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Abstract001

Legal notices are pervasive online. Digital002
spaces are littered with legally binding terms003
and policies that govern digital rights and shape004
access to justice. Yet many of those texts are005
opaque — difficult to comprehend and study.006
Our research addresses that gap. First, we in-007
troduce the Multi-Genre Online Terms and Pri-008
vacy Policies (MOTPP), a synchronic dataset009
composed of the online terms and privacy poli-010
cies of prominent digital platforms across nine011
genres. The dataset contains 835 texts and 5.89012
million tokens. Second, we provide an inter-013
disciplinary analysis that illustrates linguistic014
features of the corpus and presents machine015
learning tools for scrutinizing digital contracts016
at scale. Our exploratory application leverages017
machine learning and synthetic data to analyze018
key content for consumers, focusing on terms019
that determine access to justice. The annotated020
dataset, models, and other resources for this pa-021
per are available at GitHub and Hugging Face.022

1 Introduction023

Doctor Kanokporn Tangsuan was a family024

medicine specialist in New York. While vacation-025

ing in Florida, she went to an Irish pub at a Walt026

Disney World resort for lunch with her husband,027

Jeffrey Piccolo, and his mother. Knowing that028

Doctor Tangsuan had life-threatening food aller-029

gies, they took extensive precautions when order-030

ing from the menu. Despite that, she had an acute031

anaphylactic reaction to the food after leaving the032

restaurant. Sadly, she died soon afterwards, aged033

42.034

When her family sued the pub and Disney in a035

Florida court, an obscure legal term in an equally036

obscure contract suddenly entered the spotlight. In037

2019, about five years before their lunch at the pub,038

Mr. Piccolo signed up for a Disney+ account online039

(?). The account registration terms contained a040

broad arbitration clause. According to Disney’s041

lawyers, that clause blocked the family from suing 042

the company in court. They could only bring legal 043

claims via private arbitration. 044

The incident attracted media attention and pub- 045

lic scorn, which ultimately compelled Disney to 046

change their stance on arbitration in this partic- 047

ular dispute. Still, the events highlighted a sys- 048

temic trend: the prevalence and reach of arbitration 049

clauses in online contracts. Doctor Tangsuan’s sit- 050

uation is far from an isolated case. Whether people 051

encounter racial discrimination on Airbnb (?) or 052

suffer life-changing injuries on an Uber ride (?), 053

arbitration clauses determine access to justice at 054

societal scale, particularly in the United States. 055

Almost all digital applications and websites im- 056

pose standard form contracts on their users. These 057

texts are often referred to as terms of use, terms of 058

service, and user agreements (collectively, TOUs). 059

As binding contracts, TOUs are the central legal 060

construct between users and digital platforms. Like 061

most contracts, TOUs define rights and responsi- 062

bilities, allocate risk, set mechanisms for handling 063

disputes, specify governing law, and more. Most 064

websites also have a privacy policy (PP), which 065

provides notice to users about data collection and 066

management. A persistent challenge for the public 067

is the opaqueness of these documents, which are 068

lengthy and linguistically complex. Despite their 069

far-reaching economic and social implications, nav- 070

igating TOUs and PPs is virtually impossible for 071

the general public. 072

This paper introduces the Multi-Genre Online 073

Terms and Privacy Policies (MOTPP) corpus, a syn- 074

chronic dataset composed of 421 TOUs and 414 075

PPs from nine genres of digital platforms. MOTPP 076

contains approximately 5.89 million tokens. The 077

dataset is unlike any other widely available legal 078

language dataset in terms of the scope, genre clas- 079

sifications of the texts, and the annotations for key 080

legal terms. Following FAIR principles (Wilkinson 081

et al., 2016), it is freely available at GitHub and 082
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Hugging Face.083

