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Figure 1: AnimeRun. We synthesize a rich correspondence dataset using open source 3D movies, with the
input frames rendered in 2D cartoon style. We provide labels in both pixel-wise (optical flow) and region-wise
(segment matching) levels for correspondence learning.

Abstract
Existing correspondence datasets for two-dimensional (2D) cartoon suffer from
simple frame composition and monotonic movements, making them insufficient
to simulate real animations. In this work, we present a new 2D animation visual
correspondence dataset, AnimeRun, by converting open source three-dimensional
(3D) movies to full scenes in 2D style, including simultaneous moving background
and interactions of multiple subjects. Our analyses show that the proposed dataset
not only resembles real anime more in image composition, but also possesses richer
and more complex motion patterns compared to existing datasets. With this dataset,
we establish a comprehensive benchmark by evaluating several existing optical
flow and segment matching methods, and analyze shortcomings of these methods
on animation data. Data, code and other supplementary materials are available at
https://lisiyao21.github.io/projects/AnimeRun.

�Corresponding author

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.

https://lisiyao21.github.io/projects/AnimeRun


(a) MPI-Sintel
Full scene for 3D scenarios

(b) CreativeFlow+
One model for 2D cartoon

(c) AnimeRun (ours)
Full scene for 2D cartoon

Figure 2: Image and optical flow in different datasets. (a) MPI-Sintel [2] simulates the lighting and blur in
natural scenarios within full scene composition. (b) Each frame sequence of CreativeFlow+ [30] contains only
one model rendered in cartoon-style with static background in different art styles. (c) AnimeRun (ours) features
full scenes containing rich components and simultaneous moving background.

1 Introduction

Correspondence is the essence to many tasks in computer vision. For 2D animations, finding accurate
visual correspondence of adjacent frames has a great potential for many real-world applications. For
example, region-wise correspondence facilitates automatic colorization by propagating the color in
a reference frame to corresponding segments in target frames [3], while pixel-wise correspondence
(a.k.a optical flow) permits fine-grained image warping for frame interpolation [31, 4, 21]. Despite
correspondence datasets for natural scenarios have been extensively explored [1, 7, 20, 2, 5, 19, 32],
they are not well-suited for 2D cartoons due to the domain gap caused by inherently different imagery
structure and properties. Specifically, natural images contain complex textures with diverse shading
and blurring, while 2D cartoon is generally composited of flat color pieces with explicit contour lines.

To make in-domain correspondence data for animation, a viable way is to use computer graphics
software (e.g., Blender) to render 3D models into 2D style. In existing correspondence datasets
designed for animation, e.g., [30], a bunch of 3D models, including characters and objects, are
collected from the Internet, and each time only a single model is rendered into a frame sequence with
static background, with the model driven by its pre-defined motion. Since only one model needs to be
rendered for a scene, this approach can synthesize large amount of data rapidly without specialized
tuning for each scene. However, the “one-model” setting inevitably leads to monotonous composition
and thus falls short in simulating real animations. In particular, there are a few shortcomings. (1)
There are no simultaneous background or scene motions that are common in cartoon films. (2)
Components (e.g., segments) in a frame from only one character or object is much fewer than that
from the full scene, unrealistically lowering the difficulty of the dataset compared to real animation.
(3) There is no interactive movements (e.g., fighting) between models as well as no occlusion between
different objects, which are arguably the biggest challenge for correspondence learning in animation.
(4) The pre-defined motions are usually monotonic and with a short temporal extent (e.g., walking),
which is not enough to simulate coherent actions in a long shot.

In view of these shortcomings, we propose a new dataset, AnimeRun, which to our knowledge is the
first 2D animation visual correspondence dataset composed from full scenes of industry-level 3D
movies. An overview of our dataset is shown in Figure 1. In AnimeRun, we provide both gray-scale
contours and colored pictures for each frame to satisfy different usages on both the intermediate line
arts and colorized animation. As to correspondence, we provide ground-truth labels in pixel-wise
and region-wise levels, respectively, where the pixel-wise labels are dense optical flows of cartoon
sequences, and the region-wise ones are the matching of segments in adjacent frames. In order
to enrich the content, our dataset is built from three different open source films: Agent 327 [26],
Caminandes 3: Llamigos [27] and Sprite Fright [28], which feature not only a variety of changing
scenes, including indoors, snow mountain, mine and forest, but also complex interactive patterns
of motion. Transforming these full-scene data to 2D style is non-trivial as these movies come with
complex and diverse 3D rendering effects, which are incompatible with the desired 2D cartoon style.
To address this issue, on the premise of retaining the main characters and actions in the movie, we
systematically perform a series of adjustments on each film cut to improve the compatibility with 2D
animation styles and to ensure the accuracy of correspondence labels. Besides rendering the scenes
and models based on the preset materials, we apply color augmentation following the statistics of real
animation dataset [31] such that the synthetic data has a similar distribution of those in the wild. A
detailed description to the design choice and label synthesis is demonstrated in Section 3.1 and 3.2.

