Under review as a conference paper at ICLR 2025

NANOMOE: SCALING MIXTURE OF EXPERTS TO IN-
DIVIDUAL LAYERS FOR PARAMETER-EFFICIENT DEEP
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have achieved remarkable success, but their grow-
ing size leads to significant challenges in efficiency and cost. This work explores
parameter-efficient deep learning, aiming to achieve comparable performance with
fewer parameters and floating-point operations (FLOPs). We introduce NanoMoE,
a novel family of parameter-efficient building blocks inspired by the Mixture of Ex-
perts (MoE) framework. NanoMoE offers a modular and efficient replacement for
fully connected layers within traditional neural networks. We instantiate NanoMoE
with three variants of increasing complexity and theoretically demonstrate its su-
perior expressivity compared to low-rank factorization with minimal parameter
increase. Empirical results validate that NanoMoE achieves superior model quality
compared to low-rank factorization under the same parameter or FLOP budget,
confirming its enhanced efficiency.

1 INTRODUCTION

Large language models (LLMs) have demonstrated exceptional performance (Brown et al., 2020;
Devlin et al., 2018), yet they still exhibit limitations in factual accuracy (Ji et al., 2023), logical
reasoning (Teng et al., 2023), and mathematical proficiency (Collins et al., 2024). The pursuit of
ever-increasing model size to overcome these limitations, as seen in the progression from GPT-3
(175B parameters) (Brown et al., 2020) to PaLM (540B parameters) (Chowdhery et al., 2023) and
GPT-4 (estimated at 1.8 trillion parameters) (Achiam et al., 2023), leads to significant challenges in
parameter efficiency, training efficiency, and inference costs. These challenges are further amplified
in multimodal models (Baltrusaitis et al., 2018), where diverse application scenarios demand complex
and computationally expensive architectures.

This trend, however, raises a crucial question: can we achieve comparable performance and learn-
ing capacity with a significant reduction in parameters and floating-point operations (FLOPs)?
The pursuit of parameter and FLOP efficiency is paramount due to several critical factors. Firstly,
reducing the number of parameters directly translates to lower memory requirements, enabling the
deployment of LLMs on resource-constrained devices and reducing the financial burden of model
storage (Xu et al., 2024). Secondly, minimizing FLOPs lowers computational costs, leading to faster
inference times, decreased energy consumption, and a reduced carbon footprint (Strubell et al., 2020).
This efficiency is essential for real-time applications, accessibility, and environmental sustainability.
Finally, by optimizing model size and computational complexity, we can promote wider accessibility,
enabling researchers and developers with limited resources to leverage the power of LLMs, fostering
innovation and broader participation in the field.

Addressing the escalating computational demands of LL.Ms necessitates the design of parameter-
efficient building blocks. While parameter-efficient fine-tuning (PEFT) (Ding et al., 2023; Han et al.,
2024) has garnered considerable attention for adapting pre-trained models by optimizing injected
adapters (Rebuffi et al., 2018; Houlsby et al., 2019), such as the low-rank adaptation (LoRA) method
that injects low-rank factorized adapters into dense layers (Hu et al., 2022), the need for increased
efficiency extends to the entire training process, including pre-training. Rather than solely focusing
on parameter-efficient adapters injected alongside existing layers, we propose exploring parameter

Under review as a conference paper at ICLR 2025

efficiency within the original layers of the pre-trained model, enabling enhanced learning capacity
during the pre-training stage. We formally define this problem as parameter-efficient deep learning.

