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ABSTRACT

RNA-protein interactions (RPI) are ubiquitous in cellular organisms and essen-
tial for gene regulation. In particular, protein interactions with non-coding RNAs
(ncRNAs) play a critical role in these processes. Experimental analysis of RPIs is
time-consuming and expensive, and existing computational methods rely on small
and limited datasets. This work introduces RNAInterAct, a comprehensive RPI
dataset, alongside RPIembeddor, a novel transformer-based model designed for
classifying ncRNA-protein interactions. By leveraging two foundation models for
sequence embedding, we incorporate essential structural and functional insights
into our task. We demonstrate RPIembeddor’s strong performance and general-
ization capability compared to state-of-the-art methods across different datasets
and analyze the impact of the proposed embedding strategy on the performance in
an ablation study.

1 INTRODUCTION

The discovery that 85% of the human genome is transcribed into ribonucleic acid (RNA), while
only about 2% of these RNAs code for proteins (Birney et al., 2007; Consortium et al., 2012), has
shifted our view of RNA from a mere translator between DNA and proteins to one of the most
crucial cellular regulators. Although the functions of many non-coding RNAs (ncRNAs) remain
unknown, it is widely acknowledged that their interactions with proteins are one of the driving forces
for cellular functions, particularly in gene regulation and epigenetics (Oksuz et al., 2023; Statello
et al., 2021; Mangiavacchi et al., 2023). However, experimental analysis of these interactions, e.g.,
via systematic evolution of ligands by exponential enrichment (SELEX) (Tuerk & Gold, 1990), is
time-consuming and expensive. In silico methods capable of distinguishing between interacting and
non-interacting RNA-protein pairs could significantly reduce these costs.
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Deep learning-based methods recently broke new ground across a variety of applications in molec-
ular research (Alipanahi et al., 2015; Ronneberger et al., 2015; Baek et al., 2021; Jumper et al.,
2021; Baek et al., 2023). Additionally, meta-learning across tasks has demonstrated its potential
to significantly improve the performance of deep learning models (Singh et al., 2019), particularly
when labeled data is scarce - a common challenge in RNA-protein interaction (RPI) prediction tasks.
While machine learning approaches to classify RPIs exist (Muppirala et al., 2011; Pan et al., 2016;
Jain et al., 2018), the application of meta-learning strategies to leverage the diverse characteristics
of various RNAs and proteins for this task remains largely unexplored. Furthermore, interactions
typically hinge on structural features in addition to sequence information, which, for RNAs are not
widely available at a large scale. An algorithm capable of accurately classifying ncRNA-protein in-
teractions solely from sequence inputs and applicable across a wide range of interaction types would
be highly valuable.

In this study, we introduce RPIembeddor, a novel and comprehensive approach for classifying
ncRNA-protein interactions that addresses these challenges. Furthermore, we compile an exten-
sive dataset of positive RPI entries from the RNAInter database (Kang et al., 2022) and enrich it
with carefully generated negative examples, leveraging both sequence and structural features of the
RNA and protein interactors. We employ two foundation models, RNA-FM (Chen et al., 2022) and
ESM-2 (Lin et al., 2023), to generate embeddings for the RNA and protein sequences that are then
used as inputs for the RPIembeddor.

Our main contributions are as follows:

• We build RNAInterAct1, an extensive dataset for ncRNA-protein interaction prediction,
derived from the RNAInter (Kang et al., 2022) database. It comprises 73, 362 negative
and 35, 852 positive interactions across 976 unique RNA families. To ensure rigorous
evaluation, we meticulously curate two subsets, TRinter for training and TSfam for testing,
with consideration to prevent any overlap in RNA families between the test and the training
sets, thereby eliminating homology bias.

• We introduce RPIembeddor, a novel algorithm for ncRNA-protein interaction prediction
that utilizes embeddings from two foundational models within an attention-based frame-
work. Furthermore, we demonstrate its superior generalization capabilities when bench-
marked against state-of-the-art models across various test sets, marking a significant ad-
vancement in the field.

• Through a comprehensive ablation study, we validate the usefulness of the selected embed-
dings, illustrating how they critically enhance model performance.