Compared to existing datasets, AnimeRun has several advantages: 1) animation in full scene with
simultaneous background motion, 2) richer image composition that is close to real animation, 3)
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multiple objects/characters interaction and occlusion, 4) more complicated movement within larger
magnitude, and 5) continuous motion in longer-story shots. A comparison on AnimeRun with
previous datasets can be seen in Figure 2. The detailed statistics comparison appears in Section 3.3.

We split the AnimeRun dataset into training and test partitions. With the test set of AnimeRun, we
prepare a series of benchmarks on the two kinds (region-wise and pixel-wise) of correspondence
labels. To establish the benchmarks, we trained, and finetuned several existing methods on proposed
training data as baselines. According to experimental results, we analyze the shortcomings of current
methods on cartoon data from different fine-grained aspects. We also compare the effectiveness
of CreativeFlow+ [30] and AnimeRun as a source for training. Experimental results show that our
proposed data can benefit the prediction of accurate 2D animation correspondence for both the rich
frame composition and the large motions compared to [30]. The detailed experimental settings and
results are provided in Section 4.

In conclusion, the contributions of our work are three-fold: (1) we make the first full-scene animation
correspondence dataset by converting open source 3D movies into 2D style. (2) We provide fine
grained correspondence labels in both pixel-wise and region-wise levels. (3) We establish the first
benchmark to correspondence in 2D animation.

2 Related Work

Optical flow has drawn much research attention in the last decade [1, 14, 9, 33, 38, 34, 12, 36, 42],
while accurate flow prediction can burst many downstream tasks, e.g., frame interpolation [16, 11,
24, 22, 37, 23, 15, 8]. As to optical flow data, since there is no sensor that can directly capture the
actual flow values, the ground truth data of real scenes can only be made at a small scale [1] or be
restricted on rigid objects [7, 20]. To cover more realistic motions, synthesizing real looking data
using computer graphics tools becomes a feasible way. In Butler et al. [2], the authors proposed
MPI-Sintel, an optical flow dataset rendered from an open source 3D animated movie, with dense
ground-truth optical flows. To simulate real-world scenarios, Sintel is enhanced with natural features
including complex lighting and shading, synthetic fog, and motion blur. In subsequent studies, a
series of large-scale synthetic datasets, including FlyingChairs [5], FlyingThings3D [19], Virtual
KITTI [6], VIPER [25] and REFRESH [18], are made for pretraining deep networks. More recently,
Sun et al. proposed a new flow generation scheme that formulates the synthesis pipeline into a
joint optimization problem, and constructed a new dataset, AutoFlow, to improve the pretraining
process [32]. All these datasets aim for natural-looking representations in real scenarios rather than
2D cartoon.

For literature that considers styles in 2D animations, the most relevant work to ours is CreativeFlow+
[30], where a series of 3D models is rendered in diverse artistic styles like ink, pencil and cartoon.
However, since each sample in CreativeFlow+ is composed of just one single model driven by simple
predefined movements, it is inadequate to simulate real 2D animations. As to segment matching,
Zhu et al. [43] annotated a small-scale dataset containing eight short sequences fewer than 150
frames in all, which is not enough to be a source of training. Zhang et al. [40] proposed large-scale
segmentation labels for isolated cartoon images but without temporal correspondence. In this paper,
we propose a dataset made from full-scene movies that possesses both rich components in image
composition and complex motion patterns, with both pixel-wise and region-wise correspondence
labels.

3 AnimeRun Dataset

One can collect correspondence data by using computer graphics software through synthesizing
high-quality frame sequences and recording the associated ground-truth motions. However, since very
few resources for 2D anime are made publicly available, converting 3D movies into 2D style becomes
an appealing alternative to simulate 2D cartoons. In this section, we describe the design choices we
made during the conversion process, including our definition to the 2D animation style and rendering
settings (Section 3.1), and the mechanism of ground-truth correspondence label generation (Section
3.2). We further analyze the synthetic data by its imagery statistics and the correspondence labels.
With that we compare our dataset with previous studies in Section 3.3.
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Original 3D FLAT render Particle off + Outline/FreeStyle Optical flow (DoF/AA off)Optical flow (DoF/AA on)

Figure 3: Illustrations on some design choices. In our data, 2D cartoon frames are rendered under the “FLAT”
lighting of Workbench engine in Blender. Particle effects that simulate real small objects are turned off for a
more similar looking of real cartoons. Depth of field (DoF) and Anti-Aliasing (AA) are turned off for sharp
optical flow boundary.

