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ABSTRACT

Existing EEG-based brain-computer interface (BCI) systems require long calibra-
tion sessions from the intended users to train the models, limiting their use in real-
world applications. Additionally, despite containing user-specific information and
features correlating with BCI performance of a user, resting-state EEG data is un-
derutilized, especially in motor imagery decoding tasks. To address the challenge
of within and across-user generalisation, we propose a novel architecture, Hyper-
EEGNet, which integrates HyperNetworks (HNs) with the EEGNet architecture
to adaptively generate weights for motor imagery classification based on resting-
state data. Our approach performs similarly in a Leave-Subject-Out scenario using
a dataset with 9 participants, compared to the baseline EEGNet. When the dataset
size is scaled, with 33 participants’ datasets, the model demonstrates its generali-
sation capabilities using the information from resting state EEG data, particularly
when faced with unseen subjects. Our model can learn robust representations in
both cross-session and cross-user scenarios, opening a novel premise to leverage
the resting state data for downstream tasks like motor imagery classification. The
findings also demonstrate that such models with smaller footprints reduce mem-
ory and storage requirements for edge computing. The approach opens up avenues
for faster user calibration and better feasibility of edge computing, a favourable
combination to push forward the efforts to bring BCIs to real-world applications.

1 INTRODUCTION

The growing use of electroencephalograms (EEGs) in brain-computer interfaces (BCIs) has gained
attention due to their non-invasive nature and high temporal resolution, making them ideal for de-
coding brain activity patterns in real-time (Schalk et al., 2024). BCIs, providing an interface between
the brain and external devices, have applications in neurorehabilitation, assistive technologies, and
neuroprosthetics. Among the various paradigms within BCIs, motor imagery (MI) decoding, which
involves classifying imagined movements by the users from EEG signals, is of greater interest for
decoding motor control. However, despite advances in hardware and software pipelines, MI-based
BCIs have substantial challenges to bring them to real-world applications for generalised usage. The
challenges with non-invasive BCIs are particularly in achieving robust and consistent performance
across users and sessions (Saha & Baumert, 2020).

An outstanding challenge in MI-BCI systems is the variability in brain signals across users and
sessions. This variability arises from differences in individual neural patterns, low signal-to-noise
ratio, and varying conditions of the users, like fatigue or attention (Pan et al., 2022; Kobler et al.,
2022). These differences cause inconsistencies in decoding MI patterns, limiting the generalizability
of BCIs in real-world applications. The ability to generalize across users and sessions is necessary
for practical and accessible applications of BCIs, especially in scenarios where collecting large
amounts of personalized data is unfeasible.

In addition to cross-user variability, BCI performance is also hindered by BCI illiteracy (Allison
& Neuper, 2010), where certain individuals cannot generate the neural signals necessary for BCI
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control. Though the concept of BCI illiteracy has been debated and its cause is a subject of research
(Becker et al., 2022; Thompson, 2019; Alonso-Valerdi & Mercado-Garcı́a, 2021), the result is ev-
ident across datasets. This makes designing universally effective BCIs challenging. Research has
also focused on the predictors of BCI performance, helping to pre-identify individuals who may
face difficulties with BCIs, which may guide personalized interventions or optimizations. Impor-
tantly, much of the research has used resting-state EEG data to develop these predictors (Tzdaka
et al., 2020; Trocellier et al., 2024; Blankertz et al., 2010). Resting-state data, collected while the
user is relaxed, offers insights into baseline brain activity without task-specific requirements, mak-
ing it an attractive candidate for predicting BCI proficiency. Moreover, resting state EEG data is
also a marker for user identification (Ma, 2015; Choi et al., 2018; Wang et al., 2019), depicting
user-specific information.

Data-driven deep-learning models have effectively improved BCI performance on different tasks
(Hossain et al., 2023; Tibrewal et al., 2022). Transfer learning, where models trained on data from
one individual or group can be adapted to another, holds promise for creating systems that work
across different users, including able-bodied and SCI patients (Nagarajan et al., 2024; Xu et al.,
2021). Furthermore, a study by Camille Benaroch & Lotte (2022) has used user-specific frequencies
to optimize decoding algorithms, applying data-driven approaches. However, to our knowledge, this
is the first work to use resting state EEG data to train the model for motor-imagery classification.
The major contributions of this work are as follows:

• Propose a novel HyperEEGNet architecture using HyperNetworks to learn unique user-
specific representations as adaptive weights for the underlying task in EEG decoding.