2 RELATED WORK

Due to the limited amount of experimentally derived RNA-protein complex structure data, machine
learning methods typically rely on sequence information to predict RPIs (Bheemireddy et al., 2022).
As an RNA-binding protein (RBP) can bind to many different RNAs with varying affinity depend-
ing on the presence and arrangement of specific structure and/or sequence recognition motifs in
RNA, experimental interaction datasets for a specific protein can contain from thousands to tens of
thousands RNA targets. These datasets are common and prevalently obtained from CLIP-seq ex-
periments (Hafner et al., 2021), so most of the available computational methods use them to train
protein-specific models to predict protein-binding sites on the given RNA sequences (Pan et al.,
2019; Uhl et al., 2021). Consequently, these models depend on the availability of a sufficiently large
interaction dataset for a protein of interest. However, out of the estimated 2,000 human RBPs (Bran-
nan et al., 2016; Hentze et al., 2018; Liu et al., 2019), such datasets exist only for a few hundred,
showcasing the need for alternative approaches. To study this vast space of unexplored RPIs, a
particularly useful extension is approaches that predict whether any given RNA and protein inter-
act based on their sequences. To date, only a limited number of methods have been developed for
that particular task. To the best of our knowledge, these include RPIseq (Muppirala et al., 2011),
IncPro (Lu et al., 2013), IPMiner (Pan et al., 2016), and XRPI (Jain et al., 2018). In the following,
we will focus on XRPI and IPMiner, since they have been shown to outperform the previous two
methods. A detailed description of the respective tools can be found in Appendix A.

1RNAInterAct is publicly available at https://ml.informatik.uni-freiburg.de/
research-artifacts/RNAInterAct/RNAInterAct.tar.gz
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Table 1: Overview of the datasets used in this work.
Feature TRinter TSfam RPI2825

Unique RNA Families 976 172 N/A
Unique Protein Clans 152 152 N/A

Positive Interactions 35,852 4,887 871
Negative Interactions 73,362 8,116 0

Total Interactions 109,214 13,003 871

3 DATA

The foundation of our study on predicting RPIs is an extensive, meticulously compiled, and pro-
cessed dataset. We provide a concise overview of our data pipeline in this section, with a more
detailed description available in the Appendix B.

Data Preparation We use the RNA Interactome Database (RNAInter) (Kang et al., 2022)
with over 47 million RNA interactions across 156 different species as the basis for our dataset.
Among these, RPIs are particularly prominent, with 37,067,587 entries. Although RNAInter does
not directly provide sequence information, we obtain it by cross-referencing different large-scale
databases such as NCBI (Benson et al., 2012), UniProt (Consortium, 2019), and Ensembl (Cun-
ningham et al., 2022). To enable informed negative interaction generation, we perform an extensive
annotation using the Rfam (Kalvari et al., 2021) and Pfam (Mistry et al., 2020) databases, assigning
RNA families and protein clans to each unique interactor. Our refinement process includes setting a
length cutoff at 1024 nucleotides and amino acids, limiting the number of interactions per interactor
to 150, and excluding mRNAs from the dataset. After careful curation of the negative examples
by leveraging RNA family, protein clan and interactor’s category to ensure biological relevance,
the RNAInterAct dataset encompasses a total of 122,217 interactions between ncRNAs and proteins
with a 1:2 ratio of positive to negative interactions.

Train and Test Sets RNAInterAct serves as a foundation for the derived training and test sets,
TRinter and TSfam, respectively. We strategically divide RNAInterAct based on the RNA families
involved, ensuring no RNA family overlap between the sets. This approach is grounded in the
understanding that RNA families consist of RNAs with conserved nucleotide sequences that share
common structural features and typically, similar functions. Evaluating on such a test set ensures the
assessment of the model’s true generalization capabilities, in stark contrast to the limited insights
gained from random splits of training and test data.

In addition to evaluating RPIembeddor on the TSfam, we also assess it using the widely recognized
RPI2825 dataset (Muppirala et al., 2011; Jain et al., 2018). This step allows us to examine the
model’s ability to generalize across a distinct distribution of examples, as RPI2825 comprises exclu-
sively positive interactions. Consistent with our methodology, we apply the same sequence length
restriction of 1024 nucleotides/amino acids to this dataset. A comparative overview of the datasets
utilized in our evaluations is presented in Table 1.