In addition to the MOTPP corpus, this paper in-084

troduces frameworks that facilitate the analysis of085

these contracts at scale. We demonstrate a work-086

flow for content detection, which enables users to087

efficiently navigate this complex legal landscape088

with minimal manual inputs. In our case study,089

we propose several strategies for generating syn-090

thetic training data as we evaluate domain-specific091

classifiers that detect arbitration clauses, opt-out092

provisions, and class waivers.093

The contributions of this interdisciplinary work094

include: (a) a novel and publicly available dataset095

of legal texts that govern digital rights and privacy,096

(b) a baseline analysis of linguistic characteristics097

across TOUs and PPs from various genres of digi-098

tal platforms, (c) an exploratory application of an099

automated classifier that detects and extracts key100

content in TOUs, and (d) code, synthetic data, and101

models to reproduce the results. These contribu-102

tions offer public resources for researchers, poli-103

cymakers, citizens, and communicators seeking to104

navigate this realm of digital governance.105

2 Background106

2.1 Disclosure in Digital Spaces107

Disclosure is central to "notice and choice" and108

"informed consent" models of digital governance109

and privacy. In theory, such models enable indi-110

viduals to self-manage their digital rights (Solove,111

2013). In practice, people are inundated with a112

never-ending stream of notices and privacy deci-113

sions. Notices are ubiquitous in digital spaces:114

cookie banners, pop-up notices, privacy policies,115

contract terms, updates, and so on.116

Because digital platforms mediate unprece-117

dented amounts of data and human activity, their le-118

gal texts play an outsized role in digital governance119

(Kim and Telman, 2015; ?). But most of those texts120

are incomprehensible to the general public. Com-121

pared to other forms of written language, they are122

exceptionally dense and complex in their linguistic123

forms. For a variety of reasons, very few people124

ever attempt to read them (Bakos et al., 2014).125

2.2 Legal Clauses of Interest126

For our initial experiments, we focused on dispute127

resolution terms: arbitration clauses, opt-out provi-128

sions, and class waivers. We selected those clauses129

for experimentation because of their importance130

for digital rights and access to justice.131

Arbitration is a form of private dispute reso- 132

lution. As an alternative to litigation, arbitration 133

takes place outside of court systems. Like litiga- 134

tion, arbitration is adversarial and binding. Unlike 135

litigation, arbitration is private and often confiden- 136

tial. Arbitration also lacks fundamental features of 137

judicial proceedings: juries and the right to appeal. 138

Procedures and discovery are also streamlined in 139

arbitration, which can be faster and cheaper than 140

litigation. 141

Because they curb the public’s right to access 142

justice, arbitration clauses are a controversial fea- 143

ture of consumer contracts. They are are espe- 144

cially prevalent in the United States, where the le- 145

gal system enables companies to funnel consumer 146

disputes toward arbitration. Opt-out provisions 147

within arbitration clauses typically offer users a 148

limited window to notify the platform of their pref- 149

erence to opt-out of arbitration. Class waivers, 150

commonly paired with arbitration clauses, prevent 151

users from bringing claims against the platform as 152

a class or a group. 153

3 Related Work 154

Previous studies have assessed the linguistic com- 155

plexity of legal texts, including online terms and 156

policies. Early contributions assessed the reading 157

difficulty of online TOUs using traditional read- 158

ability formulas like the Flesch-Kincaid test (Rus- 159

tad and Koenig, 2014; Benoliel and Becher, 2019). 160

More recent works have broadened the scope 161

of analysis with more robust linguistic metrics. 162

Martínez et al. (2022) measured center-embedded 163

clauses and passives in contract language. In ad- 164

dition, previous work measured the syntactic com- 165

plexity of verb and noun structures in a dataset of 166

TOUs and PPs. 167

There are also a number of related datasets. For 168

instance, Amos et al. (2021) and ? assembled large 169

PP datasets, each with over one million policies. 170

Wagner (2022) collected a corpus of PPs from 1996- 171

2021 and assessed aspects of longitudinal change. 172

Other datasets focus on TOUs. Marotta-Wurgler 173

and Taylor (2013) examine change over time in 174

standard form consumer agreements. 175

Other collections include targeted datasets with 176

annotations, such as a corpus of 510 contracts in 177

twenty-five different categories (Hendrycks et al., 178

2021) or a corpus of German consumer contracts 179

(?). Researchers are also developing tools to navi- 180

gate TOUs and PPs. Claudette, an automated detec- 181
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tor of potentially unfair clauses in online consumer182

