Artifact Heatmap Image)** or **Third Image (Misalignment Heatmap Image)** to visually locate these coordinates on the **Original Image**, specifically connect your reasoning to these coordinates with the help of provided Artifact or Misalignment Heatmap Image. **Then, describe the visual nature of the artifact or misalignment locations as it appears *on the Original Image***.

* For other dimensions, if relevant, explain any potential

754
755

756 reasons for a score less than perfect by examining the image.
 757 Consider all provided human evaluation results, including
 758 any labels or listed misaligned keywords, in your reasoning.
 759 Output Format for Each Dimension: Conclude each paragraph
 760 with a sentence in the following strict format: "Therefore,
 761 I give it a score of X.XX."
 762 **Important Instructions:**
 763 - Do not mention the artifact or misalignment heatmap images.
 764 - Use the coordinates to focus your visual inspection, but
 765 describe only what is visible in the Original Image.
 766 - Be concise and direct in each evaluation.
 767 - Do not include specific coordinates in your reasoning, just
 768 refer to the visual characteristics at those locations.
 769 Please now provide the reasoning for each dimension,
 770 focusing your analysis and descriptions on the **First Image**
 771 (**the 'Original Image' of the "PROMPT"**) , using the **Second**
 772 **Image (the 'Artifact Heatmap Image')** and **Third Image (the**
 773 **'Misalignment Heatmap Image')** strictly as a visual guide to
 774 locate artifact and misalignment locations on the Original
 775 Image. Do not mention the Artifact or Misalignment Heatmap
 776 Images in your reasoning, only use them to locate coordinates
 777 visually on the Original Image. As if human evaluation
 778 results and heatmap are not available, you only have the
 779 Original Image to evaluate.
 780 Be precise, concise, and strictly refer to the Original
 781 Image in all visual descriptions. For each dimension, use
 782 two sentences: one for the reasoning and one for the score
 783 conclusion.
 784 Begin Evaluation:
 785

C RFT FORMULATION

786 Given a pair of input (\mathbf{I}, \mathbf{P}) , ImageDoctor as the policy model π_θ , generates a group of N candidate
 787 responses $\{\mathbf{o}^1, \dots, \mathbf{o}^N\}$. For each response \mathbf{o}^i , we compute a reward score \mathcal{R}^i using a combination
 788 of reward functions. The rewards are normalized within the group to compute the group-normalized
 789 advantage:
 790

$$A^i = \frac{\mathcal{R}^i - \text{mean}(\{\mathcal{R}^i\}_{i=1}^N)}{\text{std}(\{\mathcal{R}^i\}_{i=1}^N)}. \quad (7)$$

791 We update the policy model π_θ by maximizing the GRPO objective function:
 792

$$\mathcal{J}_{\text{RFT}}(\theta) = \frac{1}{N} \sum_{i=1}^N \left[\min \left(w^i A^i, \text{clip}(w^i, 1 - \epsilon, 1 + \epsilon) A^i \right) - \beta D_{\text{KL}}(\pi_\theta \parallel \pi_{\text{ref}}) \right], \quad (8)$$

793 where $w^i = \frac{\pi_\theta(\mathbf{o}^i | \mathbf{I}, \mathbf{P})}{\pi_{\text{old}}(\mathbf{o}^i | \mathbf{I}, \mathbf{P})}$ denotes the likelihood ratio between π_θ and the old policy model π_{old} .
 794 The clipping threshold ϵ regulates the extent to which the policy model may update in each step
 795 to stabilize training. β controls the KL divergence regularization term that constrains π_θ to remain
 796 close to the reference model π_{ref} , which is the model at the start of reinforcement learning. \Rightarrow Back
 797 to main paper Section 3.2.2.
 798

D GROUNDING REWARD DETAILS

800 To fulfill the three criteria mentioned in the main paper, we design three sub-rewards. First, we
 801 compute the average intensity within each bounding box and then take the mean across all boxes.
 802 This encourages the model to identify compact regions that align with the highlighted areas, yielding
 803