3.1 Design Choices on 2D Animation Data

Color, Line Art, and Texture. A typical yet unique feature of 2D animation is that all subjects are
outlined explicitly, and a closure of the contour lines is usually tinted into the same color. Following
this observation, we use Blender’s Workbench engine to render 3D models into flattened color
segments, and synthesize the contour lines by enabling both Outline and FreeStyle options (see Figure
3). Since our dataset is aimed specifically for 2D cartoons instead of diverse styles, we do not add
extra textures of artistic styles like watercolors or pencil drawings as in [30]. Besides, in order to
obtain a similar color distribution to animations in the wild, we randomly assign representative colors
of anime scenes in ATD-12K [31] to 3D models to augment the synthetic data (more discussion in
the supplementary file). To provide the line art in gray scale separately, we render the movies by
setting all materials to white, and apply a gamma correction with γ = 0.2 to enhance the contrast.

Particle Effects and Environmental Assets. When a 3D movie involves materials like hair, sweaters
or sprays, particle effects can be exploited to simulate a mass of tiny and dense instances for a more
realistic look. Under the 2D-style engine, such particle effects will be rendered into distinct solid
lines, which do not fit the style of 2D animations (see Figure 3). To address this issue, we substitute
the particles by instantiated objects to make synthetic data appear more similar to real cartoons. Apart
from particle effects, invisible environmental assets, e.g., fog block or emissive panels, are usually
used to simulate naturalistic lights. Such assets are rendered as solid objects that occlude the main
characters under the 2D-style engine, and therefore are removed in our data.

Transparency. Although transparency can appear in real 2D animation, as discussed in [2], translu-
cent object may cause ambiguity for correspondence labels. Therefore, we follow previous optical
flow dataset to remove all transparency cases and render all object as a solid instance.

Bokeh Effects. We find enabling depth of field (DoF) results in blur of flow values on the boundary
between the object and the background as shown in Figure 3. Therefore, we exclude these two effects
in our rendering settings.

Camera Motion and Focal Length. All three films contain a wealth of professional camera
movements, including translation, rotation and subject tracking. However, when computing the
motion vector, Blender will ignore the focal length change between adjacent frames and result in
wrong optical flow. This problem is also reported as a bug in [2, 30]. To avoid inaccurate labels, we
substitute such movements to positional shift along the direction with fixed focal length.

3.2 Ground-Truth Label Synthesis

Optical Flow. In addition to the settings mentioned above, we also turn off anti-aliasing by tuning the
pixel filter width under Film option to the minimum value to obtain sharp motion boundaries, and turn
off all illuminating objects like lamp and shining dots in eyes to avoid such objects disappearing in
synthetic optical flow. After rendering, we perform quality check on each flow by using it to warp the
target frame to the source frame to examine whether the frames are aligned. In general, the average
pixel error between the source frame and the warped target frame is less than 0.01 when occluded
regions are excluded.

Occlusion Mask. We compute additional occlusion mask from ground-truth optical flows following
Shugrina et al. [30]. Specifically, given a pair of adjacent frames Is and It, with the forward flow
fs→t and the backward flow ft→s, for a point x, if ∥fs→t(x) + wfs→t(ft→s)(x)∥ > 0.5, where
wfs→t

denotes backward warping, then we mark x as occluded. The occlusion masks are further
exploited for region-wise label generation and evaluations in optical flow benchmarks.
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Figure 4: Image and flow statistics. (a) Luminance histogram of (color augmented) AnimeRun is closer to
the real animes in ATD-12K [31] than CreativeFlow+ [30] (KL Divergence: 0.21 vs. 0.40 vs. 0.09). (b)Log
histogram of horizontal derivative of AnimeRun is more similar to ATD-12K (summed absolute difference
253.42) compared to MPI-Sintel [2] (632.57) and CreativeFlow+ (1280.04). (c) Log histogram on optical flow
magnitude.