contracts (Lippi et al., 2019). ? designed a browser183

extension to detect opt-out choices in privacy poli-184

cies. Studies such as Lippi et al. (2019) are increas-185

ingly testing machine learning and natural language186

processing techniques to analyze and assess con-187

tract language. Such techniques are emerging in188

interdisciplinary legal NLP research more broadly189

(Choi, 2023).190

Despite these valuable contributions, gaps191

in publicly available data and toolkits remain.192

MOTPP offers a dataset of TOUs and PPs from193

prominent platforms across nine genres with anno-194

tations of key terms. We expand on that contribu-195

tion by illustrating the linguistic characteristics of196

these legal texts. For context, we compare those197

characteristics across document categories (TOUs198

versus PPs), genres (fintech versus social), and ex-199

ternal corpora (contract language versus general200

English).201

Finally, we test a machine learning workflow for202

content exploration related to disputes and access203

to justice. We explore the use of synthetic texts204

as training data for specialized, domain-specific205

classifiers by evaluating their ability to detect com-206

plex (legal) concepts in the TOUs (?). Synthetic207

data has been particularly popular for training and208

fine-tuning language models (?), but recent studies209

highlight mixed results in the context of computa-210

tional and social sciences research (?). In this paper,211

we follow and build on ? who propose zero and212

few-shot strategies for generation. We expand on213

their work by introducing a "contrastive few-shot"214

prompt. Our strategy aims to enhance variety in215

the generated data by instructing the model to build216

on randomly sampled combinations of positive or217

negative examples.218

4 Corpus Compilation, Composition,219

Statistics, and Metadata220

Our dataset is synchronic and consists of 421 TOUs221

and 414 PPs from digital platforms. Each policy222

was manually scraped from the platform’s official223

website and followed the same set of procedures224

for processing. The workflow proceeded as follows.225

Scraped texts were first saved as document files,226

then converted through a shell script to plain text.227

The texts were then cleaned with a python script228

to remove irrelevant characters and aberrations in229

formatting.230

Table 1 illustrates the corpus composition across231

Figure 1: Distribution of Tokens per Contract Genre

the nine specific genres of platforms. Table 1 shows 232

the number of TOUs, PPs, and the respective token 233

counts by category. The aggregate word counts 234

show that TOUs tend to be longer than PPs, aver- 235

aging 6,642 and 4,009, respectively. 236

Figure 1 visualizes the aggregate (TOUs plus 237

PPs) tokens by genre. The social genre is the largest 238

category in the dataset, followed by fintech and 239

gambling. Within the social genre, there are distin- 240

guishable sub-genres: chat, creator, social network, 241

Q&A, subculture, alt-tech, and others (Zuckerman 242

and Rajenda-Nicolucci, 2021). For this study, we 243

include these sub-genres as well as dating applica- 244

tions within the social category. 245

Other platform genres include education, enter- 246

tainment, productivity, shopping, gaming, and AI. 247

These categories are generally consistent with ap- 248

plication categories on the Apple App Store and 249

the Google Play app store. Platforms were then 250

selected within our categories based on download 251

rankings as well as popularity data from Statista 252

and the Pew Research Center (Clement, 2023). 253

5 Linguistic Characteristics and Example 254

Analyses 255

In this section, we detail linguistic characteristics 256

of the corpus, including annotations for part-of- 257

speech (POS) tags and linguistic complexity met- 258

rics. Our processing for linguistic characteristics 259

and complexity is conducted in R using quanteda 260

(Benoit et al., 2018), cleanNLP (Arnold, 2021), ud- 261

pipe (Wijffels, 2023), and the tidyverse (Wickham 262

et al., 2019). 263

Tables 2 and 3 show the normalized results for 264

verbs, nouns, embedding, and center-embedding. 265

The results are divided by policy type, genre, and 266

POS. Results for TOUs are in Table 2 and PPs are 267

in Table 3. 268

The density of verbs and nouns is normalized as 269
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Genre TOUs Tokens (TOUs) PPs Tokens (PPs)
Travel 28 280929 28 244335
Social Media 75 504107 74 324320
Education 39 220339 38 182830
Entertainment 23 155400 23 122449
FinTech 75 625368 71 279753
Gambling 47 471790 47 247774
Productivity 38 212868 38 153715
Shopping 31 293305 31 160786
Gaming 33 221486 33 124671
AI 32 159871 31 132463
Totals 421 3630121 414 2258205