• Demonstrate the significance of resting state EEG data to solve downstream tasks like mo-
tor imagery classification using data-driven learning.

2 METHOD

2.1 DATASETS

The dataset used in this study consists of electroencephalogram (EEG) recordings from 87 individ-
uals who participated in motor imagery (MI) tasks and resting-state conditions Dreyer et al. (2023).
The dataset is unique, given the large number of participants and the available recordings for each
user. The EEG data were collected using 27 electrodes placed with a 10-20 configuration system,
each sampling at a rate of 512 Hz. The dataset consisted of 70 hours of recordings of 8-second long
runs when participants performed motor imagery, i.e. imagining left and right-hand movements
following a visual cue on the screen.

This work used the sub-dataset ”A” with 60 participants. The dataset mentions that 18 participants
reported having noisy channel data or distractions from the environment during the sessions. These
participants are ignored in the study. The dataset has two runs for each participant, which were
used for training the model, while the rest of the four runs are termed ”online” runs. Following the
benchmark set by Dreyer et al. Dreyer et al. (2023), each participant’s two ”acquisition” runs are
used for training, and the four online runs are used as test sets for the within-user across-session
scenario. For the across-user scenario, data from the last 9 participants ( 20%) was considered a
test set, while the rest of the data from the 33 participants was used for training. A band-pass filter
with a frequency range of 0.5-40 Hz was used to prepare the raw EEG data for analysis. Epochs, or
time segments of EEG data, were created by segmenting the 3 seconds of data following the event
marker at the onset of the visual cue for movement imagination. The resting state data was extracted
from the first two seconds of the trial, where the participants focused on a fixation cue and were not
explicitly instructed to rest.

To understand the effectiveness of the proposed approach on a comparatively smaller dataset with 9
participants, BNCI 2014 IIa Competition Dataset Brunner et al. (2008) is used. The dataset consists
of electroencephalogram (EEG) signals from 9 individuals who participated in motor imagery (MI)
tasks and resting state conditions. The EEG data were collected using 22 electrodes, each sampling
at a frequency of 250 Hz. The analysis involved two classes: right-hand and left-hand movement
imagery, while feet and tongue movements were ignored. Each epoch consisted of 4 second-long
motor imagery activity. The resting state data was extracted from the first two seconds of the trial,
where the participants focused on a fixation cue and were not explicitly instructed to rest.
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2.2 RESTING STATE CONNECTIVITY ANALYSIS

The resting state analysis for both datasets was common. The preprocessing phase for the analysis
involved using MNE-Python Gramfort et al. (2013) to process resting-state EEG data from each
epoch spanning a time window from 0 to 2 seconds relative to the trial start onset. A continuous
wavelet transform (CWT) using Morlet wavelets Tallon-Baudry et al. (1997) was then applied to
decompose the EEG signals into these desired frequency bands: theta (4–8 Hz), alpha (8–13 Hz),
and beta (13–30 Hz). To analyze steady-state connectivity patterns from resting-state EEG data,
we employed spectral connectivity measures, including coherence (COH) and phase-locking value
(PLV) Lachaux et al. (1999).

Spectral connectivity was estimated using Coherence (COH) and phase-locking value (PLV) as con-
nectivity metrics to evaluate both amplitude and phase coupling between different brain regions.

Coherence measures the linear relationship between two signals in the frequency domain, capturing
both the amplitude and phase coupling across frequency bands.

COH(f) =
|E[Sxy(f)]|√

E[Sxx(f)] · E[Syy(f)]
(1)

The cross-spectrum Sxy(f) is a measure of the spectral density of the correlation between two
signals x(t) and y(t) at a specific frequency f . The auto-spectra Sxx(f) and Syy(f) are the Fourier
transforms of the autocorrelation functions of x(t) and y(t), respectively, and represent the power
spectral densities of the signals.

Similarly, Phase-Locking Value (PLV) measures the consistency of the phase difference between
two signals across multiple trials, independent of their amplitude. PLV ranges from 0 to 1, where 0
indicates no phase locking (random phase differences) and 1 indicates perfect phase synchronization
(constant phase difference).