4 METHOD

In this section, we detail RPIembeddor, our proposed approach for RPI classification.

Embeddings The centerpiece of our model involves leveraging RNA and protein embeddings
from pre-trained models to incorporate structural and functional insights into our interaction predic-
tion task. For RNA sequences, we employ the transformer-based RNA Foundation Model (RNA-
FM) (Chen et al., 2022), which was trained on a massive corpus of 23 million unlabeled non-coding
RNAs from RNAcentral (Consortium et al., 2017) using self-supervised learning. For protein se-
quences, we utilize Evolutionary Scale Modeling 2 (ESM-2) (Lin et al., 2023), a transformer-based
language model trained on the UniRef database (Suzek et al., 2014) that specializes in predicting
protein folding from amino acid sequences. Contrasting with the well-known AlphaFold (Jumper
et al., 2021), ESM-2 operates without the need for multiple sequence alignments (MSAs), making it

3



Published at the GEM workshop, ICLR 2024

a more fitting option for our requirements. We opt for the 30-layer version of ESM-2 with 150 mil-
lion parameters to match RNA-FM’s embedding size of 640. Given that RNA-protein interactions
hinge critically on the structures and functional characteristics of the molecules involved, the com-
bined use of embeddings from these two models offers a comprehensive view of potential interaction
sites and mechanisms, promising performance improvement on the RPI classification task.

Model After processing the inputs with RNA-FM and ESM-2, we obtain two embeddings, each
of size N × 640 with N being the input sequence length. These embeddings serve as an input
for the RPIembeddor. To address the possibility of varying lengths of RNA and protein sequences
while ensuring compatibility, we implement two parallel feed-forward layers that normalize the size
of the input embeddings. Subsequently, the embeddings undergo processing in an encoder layer
designed to treat them symmetrically, ensuring they have equal influence on the model’s final output
probability. This symmetrical processing is crucial as it allows our model to dynamically focus
on specific parts of the sequences that are most relevant for predicting interactions, leveraging the
strengths of the attention mechanism. By doing so, attention facilitates the model’s ability to capture
complex dependencies between RNA and protein sequences. The resulting latent representations
are concatenated and processed through a series of feed-forward layers, culminating in a linear layer
with a sigmoid activation function to produce output class probabilities. The architectural choices
result in the model size of 1.4M parameters. For the task of RPI classification, we employ a binary
loss function and optimize the model using a combination of linear warm-up and cosine annealing
strategies with the AdamW optimizer (Loshchilov & Hutter, 2019). For a detailed overview of
RPIembeddor’s architecture and hyperparameters, please refer to Appendix C.1.

5 EXPERIMENTS

To evaluate RPIembeddor’s efficacy, we conduct two sets of experiments. First, we compare its
performance against state-of-the-art methods, namely IPMiner (Pan et al., 2016) and XRPI (Jain
et al., 2018), on both the TSfam and the RPI2825 datasets. Secondly, through an ablation study,
we analyze the impact of embeddings on model performance. For both experiments, we report
performance metrics such as binary precision, recall, F1-score, and accuracy, and for the first set
additionally include plotting Receiver Operating Characteristic (ROC) curves.

5.1 BENCHMARKING ON TSFAM AND RPI2825

Setup For a robust evaluation, RPIembeddor is trained on TRinter using three distinct random
seeds. Its results are aggregated to report the average performance alongside the standard deviation.
We do not retrain the competing models, as the authors do not provide comprehensive instructions to
do so, and we use their publicly accessible versions.2 3 All models are evaluated on two distinctive
datasets, as detailed in Table 1. We present the results in Table 2.

TSfam We observe that RPIembeddor demonstrably outperforms competing models, achieving
an F1-score of 0.586 (±0.010) and an accuracy of 0.667 (±0.009). Specifically, our model correctly
classifies 2,971 out of 4,887 positive interactions and 5,586 out of 8,116 negative ones. In compari-
son, IPMiner predicts 1,830 true positives and 4,826 true negatives. Notably, XRPI exhibits a signif-
icant bias towards positive classifications, predicting approximately 91% of interactions (11,832 out
of 13,003) as positive, despite the dataset comprising roughly 62% negative examples. We illustrate
Receiver Operating Characteristic (ROC) curves for all three models in Figure 1.

