
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NANOMOE: SCALING MIXTURE OF EXPERTS TO IN-
DIVIDUAL LAYERS FOR PARAMETER-EFFICIENT DEEP
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have achieved remarkable success, but their grow-
ing size leads to significant challenges in efficiency and cost. This work explores
parameter-efficient deep learning, aiming to achieve comparable performance with
fewer parameters and floating-point operations (FLOPs). We introduce NanoMoE,
a novel family of parameter-efficient building blocks inspired by the Mixture of Ex-
perts (MoE) framework. NanoMoE offers a modular and efficient replacement for
fully connected layers within traditional neural networks. We instantiate NanoMoE
with three variants of increasing complexity and theoretically demonstrate its su-
perior expressivity compared to low-rank factorization with minimal parameter
increase. Empirical results validate that NanoMoE achieves superior model quality
compared to low-rank factorization under the same parameter or FLOP budget,
confirming its enhanced efficiency.

1 INTRODUCTION

Large language models (LLMs) have demonstrated exceptional performance (Brown et al., 2020;
Devlin et al., 2018), yet they still exhibit limitations in factual accuracy (Ji et al., 2023), logical
reasoning (Teng et al., 2023), and mathematical proficiency (Collins et al., 2024). The pursuit of
ever-increasing model size to overcome these limitations, as seen in the progression from GPT-3
(175B parameters) (Brown et al., 2020) to PaLM (540B parameters) (Chowdhery et al., 2023) and
GPT-4 (estimated at 1.8 trillion parameters) (Achiam et al., 2023), leads to significant challenges in
parameter efficiency, training efficiency, and inference costs. These challenges are further amplified
in multimodal models (Baltrušaitis et al., 2018), where diverse application scenarios demand complex
and computationally expensive architectures.

This trend, however, raises a crucial question: can we achieve comparable performance and learn-
ing capacity with a significant reduction in parameters and floating-point operations (FLOPs)?
The pursuit of parameter and FLOP efficiency is paramount due to several critical factors. Firstly,
reducing the number of parameters directly translates to lower memory requirements, enabling the
deployment of LLMs on resource-constrained devices and reducing the financial burden of model
storage (Xu et al., 2024). Secondly, minimizing FLOPs lowers computational costs, leading to faster
inference times, decreased energy consumption, and a reduced carbon footprint (Strubell et al., 2020).
This efficiency is essential for real-time applications, accessibility, and environmental sustainability.
Finally, by optimizing model size and computational complexity, we can promote wider accessibility,
enabling researchers and developers with limited resources to leverage the power of LLMs, fostering
innovation and broader participation in the field.

Addressing the escalating computational demands of LLMs necessitates the design of parameter-
efficient building blocks. While parameter-efficient fine-tuning (PEFT) (Ding et al., 2023; Han et al.,
2024) has garnered considerable attention for adapting pre-trained models by optimizing injected
adapters (Rebuffi et al., 2018; Houlsby et al., 2019), such as the low-rank adaptation (LoRA) method
that injects low-rank factorized adapters into dense layers (Hu et al., 2022), the need for increased
efficiency extends to the entire training process, including pre-training. Rather than solely focusing
on parameter-efficient adapters injected alongside existing layers, we propose exploring parameter

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

efficiency within the original layers of the pre-trained model, enabling enhanced learning capacity
during the pre-training stage. We formally define this problem as parameter-efficient deep learning.