810 higher rewards when bounding boxes accurately capture potential flaws. Second, we measure the
 811 Intersection over Union (IoU) between each pair of bounding boxes and apply a penalty for large
 812 overlaps, which discourages redundant box predictions and promotes compactness in number. Fi-
 813 nally, we compute the ratio between the area covered by the union of all bounding boxes and the
 814 total intensity of the heatmap, ensuring that the highlighted regions are fully covered. When the
 815 heatmap is blank and no bounding boxes are predicted, we assign a reward of 1. Conversely, if a
 816 heatmap contains highlighted regions but no bounding boxes are predicted, or if bounding boxes are
 817 predicted on a blank heatmap, we assign a reward of 0. \Rightarrow Back to main paper Section 3.2.2.

818 E EXPERIMENTAL DETAILS

820 E.1 DATASETS

824 **RichHF-18K:** is a subset of the Pick-a-Pic, consisting of 16K training samples, 1K validation sam-
 825 ples, and 1K test samples. For each text–image pair, two heatmaps and four fine-grained scores are
 826 annotated by a total of 27 annotators.

827 **GenAI-Bench:** It contains 1,600 prompts designed to cover essential visuo-linguistic compositional
 828 reasoning skills, with prompts sourced from professional graphic designers experienced in T2I sys-
 829 tems. More than 15,000 human ratings are collected across ten different T2I models, ensuring both
 830 diversity and difficulty.

831 **TIFA:** The test set includes 800 generated images based on 160 text inputs from TIFA v1.0. These
 832 images are produced by five generative models and annotated by two independent annotators, pro-
 833 viding additional benchmarks for evaluating generalization.

836 E.2 EXTENDED QUANTITATIVE RESULTS

838 In Table 6, we provide additional quantitative results on the RichHF-18K dataset. Compared with
 839 the main paper, we include the self-evaluated baseline RichHF and ImageDoctor with the fast infer-
 840 ence mode, with additional heatmap metric Normalized Scanpath Saliency (NSS) and AUC-Judd.
 841 The fast inference mode is motivated by scenarios where only quantitative scores are needed for effi-
 842 ciency, such as when serving as a reward function. To enable this, we append the input prompt with
 843 a fixed reasoning template—`<think> </think> <answer>`—as if the reasoning chain were
 844 already completed, allowing ImageDoctor to directly output scores and heatmaps without explicit
 845 reasoning chains. As shown in Table 6, this variant incurs only a minor performance drop com-
 846 pared to the full model, while maintaining high accuracy with significantly improved speed. For
 847 this reason, we adopt this faster variant in Flow-GRPO and DenseFlow-GRPO, where efficiency in
 848 advantage computation is critical.

849 E.3 QUALITATIVE RESULTS

851 Fig. 7 presents ImageDoctor’s responses given an image–prompt pair. We observe that ImageDoctor
 852 first localizes potential flaw regions, where its reasoning and heatmap predictions closely align. For
 853 example, it correctly identifies misaligned keywords such as *drinking lemonade* and *making a lot of*
 854 *phone calls*. In addition, it detects artifacts appearing in the image, including unnatural glass shapes,
 855 distorted hands, unrealistic liquid in the glass, and the phone. Finally, the heatmaps accurately depict
 856 the misaligned and implausible areas, highlighting ImageDoctor’s strong localization and reasoning
 857 capabilities and alignment with human preferences. **More qualitative results are shown in Figs. 10**
 858 **to 12..**

860 E.4 ADDITIONAL HEATMAP VISUALIZATION

863 As shown in Fig. 8, we provide additional heatmaps for qualitative comparison. \Rightarrow Back to main
 864 paper Section 5.3.

864
865 Table 6: Score prediction and heatmap prediction results on RichHF-18K. \downarrow indicates lower is better
866 and \uparrow indicates higher is better. $GT = 0$ refers to empty ground truth heatmap. $GT > 0$ refers
867 to heatmaps with artifact of misalignment. There are total 69 and 144 out of 955 test samples are
868 empty for artifact and misalignment heatmaps. RichHF: results reported in the paper. RichHF¹:
869 self-evaluated results from the official checkpoint.