PLV =

∣∣∣∣E [
Sxy(f)

|Sxy(f)|

]∣∣∣∣ (2)

The resting state EEG analysis described above was performed on the segmented two-second-long
time window from EEG data, and the resulting connectivity matrices were averaged across each
participant trial to obtain a representation of functional connectivity.

2.3 MODEL ARCHITECTURE AND TRAINING

This study proposes a novel architecture that combines the feature extraction capabilities of EEGNet
(Lawhern et al., 2018) with the adaptability of HyperNetworks (Ha et al., 2017) for motor imagery
classification. This method uses a hypernetwork to generate adaptive weights for EEGNet, lever-
aging user-specific information from the resting state EEG data for cross-session and cross-user
generalisation. Figure 1 depicts the model architecture and the learning mechanism.

2.3.1 EEGNET

EEGNet is a specialized neural network architecture designed to handle the unique characteristics
of EEG signals. The model includes temporal and spatial convolutional layers optimized to cap-
ture relevant patterns from the multi-channel EEG data. Temporal convolutional layers focus on
identifying patterns within the time domain of the signals, while spatial convolutional layers extract
information based on the relationships between different EEG channels (Tshukahara, 2021). The
EEGNet model was implemented using the Torcheeg framework (Zhang et al., 2024).

2.3.2 HYPERNETWORK

Hypernetworks are neural networks that generate the weights for another network (the main net-
work: EEGNet) instead of learning them directly. For this study, the designed hypernetwork gener-
ated the weights of the core layers (conv2d and linear layers) of EEGNet. The hypernetwork (Hy-
perNet) is a fully connected neural network with hidden layers of sizes 256 and 512, followed by a
dropout with a probability of 0.3 to improve generalization. The resting state EEG data extracted
from the two-second long time window are the inputs to this hypernetwork.
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Figure 1: Overview of the proposed HyperEEGNet learning mechanism.

2.3.3 HYPEREEGNET TRAINING

The combined architecture, including the HyperNet and EEGNet, is trained as follows:

• HyperNet is used as a feedforward network to generate weights for EEGNet using resting-
state connectivity data with dropout.

• Motor imagery activity data is extracted from a predefined time window (based on the
experimental paradigm) in the raw data to perform the binary class classification with a
forward pass on EEGNet with the generated weights from HyperNet.

• Cross entropy loss is accumulated for a batch of 50 epochs, and backpropagation is per-
formed only on HyperNet parameters. Adam optimiser with learning rate 1e-4 is used.

2.4 EXPERIMENTAL SETUP AND PERFORMANCE EVALUATION

The experiment is set to evaluate two conditions: cross-session and cross-user for each dataset:
BCI IV IIa and Dreyer et al. (2023) with a baseline comparison with EEGNet. The experiments
were performed using the dataset from MOABB library (Aristimunha et al., 2023), and models were
trained and evaluated using Torch and sci-kit-learn libraries.

2.4.1 CROSS-SESSION CONDITION

For the dataset from Dreyer et al. (2023), the ”acquisition runs” from 33 participants are used for
training and stratified 5-fold cross-validation is used to select the best model. Performance evalua-
tion with accuracy metrics is performed for the ”online” runs to evaluate HyperEEGNet compared
to EEGNet.

For the BCI IV IIa dataset, the data from all nine participants is divided into five folds with stratified
cross-validation; each fold in the iteration is considered as a test set while the other set is split with
an 80-20 ratio to choose the best-performing model on the validation set. Accuracy metrics on the
test set are evaluated for HyperEEGNet and compared with EEGNet.

2.4.2 CROSS-USER CONDITION

For the Leave-N-out (with N=8,16 and 32) strategy to test the HyperEEGNet performance com-
pared to EEGNet, the ”acquisition runs” from randomly selected (42-N) participants were used for
training. 20% split is used as a validation set to select the best model. Performance evaluation with
accuracy metrics is performed using data from the N participants for the ”online” runs to evaluate
HyperEEGNet compared to EEGNet. Analysis of such 100 random combinations reports the mean
accuracy and standard deviation in Table 4 in the Appendix section. Non-parametric statistical tests
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(Wilcoxon Signed Rank Test) recorded a statistically significant increase (p<0.005 for all N) in the
performance using HyperEEGNet compared to EEGNet.

