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In the emerging business of food delivery, rider traffic accidents raise financial cost and social traffic burden. Although

there has been much effort on traffic accident forecasting using temporal-spatial prediction models, none of existing

work studies the problem of detecting the takeaway rider accidents based on food delivery trajectory data. In this

paper, we aim to detect whether a takeaway rider meets an accident on a certain time period based on trajectories of

food delivery and riders’ contextual information. The food delivery data has a heterogeneous information structure

and carries contextual information such as weather and delivery history, and trajectory data are collected as a spatial-

temporal sequence. In this paper, we propose a TakeAway Rider Accident detection fusion network TARA-Net to

jointly model these heterogeneous and spatial-temporal sequence data. We utilize the residual network to extract

basic contextual information features and take advantage of transformer encoder to capture trajectory features. These

embedding features are concatenated into a pyramidal feed-forward neural network. We jointly train the above three

components to combine the benefits of spatial-temporal trajectory data and sparse basic contextual data for early

detecting traffic accidents. Furthermore, due to traffic accidents rarely happen in food delivery, we propose a sampling

mechanism to alleviate the imbalance of samples when training the model. We evaluate the model on a transportation

mode classification data set Geolife and a real-world Ele.me data set with over 3 million riders. The experimental

results show that the proposed model is superior to the state-of-the-art.

CCS Concepts: ∙ Computing methodologies → Supervised learning by classification; Neural networks;

Learning latent representations; ∙ Information systems → Spatial-temporal systems.
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1 INTRODUCTION

During the recent peak of covid-19 cases in China, food-delivery companies such as Ele.me and Meituan

played a crucial role in helping people who stayed at home by developing contactless food delivery. Contactless

food delivery is very different from traditional work that allows Takeaway Riders to choose their own work

hours. However, many takeaway riders are under the pressure of heavily burdened delivery tasks in a short

amount of time, i.e., two hours during lunchtime. To complete these delivery tasks, they often jump red

lights or take a shortcut to avoid late-delivery penalties, which leads to many traffic accidents during the

delivery time. In the first half of 2019, the city of Shanghai in China recorded 12 road accidents a week

involving food-delivery riders. However, due to subjective or objective reasons, many of the accidents were

not reported, which may hurt the riders and the delivery platform. For riders, they may lost the opportunity

of assistance from the platform in handling the accident, such as medical reimbursement and subsidies. For

platforms, failure to properly handle undetected incidents may affect their reputation.

The purpose of this work is to detect the takeaway rider accidents based on food delivery trajectory data.

Generally, a food-delivery company can collect the trajectory data by tracing the GPS signals obtained from

a takeaway rider. The takeaway rider trajectory is represented as a set of spatial-temporal trajectory dots,

Some hidden characteristics of these dots are useful for accident detection. For example, Fig. 1 shows the

trajectory involving a traffic accident. Obviously, the trajectory dots of the rider clustered at the traffic site

and the hospital and appear a long-time stay, which means a higher probability that an accident happened.

Fig. 1. An example of the trajectory data generated from a takeaway rider. The blue dots are trajectory dots formed as
{L,T}, where 𝐿 represents the Location information of the trajectory dots, T represents the Time information of trajectory
dots.

To detect traffic accidents of takeaway riders. We need to analyze their data given in Fig. 1, which

is essential to predict the class label (safe/unsafe) based on the collected trajectory data. Analyzing the
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TARA-Net: A Fusion Network for Detecting Takeaway Rider Accidents 3

trajectory data has been widely studied in the vehicle for hire companies such as Uber and Didi. Generally,

two types of deep learning models, CNNs and RNNs are used to analyzing trajectory data depending on the

representations of trajectories. For example, to predict human trajectory, the work [59] represents trajectory

data as sequences of locations, and proposed Collision-Free LSTM by adding the Repulsion pooling layer to

classical LSTM, which can share hidden-states of neighboring pedestrians for human trajectory prediction.

To predict the destination of taxi trajectories, the work [38] represented trajectory as two-dimensional images

and adopted multi-layer CNN to combine multi-scale trajectory patterns for predicting taxi destination. To

estimate travel time, the work [53] represented trajectory as the sequence of the image-like matrixes, stacked

LSTM on the proposed Geo-Conv layer to capture temporal dependencies for travel time estimation.

In addition to analyzing the trajectory data, we also have rich contextual information data, consisting of

historical rider information and current environmental information. These contextual data have different

structures and characteristics from the trajectory data, so it is unreasonable to extract representations

of them by an identical network. From the perspective of deep neural networks for feature representation

of heterogeneous data, the fusion network has been widely used to extract the heterogeneous feature

representation for the regression and classification problems. The principle behind is to combine the benefits

of different network components, which performs better on a particular type of data. For instance, the

Wide and Deep model [6] combines the memorization of the wide network and the generalization of the

deep network can emphasize both low and high-order feature interactions. Based on wide and deep, the

DeepFM model [17], Deep and Cross [56], XDeepFM [34] are proposed to construct both low and high order

intersection features. However, these models focus on the click-through rate of the recommender system,

lacking of methodology for traffic accident detection. They cannot be directly used to solve our problem.

Compared with the above work, this research meets the challenges of the sparse, spatial-temporal and

imbalance characteristics of data. Specifically, the challenges are listed as follows:

∙ First, the information of daily takeaway rider trajectory contains both categorical and numerical

features, where the category features are often imported into the network as the binarized sparse

features with one-hot encoding, which always need further feature engineering.

∙ Second, trajectory data contains a lot of spatial-temporal information. However, most of the trajectory

dots are not informative, and only part of them is useful for accident detection. We need to separately

model them.

∙ Third, traffic accident rarely happened in food delivery, thousands of takeaway orders may just involve

one accident, which causes the class imbalance of training data.