To address this problem, we introduce NanoMoE, a novel neural network structure inspired by the
Mixture of Experts (MoE) framework. MoE draws inspiration from real-world problem-solving,
where complex issues often necessitate specialized expertise. MoE models utilize "experts," special-
ized sub-models focusing on specific knowledge areas, with a gating network intelligently routing
input queries to the most relevant experts. This facilitates efficient model capacity utilization and
adaptability across diverse tasks. While the MoE concept originated in the early 1990s (Jacobs
et al., 1991), recent advancements, such as the sparse MoE layer introduced by Shazeer et al. (2016),
have revitalized its application in large-scale models. As LLMs continue to grow and application
scenarios become more specialized, MoE offers a compelling pathway to address both general and
domain-specific tasks within a unified framework, proving particularly valuable for multimodal mod-
els handling diverse data and feature relationships. The success of models like Mistral 8x7B (Jiang
et al., 2024), which outperforms the larger Llama 2 (Touvron et al., 2023) with fewer parameters,
underscores the potential of MoE in achieving comparable or superior performance with reduced
computational resources. While recent LLMs like Mistral 8x7B employ MoE to combine large
sub-models, NanoMoE is designed as a modular and efficient replacement for fully connected layers
within traditional neural networks. This granular approach allows for the integration of multiple
NanoMoE blocks within a single model, potentially yielding significant gains in performance and
flexibility without a dramatic increase in parameter count.

Our work makes the following contributions:

• We propose NanoMoE, a novel family of parameter-efficient building blocks for neural
networks inspired by the MoE framework. We instantiate NanoMoE with three variants:
NanoMoE-I, NanoMoE-II, and NanoMoE-III, offering increasing levels of complexity and
computational cost.

• We theoretically demonstrate that NanoMoE offers strictly greater expressivity compared to
low-rank factorization while requiring only a minimal increase in parameters.

• We empirically validate that NanoMoE achieves superior model quality compared to low-
rank factorization. Given a budget of parameters or FLOPs, we compare the train and test
loss of NanoMoE against low-rank factorization and observe that NanoMoE consistently
demonstrates superior performance, confirming its enhanced parameter and FLOP efficiency.

The remainder of this paper is organized as follows. Section 2 reviews related work. Section 3
presents our proposed NanoMoE method and its theoretical guarantees. Section 4 presents our
experimental results. Finally, Section 5 concludes the paper, and Section 6 discusses limitations and
future work.

2 RELATED WORK

Eigen et al. (2013) proposed stacking MoE layers in a neural network, with the aim of achieving an
exponential number of experts as a function of the network depth. Lepikhin et al. (2021) replace
every other feed-forward network layer in the Transformer encoder and decoder with a position-wise
MoE layer. The Switch Transformer (Fedus et al., 2022) integrates the MoE design into the T5 model
and pre-trains it on the C4 dataset, resulting in a fast and effective pre-trained large model. The key
innovation of the Switch Transformer is its simplified MoE routing algorithm, which significantly
enhances computational efficiency. GLaM (Du et al., 2022) is three times larger than GPT-3; however,
due to its use of a sparse MoE design, the training cost is only one-third that of GPT-3, and it
outperforms GPT-3 on 29 NLP tasks.

Rebuffi et al. (2018) and Houlsby et al. (2019) propose transferring a model to new tasks by inserting
small, task-specific modules, termed adapter layers, within the pretrained model’s layers. Hu et al.
(2022) propose Low-Rank Adaptation (LoRA), which freezes the pre-trained model weights and
integrates trainable low-rank factorization matrices into each layer of the large language model.
Edalati et al. (2022) and He et al. (2023) utilize the Kronecker product to reparameterize adapter
layers for parameter-efficient fine-tuning. Similarly, Mahabadi et al. (2021) introduce the Compacter
layer, which builds upon LoRA by inserting a GeLU non-linearity (Hendrycks & Gimpel, 2016)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Overview of the NanoMoE Framework, highlighting its key components: input/output
partitions, expert matrices (Ui,Vj), and the mixing matrix (M ).

between the up- and down-projection matrices and reparameterizing these matrices using a sum of
Kronecker products. DoRA (yang Liu et al., 2024) reparameterizes the low-rank matrices in LoRA
using weight normalization (Salimans & Kingma, 2016). Li et al. (2023) propose approximating a
dense weight matrix by the sum of a low-rank matrix and a sparse matrix. Wu et al. (2024) introduce
Mixture of LoRA Experts (MoLE), which employs a learnable gating function that utilizes the outputs
of multiple LoRAs at each layer to determine composition weights.