3 RESULTS

The results of the experiments, as presented in Table 1, report the performance of the proposed
HyperEEGNet architecture compared to the baseline EEGNet in cross-session conditions on the
Dreyer et al. (2023) dataset. For the cross-session condition, the HyperEEGNet again outperformed
EEGNet, with a mean accuracy of 83.51% ± 0.68 compared to EEGNet’s 75.87% ± 6.62.

Iteration Cross-Session Condition
HyperNet

+ EEGNet (%)
EEGNet (%)

1 84.25 81.49
2 83.47 73.79
3 83.78 65.46
4 83.66 81.26
5 83.51 77.35

Mean ± SD 83.51 ± 0.68 75.87 ± 6.62

Table 1: Mean accuracy with standard deviation (SD) across five iterations of cross-session (on
online runs) conditions on Dreyer et al. (2023) Dataset .

Participant ID HyperNet
+ EEGNet (%)

EEGNet (%)

1 60.07 83.33
2 53.47 62.85
3 63.89 82.29
4 76.04 58.68
5 59.03 54.17
6 68.40 72.22
7 68.40 63.54
8 75.00 88.19
9 64.58 70.83

Mean ± SD 65.43 ± 07.40 70.68 ± 11.90

Table 2: Mean accuracy with standard deviation (SD) across five iterations of cross-user condition
on BCI Competition IV IIa Dataset with Leave One Subject Out (LOSO) strategy.

Iteration HyperNet
+ EEGNet (%)

EEGNet (%)

1 79.61 79.38
2 82.21 81.70
3 80.69 80.12
4 79.61 81.27
5 79.18 80.31

Mean ± SD 80.26 ± 1.23 80.56 ± 00.93

Table 3: Mean accuracy with standard deviation (SD) across five iterations of cross-session (using
all 9 participants’ data) condition for BCI Competition IV IIa Dataset.

The HyperEEGNet and baseline EEGNet models were evaluated using the Leave-One-Subject-Out
(LOSO) strategy on the BCI Competition IV IIa dataset. The results represented in Table 2 indi-
cate that while EEGNet achieved a higher overall mean accuracy (70.68% ± 11.90) compared to
HyperEEGNet (65.43% ± 07.40), there were notable differences in performance for certain partic-
ipants. For instance, HyperEEGNet outperformed EEGNet for Participant IDs 4, 5, and 7, with
improvements of 17.36%, 4.86%, and 4.86%, respectively. However, for participants with higher
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baseline performance (e.g., Participant IDs 1, 3, and 8), EEGNet achieved superior results. For the
cross-session evaluation, the performance of HyperEEGNet and EEGNet was more comparable, as
observed in Table 3, with mean accuracies of 80.26% ± 1.23 for HyperEEGNet and 80.56% ± 00.93
for EEGNet.

4 DISCUSSION

4.1 LEARNING REPRESENTATIONS FROM RESTING STATE

Experimental results indicate the unique possibility of leveraging resting state EEG data for learning
downstream tasks like motor imagery classification. The comparison across two different sizes of
datasets also confirms the positive outcomes of the efforts in the field to build large, robust datasets
for training foundational models (Ferrante et al., 2024; Chen et al., 2024). During the training phase
for HyperEEGNet architecture on the Dreyer et al. 2023 dataset, we also observed a steep learning
curve, indicating a rapid convergence in 5̃0 epochs. The HyperNet was also prone to overfitting with
a larger epoch size (500+) for training, especially in the case of cross-user conditions, where it was
more evident. Notably, the smaller standard deviation for HyperEEGNet across the performance
benchmarks indicates more stable performance across subjects than EEGNet.

Though the proposed approach focused on learning the adaptive weights for two class motor imagery
classification, it opens up a future direction to generalise the learning mechanism across different
downstream tasks or a larger number of classes for motor imagery.