To solve the challenges, we present in this paper a TARA-Net method to analyze both basic and trajectory

data for accurate accident detection. To solve the first challenge, TARA-Net concatenates category embedding

features and numerical features and puts them into the residual neural network to extract comprehensive

intersection features. To solve the second challenge, TARA-Net uses a transformer to distribute the attention

of trajectory position embedding sequence, which can automatically assign a higher weight to accident-related

trajectory data. To solve the third challenge, we propose a sampling mechanism to create balance data

distribution for each training batch. The contribution of the paper can be summarized as follows:
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4 He and Fu, et al.

∙ We present a fusion network called TARA-Net, which integrates the architectures of Transformer and

Resnet and jointly training network with both sparse embedding and trajectory position embedding.

It can be trained end-to-end without any manual feature engineering.

∙ We randomly select a certain percentage of accident samples and combine them into each training

batch, which greatly alleviates the problem of class imbalance.

∙ We evaluate TARA-Net on real-world Ele.me takeaway rider data, which shows excellent performance

on the rider traffic accident detection task.

2 RELATED WORK

In this part, we survey the work of traffic accident analysis and trajectory data mining.

2.1 Traffic Accident Analysis

Prior works have made significant advances on the analysis of traffic accidents from various dimensions

[11, 40, 55]. The two most important branches are traffic accident forecasting and traffic accident detection.

Traffic accident forecasting has become a fundamental challenge in urban sensing. It first uses historical

information to predict the future accident risk in a certain area, and then alerts people in the risk area and

allocate more assistance to reduce the occurrence of an accident or mitigate the injury of an accident. Prior

works can be grouped into two categories: conventional pattern-based methods and deep neural network

models. For example, the work [45] uses a support vector machine model with a Gaussian kernel to extract

key factors from the collected data set which are responsible for the majority of the accident, and then

infers future accidents. The work [42] employs neural network and decision trees to analyze continuous data

and categorical data about the accident respectively, and combines them to forecast accident. However,

pattern-based methods always assume that traffic accident data is stationary. Hence, many follow-up works

are proposed to capture dynamic traffic changes by the deep neural network. For example, the work [43]

proposes a deep learning model based on recurrent neural network towards a prediction of traffic accident

risk. Many works use multi-modal data for accident risk forecasting, the work [63] proposes GraphCast,

a graph neural network framework to accurately forecast the traffic risks in a city by jointly exploring

the multi-modal data collected from social media sensing and remote sensing paradigms. Furthermore,

some accident forecasting models need to be designed for particular necessities. To solve the problem of

spatial heterogeneity of the environment (e.g., urban vs. rural), the work [61] proposes a Hetero-ConvLSTM

framework, which incorporates spatial graph features and spatial model ensemble to address the spatial

heterogeneity in the traffic data. In order to further improve prediction granularity, the work [68] proposes

the differential time-varying graph neural network to capture the immediate changes of traffic status and

dynamic inter-subregion correlations. The Work [25] proposes a deep dynamic fusion network to model both

spatial-temporal dependencies and automatically aggregating heterogeneous external factors in a dynamic

manner for fine-grained traffic accident forecasting.

Besides the work of traffic accident forecasting, the detection of accidents is also important for the

urban transportation system, because immediately handling of traffic accidents can reduce the loss. Several

vision-based traffic accident detection methods have been proposed based on surveillance video, they

detected accidents by analyzing whether there is a collision between target objects in image or video. For

example, the work [44] proposes a real-time automated traffic accident detection using the Histogram of

Manuscript submitted to ACM
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TARA-Net: A Fusion Network for Detecting Takeaway Rider Accidents 5

Flow Gradient(HFG). It first extracts HFG-based features from video shots, then employs logistic regression

to predict the probability of the occurrence of accidents. The work[49] considers an accident as an unusual

incident, it proposes a denoising autoencoder framework to extract deep representation by only training

over the normal traffic videos. Then, the possibility of an accident is determined based on the reconstruction

error and the likelihood of the deep representation. The work [26] proposes an integrated two-streaming

convolutional network architecture that consists of a spatial stream network for object detection and a

temporal stream network for multiple-object tracking. Then, it detects accidents by incorporating appearance

features and motion features from these two networks.

Previous works on traffic accident analysis consider accidents from a macro perspective, they forecast and

detect the accidents of a certain domain, segment, or corner. To our best knowledge, our work is the first

study on detecting personal traffic accidents based on individual trajectory and basic contextual data.

2.2 Trajectory Data Mining

Trajectory data mining [5, 19, 33, 35, 57] has become an increasingly important research theme, attracting

attention from numerous areas, including computer science, sociology, and geography[64]. Our takeaway

rider traffic accident detection problem is closely related to a typical kind of trajectory data mining task, i.e.,

trajectory classification. Generally, trajectory data are collected by location recording devices, and trajectory

classification is divided into three steps, i.e., trajectory preparation, feature extraction, and classification [4].

For many existing classification models, the dimensions of input data are required to be the same so that

they can be measured. However, the lengths of two arbitrary trajectories may be largely different from

each other. Therefore trajectories are unified into a fixed length in a prepossessing step[23, 24, 62]. To

reduce the information loss of unify, the work [60] segments trajectory into sub-trajectories with a fixed

length in the preparation step. Sometimes, trajectory data is presented in the form of images or videos,

which needs to track objects through all images to generate trajectory data for preparation [54, 62]. In

feature extraction, spatial information is extracted to characterize trajectory data. Then, trajectory data

are classified directly by measuring the spatial distance in previous works [32, 41]. However, in recent

years, probabilistic inference models involve solving the problem by classifying trajectory data directly

without feature extraction [2, 12]. The neural network has also been employed for trajectory classification,

excellent deep learning models such as CNN and LSTM are used to construct an end-to-end deep structure

for trajectory classification [47]. Besides trajectory classification for traffic accident detection, there are

many other trajectory data mining methods for various traffic tasks. For example, the work [10, 14] uses

a CNN architecture to predict travel modes based on raw GPS trajectories. The work [36] proposes an

automated trajectory classification framework based on the Bi-LSTM model to classify raw trajectories

into different transportation modes. The work [37] proposes a trajectory classifier called Spatio-Temporal