3 MAIN RESULT

Low-Rank Factorization Revisited To motivate our proposed method, we first revisit the well-
established low-rank factorization technique for enhancing parameter efficiency in neural networks.
Consider a fully connected layer with weight matrix W ∈ Rd2×d1 , bias vector b ∈ Rd2 , and
activation function σ, where d1 and d2 denote the input and output dimensions, respectively. Let xin
and xout denote the input and output of this layer. The standard forward pass is given by

xout = σ(Wxin + b).

The dense weight matrixW contains d1d2 parameters.

Low-rank factorization replacesW with the product of two matrices U ∈ Rd2×r and V ∈ Rr×d1 ,
where r < min(d1, d2) is the chosen rank. This yields the modified forward pass:

xout = σ(UV xin + b).

This factorization reduces the number of parameters to (d1 + d2)r, which is significantly less than
d1d2 (the number of parameters in the dense weight matrix) when the rank r is small enough.

NanoMoE NanoMoE utilizes two matrices U ∈ Rd2×r and V ∈ Rr×d1 , each split into K
row-wise and column-wise blocks, respectively:

U =
(
U>1 U>2 · · · U>K

)> ∈ Rd2×r,

V = (V1 V2 · · · VK) ∈ Rr×d1 ,

where Ui ∈ Rd2/K×r and Vi ∈ Rr×d1/K . Similarly, we partition the input vector xin ∈ Rd1 and
output vector xout ∈ Rd2 into K row-wise blocks:

xin =
(
x>1 x>2 · · · x>K

)>
,

xout =
(
x′>1 x′>2 · · · x′>K

)>
,

where xi ∈ Rd1/K and x′i ∈ Rd2/K .

Each product matrix UiVj ∈ Rd2/K×d1/K acts as an “expert,” mapping a block xj of the input to a
corresponding block x′i of the output. With K2 such experts, we introduce a mixing matrix M to
combine their outputs. This matrix is also expressed in block form:

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

M =


M11 M12 · · · M1K

M21 M22 · · · M2K

...
...

. . .
...

MK1 MK2 · · · MKK

 ∈ RKr×Kr,

whereMij ∈ Rr×r.

Let blockdiag(U1,U2, . . . ,UK) denote the block diagonal matrix with Ui on the diagonal. The
NanoMoE parameterization is then defined as:

ŨMṼ xin =


∑

i∈[K]U1M1iVixi∑
i∈[K]U2M2iVixi

...∑
i∈[K]UKMKiVixi

 ∈ Rd2 , (1)

where

Ũ = blockdiag (U1,U2, . . . ,UK) ∈ Rd2×Kr,

Ṽ = blockdiag (V1,V2, . . . ,VK) ∈ RKr×d1 .
(2)

We illustrate the NanoMoE framework in Fig. 1.

Equation 1 reveals that each block row in the output is a mixture of the outputs of these experts,
weighted by the entries of M . Specifically, the i-th block row is a mixture of the experts {UiVj |
j ∈ [K]}.
By insertingMij between Ui and Vj , we enable a more flexible and expressive mixture, enhancing
the representation capacity of NanoMoE. WhileM has shape Kr ×Kr, we parameterize it with far
fewer parameters to maintain efficiency, as demonstrated in our proposed NanoMoE-I, NanoMoE-II,
and NanoMoE-III variants.

• NanoMoE-I: ParameterizesM using K ×K parameters (encoded in a matrixA ∈ RK×K

with entries aij), whereMij = aijIr.

• NanoMoE-II: Employs K2r parameters {bijk | i, j ∈ [K], k ∈ [r]} to parameterize M ,
withMij = diag(bij), where bij , (bij1, bij2, . . . , bijr) ∈ Rr.

• NanoMoE-III: Utilizes 3K2r parameters {cijk ∈ R,αij ∈ Rr,βij ∈ Rr | i, j ∈ [K], k ∈
[r]} to parameterizeM , withMij = diag(cij) +αijβ

>
ij .

Remark 1. Note that NanoMoE-III generalizes both NanoMoE-II and NanoMoE-I. Specifically,
NanoMoE-II can be recovered from NanoMoE-III by setting all αij and βij to zero. Similarly,
NanoMoE-I is a special case of NanoMoE-II where bijk = aij for all i, j ∈ [K] and k ∈ [r].