4.2 INTERPRETING HYPEREEGNET

Apart from the performance metrics, some takeaways indicate potential as well as raise interesting
questions in learning via the proposed approach. There are participants from both datasets known to
have lower BCI performance across studies using different classifiers, and the contrary is true where
few participants have consistently higher accuracies when trained specifically on the participant’s
data. For example, Participant ID 4 in the BCI Competition dataset has low BCI performance. How-
ever, Participant ID 3 has consistently high accuracies when using different classifiers. Surprisingly,
the proposed approach performs well on Participant IDs 4, 5, and 7 but doesn’t do well enough for
Participant ID 3 in cross-user scenarios. These questions are open for exploration since they need
to interpret the weights generated by the HyperNet; how do they compare with an EEGNet trained
directly on activity data? Moreover, the resting state data can be represented in many ways; the
proposed work did not explore optimising the representations for resting-state brain connectivity.
There could be other important features useful for downstream tasks that are not captured in the
connectivity measures.

4.3 TRANSFER LEARNING AND FEW-SHOT LEARNING

While the current approach can be considered an approach towards meta-learning by learning to
learn weights of the downstream task, the work has not explored the paradigm of few-shot learning
for faster adaptation compared to other existing approaches or the efficacy of this architecture com-
pared with other transfer learning approaches. A benchmark against approaches for transfer learning
and few-shot learning successful on EEG datasets is necessary to justify the approach holistically.

4.4 HYPERNETS FOR SMALLER FOOTPRINTS

Current work focused on successfully learning representations from resting state EEG data for mo-
tor imagery without optimising the size of the HyperNet. However, hypernetwork architectures
are helpful for model compression. Efforts towards model compression without an impact on per-
formance can be fruitful for real-world deployment of the BCI models. Task-specific information
like restricting the input frequency bands and identifying efficient connectivity metrics can be an
interesting future direction.
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5 CONCLUSION

This work propose a novel HyperEEGNet architecture and introduces a promising new direction in
EEG-based brain-computer interfaces (BCIs) by leveraging HyperNetworks to adaptively generate
weights for EEGNet, utilizing resting-state EEG data for downstream motor imagery classification.
This approach underscores the untapped potential of resting-state EEG, not only as a passive baseline
to evaluate or correlate the BCI performance or illiteracy but as a source of user-specific features
that enhance generalization across subjects and sessions. The positive results across cross-user and
cross-session conditions indicate that resting-state data can be effectively harnessed for learning
personalized representations in BCIs.

With focused efforts, instead of relying solely on task-related data, using resting-state data for model
training can reduce the need for large amounts of labelled task data, which is often a bottleneck in
real-world BCI applications. Furthermore, the architecture’s rapid convergence and susceptibility
to overfitting emphasize the need for further research into regularization techniques and adaptive
training strategies specific to hypernetwork-based models. Looking forward, the findings suggest
several key avenues for future exploration. This work sets the stage for more scalable, adaptive, and
personalized BCIs, bridging the gap between laboratory research and practical, everyday use.
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Pauline Dreyer, Aline Roc, Léa Pillette, Sébastien Rimbert, and Fabien Lotte. A large eeg database
with users’ profile information for motor imagery brain-computer interface research. Scientific
Data, 10(1):580, 2023.

Matteo Ferrante, Tommaso Boccato, and Nicola Toschi. Towards neural foundation models for
vision: Aligning eeg, meg and fmri representations to perform decoding, encoding and modality
conversion. In ICLR 2024 Workshop on Representational Alignment, 2024.

Alexandre Gramfort, Martin Luessi, Eric Larson, Denis A. Engemann, Daniel Strohmeier, Christian
Brodbeck, Roman Goj, Mainak Jas, Teon Brooks, Lauri Parkkonen, and Matti S. Hämäläinen.
MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience, 7(267):1–13, 2013.
doi: 10.3389/fnins.2013.00267.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In International Conference on Learn-
ing Representations, 2017. URL https://openreview.net/forum?id=rkpACe1lx.

Khondoker Murad Hossain, Md. Ariful Islam, Shahera Hossain, Anton Nijholt, and Md Atiqur Rah-
man Ahad. Status of deep learning for eeg-based brain–computer interface applica-
tions. Frontiers in Computational Neuroscience, 16, 2023. ISSN 1662-5188. doi:
10.3389/fncom.2022.1006763. URL https://www.frontiersin.org/journals/
computational-neuroscience/articles/10.3389/fncom.2022.1006763.

Reinmar Kobler, Jun-ichiro Hirayama, Qibin Zhao, and Motoaki Kawanabe. Spd domain-specific
batch normalization to crack interpretable unsupervised domain adaptation in eeg. Advances in
Neural Information Processing Systems, 35:6219–6235, 2022.