RPI2825 The RPI2825 dataset comprised exclusively of positive interactions presents a challenge
for RPIembeddor. Despite this, our model demonstrates robust generalization, achieving the second-
best F1-score of 0.8 (±0.049), giving in to XRPI with an impressive F1-score of 0.991. However,
it is important to note that XRPI was trained on the RPI2825 dataset—using the original 2825 en-
tries without the modifications described in Section 3. Our analysis suggests that RPIembeddor’s
performance is not merely a reflection of the training data distribution, as it effectively general-
izes to unseen data distributions such as positive interactions-only RPI2825. This underscores the
robustness and versatility of our model.

2XRPI: https://universe.bits-pilani.ac.in/goa/aduri/xRPI
3IPMiner: https://github.com/xypan1232/IPMiner

4

https://universe.bits-pilani.ac.in/goa/aduri/xRPI
https://github.com/xypan1232/IPMiner


Published at the GEM workshop, ICLR 2024

Table 2: Mean performance and standard deviation across three seeds of the RPIembeddor in com-
parison to state-of-the-art models.

Model TSfam RPI2825

Prec. Rec. F1 Acc. Prec. Rec. F1 Acc.

RPIembeddor 0.550 0.627 0.586 0.667 1.0 0.667 0.8 0.667
±0.010 ±0.017 ±0.013 ±0.009 ±0.0 ±0.085 ±0.049 ±0.085

IPMiner 0.357 0.375 0.366 0.512 1.0 0.107 0.193 0.107
XRPI 0.375 0.909 0.531 0.398 1.0 0.982 0.991 0.982
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Figure 1: Receiver Operating Characteristics comparison on TSfam.

5.2 ABLATION STUDY

Setup We conduct the analysis of embeddings’ impact on model performance in two parts: (i)
by replacing either the protein or RNA input embedding with a random embedding of the same size
to investigate if both embeddings contribute equally to performance, and (ii) by replacing both in-
put embeddings with one-hot encodings of the input sequences to assess whether our embeddings
are superior to simpler representations in capturing the relationships between the RNA and protein
sequences. We train one distinct model for each configuration under RPIembeddor’s architecture:
random-protein utilizing only ESM-2 protein embedding; RNA-random using only the RNA-FM
RNA embedding; and one-hot, where both RNA and protein sequences are represented using one-
hot encodings. Each model is trained on TRinter and evaluated on TSfam using three unique random
seeds to ensure the reliability of our results. We report binary precision, recall, F1-score, and ac-
curacy for these models in Table 3 and compare them to the original RPIembeddor’s performance,
which utilizes both ESM-2 and RNA-FM embeddings.

Results RPIembeddor in all three configurations consistently behaves as a negative classifier,
predicting only negative examples. This results in binary precision, recall, and F1-score of 0.0 as no
positive examples as classified correctly (true positives are 0). An accuracy of 0.624 merely reflects
the data distribution in TSfam - 7,991 out of 12,807 samples are negatives, correctly identified
as such. This underscores the significance of ESM-2 and RNA-FM embeddings as meaningful
representations of protein and RNA sequences, respectively. These embeddings carry structural and
functional information critical for correct classification. Furthermore, the results affirm that both
embeddings are essential for the model to perform effectively, aligning with the intuition that RPIs
depend crucially on both the protein and RNA involved.
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Table 3: Results of the ablation study.
Model Prec. Rec. F1 Acc.

RPIembeddor 0.563 ± 0.019 0.659 ± 0.071 0.605 ± 0.019 0.678 ± 0.009
One-Hot 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.624 ± 0.0
Random-Protein 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.624 ± 0.0
RNA-Random 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.624 ± 0.0

6 CONCLUSION

Our work introduces RPIembeddor, a transformative approach to RNA-protein interaction (RPI)
prediction that harnesses the power of embeddings from two foundational models. Using a meta-
learning strategy to learn RPIs across different RNA and protein types, our method outperforms
existing methods while generalizing to unseen data distributions. We believe that our approach bears
great potential for future RPI prediction endeavors and we support this research by making our new
dataset RNAInterAct publicly available. Acknowledging the limitations tied to foundational model
dependencies and sequence length constraints, our future directions include exploring alternative
embeddings, e.g., from RNA structure models like the RNAformer (Franke et al., 2023) or other
foundation models, to extend the applicability of our approach.
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A RELATED WORK

In this section, we describe existing computational methods of the RNA-protein interaction (RPI)
prediction based on sequence information.