To address this problem, we introduce NanoMoE, a novel neural network structure inspired by the
Mixture of Experts (MoE) framework. MoE draws inspiration from real-world problem-solving,
where complex issues often necessitate specialized expertise. MoE models utilize "experts," special-
ized sub-models focusing on specific knowledge areas, with a gating network intelligently routing
input queries to the most relevant experts. This facilitates efficient model capacity utilization and
adaptability across diverse tasks. While the MoE concept originated in the early 1990s (Jacobs
et al., 1991), recent advancements, such as the sparse MoE layer introduced by Shazeer et al. (2016),
have revitalized its application in large-scale models. As LLMs continue to grow and application
scenarios become more specialized, MoE offers a compelling pathway to address both general and
domain-specific tasks within a unified framework, proving particularly valuable for multimodal mod-
els handling diverse data and feature relationships. The success of models like Mistral 8x7B (Jiang
et al., 2024), which outperforms the larger Llama 2 (Touvron et al., 2023) with fewer parameters,
underscores the potential of MoE in achieving comparable or superior performance with reduced
computational resources. While recent LLMs like Mistral 8x7B employ MoE to combine large
sub-models, NanoMOoE is designed as a modular and efficient replacement for fully connected layers
within traditional neural networks. This granular approach allows for the integration of multiple
NanoMoE blocks within a single model, potentially yielding significant gains in performance and
flexibility without a dramatic increase in parameter count.

Our work makes the following contributions:

* We propose NanoMoE, a novel family of parameter-efficient building blocks for neural
networks inspired by the MoE framework. We instantiate NanoMoE with three variants:
NanoMoE-I, NanoMoE-II, and NanoMoE-III, offering increasing levels of complexity and
computational cost.

* We theoretically demonstrate that NanoMoE offers strictly greater expressivity compared to
low-rank factorization while requiring only a minimal increase in parameters.

* We empirically validate that NanoMoE achieves superior model quality compared to low-
rank factorization. Given a budget of parameters or FLOPs, we compare the train and test
loss of NanoMoE against low-rank factorization and observe that NanoMoE consistently
demonstrates superior performance, confirming its enhanced parameter and FLOP efficiency.

The remainder of this paper is organized as follows. Section 2 reviews related work. Section 3
presents our proposed NanoMoE method and its theoretical guarantees. Section 4 presents our
experimental results. Finally, Section 5 concludes the paper, and Section 6 discusses limitations and
future work.

2 RELATED WORK

Eigen et al. (2013) proposed stacking MoE layers in a neural network, with the aim of achieving an
exponential number of experts as a function of the network depth. Lepikhin et al. (2021) replace
every other feed-forward network layer in the Transformer encoder and decoder with a position-wise
MoE layer. The Switch Transformer (Fedus et al., 2022) integrates the MoE design into the TS model
and pre-trains it on the C4 dataset, resulting in a fast and effective pre-trained large model. The key
innovation of the Switch Transformer is its simplified MoE routing algorithm, which significantly
enhances computational efficiency. GLaM (Du et al., 2022) is three times larger than GPT-3; however,
due to its use of a sparse MoE design, the training cost is only one-third that of GPT-3, and it
outperforms GPT-3 on 29 NLP tasks.

Rebuffi et al. (2018) and Houlsby et al. (2019) propose transferring a model to new tasks by inserting
small, task-specific modules, termed adapter layers, within the pretrained model’s layers. Hu et al.
(2022) propose Low-Rank Adaptation (LoRA), which freezes the pre-trained model weights and
integrates trainable low-rank factorization matrices into each layer of the large language model.
Edalati et al. (2022) and He et al. (2023) utilize the Kronecker product to reparameterize adapter
layers for parameter-efficient fine-tuning. Similarly, Mahabadi et al. (2021) introduce the Compacter
layer, which builds upon LoRA by inserting a GeLU non-linearity (Hendrycks & Gimpel, 2016)

Under review as a conference paper at ICLR 2025

ﬂTi\ 172 173 474\

%%%%‘

(Bl V§m2 V%m;; V%m;l
V1 Vg V3 V4

::::}

L1 T2T3Ty

%,—J
mll‘l

Figure 1: Overview of the NanoMoE Framework, highlighting its key components: input/output
partitions, expert matrices (U;, V;), and the mixing matrix (M).

between the up- and down-projection matrices and reparameterizing these matrices using a sum of
Kronecker products. DoRA (yang Liu et al., 2024) reparameterizes the low-rank matrices in LoORA
using weight normalization (Salimans & Kingma, 2016). Li et al. (2023) propose approximating a
dense weight matrix by the sum of a low-rank matrix and a sparse matrix. Wu et al. (2024) introduce
Mixture of LoRA Experts (MoLE), which employs a learnable gating function that utilizes the outputs
of multiple LoRAs at each layer to determine composition weights.