GRU to better model the spatio-temporal correlations and irregular temporal intervals prevalently present

in spatio-temporal trajectories. The work [29] proposes a Spatio-Temporal LSTM and extends it in an

encoder-decoder manner which models the contextual historic visit information in order to boost the location

prediction performance. The work [58] designs a deep learning model called LATL which not only adopts an

adaptive attention network to model the distinct features of locations, but also implements time gates and

distance gates into the LSTM network to capture the spatio-temporal relation between consecutive locations

for destination prediction. The work [53] proposes a deep learning framework for travel time estimation. It
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6 He and Fu, et al.

presents a geo-convolution operation to capture spatial correlations between trajectory dots and captured

temporal dependencies of trajectory dots by stacking recurrent units on the geo-convolution layer. The work

[15] proposes an RNN-based semi-supervised model TULER, which exploits the trajectory data to capture

the implicit semantics of user mobility patterns, and then identifies and links trajectories to the user who

generates in the location based social networks. The work [39] builds person-specific mobility graphs by

GPS trajectory data generated by personal smartphones, and then feeds them into GCNs to predict the

destination of a user’s visit at a certain location.

3 PRELIMINARIES

In this paper, we consider the traffic accident detection of takeaway riders based on the trajectory data

and basic contextual data of riders. We denote the trajectory data as 𝑆, and the basic data as 𝑋. The data

set for training consists of 𝑛 instances ({𝑆,𝑋}, 𝑦), where 𝑦 ∈ {0, 1} is the associated label indicating traffic

accident happened to rider (𝑦 = 1 means an accident occurs, 𝑦 = 0 otherwise). The task of traffic accident

detection is to construct a model 𝑦 = 𝑇𝐴𝐷𝑚𝑜𝑑𝑒𝑙(𝑆,𝑋) to predict whether an accident happened to the rider.

To illustrate the format of our data, Fig. 2 shows the samples of the data, including both trajectory and

contextual data. We describe the details of trajectory data and basic contextual data in following subsection.

Trajectory Data  Contextual Data Labels

𝑠1 ... 𝑠𝑡 … Categorical Features Numerical Features

𝑦
𝐿1

𝑇1 … 𝐿𝑡

𝑇𝑡 … Weather
WiFi

Status

Traffic 

Status
…

Number

of

Orders

Speed
Average

Speed
…

0
0

39.9962
116.4859

0
0

71881
6421

…

2090.8741
31.7932
40.0084
116.4672
5061
60

76942
1360

… Rainy 0 1 … 13 1.4005 3.5259 … 1

0
0

43.9352
125.3807

0
0

48015
3870

…

1823.4143
438.9085
43.9435
125.3610
3181
47

51196
689

… Sunny 0 0 … 38 5.0954 4.8176 … 0

𝐿𝑡

𝑇𝑡 =

𝐷𝑖𝑠𝑡𝑓𝑖𝑟𝑠𝑡
𝑡 (𝑚)

𝐷𝑖𝑠𝑡𝑝𝑟𝑒𝑣
𝑡 (𝑚)

𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒
𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒

𝑇𝑖𝑚𝑒𝑑𝑖𝑠𝑡𝑓𝑖𝑟𝑠𝑡
𝑡 (𝑠)

𝑇𝑖𝑚𝑒𝑑𝑖𝑠𝑡𝑝𝑟𝑒𝑣
𝑡 (𝑠)

𝑇𝑖𝑚𝑒𝑑𝑖𝑠𝑡𝑠𝑡𝑎𝑟𝑡
𝑡 (𝑠)

𝑇𝑖𝑚𝑒𝑑𝑖𝑠𝑡𝑙𝑎𝑠𝑡
𝑡 (𝑠)

…

Accident 

Sample

No Accident 

Sample

Start Order Dot

Last Order Dot

3Hours

180 Dots
First Dot

Last Dot

Fig. 2. Samples of data.

3.1 Trajectory Data

Trajectory data in our scenario is represented as a sequence of locations and times of trajectory dots

𝑆 = {𝑠1, ..., 𝑠𝑡, ...}, where 𝑠𝑡 = {𝐿𝑡;𝑇 𝑡}. Specifically, 𝐿 = {𝐷𝑖𝑠𝑡𝑡𝑓𝑖𝑟𝑠𝑡;𝐷𝑖𝑠𝑡𝑡𝑝𝑟𝑒𝑣;𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒
𝑡;𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑡}
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TARA-Net: A Fusion Network for Detecting Takeaway Rider Accidents 7

denotes the location features of trajectory, where𝐷𝑖𝑠𝑡𝑡𝑓𝑖𝑟𝑠𝑡 represents the distance to the first dot and𝐷𝑖𝑠𝑡𝑡𝑝𝑟𝑒𝑣

represents the distance to the previous dot. 𝑇 = {𝑇 𝑖𝑚𝑒𝑑𝑖𝑠𝑡𝑡𝑓𝑖𝑟𝑠𝑡;𝑇 𝑖𝑚𝑒𝑑𝑖𝑠𝑡𝑡𝑝𝑟𝑒𝑣;𝑇 𝑖𝑚𝑒𝑑𝑖𝑠𝑡𝑡𝑠𝑡𝑎𝑟𝑡;𝑇 𝑖𝑚𝑒𝑑𝑖𝑠𝑡𝑡𝑙𝑎𝑠𝑡}
denotes the time features of trajectory, where 𝑇 𝑖𝑚𝑒𝑑𝑖𝑠𝑡𝑡𝑓𝑖𝑟𝑠𝑡 represents time distance to the first dot,

𝑇 𝑖𝑚𝑒𝑑𝑖𝑠𝑡𝑡𝑝𝑟𝑒𝑣 represents time distance to the previous dot, and 𝑇 𝑖𝑚𝑒𝑑𝑖𝑠𝑡𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑇 𝑖𝑚𝑒𝑑𝑖𝑠𝑡𝑡𝑙𝑎𝑠𝑡 represent

time distance to the start and the last order respectively. To avoid inefficiency caused by useless information,

we only record the GPS signals of the rider every minute in three hours around the last order, so the number

of trajectory dot we collected 𝑛𝑑 = 180, the trajectory data derived from GPS signals has the dimension of

8× 𝑛𝑑, i.e. 𝑆 ∈ R8×𝑛𝑑 .