Jean-Philippe Lachaux, Eugenio Rodriguez, Jacques Martinerie, and Francisco J Varela. Measuring
phase synchrony in brain signals. Human brain mapping, 8(4):194–208, 1999.

Vernon J Lawhern, Amelia J Solon, Nicholas R Waytowich, Stephen M Gordon, Chou P Hung, and
Brent J Lance. Eegnet: a compact convolutional neural network for eeg-based brain–computer
interfaces. Journal of neural engineering, 15(5):056013, 2018.

Blu Wang Ma, Minett. Resting state eeg-based biometrics for individual identification using con-
volutional neural networks. 2015. URL https://ieeexplore.ieee.org/abstract/
document/7318985/keywords#keywords.

Aarthy Nagarajan, Neethu Robinson, Kai Keng Ang, Karen Sui Geok Chua, Effie Chew, and Cuntai
Guan. Transferring a deep learning model from healthy subjects to stroke patients in a motor im-
agery brain–computer interface. Journal of Neural Engineering, 21(1):016007, jan 2024. doi: 10.
1088/1741-2552/ad152f. URL https://dx.doi.org/10.1088/1741-2552/ad152f.

Yue-Ting Pan, Jing-Lun Chou, and Chun-Shu Wei. Matt: A manifold attention network for eeg
decoding. Advances in Neural Information Processing Systems, 35:31116–31129, 2022.

Simanto Saha and Mathias Baumert. Intra-and inter-subject variability in eeg-based sensorimotor
brain computer interface: a review. Frontiers in computational neuroscience, 13:87, 2020.

Gerwin Schalk, Peter Brunner, Brendan Z Allison, Surjo R Soekadar, Cuntai Guan, Tim Denison,
Jörn Rickert, and Kai J Miller. Translation of neurotechnologies. Nature Reviews Bioengineering,
pp. 1–16, 2024.

Catherine Tallon-Baudry, Olivier Bertrand, Claude Delpuech, and Jacques Pernier. Oscillatory γ-
band (30–70 hz) activity induced by a visual search task in humans. Journal of Neuroscience, 17
(2):722–734, 1997.

Margaret C Thompson. Critiquing the concept of bci illiteracy. Science and engineering ethics, 25
(4):1217–1233, 2019.

Navneet Tibrewal, Nikki Leeuwis, and Maryam Alimardani. Classification of motor imagery eeg
using deep learning increases performance in inefficient bci users. PLOS ONE, 17(7):1–18, 07
2022. doi: 10.1371/journal.pone.0268880. URL https://doi.org/10.1371/journal.
pone.0268880.

8

https://openreview.net/forum?id=rkpACe1lx
https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2022.1006763
https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2022.1006763
https://ieeexplore.ieee.org/abstract/document/7318985/keywords#keywords
https://ieeexplore.ieee.org/abstract/document/7318985/keywords#keywords
https://dx.doi.org/10.1088/1741-2552/ad152f
https://doi.org/10.1371/journal.pone.0268880
https://doi.org/10.1371/journal.pone.0268880


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

David Trocellier, Bernard N’Kaoua, and Fabien Lotte. Validating neurophysiological predictors of
bci performance on a large open source dataset. In 9th Graz Brain-Computer Interface Conference
2024-GBCIC2024, 2024.

Tanaka Uchikawa Tshukahara, Anzai. A design of eegnet-based inference processor for pattern
recognition of eeg using fpga. Electronics and Communications in Japan, 1:53–64, 2021. ISSN
1942-9533.

Eidan Tzdaka, Camille Benaroch, Camille Jeunet, and Fabien Lotte. Assessing the relevance of
neurophysiological patterns to predict motor imagery-based bci users’ performance. In 2020
IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2490–2495, 2020.
doi: 10.1109/SMC42975.2020.9283307.

Min Wang, Heba El-Fiqi, Jiankun Hu, and Hussein A Abbass. Convolutional neural networks using
dynamic functional connectivity for eeg-based person identification in diverse human states. IEEE
Transactions on Information Forensics and Security, 14(12):3259–3272, 2019.