Cartoon Segmentation and Region-wise Matching Label. To obtain region-wise correspondence
labels, we first apply the trapped-ball filling algorithm [41] to divide all frames into segments along
contour lines. Then, we derive the region-wise correspondence labels from the generated optical flows.
Specifically, for segments {Ss

i } and {St
j} in the source and target frames, we mark ms→t[i] = j if

there exists a pixel x ∈ Ss
i and x + fs→t(x) ∈ St

j . Considering situations that an object is segmented
into a single piece in the source frame, but becomes fragmented in the target frame due to occlusions,
we record all segments St

j that meet the above conditions and sort their priorities based on the
percentage in the source region, where the one within highest priority is marked as the target for
Ss
i . A segment Ss

i will be marked as unmatched if no correspondence is found, and ms→t[i] will be
labeled as −1. To avoid mis-matching, when counting the pixel-wise correspondence in a segment,
we mask off all pixels in the occlusion region, and erode the segment with a 3× 3 kernel to reduce
error caused by slight mis-alignment between segmentation edges and motion boundaries.
Sequence Length and Image Resolution. AnimeRun is composed of 2819 frames within 30 clips.
Most clips consist of over 50 frames, where 9 of them contain more than 100 frames (> 4 sec). As to
the composition of the three movies, Agent 327, Caminandes, and Sprite Fright contribute 741, 1565
and 513 frames, respectively. Except two clips in Sprite Fright that are rendered in 12 fps to prevent
invalid unmoved frames, all film cuts are rendered in 24 fps. As to image resolution, we render at
960× 540 for Caminandes, and at 1024× 436 for Agent 327 and Sprite Fright, which is in the same
resolution of MPI-Sintel [2].

Training and Test Split. We provide a split for these clips to training set and test set, where the
training set contains 1760 frames and the test set has 1059. For fair evaluation, we do not split
continuous motion of one film cut into different subset to prevent algorithms simply multiplexing
motion patterns in previous frames. In general, the two subsets share similar motion statistics, where
the average motion magnitudes of the two subsets are both around 19 pixels.

Data Structure and API. We provide our data in a similar structure as MPI-Sintel. Each clip consists
of a sequence of continuous frames {Ik}, contour lines {Ck}, segmentation label maps {Sk}, the for-
ward and backward flows {fk→k+1, fk+1→k} and region-wise matching labels {mk→k+1,mk+1→k}.
A Python-based API is available at https://github.com/lisiyao21/AnimeRun.

3.3 Statistics and Comparison to Previous Datasets

Image Statistics. We evaluate the distributions of image luminance and derivative of AnimeRun and
compare them to existing datasets. For luminance, pixel values ([0, 255]) are counted after converting
colored images to gray scale. As shown in Figure 4(a), the histogram on real anime dataset ATD-12K
[31] (cyan) reveals a bias towards dark colors, while CreativeFlow+ [30] (green) displays a larger
proportion in high brightness, which yields a difference to the animation in the wild. In contrast,
the color augmented data of AnimeRun has a closer distribution to ATD-12K, with a lower KL
Divergence to ATD-12K than CreativeFlow+ (0.21 vs. 0.40). On image derivative, we compute the
horizontal first-order difference and exhibit the log-histograms in Figure 4(b). Among compared
datasets, MPI-Sintel involves motion blur and depth of field to simulate natural scenarios, which
makes the image derivatives relatively lower than animations of ATD-12K; since a large part of
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Table 1: Region-wise statistics of different dataset. ∗Since all flow values of background are zero, the average
pixel shift of CreativeFlow+ is very small. Statistics for valid flows (> 0.01 pixel) are separately shown in
brackets. † The dataset for AnT is not publicly available, the number of segments is inferred to be less than
50 based on the description that “the maximum segment is 50” in [3]. Detailed statistics for each movie in
AnimeRun are separately listed below.

Dataset # Seg. # Occ. Seg. Avg. Pix. shift Avg. Seg. shift Accum. Pix. shift
per Fr. per Fr. per Fr. per Fr. per Seq.

ATD-12K [31] 302 – – – –
CreativeFlow+ [30] 49 0.82 3.84 (11.34)∗ 16.40 373.68 (1106.01)∗

AnT [3] (private) < 50† – – – –
AnimeRun (ours) 237 9.59 19.27 19.09 1774.43

Agent 327 409 14.06 14.55 16.14 1478.94
Caminandes 3 152 8.17 24.53 22.39 2168.02
Sprite Fright 250 7.45 10.01 13.24 1118.86

(a) ATD-12K (b) CreativeFlow+ (c) AnimeRun (ours)
Figure 5: Cartoon frames and segments of different datasets. (a) ATD-12K [31] (real cartoon). (b)
CreativeFlow+ [30]. (c) AnimeRun (ours).

frames in CreativeFlow+ [30] is rendered with high-frequency textures beyond 2D cartoons (e.g.,
pencil sketches), it has more proportions of large gradient values in the distribution. Meanwhile, the
log distribution of AnimeRun has a smaller summed absolute difference (SAD) to ATD-12K than
Sintel and CreativeFlow+ (253.42 vs. 632.57 and 1280.04).