(a) Performance comparison of score prediction.

	Plausibility		Aesthetics		Semantic Alignment		Overall		Average	
	PLCC \uparrow	SRCC \uparrow	PLCC \uparrow	SRCC \uparrow	PLCC \uparrow	SRCC \uparrow	PLCC \uparrow	SRCC \uparrow	PLCC \uparrow	SRCC \uparrow
ResNet-50 (He et al., 2016)	0.495	0.487	0.370	0.363	0.108	0.119	0.337	0.308	0.328	0.319
CLIP (Radford et al., 2021)	0.390	0.378	0.357	0.360	0.398	0.390	0.353	0.352	0.374	0.370
PickScore (Kirstain et al., 2023)	0.010	0.028	0.131	0.140	0.346	0.340	0.202	0.226	0.172	0.183
RichHF (Liang et al., 2024)	0.693	0.681	0.600	0.589	0.474	0.496	0.580	0.562	0.586	0.582
RichHF ¹ (Liang et al., 2024)	0.704	0.694	0.636	0.618	0.563	0.602	0.648	0.634	0.638	0.637
ImageDoctor-fast	0.722	0.712	0.675	0.656	0.793	0.792	0.728	0.700	0.729	0.715
ImageDoctor	0.727	0.711	0.681	0.662	0.808	0.799	0.745	0.725	0.741	0.724

(b) Performance comparison of artifact heatmap prediction.

	All data		$GT = 0$		$GT > 0$			
	MSE \downarrow	MSE \downarrow	CC \uparrow		KLD \downarrow	SIM \uparrow	NSS \uparrow	AUC-Judd \uparrow
			CC \uparrow	KLD \downarrow				
ResNet-50 (He et al., 2016)	0.00996	0.00093	0.506	1.669	0.338	2.924	0.909	
RichHF (Liang et al., 2024)	0.00920	0.00095	0.556	1.652	0.409	3.085	0.913	
RichHF ¹ (Liang et al., 2024)	0.00920	0.00080	0.545	1.568	0.375	1.808	0.893	
ImageDoctor-fast	0.00879	0.00091	0.569	1.483	0.405	1.877	0.903	
ImageDoctor	0.00891	0.00076	0.571	1.477	0.412	1.884	0.903	

(c) Performance comparison of misalignment heatmap prediction.

	All data		$GT = 0$		$GT > 0$			
	MSE \downarrow	MSE \downarrow	CC \uparrow		KLD \downarrow	SIM \uparrow	NSS \uparrow	AUC-Judd \uparrow
			CC \uparrow	KLD \downarrow				
CLIP Gradient (Simonyan et al., 2013)	0.00817	0.00551	0.015	3.844	0.041	0.143	0.643	
RichHF (Liang et al., 2024)	0.00304	0.00006	0.212	2.933	0.106	1.411	0.841	
RichHF ¹ (Liang et al., 2024)	0.00300	0.00020	0.219	2.900	0.099	1.224	0.794	
ImageDoctor-fast	0.00310	0.00001	0.219	2.890	0.121	1.230	0.796	
ImageDoctor	0.00299	0.00003	0.225	2.863	0.108	1.257	0.801	

Prompt:
A recruiter with red hair in a sweater with button down shirt underneath, **drinking lemonade and making a lot of phone calls**.

<think> I need to focus on the bounding box area. Proposed regions (xyxy): 1:[249,86,375,186]; 2:[116,229,201,421]; 3:[285,234,334,283]; 4:[377,378,425,426].

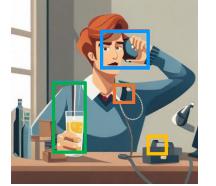
Semantic Alignment: The image successfully depicts a person with red hair wearing a sweater, but it fails to show the actively '**drinking lemonade**' or engaging in '**making a lot of phone calls**'. Therefore, I give it a score of 0.58.