3 MAIN RESULT

Low-Rank Factorization Revisited To motivate our proposed method, we first revisit the well-
established low-rank factorization technique for enhancing parameter efficiency in neural networks.
Consider a fully connected layer with weight matrix W € R?%*41 bias vector b € R%, and
activation function o, where d; and ds denote the input and output dimensions, respectively. Let x;i,
and ., denote the input and output of this layer. The standard forward pass is given by

Tow = c(Waxi, + b).
The dense weight matrix W contains d; ds parameters.

Low-rank factorization replaces W with the product of two matrices U € R%*" and V' € R"*%,
where r < min(dy, dz) is the chosen rank. This yields the modified forward pass:

Tow = o(UVa;, + b).
This factorization reduces the number of parameters to (d; + ds)r, which is significantly less than

di1ds (the number of parameters in the dense weight matrix) when the rank r is small enough.

NanoMoE NanoMoE utilizes two matrices U € R%*" and V' € R" %, each split into K
row-wise and column-wise blocks, respectively:

u=(U/ U - UL er®
v=W: V, --- VK)GRTXd17

where U; € R%/K*" and V; € R"*4/K Similarly, we partition the input vector x;, € R% and
output vector Ty € R% into K row-wise blocks:

T = (2] x - =x)),
woul:(ac’f xh - ac’;)—r,

where z; € R%/K and 2/, € R%/K,

Each product matrix U;V; € Ré2/Exdi/K acts as an “expert,” mapping a block x ; of the input to a
corresponding block @/, of the output. With K2 such experts, we introduce a mixing matrix M to
combine their outputs. This matrix is also expressed in block form:

Under review as a conference paper at ICLR 2025

My, My --- Mg
M My My -+ Mok RETXET
Mg Mgy -+ Mgk

where M;; € R™".

Let blockdiag(U, Us, .. .,Uk) denote the block diagonal matrix with U; on the diagonal. The
NanoMOoE parameterization is then defined as:

ZiE[K] U M;Viz;
ierx) Ua M Viz;

UMV x;, = € R%, (1)

>ieix) Uk M Vi,
where

U = blockdiag (Uy, Uy, ..., Ug) € R%2*ET,

- 2
V = blockdiag (Vi, Vs, ..., Vi) € RE™di,

We illustrate the NanoMoE framework in Fig. 1.

Equation 1 reveals that each block row in the output is a mixture of the outputs of these experts,
weighted by the entries of M. Specifically, the i-th block row is a mixture of the experts {U;V} |
j € [K]}.

By inserting M;; between U; and V};, we enable a more flexible and expressive mixture, enhancing
the representation capacity of NanoMoE. While M has shape Kr x Kr, we parameterize it with far
fewer parameters to maintain efficiency, as demonstrated in our proposed NanoMoE-I, NanoMoE-II,
and NanoMoE-III variants.

» NanoMoE-I: Parameterizes M using K x K parameters (encoded in a matrix A € RE*K
with entries a;;), where M;; = a;; I,

« NanoMoE-II: Employs K?r parameters {b;;x, | i,j € [K],k € [r]} to parameterize M,
with MU = dlag(blj), where b7] £ (bijla bijg, ey bij7’) e R".

« NanoMoE-III: Utilizes 3K r parameters {c;jx € R,a;; € R",B;; € R" | i,j € [K],k €
[r]} to parameterize M, with M;; = diag(c;;) + ai; 8.

Remark 1. Note that NanoMoE-III generalizes both NanoMoE-II and NanoMoE-I. Specifically,
NanoMOoE-II can be recovered from NanoMoE-III by setting all c;; and 3;; to zero. Similarly,
NanoMoE-I is a special case of NanoMoE-II where b;;;, = a;; forall ¢, j € [K] and k € [r].