3.2 Contextual Data

Contextual data consists of both the current features and historical statistic features formed as categories

and numerical values. The categorical features contain the current status of the environment and mobile

devices, such as weather, traffic congestion status, and WiFi connection status of rider’s GPS device. The

numerical features contain both current and historical statistical information about riders, such as the total

number of orders, current speed, and the average speed. Each categorical feature is represented as a vector

of one-hot embedding, and each numerical feature is represented as normalized value or the vector of one-hot

embedding after discretization. In summary, contextual data has the dimension of 85, i.e., 𝑋 ∈ R85.

4 THE TARA-NET MODEL

…

Trajectory Data

Category Numerical Value

Embedding Normalization

Basic Data

ConcatenatePositional

Encoding

Multi-Head Attention

Add & Norm

Feed Forward

Add & Norm

Hidden Layer

Feed-Forward & Dropout

Normalization

Feed-Forward & Dropout

Hidden Layer

Add

Concatenate

Multi-Layer Perceptron 

ො𝑦

Sigmoid

𝑁1 ×
Trajectory 

Representation
Basic 

Representation

𝑁2 ×

Fig. 3. The TRAR-Net model architecture. TARA-Net consists of a trajectory representation component, a contextual
representation component, and a multi-layer perceptron module. The details of the three components are described in sect.
4.1,sect. 4.2 and sect. 4.3, respectively.
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8 He and Fu, et al.

To utilize both trajectory data and contextual data for accident detection, we propose a fusion network

named TARA-Net. As depicted in Fig. 3, TARA-Net consists of three components. A trajectory representation

module (TR) is used to extract trajectory features. A basic representation module (BR) is used to extract

basic contextual features, and a multi-layer perceptron module (MLP) analyzes concatenation features to

detect whether an accident happened. The detection model can be formulated as follows,

𝑦 = Sigmoid (MLP(TR (𝑆),BR (𝑋))). (1)

4.1 The Trajectory Representation Component

Trajectory data is a sequence data. The representation of sequence data has been widely studied in the field

of natural language processing[7, 13, 20]. Transformer [52] is an encoder-decoder model based on attention

mechanisms used to produce word representation for the natural language process task. It only consists

of self-attention and fully connected layers, dispensing with recurrence and convolutions entirely, which

can make better use of both long term and short term information of sequential data. So we construct a

transformer encoder by stacking multi-head attention mechanism and fully connected network to get a more

comprehensive representation of trajectory data.

For a given trajectory with 𝑡 dots 𝑆 = {𝑠1, ..., 𝑠𝑡, ...}, where 𝑠𝑡 is the vector representation of the 𝑡-th dot.

To make use of the order of the sequence, we add “positional encodings” to inject positional information to

the feature vectors of trajectory dots. The positional encodings have the same dimension as 𝑠𝑡, so we can

add it to 𝑠𝑡 by summed. There are many kinds of positional encodings, we use cosine and sine functions to

calculate positional encodings for Odd dimension and Even dimension respectively.

𝑃𝐸(𝑡,2𝑖) = 𝑠𝑖𝑛(𝑡/10002𝑖/𝑑𝑠𝑡 ) (2)

𝑃𝐸(𝑡,2𝑖+1) = 𝑐𝑜𝑠(𝑡/10002𝑖/𝑑𝑠𝑡 ), (3)

where 𝑡 is the position of trajectory dot, 𝑖 is the index of positional encoding value and 𝑑𝑠𝑡 represents the

dimension of 𝑠𝑡. According to the definition of positional encoding, it can generate a vector of arbitrary

dimension. In order to combine positional encoding 𝑃𝐸(𝑡) with 𝑠𝑡, we generate 𝑃𝐸(𝑡) in the same dimension

as 𝑠𝑡. Then, the input of encoder can be represented as a matrix 𝑀 = (𝑚1, ...,𝑚𝑡, ...),𝑀 ∈ R𝑑𝑚×𝑛𝑑 , where

𝑚𝑡 = 𝑠𝑡 + 𝑃𝐸(𝑡).

The transformer encoder is composed of a stack of 𝑁 identical layers, where each layer has two sublayers:

Multi-head self attention mechanism and fully connected feed-forward network. We employ a residual

connection [18] around each sublayer, which is then followed by a layer normalization [1]. The attention

mechanism produces output based on the input Querys, Keys and Values. The output is computed as

the weighted sum of the values where the weight assigned to each Value is computed by Query and the

corresponding Key. In this work, we use self-attention mechanism that generates Querys, Keys and Values

by only input 𝑀 , i.e., 𝑄 = 𝑀𝑊𝑄,𝐾 = 𝑀𝑊𝐾 ,𝑉 = 𝑀𝑊𝑉 , where 𝑄,𝐾 ∈ R𝑛𝑑×𝑑𝑘 and 𝑉 ∈ R𝑛𝑑×𝑑𝑣 are

the feature matrices of Querys, Keys and Values, 𝑊𝑄,𝑊𝐾 ∈ R𝑑𝑚×𝑑𝑘 and 𝑊𝑉 ∈ R𝑑𝑚×𝑑𝑣 are parameter

matrices. Then, we use “Scaled Dot-Product” to compute the output of attention as follows,

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√
𝑑𝑘

)𝑉. (4)
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TARA-Net: A Fusion Network for Detecting Takeaway Rider Accidents 9

To counteract the effect of small gradients brought by big 𝑑𝑘, we set 1√
𝑑𝑘

as a scaling factor and apply a

softmax function to assign weights to Values.