Aesthetics: The overall visual appeal is diminished by the somewhat flat lighting and the generic, uninteresting background elements. Therefore, I give it a score of 0.58.

Plausibility: The image exhibits several visual inconsistencies, including the distorted and unnatural appearance of the **hands holding the phone and the glass** and the **phone itself looks like a generic, non-functional device**. Additionally, the **liquid in the glass** appears unnaturally bright and lacks realistic transparency. Therefore, I give it a score of 0.42.

Overall Impression: While the image correctly portrays the core subject of a person with red hair in a sweater, its significant **failure to depict the specified actions of drinking and making phone calls, combined with noticeable visual artifacts and a somewhat generic aesthetic**, results in a low overall quality impression. Therefore, I give it a score of 0.42. **</think>**

<answer> Semantic Alignment score: 0.58; Aesthetic score: 0.58; Plausibility score: 0.42; Overall Impression score: 0.42 **</answer>**



Misalignment Artifact

Figure 7: Example of ImageDoctor Predictions.

E.5 ADDITIONAL DENSE-GRPO RESULTS

In Fig. 8, we provide additional comparison between Flow-GRPO refined with PickScore and DenseFlow-GRPO refined by ImageDoctor. \Rightarrow Back to main paper Section 5.3.

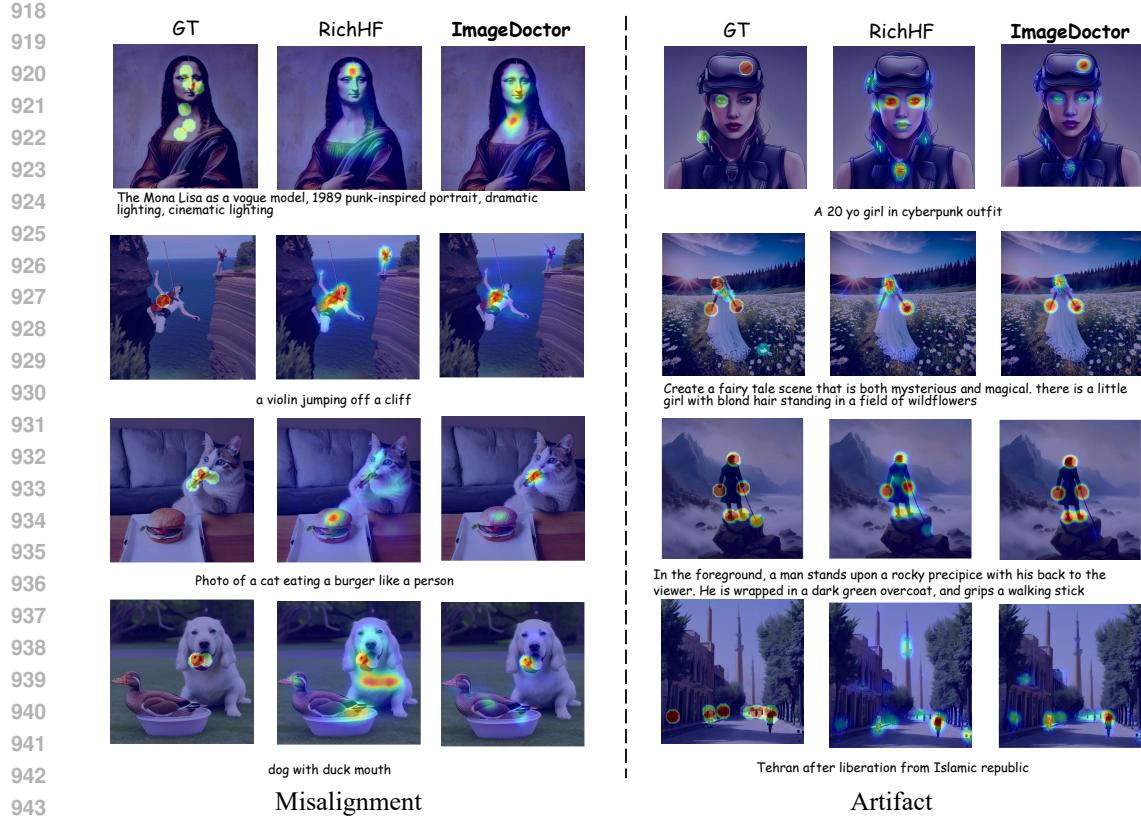


Figure 8: Additional heatmap visualization.