Table 1: Corpus Composition: TOUs and PPs

Figure 2: Verbal Complexity Results by Genre

a function of total words per contract category per270

five-hundred words, while embedding is normal-271

ized at the sentence level. Similar to Martínez et al.272

(2022), we counted embedded clauses as those con-273

taining tokens tagged by udpipe as having clausal274

subject, clausal complement, open clausal comple-275

ment, adjectival clause, and adverbial clause Uni-276

versal Dependency relationships (Wijffels, 2023).277

Clauses were considered center-embedded if to-278

kens tagged with these relationships were not fol-279

lowed by punctuation (Martínez et al., 2022).280

We also use the POS tags to measure the syntac-281

tic complexity of verb structures. For that measure-282

ment, we apply Fichtner’s C (F_C), which char-283

acterizes verbal complexity as a result of lexical284

verbs per sentence (Fichtner, 1980; Mollet et al.,285

2010; Gries, 2016). Higher F_C scores indicate286

more complex verb structures in a text.287

Figure 2 shows the average verbal complexity288

across the genres in MOTPP and compares those289

results with two prominent external corpora: the290

Brown Corpus of General American English (Fran-291

cis and Kučera, 1979) and the Collected Works of292

Jane Austen (Silge and Robinson, 2016). Interest-293

ingly, verbal complexity is higher for TOUs for294

all document categories — above privacy policies,295

Figure 3: Flesch-Kincaid Results by Genre

the Austen Corpus, and the Brown Corpus. Across 296

genres, gaming TOUs have the highest average 297

verbal complexity overall, following by gambling, 298

education, and shopping. 299

Figure 3 displays the results of a traditional 300

readability metric, the Flesch-Kincaid (F-K) score. 301

Like other traditional readability metrics, F-K ap- 302

proximates reading difficulty as a function of words 303

per sentence (representing syntactic complexity) 304

and syllables per word (representing lexical diffi- 305

culty) (Kincaid et al., 1975). As metrics for scoring 306

reading difficulty, traditional readability metrics 307

are fundamentally flawed; they have major tech- 308

nical and theoretical shortcomings. Despite those 309

limitations, we favor calculating the F-K scores to 310

enable comparison with previous legal and interdis- 311

ciplinary studies on contract language. The results 312

shown in Figure 3 suggest that TOUs and PPs are 313

much more difficult to comprehend than a sam- 314

ple of literature (the Austen Corpus) and general 315

English (the Brown Corpus). 316

The results in Figures 2 and 3 also reveal an in- 317

teresting divergence between the metrics. Whereas 318

the F_C results highlight a marked difference in 319

syntactic complexity between TOUs and PPs, the 320

F-K results do not. As the F-K results show, PPs 321
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Genre Verbs Nouns Embedding Center-Embedding
AI 51.3 138.8 1.5 0.61
Education 49.1 141.4 1.6 0.63
Entertainment 49.1 140.1 1.6 0.62
FinTech 51.0 146.6 1.6 0.63
Gambling 50.2 137.2 1.7 0.65
Gaming 48.8 139.8 1.7 0.64
Productivity 47.2 139.2 1.6 0.60
Shopping 48.2 141.1 1.6 0.63
Social 49.3 137.3 1.5 0.59

Table 2: Verb, Noun Density and Embedding: TOUs

Genre Verbs Nouns Embedding Center-Embedding
AI 57.3 141.1 1.3 0.58
Education 49.1 141.4 1.6 0.63
Entertainment 58.4 148.5 1.6 0.63
FinTech 56.5 145.9 1.6 0.63
Gambling 56.6 139.5 1.75 0.66
Gaming 55.6 139.5 1.67 0.64
Productivity 57.2 140.4 1.5 0.59
Shopping 55.1 143.3 1.4 0.63
Social 58.1 135.7 1.6 0.63