Table 1 summarizes the parameter counts for the proposed NanoMoE variants, along with traditional
low-rank factorization and fully connected layers. Compared to low-rank factorization, NanoMoE-I,
I, and I introduce K2, K?r, and 3K ?r additional parameters, respectively. In practice, we typically
set K = 2,4, 8, or 16, which is much smaller than d1, do, and r. Therefore, the number of additional
parameters is small compared to (d; + ds)r, the parameter count for low-rank factorization.

Parameterization Number of Parameters

Fully Connected dyds

Low-Rank (di + do)r
NanoMOoE-I (di +do)r + K2
NanoMoE-II (dy +do)r + K?r
NanoMoE-III (di + do)r + 3K?r

Table 1: The number of parameters of different parameterizations

Under review as a conference paper at ICLR 2025

Theorem 1 below analyzes the expressivity of NanoMoE by examining the space of matrices it can
represent. We show that this space is strictly larger than that of low-rank factorization and compute
the maximum rank attainable by NanoMoE. Recall the parameter counts for low-rank factorization
and NanoMoE summarized in Table 1. For example, compared to low-rank factorization, NanoMoE-I
introduces an additional K2 parameters, but achieves a maximum rank K times that of low-rank
factorization, as shown in Theorem 1.

Theorem 1 (Expressivity of NanoMoE, proof in Section 3.1). Consider the multilinear maps repre-
senting the low-rank factorization (LR) and NanoMoE-I parameterizations:

TLR . Rdzxr % RTXdl N Rd2><d1 ’
(U, V)= UV,
TNM—I : RdQXT X RKXK X RTXdl - Rdzxdl

(U, A V)»UA®IL)V,

where U and V' are as defined in Equation 2 and ® denotes the Kronecker product. Let im Tj g and
im Tnweg denote the images of T r and Taw, respectively.

Then, the following holds:

(i) Inclusion: im Ty g C im Tym.y-
(ii) Strict Inclusion: The inclusion is strict, i.e., im Ti g g im Tamor, if and only if 1 < min{dy, d2}
and K > 1.
(iii) Rank Characterization: In the case of strict inclusion, the maximum ranks attainable by matrices
in the two images differ:

max rank(W) =r,
W€im Tir

K(W) = min{dy, do, Kr} > r.
Wel?rg)%w,lmn() = min{dy,ds, K1} > r

Remark 2. Theorem 1 (specifically, Item iii) establishes a clear separation between the maximum
rank attainable by low-rank factorization (which is) and that attainable by NanoMoE-I (which is
min{dy, ds, Kr}). When r is small enough to ensure Kr < min{d;, ds}, this signifies a potential
K -fold increase in the maximum attainable rank due to the NanoMoE-I parameterization.

Remark 3. Since NanoMOoE-I is a special case of NanoMoE-II and NanoMoE-III (Remark 1),
denoting the images of the NanoMoE-II and NanoMoE-III parameterizations by im Tyy. and
im Tnwemn respectively, we have the following chain of inclusions:

imTir CimTama € im Tymen € im Tnmom-

Furthermore, if r < min{d;,ds} and K > 1, the inclusions im7ig C im Tymy and imTig C
im Tnwon are strict. Moreover, the maximum rank attainable by matrices in im Ty and im Tnwvmn
is also min{dy, d2, Kr}.

3.1 PROOF OF THEOREM 1

Proof of Theorem 1. Proof of Item i. The inclusion im 71 g C im T is straightforward. Setting
A = 1k g (the all-ones matrix), we have

Twii(U, A, V) =UV = Tir(U, V).
HCHCC, im TLR Q im TNM—I'

Proof of Item ii (“only if”” part). Next, we establish that if » > min{d;,ds} or K = 1, then
im TLR =im TNM—I-

Qase 1: K = 1. In this case, A reduces to a scalar a, and U = U, vV =V. Consequently,
U(A & IT)V = aUV, 1mply1ng im TLR =im TNM-I~

Case 2: r > min{dy, d2}. The rank of any matrix in im T\m is bounded above by min{d, dgc;r.
Since r > min{d;,ds}, for any W € im Ty there exist matrices U € R%“*" and V € R™*%
such that W = UYV. This implies W € imTig, and hence im Tyyy C im7ir. The reverse
inclusion im T g C im Tnwmg has already been established, so we conclude im 71 g = im Tymg.