Figure 9: Additional DenseFlow-GRPO visualization.

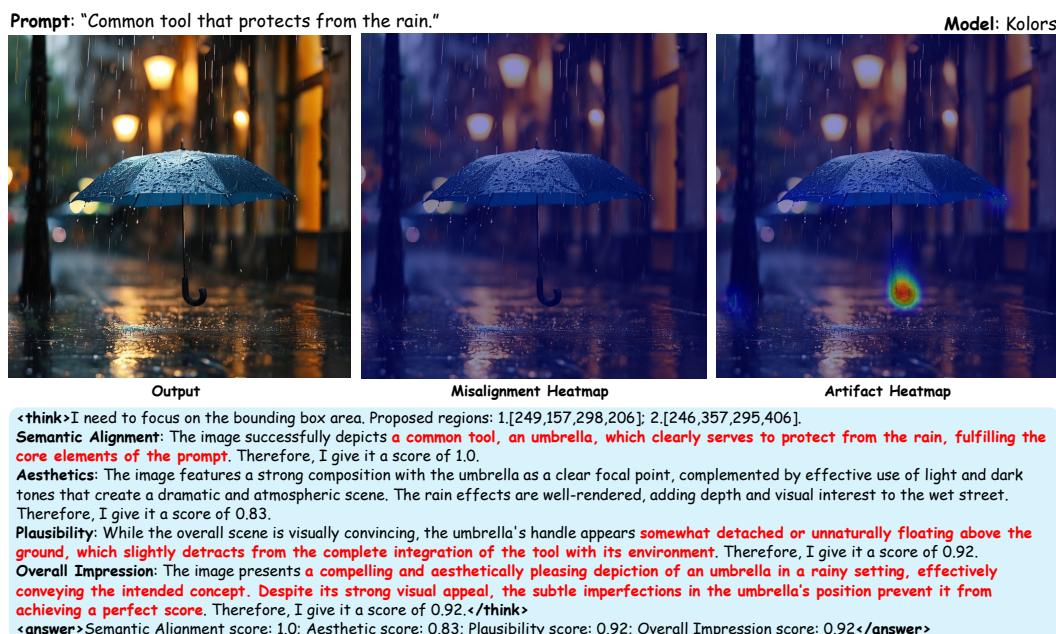
972 F LIMITATIONS
973
974

975 While ImageDoctor demonstrates strong capability in providing interpretable multi-aspect scoring
976 with spatially grounded feedback, it is important to acknowledge certain limitations that may affect
977 its generalizability and applicability.

978 **Challenge of large-scale fine-grained annotation.** Collecting detailed annotations—including
979 multi-aspect scores and heatmaps—is time-consuming and labor-intensive, which limits the volume
980 of available data. The dataset we trained on, i.e. RichHF-18K, is a subset of Pick-a-Pic, which
981 is mostly generated by some old image generation models, e.g. Stable Diffusion XL. This constraint
982 in both scale and recency can restrict the full potential of ImageDoctor. Nevertheless, in this work
983 we show that even with limited and somewhat outdated annotations, ImageDoctor can be effectively
984 trained and still provide valuable dense feedback as a verifier, a reward function, and a metric.