Table 3: Verb, Noun Density and Embedding: PPs

and TOUs contain relatively long sentences and322

long words relative to the Brown and Austen cor-323

pora. However, variations in syntactic complexity324

between TOUs and PPs go undetected by F-K. This325

divergence is consistent with previous studies that326

compare more nuanced features of syntactic com-327

plexity in TOUs and PPs (Samples et al., 2024).328

We suspect that this divergence highlights the lower329

sensitivity — or perhaps dullness — of traditional330

readability metrics to features of linguistic com-331

plexity.332

6 Navigating the Legal Landscape333

In this section, we discuss a machine learning work-334

flow for the exploration of the legal content in335

MOTPP. While crucially important to our online336

as well as offline lives, legal documents remain337

opaque, difficult to access, and bewildering in their338

complexity. The workflow we envisage allows339

users to analyze key TOU content at scale, lever-340

aging machine learning to obtain a corpus-level341

overview of content distribution. From a technical342

perspective, our experiments focus on strategies343

that effectively detect content based on only a min-344

imal amount of human input in the form of "seed345

examples" and annotations. Toward this end, we346

propose and evaluate a machine learning pipeline347

that leverages synthetic data to facilitate the explo-348

ration of textual data, allowing for more critical349

engagement with these TOUs. Our ultimate goal350

is to democratize access to these often-overlooked351

but important legal texts through machine learning. 352

In this paper, we report on the initial efforts to- 353

wards building an analytical space that enables spe- 354

cialists and non-specialists alike to demystify and 355

explore the content of the TOUs and PPs they en- 356

counter. This section proceeds as follows. We 357

first introduce the types of information we wish 358

to extract and then turn to describing the input 359

data. Then, we elaborate on the various techniques 360

used for generating synthetic data and evaluate the 361

performance of models trained on such artificially 362

generated examples. Lastly, we apply the best strat- 363

egy to our corpus, to get a sense how well these 364

models perform "in the wild." 365

6.1 Machine Learning Workflow 366

From a machine learning point of view, this pa- 367

per is principally concerned with evaluating the 368

role of synthetic data for training specialized clas- 369

sifiers based on minimal human input. Whereas 370

human input is essential to steer the model in the 371

right direction, we want to test the effectiveness of 372

synthetic data in the direction signaled by the user 373

to build more capable domain-specific and open- 374

source models for the exploration of legal texts. 375

Before we turn to outlining the workflow and 376

discussing the results, we address a common query: 377

Why not simply use ChatGPT for document clas- 378

sification? We do compare our results to GPT- 379

4o, which works well. However, while we ac- 380

knowledge that large language models perform 381
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well at this classification task, we are more inter-382

ested in exploring how we can inject knowledge383

from the larger models into smaller, specialized384

models through synthetic data. This will enable385

us to operate faster, cheaper, and hopefully with386

similar efficacy as the mammoth models.387

6.1.1 Seed examples and annotations388

We start with set text fragments, also referred to389

as "seeds," St for a target category t. This can be a390

very small number. For our experiments, we used391

a handful of arbitration, opt-out and class waiver392

clauses as the initial inputs. We expand these seeds393

to a larger set of retrieved examples Rt from the394

corpus C.395

By embedding seeds sseed in St each sentence sc396

in C we can compute the similarity of the input ex-397

amples to content in the corpus. For our purposes,398

we encoded each text using the Nomic AI Text Em-399

bedding Model (Brown, 2020), and then selected400

25 examples (from C) that exhibited high similarity401

to these seeds for further annotation At. We anno-402

tated these text fragments as either belonging to t403

or not.1404

6.1.2 Synthetic data generation405

We leveraged these annotated snippets to steer the406

synthetic examples Synt in a particular semantic407

direction, which hopefully captures our clauses (or408

concept of interest t) with accuracy. Below, we409

evaluate both the efficacy of different prompting410

strategies for generating synthetic data, as well as411

the number of examples needed to build an ade-412

quate domain-specific classifier ct In total, we gen-413

erate 250 positive and negative synthetic examples414

for each clause type, relying on different prompt-415

ing strategies. The exact prompt templates with416

examples can be found in the Appendix, but here417

we provide an overview of the most important char-418

acteristics. The prompts for generating positive419

examples start with: "You are a helpful AI that420

generates a new example a t clause." With t being421

either arbitration, opt-out, or class waiver.422

• Zero-shot: We provide a definition of t and423

ask the model to generate a new example.424

1More technically, we created two matrices, one which
encoded the sentences MC while the other MS comprised the
vector representation of the seeds. We then computed the co-
sine similarity between these two matrices, which resulted in
a new matrix Msim in which each sentence in C is scored with
respect to all the examples in St. Subsequently, we sorted Msim

by the maximum value in each row and sampled 25 examples
among the top 500 most similar sentences for annotation.