Flow Statistics. In the analysis of the pixel-wise correspondence label, we count the shift magnitude
of each pixel on ground-truth optical flows, and compute the log-histograms as shown in Figure 4(c).
As to a fair comparison among datasets in different resolutions, we interpolated all optical flows into
960× 540 to unify the scale in the measurement. Generally, the flow magnitude of AnimeRun is
larger than CreativeFlow+. While in comparison with Sintel, AnimeRun takes a slightly smaller
proportion for movements less than 120 pixels (about 1/8 of the width or 1/4 of the height) and has
more motions larger than this value.

Region-wise Statistics. Color segments are basic components of 2D animations, and a real cartoon
frame can consist of hundreds of them as shown in Figure 5. Compared to existing datasets, AnimeRun
composes of richer segments due to the rendering of full scenes. As shown in Table 1, the average
number of segments in each frame reaches 237, which is closer to 302 in real animation data than
that of other datasets. In contrast, the numbers of CreativeFlow+ and AnT do not exceed 50 due
to only one subject appears in a frame sequence. Meanwhile, a frame in AnimeRun is expected to
have 9.59 segments occluded in the next frame, which increases the richness of the correspondence
labels and the complexity of the matching on it, while CreativeFlow+ has less than 1 on average
for lacking interactive motions. Besides the rich quantity of segments, AnimeRun has larger shift
distances in both pixel-wise and region-wise measurements. For pixel-wise shift, the average motion
magnitude in AnimeRun is 19.27 pixels, which is 1.7 times that of CreativeFlow+. In the region-wise
measurement, where the shift is computed as the distance between center points of matched regions,
each segment is expected to move 19.09 pixels excluding the occluded ones, with 2.69 (16%) more
than CreativeFlow+. In addition, we also calculate the accumulated pixel shift distance for each scene
to evaluate motion magnitude in a film cut. Compared to predefined movements of a single subject
in [30], The average motion of a clip in AnimeRun is more than 1.6 times that of CreativeFlow+
(1774.43 vs. 1106.01), which shows the advantage of movement in longer stories.

4 Benchmarks
We use AnimeRun to establish a benchmark on the pixel-wise and the region-wise correspondence.
For pixel-wise correspondence, we perform evaluations using the two most landmark learning-based
optical flow methods PWC-Net [33] and RAFT [34], and two recent methods GMA [12] and GMFlow
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Table 2: Quantitative results on pixel-wise correspondence. occ./non-occ: occluded/non-occluded areas;
line/flat: regions within/beyond 10 pixels to contour lines; s<10: ground truth flow speed < 10 pixels; s10-50:
between 10 and 50 pixels; s>50: over 50 pixels. For each method, we separately test its original network
weights and those finetuned on various datasets. T: FlyingThing3D [19]; S: Sintel [2]; Cr: CreativeFlow+ [30];
R: AnimeRun (ours).

Method EPE (pix.) ↓ non-occ. occ. line flat s<10 s10-50 s>50

PWC-Net [33] 9.15 6.73 50.83 6.73 10.44 2.81 5.96 82.71
PWC-Net ft. T+S 7.36 5.15 45.46 5.51 8.36 1.51 4.61 74.19
PWC-Net ft. T+Cr 9.49 7.21 48.75 6.36 11.17 1.76 7.97 85.55
PWC-Net ft. T+R 7.04 4.96 42.02 5.14 8.07 1.24 4.64 71.40

RAFT [34] 5.40 3.68 35.05 3.75 6.29 0.80 3.19 58.25
RAFT ft. T+S 5.16 3.55 33.03 3.59 6.01 0.88 3.39 52.70
RAFT ft. T+Cr 6.66 4.64 41.39 4.29 7.93 0.90 4.28 70.51
RAFT ft. T+R 4.19 2.85 27.16 3.05 4.80 0.60 2.60 44.54

GMA [12] 5.63 3.83 36.81 3.99 6.52 0.85 3.11 61.92
GMA ft. T+S 5.27 3.60 34.22 3.72 6.11 0.84 2.96 57.25
GMA ft. T+Cr 6.27 4.32 39.98 3.96 7.51 0.91 4.22 64.84
GMA ft. T+R 3.86 2.61 25.38 2.92 4.36 0.58 2.43 40.61

GMFlow [36] 4.73 3.40 27.68 3.21 5.56 1.22 3.38 43.12
GMFlow ft. T+S 4.75 3.45 27.27 3.19 5.58 1.12 3.57 43.17
GMFlow ft. T+Cr 5.54 4.21 28.57 3.61 6.59 1.33 4.92 45.87
GMFlow ft. T+R 3.35 2.40 19.83 2.43 3.85 0.79 2.58 30.14

[36]. As to the region-wise one, we re-implement the most recent segment matching method AnT [3]
as the baseline. For each benchmark, we compare the effectiveness of training on different datasets
and discuss the shortcomings of existing methods as guidance for future improvement.