Fangzhou Xu, Yunjing Miao, Yanan Sun, Dongju Guo, Jiali Xu, Yuandong Wang, Jincheng Li,
Han Li, Gege Dong, Fenqi Rong, et al. A transfer learning framework based on motor imagery
rehabilitation for stroke. Scientific Reports, 11(1):19783, 2021.

Zhi Zhang, Sheng hua Zhong, and Yan Liu. TorchEEGEMO: A deep learning toolbox towards
EEG-based emotion recognition. Expert Systems with Applications, pp. 123550, 2024. ISSN
0957-4174.

A APPENDIX

We plan to make our code publicly available on acceptance to ensure reproducibility and facilitate
further research.

A.1 LEAVE-N-OUT ANALYSIS FOR DREYER ET AL. 2023 DATASET

For the Leave-N-out (with N=8,16 and 32) strategy to test the HyperEEGNet performance com-
pared to EEGNet, the ”acquisition runs” from randomly selected (42-N) participants were used for
training. 20% split is used as a validation set to select the best model. Performance evaluation with
accuracy metrics is performed using data from the N participants for the ”online” runs to evalu-
ate HyperEEGNet compared to EEGNet. Analysis of such 100 random combinations reports the
mean accuracy and standard deviation in Table 4. Non-parametric statistical tests (Wilcoxon Signed
Rank Test) recorded a statistically significant increase (p<0.005 for all N) in the performance using
HyperEEGNet compared to EEGNet.

Number of
participants in

test set (N)

HyperNet
+ EEGNet (%)

EEGNet (%)

8 84.10 ± 02.11 83.87 ± 02.10
16 84.86 ± 01.02 83.94 ± 00.97
32 76.47 ± 02.00 73.45 ± 02.61

Table 4: Mean accuracy with standard deviation (SD) across 100 combinations of cross-user condi-
tion on Dreyer et al. 2023 dataset with Leave N Subject Out strategy.

A.2 SESSION-WISE ANALYSIS FOR BCI IV IIA DATASET

For the BCI IV IIa dataset, since there are just 9 participants, we use the Leave one subject out
(LOSO) a strategy where, across nine folds, each participant’s performance is evaluated while train-
ing on the first session data from 8 participants. Analysis reports the mean accuracy and standard
deviation in Table 5 Accuracy metrics are evaluated on the second session’s data of each participant
left out during training. Non-parametric statistical tests (Wilcoxon Signed Rank Test) recorded a sta-
tistically significant decrease (p<0.05 for all N) in the performance using HyperEEGNet compared
to EEGNet.
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Participant ID HyperNet
+ EEGNet (%)

EEGNet (%)

1 60.42 75.00
2 50.69 59.72
3 59.03 90.97
4 59.72 62.50
5 57.63 59.72
6 63.88 68.05
7 56.94 51.38
8 74.30 95.83
9 59.02 70.13

Mean ± SD 60.19 ± 06.35 70.37 ± 14.78

Table 5: Mean accuracy with standard deviation (SD) using test session for cross-user condition on
BCI Competition IV IIa Dataset with Leave One Subject Out (LOSO) strategy.

A.3 SESSION-WISE ANALYSIS FOR BCI IV IIB DATASET

BCI IV IIb dataset is different from BCI IV IIa since the number of EEG channels used for data
recording are 3 compared to 22. Since there are just 9 participants, we use the Leave one subject out
(LOSO) a strategy where, across nine folds, each participant’s performance is evaluated while train-
ing on the first session data from 8 participants. Analysis reports the mean accuracy and standard
deviation in Table 6 Accuracy metrics are evaluated on the second session’s data of each participant
left out during training. Non-parametric statistical tests (Wilcoxon Signed Rank Test) recorded a sta-
tistically significant decrease (p<0.05 for all N) in the performance using HyperEEGNet compared
to EEGNet.

Participant ID HyperNet
+ EEGNet (%)

EEGNet (%)

1 63.12 75.31
2 49.64 57.50
3 51.87 54.06
4 83.12 86.25
5 57.50 78.12
6 54.06 79.06
7 56.87 72.18
8 85.00 79.37
9 60.62 88.75

Mean ± SD 62.42 ± 12.94 74.51 ± 11.78

Table 6: Mean accuracy with standard deviation (SD) using test session for cross-user condition on
BCI Competition IV IIb Dataset with Leave One Subject Out (LOSO) strategy.
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