Following the previous work[52], it’s beneficial to linearly project the Query, Keys and Values ℎ times

with different learned parameter matrices, so we use Multi-head attention to replace the single attention.

Multi-head attention can be thought as an ensemble of ℎ single self-attentions, which allows the model to

jointly attend to information from different representation subspaces. Formally, the formula can be written

as follows,

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑀) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, ..., ℎ𝑒𝑎𝑑ℎ)𝑊
𝑂, (5)

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖,𝐾𝑖, 𝑉𝑖), (6)

where 𝑄𝑖,𝐾𝑖, 𝑉𝑖 are the representation matrices of the 𝑖-th self attention, and 𝑊𝑂 ∈ Rℎ𝑑𝑣×𝑑𝑚 is the

parameter matrix related to concatenate ℎ𝑒𝑎𝑑𝑠.

In addition to Multi-head attention, we append a fully connected feed-forward neural network after each

attention module, which consists of two linear transformations with a ReLU activation in between.

𝐹𝑁𝑁(𝑥) = 𝑚𝑎𝑥(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (7)

…
Positional

Encoding

Multi-Head Attention

Add & Norm

Feed Forward

Add & Norm

N1 ×

𝑀=S+PE

𝑆

𝑀1=MultiHead(M)

𝑀2=LayerNorm(M+𝑀1)

𝑀3=FNN(𝑀2)

𝑀4=LayerNorm(𝑀2 +𝑀3)

Fig. 4. Transfer process of each layer in transformer encoder.

In summary, the transformer encoder component extracts trajectory features by stacking 𝑁1 identical

Multi-head and FNN layers, the detailed transfer process of each layer are shown in Fig. 4. 𝑀𝑖 denotes the

output Matrix of layer 𝑖. We set 𝑁1 = 6 in this work, so our encoder consists of 20 layers in total. Then, the

output of 20-th layer 𝑀20 is the output of the encoder.

4.2 The Basic Contextual Representation Component

Contextual data of takeaway delivery has the characteristics of sparseness, which requires more complex

functions to represent the implicit connections between sparse features. According to the universal ap-

proximation theorem[22], a single layer feed-forward network is enough to represent any function. But

this layer may be very large, we need more parameters to represent a nonlinear function by single-layer
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10 He and Fu, et al.

than multi-layer, which causes efficiency issue. Furthermore, the large single-layer network is prone to be

overfitting. To solve the above problems, researchers construct a network with more layers. Take image

recognition models for example, since AlexNet [30], the latest networks become deeper and deeper. AlexNet

has only 5 convolutional layers, while the subsequent VGG network [48] and GoogleNet [51] have 19 and 22

layers respectively. However, the performance of deep networks cannot be improved by simply stacking more

layers. When training a deep neural network, the gradient is back-propagated to the previous layer, and the

repeated multiplication of multilayers may cause the gradient infinitely small, which is also known as the

vanishing gradient problem. As the number of layers of the network becomes larger, its performance tends

to saturate and even begin to decline rapidly.

Residual Network [18] is one of the most pioneering work in the field of computer vision and deep learning,

which can use deeper layers to improve representation ability. The core idea of the residual network is to

introduce an “identity shortcut connection” to connect not only the previous layer but the layer before a

certain stride with the current layer. The stride is a parameter adjusted according to the practical situation.

The building block of the residual network is shown in Fig. 5.

Feed Forward 

Feed Forward

X

X

Identity
ℱ

ℱ 𝑋 + 𝑋

Fig. 5. The building block of a residual network.

Formally, the building block can be formulated as follows,

𝑦 = ℱ(𝑋, {𝑊𝑖, 𝑏𝑖}) +𝑋, (8)

where 𝑋 and 𝑦 are the input and output of the building block, 𝑊𝑖 and 𝑏𝑖 represent the weights and bias

of 𝑖-th layer respectively. For the example in Fig. 5, the residual stride sets to be 2. Then, the mapping

function is defined as ℱ = 𝑊2(𝑊1𝑋 + 𝑏1) + 𝑏2. The operation ℱ +𝑋 is performed by a shortcut connection

and element-wise addition to retain the gradient of the deep network.

The basic contextual data features consist of the one-hot embedding of categorical data and the normalized

numerical data, which have the characteristics of sparsity and small value. Therefore, using a deep network to
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automatically construct the intersections of sparse features and retain the gradient is particularly important

for basic data features. To this end, we construct a residual network component to extract basic data features

by stacking 𝑁2 identical building blocks. Each building block consists of two hidden layers, two feed-forward

layers, and one normalization layer, the detailed transfer process of each layer is shown in Fig. 6.

Hidden Layer

Feed-Forward & Dropout

Normalization

Feed-Forward & Dropout

Hidden Layer

Add

𝑁2 ×

X

𝑋1 = 𝐻(𝑋)

𝑋2 = 𝐷𝑟𝑜𝑝(𝐹𝐹𝑁(𝑋1))

𝑋3 = 𝑁𝑜𝑟𝑚(𝑋2)

𝑋4 = 𝐷𝑟𝑜𝑝(𝐹𝐹𝑁(𝑋5))

𝑋5 = 𝐻 𝑋4 + 𝑋1

Fig. 6. Transfer process of each layer in a residual network.

𝑋𝑖 denotes the output of layer 𝑖. In order to avoid overfitting, we add dropout operations [50] to each

feed-forward layer. We set 𝑁2 = 5, so our residual network has a total of 30 layers, then the output of 25-th

layer 𝑋25 is the output of the network.

4.3 The Multi-Layer Perceptron Component

Multi-Layer Perceptron

ො𝑦

Sigmoid

…

…
…
…

256

128

64

32

Fig. 7. Structure of multilayer perceptron.The integer values on the right hand side represent the number of neurons in
each layer, and Sigmoid is an activation function 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1

1+𝑒−𝑥 , which can map any real number to the interval of

(0, 1).