4.1 Pixel-wise Correspondence

Baselines. We conduct experiments on the two most representative deep learning based optical flow
frameworks, i.e., PWC-Net [33] and RAFT [34], which not only achieve state-of-the-art performance
at the time they are published, but also trigger a lot of subsequent studies [17, 42, 39, 38, 10] to
improve them as backbones. Besides, we evaluate GMA [12] and GMFlow [36] to show the merit of
AnimeRun on the most recent algorithms.

For each method, in addition to evaluating the performance of the released pretrained weight,
we perform finetuning using the training set of AnimeRun (denoted as “R”) for 20 k iterations
following the default settings of [34], and test the finetuned networks. Specifically, following the
common practice in training optical flow networks, these networks are finetuned on a mixture of
FlyingThings3D [19] (denoted as “T”) and AnimeRun with a mixing ratio of about 1:10. The input
data are cropped into 368× 768 resolution and trained in a batch size of 12, with an initial learning
rate of 10−4 and weight decay of 10−5. Besides, we conduct control experiments by finetuning
the networks using CreativeFlow+ (denoted as “Cr”) and Sintel (denoted as “S”) within the same
configuration2 to verify whether the improvement of finetuning results from our dataset or from more
training iterations, and compare the effectiveness of these datasets on animation.

Evaluation Metrics. We use the average end-point error (EPE) to measure the accuracy of predicted
optical flow. For a more detailed analysis, we exploit the occlusion mask described in Section 3.2 to
calculate the EPE of the occluded region (denoted as “occ.”) and the non-occluded region (denoted as
“non-occ.”) separately. Since the large flattened regions in cartoons may cause matching uncertainty
due to lack of texture, to see how algorithms perform on this kind of pattern, we count the EPE within
(denoted as “line”) and beyond (denoted as “flat”) 10 pixels to contour lines, respectively. We also
divide the measurement into three intervals (s<10, s10-50, s>50) according to the shift distance of
the ground-truth optical flow to evaluate the performance on different flow magnitudes. The detailed
quantitative results are shown in Table 2.

Analysis. (1) GMFlow achieves the best overall performance. As shown in Table 1, GMFlow
achieves an average EPE of 3.35, improving 0.51 (13%) from the second place (GMA). Specifically,

2For CreativeFlow+ we set 480× 480 as the image crop size.
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Input image pair

Ground truth PWC-Net PWC-Net ft. T+S

RAFT RAFT ft. T+S RAFT ft. T+RRAFT ft. T+Cr

PWC-Net ft. T+Cr PWC-Net ft. T+R

Figure 6: Visualization of optical flow results. Finetuning on AnimeRun (T+R) lowers the error of predicted
optical flow on 2D animation compared to the original weights of networks and those finetuned on Sintel [2]
(T+S) and CreativeFlow+ [30] (T+Cr).

the error of GMFlow on “s>50” is remarkably reduced by 10.47 (26%) than GMA, which could
benefit from the global matching scheme [36]. While on the other hand, GMA behaves better on small
motions. For motion shift smaller than 10 pixels, GMA achieves an EPE of 0.58, an improvement
of 27% over GMFlow; as to “s10-50”, GMA achieves the lowest error of 2.43. (2) Finetuning
on AnimeRun can improve the performance. Compared to original network weights, overall
performances of the four compared methods are improved by 2.11 (23%), 1.21 (22%), 1.77 (31%)
and 1.38 (29%), respectively, after finetuned on AnimeRun; While referring to networks finetuned
on Sintel (“ft. T+S”), the improvements are 0.32 (4%), 0.97 (19%), 1.41 (27%) and 1.40 (29%),
respectively. As shown in Figure 6, finetuning on AnimeRun can fix some mismatching on the
cart, where the original RAFT and PWC-Net predict incorrect flow values due to large distances.
(3) Finetuning on CreativeFlow+ lowers the performance on regions of large motions. The
performances of all four compared methods show a certain degree of decline after finetuned on
CreativeFlow+. In particular, the overall EPE of “RAFT ft. T+Cr” gets 1.26 (23%) worse than the
score of the original weight. If looking deeply into details, finetuning on CreativeFlow+ only slightly
lower the performance on small shifts (0.10 for “s<10”), but significantly worsens that on large
motion magnitudes (12.26 for “s>50”). Since CreativeFlow+ contains no simultaneous background
motion, networks trained on it could tend to regress to zero when encountering a large flat area of
the background. As shown in Figure 6, the flow values of the background region appear to be in
the correct directions (visualized in blue) similar to ground truth for the original RAFT weights, but
become zero (visualized in white) for “RAFT ft. T+Cr”, yielding a poorer EPE value. (4) The
pixel-wise correspondence on the flat area is harder to predict than the area near contour lines.
As shown in the quantitative results, the average errors for “flat” regions are about 1.5 times larger
than the corresponding EPEs for areas marked as “line”, which applies in all compared methods.
Different from natural images, it could be harder to find correspondence for regions beyond the line
due to the lack of texture. Future work on animation optical flow can focus on improvement for such
flat regions.