Table 1 summarizes the parameter counts for the proposed NanoMoE variants, along with traditional
low-rank factorization and fully connected layers. Compared to low-rank factorization, NanoMoE-I,
II, and III introduce K2, K2r, and 3K2r additional parameters, respectively. In practice, we typically
set K = 2, 4, 8, or 16, which is much smaller than d1, d2, and r. Therefore, the number of additional
parameters is small compared to (d1 + d2)r, the parameter count for low-rank factorization.

Parameterization Number of Parameters

Fully Connected d1d2
Low-Rank (d1 + d2)r
NanoMoE-I (d1 + d2)r +K2

NanoMoE-II (d1 + d2)r +K2r
NanoMoE-III (d1 + d2)r + 3K2r

Table 1: The number of parameters of different parameterizations

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Theorem 1 below analyzes the expressivity of NanoMoE by examining the space of matrices it can
represent. We show that this space is strictly larger than that of low-rank factorization and compute
the maximum rank attainable by NanoMoE. Recall the parameter counts for low-rank factorization
and NanoMoE summarized in Table 1. For example, compared to low-rank factorization, NanoMoE-I
introduces an additional K2 parameters, but achieves a maximum rank K times that of low-rank
factorization, as shown in Theorem 1.
Theorem 1 (Expressivity of NanoMoE, proof in Section 3.1). Consider the multilinear maps repre-
senting the low-rank factorization (LR) and NanoMoE-I parameterizations:

TLR : Rd2×r × Rr×d1 → Rd2×d1 ,

(U ,V ) 7→ UV ,

TNM-I : Rd2×r × RK×K × Rr×d1 → Rd2×d1 ,

(U ,A,V ) 7→ Ũ(A⊗ Ir)Ṽ ,

where Ũ and Ṽ are as defined in Equation 2 and ⊗ denotes the Kronecker product. Let imTLR and
imTNM-I denote the images of TLR and TNM-I, respectively.

Then, the following holds:

(i) Inclusion: imTLR ⊆ imTNM-I.
(ii) Strict Inclusion: The inclusion is strict, i.e., imTLR $ imTNM-I, if and only if r < min{d1, d2}

and K > 1.
(iii) Rank Characterization: In the case of strict inclusion, the maximum ranks attainable by matrices

in the two images differ:

max
W∈imTLR

rank(W ) = r,

max
W∈imTNM-I

rank(W ) = min{d1, d2,Kr} > r .

Remark 2. Theorem 1 (specifically, Item iii) establishes a clear separation between the maximum
rank attainable by low-rank factorization (which is r) and that attainable by NanoMoE-I (which is
min{d1, d2,Kr}). When r is small enough to ensure Kr < min{d1, d2}, this signifies a potential
K-fold increase in the maximum attainable rank due to the NanoMoE-I parameterization.
Remark 3. Since NanoMoE-I is a special case of NanoMoE-II and NanoMoE-III (Remark 1),
denoting the images of the NanoMoE-II and NanoMoE-III parameterizations by imTNM-II and
imTNM-III respectively, we have the following chain of inclusions:

imTLR ⊆ imTNM-I ⊆ imTNM-II ⊆ imTNM-III.

Furthermore, if r < min{d1, d2} and K > 1, the inclusions imTLR ⊆ imTNM-II and imTLR ⊆
imTNM-III are strict. Moreover, the maximum rank attainable by matrices in imTNM-II and imTNM-III
is also min{d1, d2,Kr}.

3.1 PROOF OF THEOREM 1

Proof of Theorem 1. Proof of Item i. The inclusion imTLR ⊆ imTNM-I is straightforward. Setting
A = 1K×K (the all-ones matrix), we have

TNM-I(U ,A,V ) = UV = TLR(U ,V ).

Hence, imTLR ⊆ imTNM-I.

Proof of Item ii (“only if” part). Next, we establish that if r ≥ min{d1, d2} or K = 1, then
imTLR = imTNM-I.