RPIseq RPIseq (Muppirala et al., 2011) predicts RPIs by extracting sequence-based features and
using these as inputs to two machine learning models: Random Forest (RF) and Support Vector
Machine (SVM). The primary dataset, RPI2241, is derived from the Protein-RNA Interface Database
(PRIDB) and contains only positive samples. To balance the dataset for training, negative samples
are generated through random pairing, guided by sequence identity. It provides an online interface
for running inference on either of the models 4.

IncPro IncPro (Lu et al., 2013) calculates interaction score between long non-coding RNA
(lncRNA) and protein based on the features derived from the physicochemical properties of amino
acids and nucleotides. It generates a scoring matrix reflecting the propensity of each protein residue
to interact with each RNA residue and then uses a statistical model to calculate the overall likelihood
of the pair interacting. The tool is no longer available under the address reported by the authors.

IPMiner IPMiner (Pan et al., 2016) uses stacked autoencoders that extract features from the non-
coding RNA (ncRNA) and protein sequences that are then forwarded to an RF classifier, with stacked
ensebling employed to integrate multiple model outputs. It uses experimentally derived interaction
pairs from Protein Data Bank (PDB) and NPInter2.0 and generates the negative samples through
random pairing. Model can be accessed through the github repository 5.

XRPI XRPI (Jain et al., 2018) utilizes the Extreme Gradient Boosting (XGBoost) algorithm to
predict RPIs. High-resolution structural data is derived from PDB in order to analyze amino acid
interaction propensities and determine the optimal length of sequence windows in RNAs, the fea-
tures later applied to the input sequences data during the training phase. Similarly to RPIseq, it
uses RPI2825 dataset for training and evaluation. The negative interactions are generated by ”ran-
dom jumbling” of RNA and proteins under sequence similarity condition. Model is accessible via
authors department website 6.

B DATA

The complete data processing pipeline is presented in Figure 2.
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Figure 2: Data curation and processing pipeline.

4http://pridb.gdcb.iastate.edu/RPISeq
5https://github.com/xypan1232/IPMiner
6https://universe.bits-pilani.ac.in/goa/aduri/xRPI

10

http://pridb.gdcb.iastate.edu/RPISeq
https://github.com/xypan1232/IPMiner
https://universe.bits-pilani.ac.in/goa/aduri/xRPI


Published at the GEM workshop, ICLR 2024

Figure 3: Evaluation of confidence scores. (A) ROC for distinguishing between experimental and
predicted interactions. (B) Interaction number for each score interval. Plots are adapted from (Kang
et al., 2022).

B.1 THE RNA INTERACTOME DATABASE

The RNA Interactome Database (RNAInter) (Kang et al., 2022) is a specialized resource in the field
of molecular biology that houses an extensive collection of over 47 million RNA interactions of
various types coming from 156 different species. Among these, RNA-protein interactions (RPIs)
are particularly prominent, with slightly over 37 million entries. This significant volume of data
underlines the importance of the complex interplay between RNA and proteins within biological
systems.

RNAInter v4.0, as utilized in this project, expands on its predecessor, RNAInter v3.0, through ex-
tensive literature mining and the integration of external databases with interactions sourced from
experimental evidence or computational prediction. Each entry within RNAInter v4.0 is assigned
a confidence score ranging from 0 to 1, reflecting a comprehensive evaluation based on three key
factors: the reliability of experimental evidence, community trust, and the specificity of cells or
tissues involved. The score distribution for all present interactions as presented in Figure 3. It is
visibly right-skewed, with the majority of entries assigned either ”weak” or ”predicted” evidence
categories. However, despite this skewness indicating a potential abundance of lower-confidence in-
teractions, the database’s inclusivity in capturing a wide range of interactions, including less-studied
ones, presents valuable opportunities for exploratory research.