4.2 Region-wise Correspondence

Baselines. Instead of predicting the motion vector for each pixel, in region-wise correspondence, each
segment is treated as a unit, and the goal is to find the corresponding segment in the target frame for
each segment in the source frame. Therefore, the region-wise animation correspondence is a discrete
matching problem similar to [29]. More recently, a deep learning-based framework, Animation
Transformer (AnT) [3], is proposed to solve the segment matching problem for 2D animation. AnT is
composited of a CNN-based segment descriptor, an MLP-based positional encoder, and a GNN-based
feature aggregator realized in Transformer structure as SuperGlue [29], where the final mapping is
computed from the segment-wise similarity matrix of aggregated features.

Since the source code of AnT is not publicly available, to set up the benchmark, we re-implement
AnT and train it on the proposed AnimeRun and CreativeFlow+. Specifically, we use the Adam [13]
optimizer to train the network for 3k iterations with a learning rate of 10−4 and a batch size of 16.
Since each pair of input frames may consist of different numbers of segments, which is not capable
of batch processing, we apply gradient accumulation for a batch. During training, input images are
scaled and cropped to 368× 368. For data augmentation, we perform random shifts and flip to input
frames as well as their segmentation labels.
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Table 3: Quantitative results on AnimeRun region-wise correspondence benchmark. The performances of
AnT [3] trained on AnimeRun (R) is significantly higher than that trained on CreativeFlow+ (Cr).

Colored Contour Line

Method ACC (%) ↑ non-occ. occ. #>300 ACC (%) ↑ non-occ. occ. #>300

AnT tr. Cr 70.64 72.88 0.00 58.71 68.29 70.41 0.00 51.93
AnT tr. R 80.61 83.27 0.00 74.79 80.84 83.46 0.00 75.80

AnT tr. Cr (33%)   AnT tr. R (43%)   

Input image pair Ground Truth (ACC = 100%)   

Figure 7: Input image pairs and visualization of segment matching. The segments in the target frame (right
of each image pair) are tinted into random colors, while the segments in source frame (left, red box) are tinted to
the same color of matched segment in target, according to predicted matching labels. Occluded segments are
colored in white. The source frames are expected to be colored as the same as that in ground truth.

Evaluation Metrics. We compute the average accuracy (ACC) of predicted correspondence. Besides,
we count ACC values for occluded (where ground truth matching label is −1) and non-occluded
segments, respectively. To measure the performance of image pairs within a large number of segments,
we separately record the scores for cases that consist of more than 300 color pieces. The quantitative
results are shown in Table 3.

Analysis. (1) Training on AnimeRun significantly improves the matching accuracy compared to
CreativeFlow+. AnT trained on AnimeRun achieves an accuracy of 80.61% and 80.84% for segment
matching on colored frames and contour lines, respectively, while the scores of that trained on
CreativeFlow+ are about 10% lower. Specifically, for data containing more than 300 segments, “AnT
tr. R” improves 16% and 20% than “AnT tr. Cr” for the two types of input, respectively, suggesting
the effectiveness of training on AnimeRun that contains rich components.. (2) Occlusion is difficult
to recognize. Although AnT achieves high overall scores, it performs poorly in recognizing a region
that flew out of the scene or is occluded in the target frame. As shown in Table 3, AnT fails to pick
out the occluded segments and obtains zero accuracies. (3) Matching of repetitive or similar
components is hard. As shown in Figure 7, the background of the input image contains many similar
longitudinally arranged wooden boards, where most of the predicted matching labels for these boards
are incorrect due to their similar sizes and close positions. Although training on AnimeRun improves
the accuracy on some noticeable parts (like hair), there are still many errors in such repetitive patterns.
Therefore, future work can consider how to identify these similar components for more accurate
matching.