Case 1: K = 1. In this case, A reduces to a scalar a, and Ũ = U , Ṽ = V . Consequently,
Ũ(A⊗ Ir)Ṽ = aUV , implying imTLR = imTNM-I.

Case 2: r ≥ min{d1, d2}. The rank of any matrix in imTNM-I is bounded above by min{d1, d2}.
Since r ≥ min{d1, d2}, for any W ∈ imTNM-I there exist matrices U ∈ Rd2×r and V ∈ Rr×d1

such that W = UV . This implies W ∈ imTLR, and hence imTNM-I ⊆ imTLR. The reverse
inclusion imTLR ⊆ imTNM-I has already been established, so we conclude imTLR = imTNM-I.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Proof of Item ii (“if” part) and Item iii. To show that this inclusion is strict under the assumptions
r < min{d1, d2} and K > 1, we will prove imTLR 6= imTNM-I. Choose full-rank matrices
U1, . . . ,UK ∈ Rd2/K×r and V1, . . . ,VK ∈ Rr×d1/K , and a full-rank matrixA ∈ RK×K . We then
have:

rank(Ũ) =
∑
i∈[K]

rank(Ui) = min{d2,Kr},

rank(Ṽ ) =
∑
i∈[K]

rank(Vi) = min{d1,Kr},

rank(A⊗ Ir) = rank(A) rank(Ir) = Kr.

By Sylvester’s rank inequality:

rank(Ũ(A⊗ Ir))
≥ rank(Ũ) + rank(A⊗ Ir)−Kr
= min{d2,Kr}.

We now demonstrate that

rank(Ũ(A⊗ Ir)Ṽ ) ≥ min{d1, d2,Kr}.

Case 1: Kr ≥ max{d1, d2}. In this case, rank(Ũ(A ⊗ Ir)) = min{d2,Kr} = Kr. Since Ṽ is
full-rank with rank min{d1,Kr} = Kr, the product Ũ(A ⊗ Ir)Ṽ is also full-rank and has rank
min{d1, d2} = min{d1, d2,Kr}.
Case 2: Kr < max{d1, d2}. By Sylvester’s rank inequality:

rank(Ũ(A⊗ Ir)Ṽ )

≥ rank(Ũ(A⊗ Ir)) + rank(Ṽ )−Kr
= min{d2,Kr}+min{d1,Kr} −Kr
= min{max{d1, d2},Kr}

+min{min{d1, d2},Kr} −Kr
= Kr +min{d1, d2,Kr} −Kr
= min{d1, d2,Kr} .

Since r < min{d1, d2} and K > 1, it follows that

rank(Ũ(A⊗ Ir)Ṽ ) ≥ min{d1, d2,Kr} > r.

Since Ũ ∈ Rd2×Kr and Ṽ ∈ RKr×d1 , we have rank(Ũ(A⊗ Ir)Ṽ ) ≤ min{d1, d2,Kr}. Combin-
ing this with the previously established lower bound, we conclude that

rank(Ũ(A⊗ Ir)Ṽ ) = min{d1, d2,Kr}.

As all matrices in imTLR have rank at most r, we conclude that imTLR 6= imTNM-I.

4 EXPERIMENT

Our initial experiments focus on the first fully connected layer of the OPT-13B model (Zhang et al.,
2022), whose weight matrix has shape (20480, 5120), corresponding to d1 = 20480 and d2 = 5120
(due to PyTorch’s convention of left-multiplying the input by the weight matrix). To simulate training,
we generate 100,000 samples of dimension 20480, each entry drawn from a normal distribution with
standard deviation 5. The dataset is split into 75% for training and 25% for testing.

We fit this dataset using low-rank factorization and the three NanoMoE variants, varying K ∈
{2, 4, 8, 16, 32, 64, 128} and r ∈ {2560, 1280, 640, 320, 160, 80, 40}. We record training loss, test

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 2 4 6
Number of FLOPs 1e10

10

20

30

40

Tr
ai

n 
lo

ss

Train loss vs. # FLOPs
Low-Rank
NanoMoE-I
NanoMoE-II
NanoMoE-III

(a) Train loss vs. # FLOPs

0 2 4 6
Number of FLOPs 1e10

10

20

30

40

Te
st

 lo
ss

Test loss vs. # FLOPs
Low-Rank
NanoMoE-I
NanoMoE-II
NanoMoE-III

(b) Test loss vs. # FLOPs

Figure 2: Comparison of training and test loss vs. FLOPs for Low-Rank Factorization and NanoMoE
Variants on the first fully connected layer of OPT-13B. Lower envelope lines represent the optimal
parameter choices for each model.