Among the databases contributing to the RPI data are LncTarD (Zhao et al., 2022), with experimen-
tally validated interactions; oRNAment (Bouvrette et al., 2020), a repository for computationally
predicted interactions; and NPInter v4.0 (Teng et al., 2020), which includes both types. Together,
these sources provide a comprehensive dataset of 37,067,587 RPI interactions, enriched with details
such as species, target regions, tissues or cell lines, and homology interactions. While the entries
do not explicitly include sequence information, each interactor is linked to an external database,
facilitating the retrieval of such critical data for our project.

B.2 SEQUENCE DATA

To complete the interaction data from the RNA Interactome Database (RNAInter) with essential
sequence information, we access databases linked to each interactor in a single entry. Protein se-
quences are sourced from NCBI (Benson et al., 2012), and UniProt (Consortium, 2019), while for
RNA sequences, our sources include miRBase (Kozomara et al., 2019),Ensembl (Cunningham et al.,
2022), NONCODE (Fang et al., 2018), and NCBI. Besides the sequence, we also query for sequence
length and specific IDs. These IDs are crucial for linking each sequence to its corresponding entry
in the RNAInter database. For a detailed overview of our data extraction rates relative to RNAInter
contents and the total number of sequences compiled, please refer to Table 4.
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Table 4: RNAInter external databases statistics.
Database Unique Genes Genes Obtained Extraction rate

RNA Databases

Ensembl 45,235 41,086 90.83%
miRBase 11,040 3,803 34.45%
NCBI 494,057 493,849 99.96%
NONCODE 25,819 25,819 100.0%

Protein Databases

NCBI 288,104 284,157 98.63%
UniProt 3,290 3,069 93.28%

During our data processing, we exclude any entry that lacks either sequence information or neces-
sary IDs. We also eliminate duplicates based on the ID. This step is important because the same
sequence might appear in multiple databases and be associated with different interactions in the
RNAInter database. Finally, owing to the input length limitations of the foundation models em-
ployed for embedding generation, we set a maximum sequence length of 1024 for both RNA and
protein molecules. That results in a total number of 38,026 protein entries and 69,043 RNA entries.

For the subsequent stages of annotation and embedding generation, our focus shifts to the individual
protein and RNA sequences, rather than the interactions they form.

B.3 ANNOTATIONS

Our approach to generating negative interactions, as detailed in Section B.5, builds upon the notion
of similarity between different RNA or protein sequences. An established way of expressing that is
through family annotation as it is done in Pfam and Rfam databases, for protein and RNA sequences
respectively.

The Pfam database (Mistry et al., 2020) represents a comprehensive collection of protein fami-
lies, each characterized through multiple sequence alignments (MSA) and hidden Markov models
(HMMs) that help identify function regions within proteins, called domains, and group them based
on shared characteristics. Additionally, Pfam introduces a higher level of classification known as
’clans’, which groups together families that share a single evolutionary origin, as confirmed by sim-
ilarities in sequence, structure, and profile-HMMs. For our project, we utilized Pfam 36.0, which
comprises 20,795 entries and 659 clans.

The Rfam database(Kalvari et al., 2021) comprises a curated collection of non-coding RNA
(ncRNA) families. Each family in this database is characterized by a multiple sequence alignment
and a consensus secondary structure, accompanied by a covariance model that aids in the annotation
of new family members. This classification, which includes structural information, is particularly
crucial for ncRNAs. Unlike protein-coding genes, ncRNAs often exhibit significant functional sim-
ilarities linked to their secondary structures, even when their primary sequences show little resem-
blance. Such considerations are vital for an approach that utilizes primary sequence data. In our
project, we access Rfam 14, encompassing 4,170 families.

We scan each unique protein sequence against the Pfam database and for recognized entries, assign
a clan name. Similarly, each unique RNA sequence is scanned against the Rfam database using
Infernal (Nawrocki & Eddy, 2013) tool, and, if found, annotated a family name. Results concerning
the number of sequences are stored in Table 5.