5 Discussion

Applications on Real Animation. To explore the applicability of AnimeRun to real cartoons, we use
optical flow networks finetuned on different datasets to conduct frame interpolation on ATD-12K
[31]. Specifically, we substitute the motion prediction module of AnimeInterp [31] to RAFT [34] of
various weights described in Section 4.1, and apply the subsequent warping and synthesis modules
of the original AnimeInterp model to generate the intermediate frames. Following [31], besides
evaluating the average PSNR and SSIM [35] between interpolated image and ground truth for each
method, we report the scores of different difficulty levels defined in [31] separately in Table 4. As a
baseline, the original RAFT achieves 29.20 dB of PSNR score on average, while that finetuned on
Sintel [2] slightly improves 0.03dB. Finetuning on CreativeFlow+ [30] lowers the score by 0.01 dB;
especially, it leads to a drop of 0.16 dB for the case marked as “difficult”, which agrees with the poor
performance of “s10-50” and “s>50” for “RAFT ft. T+Cr” in Table 2. In contrast, “RAFT ft. T+R”
improves 0.15 dB on average, and improves 0.21dB, 0.16dB and 0.02dB for the three difficulty levels,
respectively, which is consistent with the higher performance in Table 2.
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Table 4: Quantitative results of frame interpolation on ATD-12K. We directly substitute motion
prediction modules of AnimeInterp [31] to relative methods and evaluate the interpolation results.
Difficulty levels are kept the same as [31]. T: FlyingThing3D [19]; S: Sintel [2]; Cr: CreativeFlow+
[30]; R: AnimeRun (ours).

Whole Easy Medium Hard

Method PSNR (dB) ↑ SSIM ↑ PSNR SSIM PSNR SSIM PSNR SSIM

RAFT [34] 29.20 0.9558 31.35 0.9689 28.80 0.9566 26.65 0.9363
RAFT ft. T+S 29.23 0.9559 31.39 0.9691 28.83 0.9568 26.62 0.9361
RAFT ft. T+Cr 29.19 0.9561 31.41 0.9696 28.84 0.9571 26.48 0.9363
RAFT ft. T+R 29.35 0.9564 31.56 0.9698 28.96 0.9575 26.67 0.9364

Frame 0

Frame 1

Inputs & Ground Truth RAFT ft. T+S RAFT ft. T+Cr RAFT ft. T+R

f0!1 f0!1 f0!1

f1!0 f1!0 f1!0

RAFT

f0!1

f1!0

GT

Figure 8: Visualization of frame interpolation on ATD-12K [31]. Given two input frames, the intermediate
one is interpolated based on the forward (f0→1) and backward (f1→0) flows. For RAFT and “RAFT ft. T+S”,
flow errors in both f0→1 and f1→0 cause a wrongly interpolated eye; while the error in single f0→1 of “RAFT
ft. T+Cr” yields blur of relevant part.

An example to illustrate the effectiveness of AnimeRun is shown in Figure 8, where Chihiro turns her
head between two input frames. Since the original RAFT and that finetuned on Sintel [2] is trained
on natural scene data, they fail to identify the difference between the left eye in frame 0 and the
right eye in frame 1 under the textureless condition. That yields incorrect flow values at the eyes
(indicated by arrows), which are not consistent with the rest facial parts, and further results in an
additional eye in the interpolated frame. For “RAFT ft. T+Cr”, although the values of f1→0 are
consistent, the incorrectness in f0→1 leads to blurring of the left eye due to image warping errors. In
contrast, “RAFT ft. T+R” can estimate the bidirectional flows more accurately and produce a clear
interpolation result.

According to the above experiments, the scores in pixel-wise benchmark of AnimeRun are consistent
to the quality of frame interpolation on ATD-12K [31], which implies AnimeRun can be a suitable
optical flow quality indicator for animation in the wild. Meanwhile, as a source of training data,
AnimeRun can improve the quality of interpolated results and therefore has great potential to facilitate
future progress on relevant tasks.

Summary. We make the first full-scene 2D animation correspondence dataset consisting of con-
tinuous 2D cartoon frames and correspondence labels at pixel-wise and region-wise levels. The
dataset is made by converting high-quality 3D movies to possess not only rich components in image
composition but also larger and more complex motion, which can be a better simulation of real-world
animations. Based on the dataset, benchmarks are established to analyze current solutions to corre-
spondence problems for 2D animation. The proposed dataset not only has the potential to facilitate
relevant cartoon applications as a source of training but also provides opportunities for future works
for unsolved challenges analyzed in this paper.
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