985 **Human preference is subjective.** Quantifying image quality is inherently challenging because different
986 people may perceive the same image in very different ways, making it difficult to establish a
987 universally agreed-upon standard. This subjectivity often results in inconsistent annotations, which
988 can affect dataset quality. It also affects heatmap annotations: for instance, annotators may disagree
989 on the exact regions that constitute misalignment, leading to noisy supervision. Consequently, ImageDoctor
990 achieves lower performance on misalignment heatmaps compared to artifact heatmaps.

991 **Tradeoff between Interpretability and Efficiency.** While ImageDoctor offers substantially improved
992 interpretability through its reasoning chains and pixel-level diagnostics, this naturally introduces
993 additional inference cost compared to scalar-only evaluators. This reflects an inherent trade-off
994 between interpretability and efficiency: scalar metrics are compact but cannot explain why an
995 image is deficient, whereas ImageDoctor’s structured reasoning enables clear attribution of issues
996 such as aesthetic flaws, semantic misalignment, or implausible regions. To maintain practicality for
997 real-world deployment, we also provide a fast inference mode, in which the model is trained with
998 reasoning chains but prompted to skip them at inference by immediately emitting an end-of-thinking
999 token. This variant preserves comparable accuracy while significantly reducing computational overhead.
1000 Together, these two modes offer a flexible spectrum between interpretability and efficiency,
1001 allowing users to select the configuration that best fits their application needs.



1024 Figure 10: Example of ImageDoctor Predictions with Prompt from WISE (Niu et al., 2025).
1025

1026

1027

1028 **Prompt:** "Traditional food of the Mid-Autumn Festival"

1029

1030

1031

1032

1033

1034

1035

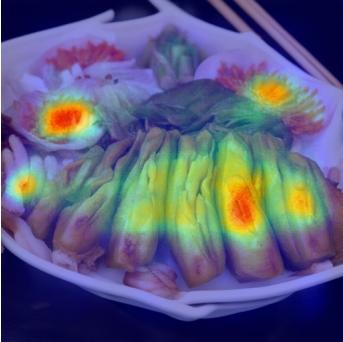
1036

1037

1038

1039

Output



Misalignment Heatmap

Artifact Heatmap

Model: SD3.5-medium

<think>I need to focus on the bounding box area. Proposed regions: 1.[347,19,512,160]; 2.[14,19,288,222]; 3.[260,193,411,434]; 4.[0,219,104,329].

Semantic Alignment: The image fails to **convey any specific cultural context or festive atmosphere related to the "Mid-Autumn Festival"**, leading to a significant misalignment with the prompt's implied meaning. Therefore, I give it a score of 0.

Aesthetics: The image exhibits aesthetic qualities, featuring a well-balanced composition with vibrant colors and appealing lighting that highlights the textures of the food. The arrangement of the various food items creates an inviting and appetizing presentation, though some of the smaller garnishes appear slightly less defined than the main components. Therefore, I give it a score of 0.75.

Plausibility: While the food generally appears realistic, there are minor visual inconsistencies that detract from its complete plausibility. Specifically, some of the **smaller garnishes, particularly those on the plate, exhibit a somewhat artificial or overly smooth texture**, lacking the natural imperfections expected in real food. Therefore, I give it a score of 0.83.

Overall Impression: Despite its high aesthetic appeal and general plausibility, the image **falls short in conveying the specific cultural context of the "Mid-Autumn Festival" which was a key aspect of the prompt. This semantic disconnect significantly impacts the overall impression**, as the image does not fully fulfill the creative intent behind the prompt. Therefore, I give it a score of 0.18.</think>

<answer>Semantic Alignment score: 0.; Aesthetic score: 0.75; Plausibility score: 0.83; Overall Impression score: 0.18</answer>

Figure 11: Example of ImageDoctor Predictions with Prompt from WISE (Niu et al., 2025).

1040

1041

1042

1043

1044

1045

1046

1047

1048

Prompt: "The item worn to protect the head while riding a motorcycle."

Model: Flux-schnell

Output

Misalignment Heatmap

Artifact Heatmap

<think>I need to focus on the bounding box area. Proposed regions: 1.[178,86,242,150]; 2.[290,162,339,211]; 3.[331,173,380,222].