Table 5: Summary of family and clan annotation.
Type Unannotated Annotated Families/Clans

RNA 69,043 7,847 1,148
Protein 38,026 26,575 152
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B.4 POSITIVE INTERACTIONS DATASET

After gathering all necessary sequence information for generating negative interactions, we then fo-
cus on creating a dataset of positive interactions. We cross-reference the annotated RNA and protein
sequences, as detailed in Table 5, with the RNA Interactome Database (RNAInter). Our criterion
for inclusion is an overlap of sequence IDs between our dataset and RNAInter. This process yields
488,184 interactions, which represents approximately 1% of the original RNA-protein interactions
(RPI) data entries in RNAInter. Such a reduction is anticipated, given several limiting factors we
applied: sequence length restrictions, the requirement for family or clan annotations, and variable
extraction rates from the linked databases.

In the process of refining our dataset, we undertake several critical steps of analysis and filtering.
Initially, we examine the category information of both RNA and protein sequences. From the RNA
dataset, we exclude all mRNA sequences and categories that are unspecified. Despite the significant
role of mRNAs in RPIs, our methodology is constrained by the RNA-FM foundation model used
for generating RNA embeddings. This model is exclusively pre-trained on ncRNAs, and including
mRNAs could potentially compromise the quality of the embeddings, thereby adversely affecting
prediction performance.

While we acknowledge the existence of other foundation models like CodonBERT (Li et al., 2023),
UTR-LM (Chu et al., 2023), and 3UTRBERT (Yang et al., 2023), which are specialized for coding
sequences (CDS), 5’ untranslated regions (UTRs), and 3’UTR mRNAs respectively, their integration
presents practical challenges. Given that some of the interactions in the RNAInter include genomic
context, the deployment of additional foundation models would be computationally expensive and
impractical for inference purposes, thus limiting the utility of our tool. Moreover, the Rfam database,
as discussed in Section B.3, does not differentiate between various mRNA families, a distinction that
is crucial for our approach for generating negative examples.

Consequently, after careful consideration, we remove 25,010 mRNA interactions and an additional
186 invalid RNA sequences from our dataset. The protein categories are limited to three types:
transcription factors (TF), RNA-binding proteins (RBP), and general proteins. Given this concise
categorization, we decide to retain all protein interactors. Following the removal of duplicates, our
final dataset comprises 462,988 interactions.

In the final stage of data preparation, we impose a limit of 150 interactions per interactor. This
threshold was determined through thorough analysis as an optimal balance, allowing us to maintain
a reasonable number of interactions while preventing the over-representation of certain interactors in
the dataset. As a result of this limitation, our collection of positive interactions is now 40,744. Given
that we intend to generate two negative interactions per one positive, the dataset will eventually triple
in size. This expansion ensures that even after the significant reduction in interactions, the dataset
remains robust enough to support the effective performance of our model. We present the interactors’
contributions per category in Table 6.

Category Percentage

miRNA 41.60%
snoRNA 33.37%
snRNA 6.74%
others 6.49%
lncRNA 4.51%
ncRNA 4.12%
rRNA 1.18%
scaRNA 1.10%
pseudo 0.39%
circRNA 0.25%
ribozyme 0.23%
sncRNA 0.03%

Category Percentage

TF 61.06%
RBP 30.26%
Protein 8.68%

Table 6: Breakdown of RNA (left) and protein (right) categories comprising the dataset.
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Figure 4: Sequence length distribution.

The sequence length distributions, as shown in Figure 4, indicate that RNA sequences in the
RNAInter database are typically much shorter than protein sequences, with the majority falling
within the range of approximately 50 to 250 nucleotides (nts). This observation validates our
sequence length restriction criteria, confirming that it did not excessively exclude sequences from
our dataset. On the other hand, the protein sequence length distribution appears to be normally
distributed with a slight right skew. This reflects the tendency of proteins to form longer amino acid
(AA) chains, corroborating their nature as generally larger molecules.

Based on the data presented in Table 7, we observe that the RNA family might be a relatively weak
indicator of similarity among different RNA sequences, as it appears that, on average, each family
groups together about three sequences. In contrast, Pfam clans seem to offer a more distinct separa-
tion between protein sequence clusters, with an average of approximately nine protein sequences per
clan. These annotations are crucial in our method for generating negative examples, where finding
relations between interacting clans and families is key.

Proteins RNA Pfam clans RNA families

1,308 4,169 152 1,148

Table 7: Overview of unique sequences, families, and clans of the dataset.