The original trajectory data and basic contextual data are collected across the above two components.

We obtain two corresponding representation vectors 𝑀20(−1, :) and 𝑋25, where 𝑀20(−1, :) represents the
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last vector of the matrix 𝑀20. Aiming at predicting the probability of traffic accident by the concatenation

of 𝑀20(−1, :) and 𝑋25, we employ a pyramid-shaped multilayer perceptron to connect high-dimensional

features and one-dimensional output. The structure of MLP is shown in Fig. 7. The predict probability of

traffic accident can be calculated by,

𝑦 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑀𝐿𝑃 (𝐶𝑜𝑛𝑐𝑎𝑡(𝑀20(−1, :), 𝑋25))) (9)

4.4 Model Training

The proposed TARA-Net model is an end-to-end deep model stacked by the above three components, its

parameters can be easily updated by backpropagating the loss of predict results. We train the TARA-Net

model by minimizing the average cross-entropy defined as follows,

𝐿 =
1

𝑛

𝑛∑︁
𝑖=1

−(𝑦 · 𝑙𝑜𝑔(𝑦) + (1− 𝑦) · 𝑙𝑜𝑔(1− 𝑦)), (10)

where 𝑛 is the number of training samples, 𝑦 is the predicted probability of an accident, and 𝑦 is the ground

truth of whether an accident happened, 𝑦 = 1 represents an accident happened, otherwise 𝑦 = 0. However,

the positive examples (𝑦 = 1) is far less than the negative examples (𝑦 = 0) in our takeaway rider traffic

accident detection scenario, which is always referred to as a class imbalance problem. Also, the magnitude

of training data is not large enough, which may result in an overfitting problem. Therefore, we exploit an

oversampling for positive examples to alleviate class imbalance, and employ a novel regularization method

called flooding that keeps the training loss to stay around a small constant value, to avoid zero training loss.

Positive 

Data

Negative 

Data

Training 

Data

Training Batches

𝑛 Samples 𝑛 ∗ 𝑅𝑎𝑡𝑒 Samples

…
𝑛 ∗ 1 + 𝑅𝑎𝑡𝑒 Samples

TRAR-Net

Fig. 8. Sampling Procedure

4.4.1 Oversampling for positive examples. The sampling procedure is shown in Fig. 8. For each training

batch, we randomly extracting 𝑛 samples from the original training data and 𝑛 * 𝑅𝑎𝑡𝑒 samples from the
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positive data. As a result, the data of each batch has a similar number of positive and negative samples,

which is very beneficial to the training of TARA-Net. The training loss can be rewritten as:

𝐿 =
1

𝑛 * (1 +𝑅𝑎𝑡𝑒)

𝑛*(1+𝑅𝑎𝑡𝑒)∑︁
𝑖=1

−(𝑦 · 𝑙𝑜𝑔(𝑦) + (1− 𝑦) · 𝑙𝑜𝑔(1− 𝑦)), (11)

where 𝑛 * (1 +𝑅𝑎𝑡𝑒) is the number of oversampled training samples.

4.4.2 Flooding. To avoid overfitting, 𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔 prevents further reduction of the training loss when it reaches

a reasonably small value, which is named the 𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔 𝑙𝑒𝑣𝑒𝑙. The loss function after 𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔 can be

rewritten as follows,

�̃� = |𝐿− 𝑏|+ 𝑏. (12)

Note that when 𝑏 = 0, then �̃� = 𝐿. �̃� has the same gradient direction as 𝐿 when 𝐿 > 𝑏 but the opposite

direction when 𝐿 < 𝑏. This means that we perform gradient descent when the training loss is above the

𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔 𝑙𝑒𝑣𝑒𝑙, but gradient ascent otherwise.

5 EXPERIMENTS

We evaluate the effectiveness of our proposed model TARA-net on two tasks: transportation model clas-

sification and takeaway rider accident detection. The experiments of transportation model classification

illustrate the advantage of our trajectory representation component over other trajectory mining methods.

The experiments of accident detection show the superiority of our fusion network TARA-Net.

5.1 Transportation Mode Classification

5.1.1 Dataset. Geolife [65–67] is a trajectory dataset commonly used in data mining community which was

collected by Microsoft Asia. This dataset contains 17621 trajectories of which about 8000 have transportation

mode labels (4 types, bike, walk, car and bus). According to work [37], we split Geolife in a ratio of 7:1:2 to

get corresponding training, validation, and test datasets.

Table 1. Experimental results for classification accuracy on Geolife

SVM CNN LSTM GRU Conv-LSTM ST-GRU TARA-Net

Accuracy 86.11% 87.08% 88.39% 89.76% 89.85% 91.25% 92.63%

5.1.2 Performance Evaluation. We compare our TARA-Net to the baselines including both maching learning

based and RNN based approaches. Notably, our model removes the contextual representation component

in this classification task. Table 1 clearly demonstrates that our TARA-Net outperforms all baselines on

transportation mode classification. We have the following observations:

∙ The RNN based methods (LSTM [21], GRU [8], Conv-LSTM [46], ST-GRU [37]) are superior to the

traditional machine learning methods (SVM [9], CNN [31]). This is because the model with RNN

structure can better extract the implicit features of spatio-temporal sequence data.
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∙ Our TARA-Net outperforms all baselines. Since we remove the contextual representation component, it

shows the superiority of our trajectory representation component over other trajectory representation

methods.

5.2 Takeaway Rider Accident Detection

5.2.1 Dataset. We evaluate the performance of takeaway rider accident detection on real-world takeaway

rider data from Ele. me. The dataset includes 154,097 instances of thousands of riders in a month. Each

instance is represented as a tuple (𝑆,𝑋, 𝑦), where 𝑆 is the trajectory data of a rider, 𝑋 is the basic contextual

data about the rider and environment, and 𝑦 ∈ {0, 1} is the label that indicates whether (𝑆,𝑋) corresponds

to an accident. The dataset includes 74.4% negative instances (𝑦 = 0) and 15.6% positive instances (𝑦 = 1).