• Few-shot: We provide a definition and three 425

positive examples randomly sampled from 426

At. We then instruct the model to generate 427

a new example of t, with additional directions: 428

"You can combine elements of the three ex- 429

amples, but have to change the word order, 430

use synonyms, and change the sentence struc- 431

ture. The end result, however, has to remain 432

a t clause from a legal and semantic point of 433

view." 434

• Few-shot and contrastive: We repeat the few- 435

shot prompt, but add three randomly sampled 436

negative or "contrastive" examples. We add to 437

the instruction: "Make sure the new example 438

is very different from the contrastive exam- 439

ples. The end result, however, has to remain 440

a t clause from a legal and semantic point of 441

view." 442

6.1.3 Model training and evaluation 443

To evaluate different approaches to data generation, 444

we manually annotated 100 examples as a test set.2 445

We fine-tuned a distilbert-base-uncased model on 446

a concatenation of At and Synt for 5 epochs with a 447

learning rate of 1e-5, using AdamW as an optimizer. 448

Given the very small amount of training data, fine- 449

tuning larger models did not make sense, and in 450

the few experiments we conducted, results were 451

equal if not worse. Our initial experiments include 452

only annotated and synthetic data. To assess how 453

the model would fare in a more realistic scenario, 454

where it would encounter other types of contract 455

language, we added randomly sampled sentences 456

C as negative examples to both the training set 457

(n=200) and the test set (n=50). This step injects 458

more variety and noise in the evaluation procedure 459

and mimics how the model might fare in such an 460

environment.3 In each of our experiments we report 461

results for these different training routines. 462

Our experiments primarily gauge the relative 463

improvements of adding synthetic data to a small 464

set of 25 annotated examples which are used to 465

train our baseline model. While small, this model 466

could still be competitive, as a few words tend 467

to contain strong lexical signals for these clause 468

types. As a "skyline" of sorts we also report the 469

results obtained using GPT-4o. We report the best 470

2Following the same sample strategy as explained in the
previous footnote.

3Of course, the automatically assigned negative class might
be incorrect, but the chances are small. Moreover, we are most
interested in relative improvements.
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accuracy and macro-f1 scores after training for 5471