Finally, we examine the various types of interactions within our dataset, focusing on the categories of
the interactors. MicroRNAs (miRNAs) dominate the RNA interactor category, which is biologically
plausible given their crucial role in gene expression regulation; hence, the high number of miRNA-
transcription factor (TF) pairs observed. Similarly, the small nucleolar RNA (snoRNA) category is
prominently represented on the heatmap, suggesting numerous interactions related to small nucleolar
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ribonucleoproteins (snoRNPs), which consist of snoRNAs and associated proteins. Our dataset
exhibits a wide range of other interaction types as shown in Figure 5.
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Figure 5: Positive interactions per RNA/protein category heatmap.

B.5 NEGATIVE INTERACTIONS DATASET

As discussed previously, the conventional method of generating negative interactions involves ran-
domly selecting RNA and protein sequences not present in the positive samples. However, this
approach could result in a dataset with high levels of noise, as it essentially relies on arbitrary selec-
tion without specific biological rationale.

In our proposed approach, we focus on making more informed decisions based on family/clan infor-
mation and, where relevant, interactor categories. Initially, we established a network of family-clan
interactions. For each RNA family member, we analyze the positive interactions dataset to iden-
tify its protein interactors, linking the RNA family to the clans of these proteins. Additionally, we
annotate each RNA family with information about the protein categories that interact with its mem-
bers, and each clan with data on the RNA categories interacting with its protein members. This
methodology enables a broader scale analysis of RNA-protein interactions, moving beyond individ-
ual sequence analysis to understand the behavior of similar RNA and protein groups.

For each positive interaction, we generate two corresponding negative interactions, utilizing the
family-clan interaction data and information on interacting categories. In the first negative interac-
tion, we retain the original RNA interactor but pair it with a protein from a clan that does not interact
with the RNA’s family and, if possible, is not part of the interacting categories. Similarly, for the
second negative interaction, we keep the original protein interactor and pair it with an RNA from a
family that does not interact with the protein’s clan and is not part of the interacting category. This
approach ensures more accurate modeling of potential interactions, avoiding arbitrary pairings and
focusing instead on biologically plausible non-interactions.
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After merging the newly generated negative interactions dataset with the existing positive interac-
tions dataset, we obtain a comprehensive dataset with 122,217 entries that is well-suited for binary
classification tasks.

Figure 6 presents the distribution of the generated negative interactions per RNA/protein category.
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Figure 6: Negative interactions per RNA/protein category heatmap.

C METHODS

C.1 MODEL

In the development of RPIembeddor, we drew significant inspiration from transformer-based ar-
chitectures, which have revolutionized the field of natural language processing (NLP) and, more
recently, demonstrated their applicability and effectiveness within molecular biology (Jumper et al.,
2021; Lin et al., 2023; Chen et al., 2022; Alipanahi et al., 2015; Brandes et al., 2022). The core
principles of transformers(Vaswani et al., 2017), particularly their ability to capture long-range de-
pendencies through self-attention mechanisms, are exceptionally well-suited to understanding the
complex, sequence-based interactions characteristic of RNA and proteins.

To tailor RPIembeddor for the domain of RNA-protein interaction prediction, we carefully cali-
brated its architecture, hyperparameters and optimization strategy. The model’s backbone consists
of an encoder with feature vectors dimensionality set to dmodel = 256 and employs a multi-head
attention mechanism with nhead = 2 to efficiently process sequence information. The incorporation
of a single encoder layer, coupled with a deep feedforward network comprising 20 layers, strikes a
balance between model complexity and interpretability.

For the optimization strategy we opted for cosine annealing scheduler with the AdamW opti-
mizer(Loshchilov & Hutter, 2019), and introduced a warm-up phase for the first 1,000 training
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Figure 7: RPIembeddor architecture overview.

Figure 8: Encoder layer.

steps, initializing scheduler with a learning rate of 0.001. This warm-up phase helps avoid too fast
convergence to suboptimal solutions by gradually increasing the learning rate. Following this, the
cosine annealing scheduler reduces the learning rate over time, improving the model’s fine-tuning
and generalization capabilities.

To prevent overfitting, we applied weight decay, setting it at 0.1, and used a dropout rate of 0.3.

This hyperparemeter configuration was applied consistently for 90 epochs during the training phase
with a batch size of 64 across three different seeds.
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