Under review as a conference paper at ICLR 2025

Proof of Item ii (“‘if”’ part) and Item iii. To show that this inclusion is strict under the assumptions
r < min{dy,ds} and K > 1, we will prove imTig # imTnyg. Choose full-rank matrices
Up,...,Ug € R2/EXmand Vi | ..., Vg € R"*%4/K and a full-rank matrix A € RE*K_ We then
have:

rank(U) = Z rank(U;) = min{ds, Kr},
1€[K]
rank(V) = Z rank(V;) = min{d;, Kr},
i€[K]
rank(A ® I,.) = rank(A) rank(I,.) = Kr.

By Sylvester’s rank inequality:

rank(U(A ® I,.))

rank(U) + rank(A® I,.) — Kr
min{dy, Kr}.

Y

We now demonstrate that

rank(U(A @ I,)V) > min{d, dy, K7}.

Case 1: Kr > max{dy,d>}. In this case, rank(f](A ® I,)) = min{ds, Kr} = Kr. Since Vis
full-rank with rank min{d;, Kr} = Kr, the product U(A ® I,.)V is also full-rank and has rank
min{d;, ds} = min{d, ds, Kr}.

Case 2: Kr < max{dy,ds}. By Sylvester’s rank inequality:

rank(U(A @ I,)V)

rank(U(A @ I,.)) + rank(V) — Kr
min{ds, Kr} + min{dy, Kr} — Kr
min{max{dy,ds}, Kr}

+ min{min{d,,ds}, Kr} — Kr

= Kr +min{d,,dsy, Kr} — Kr
min{dy, ds, K1} .

Y

Since r < min{d,dz} and K > 1, it follows that

rank(U(A ® I)V) > min{dy,da, Kr} > r.

Since U € R%2*K" and V € RE"™ %1 we have rank(U (A ® I,,)V) < min{d,, dy, Kr}. Combin-
ing this with the previously established lower bound, we conclude that

rank(U(A ® I,)V) = min{dy, dy, Kr}.

As all matrices in im 71 g have rank at most r, we conclude that im Ty g # im Ty

4 EXPERIMENT

Our initial experiments focus on the first fully connected layer of the OPT-13B model (Zhang et al.,
2022), whose weight matrix has shape (20480, 5120), corresponding to d; = 20480 and dy = 5120
(due to PyTorch’s convention of left-multiplying the input by the weight matrix). To simulate training,
we generate 100,000 samples of dimension 20480, each entry drawn from a normal distribution with
standard deviation 5. The dataset is split into 75% for training and 25% for testing.

We fit this dataset using low-rank factorization and the three NanoMoE variants, varying K €
{2,4,8,16,32,64,128} and r € {2560, 1280, 640, 320, 160, 80,40}. We record training loss, test

Under review as a conference paper at ICLR 2025

Train loss vs. # FLOPs Test loss vs. # FLOPs

—— Low-Rank

—— NanoMoE-|
NanoMoE-II

—— NanoMoE-lll

N
o
N
o

— Low-Rank

—— NanoMoE-|
NanoMokE-II

—— NanoMokE-Ill

=~

w
o
(]
o

Train loss
Test loss

N
o
N
o

=
o

-

o

0 2 4 6 0 2 4 6
Number of FLOPs lelO Number of FLOPs lelO
(a) Train loss vs. # FLOPs (b) Test loss vs. # FLOPs

Figure 2: Comparison of training and test loss vs. FLOPs for Low-Rank Factorization and NanoMoE
Variants on the first fully connected layer of OPT-13B. Lower envelope lines represent the optimal
parameter choices for each model.