According to the grade of the accident, the positive instances can be subdivided into the serious accident

denoted as 𝑃0 and general accident represented by 𝑃1. We split the dataset into two parts, i.e., the data

of the first three weeks is used for training, while the data of the remaining week is used for testing. The

details of original and oversampled data are shown in Table 2.

Table 2. Distribution of original and oversampled data. We only oversample on Positive instances, so the negative instances
of the original training data are the same as the negative instances of the oversampled data and testing data did not change.

Dateset 𝑁𝑒𝑔 𝑃0 𝑃1

Training data 104237 700 18706
Oversampled training data 104237 1598 42537

Testing data 25819 165 4470

5.2.2 Evaluation Metrics. In this paper, we use five metrics to measure the performance of our method.

AUC is defined as the area under the ROC curve. In other words, we randomly select a positive sample and

a negative sample from the testing set, and AUC represents the probability that the predicted value of the

positive sample is greater than the negative sample. The formulation of AUC is as follows,

𝐴𝑈𝐶 =

∑︀
𝑝𝑟𝑒𝑑𝑝𝑜𝑠 > 𝑝𝑟𝑒𝑑𝑛𝑒𝑔

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑁𝑢𝑚 * 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑁𝑢𝑚
(13)

The traffic accident task is a binary classification. Recall and Precision are often used to measure the

performance of binary classification methods. Recall represents the fraction of positive samples that are

predicted correctly and precision represents the fraction of positive samples that are predicted to be positive.

Formally, they are calculated as follows,

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (14)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (15)

where the meaning of TP, FN, FP are shown in the confusion matrix in Table 3.

Since the output of our model is a continuous probability value, we need to set a threshold to generate

the prediction category label, then calculate Precision and Recall. However, it’s not easy to choose a fair

threshold for all comparison methods. We further compare maximum of 𝐹1 and 𝐾-𝑆 (Kolmogorov-Smirnov)
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Table 3. Confusion matrix of classification

True Label
Prediction Label

Positive Negative

Positive TP FN
Negative FP TN

value on models and the corresponding precision and recall. The formulations of 𝑀𝑎𝑥-𝐹1 and 𝐾-𝑆 are

shown as follows,

𝑀𝑎𝑥-𝐹1 = 𝑚𝑎𝑥(
2× 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
). (16)

𝐾-𝑆 = 𝑚𝑎𝑥(𝑇𝑃𝑅− 𝐹𝑃𝑅), (17)

where 𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃+𝑇𝑁

and 𝑇𝑃𝑅 = 𝑇𝑃
𝐹𝑁+𝑇𝑃

.

5.2.3 Model Comparison. We compare five models in our experiments: LR[28], FNN[3], Wide and Deep[6],

XDeepFM[34], and TARA-Net. Since the previous traffic accident analysis method focused on the accident

prediction of a certain area, such as a corner or a road segment, which can be considered as the regression

of accident risk in the region. But our task is more like a binary classification based on trajectory data

and sparse contextual data. So we compare our method with the classic and excellent models mentioned

above, they perform well in many binary classification tasks, such as Click Through Rate prediction of

the recommender system. It’s worth noting that we add shortcut connections to FNN to avoid vanishing

gradient, and compose Wide and Deep model by LR and FNN.

5.2.4 Parameter Settings. To evaluate the models on Ele. me dataset. To obtain fair comparison, we set the

number of the epoch to be 10 and batch size to be 64 for all the models. For all the deep models, we use

Adam[27] as the optimizer, Relu[16] as the activation function, the dimension of the hidden layer, and the

dropout are set as 256 and 0.8 respectively. Also, we set 𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔 = 0.1 for our TARA-Net.

5.2.5 Performance Evaluation. We evaluate the models from three aspects, i.e., the performance on accident,

the performance on 𝑃0 accident, and the performance on 𝑃1 accident. In the next two experimental settings,

we remove 𝑃0 or 𝑃1 accident to measure the detection performance for 𝑃1 accident and 𝑃0 accident

respectively.

Table 4. Performance on accidents

Metrics LR FNN Wide and Deep XDeepFM TARA-Net

AUC 0.6470 0.8562 0.8830 0.8721 0.8881
Max-F1 0.3363 0.6089 0.6800 0.6581 0.6938

Max-F1-Precision 0.2611 0.6458 0.7809 0.7891 0.7957
Max-F1-Recall 0.4179 0.5814 0.6022 0.5644 0.6151

K-S 0.2478 0.5650 0.6212 0.5958 0.6327
K-S-Precision 0.2276 0.4815 0.5289 0.5204 0.5020
K-S-Recall 0.6334 0.7001 0.7392 0.7137 0.7696
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Table 5. Performance on 𝑃0 accidents

Metrics LR FNN Wide and Deep XDeepFM TARA-Net

AUC 0.6560 0.8875 0.9202 0.8861 0.9236
Max-F1 0.0285 0.1409 0.3499 0.4580 0.3494

Max-F1-Precision 0.0135 0.0663 0.2440 0.6186 0.2408
Max-F1-Recall 0.0545 0.6364 0.6182 0.3636 0.6364

K-S 0.2542 0.6281 0.7313 0.6387 0.7321
K-S-Precision 0.0139 0.0275 0.0599 0.0525 0.0484
K-S-Recall 0.4545 0.7879 0.8061 0.7152 0.8303

Table 6. Performance on 𝑃1 accidents

Metrics LR FNN Wide and Deep XDeepFM TARA-Net

AUC 0.6467 0.8550 0.8816 0.8716 0.8868
Max-F1 0.3300 0.6039 0.6747 0.6541 0.6885

Max-F1-Precision 0.2534 0.6367 0.7735 0.7823 0.7886
Max-F1-Recall 0.4163 0.5794 0.5982 0.5619 0.6109

K-S 0.2493 0.5628 0.6176 0.5948 0.6296
K-S-Precision 0.2217 0.4717 0.5210 0.5110 0.4919
K-S-Recall 0.6349 0.6980 0.7342 0.7128 0.7664

The results of experiments from three aspects are shown in Table 4, Table 5, and Table 6. We highlight

the best results in the tables. After a comprehensive comparison, we have the following observations:

∙ First, deep models have better performance than the shallow models on traffic accident detection.