epochs.472

6.1.4 Results473

Table 4 reports the accuracy and macro-f1 scores474

for different prompting and data generation strate-475

gies. In all cases, the generation of synthetic data,476

even a few examples, resulted in better training477

data. Overall, the right instructions and a hand-478

ful of meaningful examples substantially improved479

model performance. These steps enabled the model480

to find occurrences of clauses that might have oth-481

erwise escaped one trained solely on examples ex-482

tracted from contracts. Overall, the few-shot sce-483

narios delivered the best results, greatly improving484

the macro-f1 scores (e.g., from 0.45 to 0.95 for485

class waivers). Based on these experiments, we486

cannot yet conclude that contrastive prompting con-487

sistently out-runs other approaches, but it appears488

to be a strong competitor. Improvements are not489

evenly spread across all clause types, with the opt-490

out clause posing more challenges, even though we491

still observe an increase of 0.31 points. Given the492

small size of the model and the minimal amount of493

training, the gains are impressive and are gradually494

coming closer to GPT-4o, but a consistent gap re-495

mains in all scenarios. In future research, we aim496

to investigate the results of increasing the diversity497

of synthetic data and of generating more data.498

As a case study and additional evaluation, we an-499

alyze the TOUs of AI applications. For this subset,500

we have access to document-level annotations (as501

opposed to sentence-level labels used in the previ-502

ous evaluations) which we can compare against our503

different fine-tuned models. In this case we would504

label the complete contracts as either zero or one,505

based on whether it contained a specific clause type506

or not.507

Table 6 reports the extent to which the models508

corresponded to human annotations at the contract509

level. We increase the size of the training and report510

macro-f1 scores for each scenario. For example,511

the train set only with n equal to 25, indicates that512

we fine-tuned our models on this number of an-513

notated examples. For the few shot scenario we514

added 50 synthetic texts (25 positive and negative515

examples) to the training set.516

In almost all scenarios, this addition of synthetic517

data results in better scores, showing potential ben-518

efits. Still, at the same time, creating synthetic data519

has yet to emerge as a panacea that will enable us520

solve the problem of annotation scarcity. Only after521

training on all annotated and synthetic data does 522

the macro-f1 score indicate that the classifier works 523

with increasing reliability. 524

7 Limitations 525

Several limitations are worth noting. First, while 526

these data represent a significant number of promi- 527

nent digital platforms across various genres, they 528

are not necessarily representative of the entire popu- 529

lation. Second, our focus on English-language texts 530

influences the results, as contracts differ across lan- 531

guages and jurisdictions. Third, the dataset is syn- 532

chronic, yet TOUs and PPs have shown to be quite 533

plastic, changing frequently (authors). Fourth, no 534

single approach to reading difficulty is exhaustive. 535

Our approach to linguistic complexity captures an 536

important spectrum of characteristics but does not 537

cover every dimension of complexity in these texts 538

(?). Finally, our experiment with the machine learn- 539

ing classifier is limited to arbitration-related clauses 540

and a subset of the data (two of the nine genres). 541

While arbitration-related clauses are key for access 542

to justice in the consumer context, we acknowledge 543

that there are other terms of interest we have yet to 544

classify. 545

8 Conclusion 546

This interdisciplinary work introduces MOTPP, a 547

novel corpus of digital legal texts. With annotations 548

of key terms, MOTPP is a curated dataset that rep- 549

resents TOUs and PPs across nine genres of digital 550

platforms. In addition to offering linguistic analy- 551

ses and potential avenues for continued research, 552

this paper pilots a toolkit: a machine learning clas- 553

sifier that identifies and extracts terms related to 554

disputes and access to justice. This work offers pub- 555

licly available resources for legal scholars and NLP 556

practitioners, policymakers, and citizens alike. 557

9 Statement of Reproducibility 558

Our dataset and code are available at GitHub and 559

Hugging Face so that all of our methods and analy- 560

ses can be reproduced. 561
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accuracy macro-f1
clause arbitration class waiver opt-out arbitration class waiver opt-out
prompt
train set only 0.38 0.51 0.60 0.30 0.34 0.38
zero shot 50 0.82 0.80 0.61 0.80 0.80 0.44
zero shot 100 0.85 0.81 0.66 0.84 0.81 0.56
zero shot 250 0.84 0.80 0.70 0.85 0.80 0.63
few shot 50 0.84 0.83 0.67 0.83 0.83 0.56
few shot 100 0.84 0.85 0.73 0.83 0.85 0.66
few shot 250 0.84 0.92 0.71 0.83 0.92 0.65
contrastive few shot 50 0.75 0.88 0.65 0.75 0.88 0.51
contrastive few shot 100 0.84 0.91 0.69 0.83 0.91 0.60
contrastive few shot 250 0.85 0.92 0.76 0.85 0.91 0.71
gpt-4o 0.97 0.99 0.95 0.95 0.99 0.95

Table 4: Accuracy and macro-f1 scores for different synthetic data generation strategies

accuracy macro-f1
clause arbitration class waiver opt-out arbitration class waiver opt-out
prompt
train set only 0.77 0.81 0.85 0.43 0.45 0.46
zero-shot 100 0.84 0.94 0.86 0.71 0.90 0.48
zero-shot 200 0.87 0.94 0.87 0.79 0.89 0.57
zero-shot 500 0.90 0.96 0.88 0.85 0.94 0.66
few-shot 100 0.88 0.95 0.85 0.81 0.90 0.46
few-shot 200 0.92 0.96 0.90 0.88 0.93 0.71
few-shot 500 0.93 0.97 0.90 0.91 0.95 0.71
contrastive few-shot 10 0.85 0.94 0.86 0.73 0.90 0.51
contrastive few-shot 200 0.89 0.96 0.88 0.81 0.94 0.66
contrastive few-shot 500 0.92 0.97 0.91 0.88 0.95 0.77
gpt-4o 0.97 0.99 0.95 0.95 0.99 0.95

Table 5: Accuracy and macro-f1 scores for different synthetic data generation strategies, with randomly added
negative observations to both train and test

prompt n arbitration opt-out class waiver
train set only 25 0.29 0.37 0.32
train set only 50 0.66 0.37 0.32
train set only 100 0.71 0.37 0.65
few shot 25 0.37 0.29 0.46
few shot 50 0.71 0.40 0.61
few shot 100 0.83 0.58 0.73

Table 6: Macro-f1 scores comparing the classifier outputs (for training data of different size) to manual document
level annotations
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