Train loss by # Params Test loss vs. # Params

N
o

—— Low-Rank

—— NanoMoE-I
NanoMoE-II

—— NanoMokE-lll

—— Low-Rank

—— NanoMoE-|
NanoMoE-II

—— NanoMokE-Ill

\

0 2 4 6 0 2 4 6
Number of Parameters ~ 1le7 Number of Parameters ~ 1e7

w
o
w
o

Test loss

N
o
N
o

Train loss

=
o

-
o

(a) Train loss vs. # Parameters (b) Test loss vs. # Parameters

Figure 3: Comparison of training and test loss vs. the number of parameters for Low-Rank Factor-
ization and NanoMoE Variants on the first fully connected layer of OPT-13B. Lower envelope lines
represent the optimal parameter choices for each model.

loss, floating point operations (FLOPs) (computed via numpy . einsum_path), and parameter counts.
Figures 2 and 3 plot the results for all (K,) combinations, with lines connecting data points on the
lower envelope of each model’s performance.

The data points above these lines reflect suboptimal choices of K and r. For example, some
combinations use an unnecessarily large r to achieve a given train/test loss, while a smaller would
suffice. The lower envelope lines thus represent optimal (K,) pairings for each model, enabling a
fair comparison. Notably, Figures 2 and 3 reveal that for a fixed FLOP budget or parameter budget,
the NanoMOoE variants consistently outperform low-rank factorization in terms of both training and
test loss.

We conduct a second set of experiments on the AG News classification dataset (Zhang et al., 2015).
This dataset comprises 120,000 training examples and 7,600 test examples, and we utilize the original
train/test split provided. The neural network architecture of the experiments on the AG News
classification dataset consists of the following layers:

 Text vectorization layer with output sequence length of 250.

* Embedding layer with embedding dimension of 300.

* 1D global average pooling layer.

» Low-rank factorization layer or NanoMoE layer (depending on the experiment).

* Final fully-connected layer that outputs a 4-dimensional vector for classification.

We evaluate different hyperparameter configurations for both NanoMoE and low-rank factorization.
We sweep over K in the range [2, 150] and r in the range [2, 300]. Figures 4 and 5 plot the results for
all (K, r) combinations, with lines connecting data points on the lower envelope of each model’s
performance. Consistent with the observations from the first experiment set (refer to Figures 2
and 3), the second set of experiments on the AG News dataset reveals an even wider gap between the
training/test loss curves of low-rank factorization and those of the NanoMoE variants. Among the
NanoMoE variants, NanoMoE-I achieves the best overall performance in terms of loss.

Under review as a conference paper at ICLR 2025

Train loss vs. # FLOPs

Test loss vs. # FLOPs

—— Low-Rank

—— NanoMoE-I
NanoMoE-II

—— NanoMoE-Ill

—— Low-Rank
—— NanoMoE-|
NanoMoE-II

107 108

Number of FLOPs

(a) Train loss vs. # FLOPs

Figure 4: Comparison of training and test loss vs. FLOPs for Low-Rank Factorization and NanoMoE
Variants on the AG News classification dataset. Lower envelope lines represent the optimal parameter

choices for each model.

Train loss by # Params

—
o
>

107 108

Number of FLOPs

(b) Test loss vs. # FLOPs

Test loss vs. # Params

0.300
0.275
2
g 0.250
c
‘® 0.225

=
0.200

0.175

—— Low-Rank

—— NanoMoE-|
NanoMoE-II

—— NanoMoE-llI

0.425
0.400

e ©°
w W
o 3
S u

Test loss

0.325

0.300

—— Low-Rank
—— NanoMokE-I
NanoMoE-II

wl
L

103

104 10°

Number of Parameters

(a) Train loss vs. # Parameters

103

10* 10°

Number of Parameters

(b) Test loss vs. # Parameters

Figure 5: Comparison of training and test loss vs. the number of parameters for Low-Rank Factoriza-
tion and NanoMoE Variants on the AG News classification dataset. Lower envelope lines represent
the optimal parameter choices for each model.