0 2 4 6
Number of Parameters 1e7

10

20

30

40

Tr
ai

n 
lo

ss

Train loss by # Params
Low-Rank
NanoMoE-I
NanoMoE-II
NanoMoE-III

(a) Train loss vs. # Parameters

0 2 4 6
Number of Parameters 1e7

10

20

30

40

Te
st

 lo
ss

Test loss vs. # Params
Low-Rank
NanoMoE-I
NanoMoE-II
NanoMoE-III

(b) Test loss vs. # Parameters

Figure 3: Comparison of training and test loss vs. the number of parameters for Low-Rank Factor-
ization and NanoMoE Variants on the first fully connected layer of OPT-13B. Lower envelope lines
represent the optimal parameter choices for each model.

loss, floating point operations (FLOPs) (computed via numpy.einsum_path), and parameter counts.
Figures 2 and 3 plot the results for all (K, r) combinations, with lines connecting data points on the
lower envelope of each model’s performance.

The data points above these lines reflect suboptimal choices of K and r. For example, some
combinations use an unnecessarily large r to achieve a given train/test loss, while a smaller r would
suffice. The lower envelope lines thus represent optimal (K, r) pairings for each model, enabling a
fair comparison. Notably, Figures 2 and 3 reveal that for a fixed FLOP budget or parameter budget,
the NanoMoE variants consistently outperform low-rank factorization in terms of both training and
test loss.

We conduct a second set of experiments on the AG News classification dataset (Zhang et al., 2015).
This dataset comprises 120,000 training examples and 7,600 test examples, and we utilize the original
train/test split provided. The neural network architecture of the experiments on the AG News
classification dataset consists of the following layers:

• Text vectorization layer with output sequence length of 250.
• Embedding layer with embedding dimension of 300.
• 1D global average pooling layer.
• Low-rank factorization layer or NanoMoE layer (depending on the experiment).
• Final fully-connected layer that outputs a 4-dimensional vector for classification.

We evaluate different hyperparameter configurations for both NanoMoE and low-rank factorization.
We sweep over K in the range [2, 150] and r in the range [2, 300]. Figures 4 and 5 plot the results for
all (K, r) combinations, with lines connecting data points on the lower envelope of each model’s
performance. Consistent with the observations from the first experiment set (refer to Figures 2
and 3), the second set of experiments on the AG News dataset reveals an even wider gap between the
training/test loss curves of low-rank factorization and those of the NanoMoE variants. Among the
NanoMoE variants, NanoMoE-I achieves the best overall performance in terms of loss.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

106 107 108

Number of FLOPs

0.175

0.200

0.225

0.250

0.275

0.300

Tr
ai

n 
lo

ss

Train loss vs. # FLOPs
Low-Rank
NanoMoE-I
NanoMoE-II
NanoMoE-III

(a) Train loss vs. # FLOPs

106 107 108

Number of FLOPs

0.300

0.325

0.350

0.375

0.400

0.425

Te
st

 lo
ss

Test loss vs. # FLOPs
Low-Rank
NanoMoE-I
NanoMoE-II
NanoMoE-III

(b) Test loss vs. # FLOPs

Figure 4: Comparison of training and test loss vs. FLOPs for Low-Rank Factorization and NanoMoE
Variants on the AG News classification dataset. Lower envelope lines represent the optimal parameter
choices for each model.