Obviously, we can see that LR (which is the only shallow model)performs the worst among all

comparison methods in all metrics. Take AUC value as example, a simple deep model FNN outperforms

LR by 32.33%, 35.29%, 32.21% on entire accident, 𝑃0 accident and 𝑃1 accident respectively. While

the best deep model TARA-Net outperforms LR by 37.26%, 40.79%, 37.13%.

∙ Second, fusion deep models perform better than single deep models on traffic accident detection. It’s

worth noting that our wide and deep model only consists of two modules LR and FNN. However, its

performance is greatly improved compared with LR and FNN from all aspects. The most significant

improvement is the 𝑀𝑎𝑥-𝐹1 value of 𝑃0 accident, wide and deep model improves 1127.72% , 148.33%

than LR and FNN on 𝑀𝑎𝑥-𝐹1 of P0 accident.

∙ Third, transformer encoder module improves the performance of traffic accident detection by trajectory

data. The difference between wide and deep model and TARA-Net is that we replace wide LR of

wide and deep by deep transformer encoder of TARA-Net, which brings comprehensive improvements

to model performance except for the 𝐾-𝑆-𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 metric. However, the precision and recall are

a pair of negatively correlated metrics, TARA-Net performs 5.36% worse than wide and deep on

𝐾-𝑆-𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, but improve 4.11% , 1.85% on 𝐾-𝑆-𝑅𝑒𝑐𝑎𝑙𝑙 and 𝐾-𝑆 respectively.

∙ Fourth, in our traffic accident detection scenario, the threshold determined by 𝐾-𝑆 corresponds to a

higher recall, while the threshold determined by 𝑀𝑎𝑥-𝐹1 corresponds to higher precision. 𝐾-𝑆-𝑅𝑒𝑐𝑎𝑙𝑙

is 25.12%, 30.47%, 25.45% higher than 𝑀𝑎𝑥-𝐹1-𝑅𝑒𝑐𝑎𝑙𝑙 on three experiments respectively. In a real
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business scenario, low precision means more human resources are needed to further filter accidents,

while low recall means we will miss more accidents, which is considered more serious than the waste of

human resources. So the threshold derived from 𝐾-𝑆 value can provide a higher recall with acceptable

precision. It is more suitable for our traffic accident detection task.

(a) (b) (c)

Fig. 9. Roc curve of TARA-Net. (a) represents the Roc curve of on total accident data, (b) and (c) represent the Roc
curve of 𝑃0 accident and 𝑃1 accident respectively.

We show the Roc curve of experiments in Fig. 9. The figures also show the performance comparison of the

models intuitively. In summary, the performance ranking is TARA-Net>Wide and Deep>XDeepFM>FNN>LR.

Our method TARA-Net consistently performs better than the other benchmark methods.

Table 7. TARA-Net performance with different 𝑁1

Metrics
Accident 𝑃0 Accident 𝑃1 Accident

𝑁1=3 𝑁1=5 𝑁1=7 𝑁1=3 𝑁1=5 𝑁1=7 𝑁1=3 𝑁1=5 𝑁1=7

AUC 0.8837 0.8861 0.8829 0.9261 0.9220 0.9204 0.8821 0.8848 0.8815
Max-F1 0.6838 0.6867 0.6863 0.3382 0.3669 0.3597 0.6781 0.6815 0.6811
K-S 0.6268 0.6303 0.6277 0.7479 0.7397 0.7463 0.6229 0.6266 0.6243

5.2.6 Selection of 𝑁1 and 𝑁2. In order to find reasonable numbers of building blocks of the transformer

encoder and residual network 𝑁1 and 𝑁2. We choose N from {3, 5, 7}, the experimental results are shown in

Table 7. We can see that our TARA-Net gets better performance when 𝑁1 = 5. The experiments on 𝑁2 has

similar results, and we omit it here for brevity. Finally, we choose 𝑁0 = 5 and 𝑁1 = 5 for our TARA-Net.

5.2.7 Selection of Oversampling Rate. To choose the appropriate oversampling rate, we analyze AUC

variation about 𝑅𝑎𝑡𝑒 ∈ [0, 0.5], with the step as 0.05, the experimental result is shown in Fig. 10. We can

see that there is a peak at 𝑅𝑎𝑡𝑒 = 0.2. Although the AUC value still improves when 𝑅𝑎𝑡𝑒 > 0.4, but the

time consumption of model training will increase as the value of 𝑅𝑎𝑡𝑒 increases. Consider both accuracy

and efficiency, we set 𝑅𝑎𝑡𝑒 = 0.2 in this work.
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Fig. 10. AUC variation about oversampling rate 𝑅𝑎𝑡𝑒

6 CONCLUSIONS

In this paper, we propose TARA-Net, a fusion network for takeaway rider accident detection. TARA-Net

consists of a transformer encoder component for trajectory feature representation, a residual network for

sparse contextual feature representation, and a full connection feed-forward neural network to output the

detection results. Furthermore, to overcome the challenge of class imbalance, we develop an over-sampling

method to strengthen positive samples. We also introduce flooding to avoid the overfitting of the proposed

deep model TARA-Net. We conduct extensive experiments on real-world Ele. me takeaway rider data to

compare the effectiveness of TARA-Net and the baselines. Our experiment results demonstrate that our

model constantly performs better than the other benchmark models in terms of serious accident detection

and normal accident detection results.
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