5 CONCLUSION

This work introduces NanoMoE, a novel parameter-efficient building block designed to replace fully-
connected layers and low-rank factorization layers in neural networks. We theoretically demonstrate
that NanoMOoE offers strictly greater expressivity compared to low-rank factorization, while requiring
only a minimal increase in parameters. Furthermore, our empirical results consistently validate that
NanoMoE achieves superior performance in terms of both training and test loss across various FLOPs
budgets and parameter constraints. These findings suggest that NanoMoE presents a promising
avenue for developing more efficient and effective neural network architectures.

6 FUTURE WORK

Our study presents several opportunities for future work. First, while our experiments showcase the
parameter efficiency of NanoMoE, exploring principled methods for selecting the optimal hyperpa-
rameters K (number of experts) and r is crucial to maximize this efficiency. Second, we haven’t
investigated the performance of NanoMoE within the context of LoRA-type fine-tuning (Hu et al.,
2022). Additionally, exploring NanoMoE’s potential in pre-training large language models and
employing stacked NanoMoE architectures (e.g., replacing all fully-connected layers with NanoMoE
layers) are promising avenues for future research.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learning:
A survey and taxonomy. /EEE transactions on pattern analysis and machine intelligence, 41(2):
423-443,2018.

Under review as a conference paper at ICLR 2025

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1-113,
2023.

Katherine M Collins, Albert Q Jiang, Simon Frieder, Lionel Wong, Miri Zilka, Umang Bhatt, Thomas
Lukasiewicz, Yuhuai Wu, Joshua B Tenenbaum, William Hart, et al. Evaluating language models
for mathematics through interactions. Proceedings of the National Academy of Sciences, 121(24):
€2318124121, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220-235, 2023.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, pp. 5547-55609.
PMLR, 2022.

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J Clark, and Mehdi
Rezagholizadeh. Krona: Parameter efficient tuning with kronecker adapter. arXiv preprint
arXiv:2212.10650, 2022.

David Eigen, Marc’ Aurelio Ranzato, and Ilya Sutskever. Learning factored representations in a deep
mixture of experts. arXiv preprint arXiv:1312.4314, 2013.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1-39,
2022.

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang, et al. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

Xuehai He, Chunyuan Li, Pengchuan Zhang, Jianwei Yang, and Xin Eric Wang. Parameter-efficient
model adaptation for vision transformers. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 817-825, 2023.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International conference on machine learning, pp. 2790-2799. PMLR, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79-87, 1991.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1-38, 2023.

Under review as a conference paper at ICLR 2025

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. In International Conference on Learning Representations,
2021.

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
Losparse: structured compression of large language models based on low-rank and sparse ap-

proximation. In Proceedings of the 40th International Conference on Machine Learning, pp.
20336-20350, 2023.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural Information Processing Systems, 34:1022—1035,
2021.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Efficient parametrization of multi-
domain deep neural networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8119-8127, 2018.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. Advances in neural information processing systems, 29, 2016.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
International Conference on Learning Representations, 2016.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
modern deep learning research. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 13693-13696, 2020.

Zhiyang Teng, Ruoxi Ning, Jian Liu, Qiji Zhou, Yue Zhang, et al. Glore: Evaluating logical reasoning
of large language models. arXiv preprint arXiv:2310.09107, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Xun Wu, Shaohan Huang, and Furu Wei. Mole: Mixture of lora experts. In The Twelfth International
Conference on Learning Representations, 2024.

Jiajun Xu, Zhiyuan Li, Wei Chen, Qun Wang, Xin Gao, Qi Cai, and Ziyuan Ling. On-device language
models: A comprehensive review. arXiv preprint arXiv:2409.00088, 2024.

Shih yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adap-
tation. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=3d5CIRG1n2.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
Opt: Open pre-trained transformer language models, 2022.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. Advances in neural information processing systems, 28, 2015.

10