Semantic Alignment: The image clearly depicts a **helmet worn by a person riding a motorcycle, accurately representing key elements of the prompt**. The helmet is designed for protection, the prompt specifically requested "the item worn to protect the head," and the helmet's design, including its visor and chin strap, effectively fulfills this aspect without any visual misalignments. Therefore, I give it a score of 1.0.

Aesthetics: The composition is strong, with the subject centrally framed and well-lit against a softly blurred background, creating a visually appealing scene. However, the reflections on the helmet's visor appear somewhat distorted or smudged, slightly detracting from the overall polish and realism of the image. Therefore, I give it a score of 0.75.

Plausibility: While the image generally presents a realistic scene, there are subtle visual inconsistencies that reduce its overall plausibility. Specifically, the **text and branding on the helmet's front panel appear somewhat blurry and indistinct, lacking crisp detail, and the reflections on the visor show minor distortions rather than clear, natural light patterns**. Therefore, I give it a score of 0.67.

Overall Impression: The image successfully conveys the intended concept of a helmet for motorcycle riding, making it largely effective. However, the minor imperfections in the helmet's details, such as the slightly distorted text and reflections, along with the somewhat artificial appearance of the reflections on the visor, prevent it from achieving a higher level of photographic realism and excellence. Therefore, I give it a score of 0.75.</think>

<answer>Semantic Alignment score: 1.0; Aesthetic score: 0.75; Plausibility score: 0.6; Overall Impression score: 0.75</answer>

Figure 12: Example of ImageDoctor Predictions with Prompt from WISE (Niu et al., 2025).

1077

1078

1079

1080 **G PROMPT FOR IMAGEDOCTOR**
10811082 The prompt to ask ImageDoctor to multi-aspect scores and spatial feedback with reasoning is as
1083 following:
10841085 **Prompt for ImageDoctor for T2I Evaluation**

```

1086
1087 <image>
1088 Given a caption and an image generated based on this caption,
1089 please analyze the provided image in detail. Evaluate
1090 it on various dimensions including Semantic Alignment
1091 (How well the image content corresponds to the caption),
1092 Aesthetics (composition, color usage, and overall artistic
1093 quality), Plausibility (realism and attention to detail),
1094 and Overall Impression (General subjective assessment of the
1095 image's quality). For each evaluation dimension, provide
1096 a score between 0-1 and provide a concise rationale for
1097 the score. Use a chain-of-thought process to detail your
1098 reasoning steps, and enclose all potential important areas
1099 and detailed reasoning within <think> and </think> tags.
1100 The important areas are represented in following format:
1101 I need to focus on the bounding box area. Proposed regions
1102 (xyxy): ..., which is an enumerated list in the exact
1103 format:1.[x1,y1,x2,y2];2.[x1,y1,x2,y2];3.[x1,y1,x2,y2]...
1104 Here, x1,y1 is the top-left corner, and x2,y2 is the
1105 bottom-right corner. Then, within the <answer> and </answer>
1106 tags, summarize your assessment in the following format:
1107 "Semantic Alignment score: ...
1108 Aesthetic score: ...
1109 Plausibility score: ...
1110 Overall Impression score: ...
1111 Misalignment Locations: ...
1112 Artifact Locations: ...
1113 No additional text is allowed in the answer section.
1114 Your actual evaluation should be based on the quality of the
1115 provided image.
1116 Your task is provided as follows:
1117 Text Caption: [PROMPT]
1118
1119
1120
1121
1122
1123
```

H LLM USAGE STATEMENT

1117 We employed Gemini-2.5 Flash for preparing reasoning path generation and ChatGPT5 to refine
1118 sentence structure and enhance the readability of the manuscript. In addition, Nano Banana was
1119 used to assist in generating illustrative figures for clearer presentation. The LLMs were not involved
1120 in research ideation or experimental design. LLM assistance on language editing did not influence
1121 the substance of the work.

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133