103 104 105

Number of Parameters

0.175

0.200

0.225

0.250

0.275

0.300

Tr
ai

n 
lo

ss

Train loss by # Params
Low-Rank
NanoMoE-I
NanoMoE-II
NanoMoE-III

(a) Train loss vs. # Parameters

103 104 105

Number of Parameters

0.300

0.325

0.350

0.375

0.400

0.425

Te
st

 lo
ss

Test loss vs. # Params
Low-Rank
NanoMoE-I
NanoMoE-II
NanoMoE-III

(b) Test loss vs. # Parameters

Figure 5: Comparison of training and test loss vs. the number of parameters for Low-Rank Factoriza-
tion and NanoMoE Variants on the AG News classification dataset. Lower envelope lines represent
the optimal parameter choices for each model.

5 CONCLUSION

This work introduces NanoMoE, a novel parameter-efficient building block designed to replace fully-
connected layers and low-rank factorization layers in neural networks. We theoretically demonstrate
that NanoMoE offers strictly greater expressivity compared to low-rank factorization, while requiring
only a minimal increase in parameters. Furthermore, our empirical results consistently validate that
NanoMoE achieves superior performance in terms of both training and test loss across various FLOPs
budgets and parameter constraints. These findings suggest that NanoMoE presents a promising
avenue for developing more efficient and effective neural network architectures.

6 FUTURE WORK

Our study presents several opportunities for future work. First, while our experiments showcase the
parameter efficiency of NanoMoE, exploring principled methods for selecting the optimal hyperpa-
rameters K (number of experts) and r is crucial to maximize this efficiency. Second, we haven’t
investigated the performance of NanoMoE within the context of LoRA-type fine-tuning (Hu et al.,
2022). Additionally, exploring NanoMoE’s potential in pre-training large language models and
employing stacked NanoMoE architectures (e.g., replacing all fully-connected layers with NanoMoE
layers) are promising avenues for future research.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learning:
A survey and taxonomy. IEEE transactions on pattern analysis and machine intelligence, 41(2):
423–443, 2018.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Katherine M Collins, Albert Q Jiang, Simon Frieder, Lionel Wong, Miri Zilka, Umang Bhatt, Thomas
Lukasiewicz, Yuhuai Wu, Joshua B Tenenbaum, William Hart, et al. Evaluating language models
for mathematics through interactions. Proceedings of the National Academy of Sciences, 121(24):
e2318124121, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220–235, 2023.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, pp. 5547–5569.
PMLR, 2022.

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J Clark, and Mehdi
Rezagholizadeh. Krona: Parameter efficient tuning with kronecker adapter. arXiv preprint
arXiv:2212.10650, 2022.

David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored representations in a deep
mixture of experts. arXiv preprint arXiv:1312.4314, 2013.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang, et al. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

Xuehai He, Chunyuan Li, Pengchuan Zhang, Jianwei Yang, and Xin Eric Wang. Parameter-efficient
model adaptation for vision transformers. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 817–825, 2023.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1–38, 2023.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. In International Conference on Learning Representations,
2021.

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
Losparse: structured compression of large language models based on low-rank and sparse ap-
proximation. In Proceedings of the 40th International Conference on Machine Learning, pp.
20336–20350, 2023.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural Information Processing Systems, 34:1022–1035,
2021.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Efficient parametrization of multi-
domain deep neural networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8119–8127, 2018.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. Advances in neural information processing systems, 29, 2016.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
International Conference on Learning Representations, 2016.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
modern deep learning research. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 13693–13696, 2020.

Zhiyang Teng, Ruoxi Ning, Jian Liu, Qiji Zhou, Yue Zhang, et al. Glore: Evaluating logical reasoning
of large language models. arXiv preprint arXiv:2310.09107, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Xun Wu, Shaohan Huang, and Furu Wei. Mole: Mixture of lora experts. In The Twelfth International
Conference on Learning Representations, 2024.

Jiajun Xu, Zhiyuan Li, Wei Chen, Qun Wang, Xin Gao, Qi Cai, and Ziyuan Ling. On-device language
models: A comprehensive review. arXiv preprint arXiv:2409.00088, 2024.

Shih yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adap-
tation. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=3d5CIRG1n2.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
Opt: Open pre-trained transformer language models, 2022.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. Advances in neural information processing systems, 28, 2015.

10


