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Abstract

Predictive coding networks offer a biologically plausible alternative to backpropagation
through local error minimization. However, standard implementations rely on fully con-
nected layers, unlike the sparse, spatially organized connectivity of the brain. We introduce
Radial Basis Predictive Coding Networks (RBF-PCN), which use Gaussian receptive fields
to enforce spatial locality in predictions and error propagation, reducing computational
complexity. Experiments show that RBF-PCN maintains competitive performance with
standard predictive coding in shallow models, and that both predictive coding variants
exhibit superior equivariance to translations and rotations compared to backpropagation.
Keywords: Predictive Coding, Equivariant Representations

1. Introduction

Equivariant representations—where network activations transform predictably under input
transformations—constitute a fundamental principle in biological and artificial vision sys-
tems (Perich et al., 2025; Saraf et al., 2025; Cohen and Welling, 2016). While convolutional
neural networks achieve translation equivariance through weight sharing (LeCun et al.,
2002), recent evidence suggests that local connectivity patterns play an equally crucial role
in maintaining geometric structure (Legare et al., 2025).

Predictive coding (PC) networks offer a biologically grounded alternative to backprop-
agation by implementing hierarchical Bayesian inference through local error minimization
(Rao and Ballard, 1999). However, existing models typically use fully connected layers,
where each neuron predicts all preceding activities, which contrasts with the sparse and
spatially organized connectivity of biological circuits.

We introduce Radial Basis Predictive Coding Networks (RBF-PCN), which impose
Gaussian receptive fields to enforce spatial locality in predictions and error propagation.
Connection strength decreases smoothly with distance, preserving geometric structure and
supporting equivariance, consistent with evidence that local lateral connections preserve
the visuotopic ordering of the visual field (Alexander et al., 1999).

Our contributions are threefold: (1) spatial locality constraints in predictive coding en-
hance locality compared to fully-connected architectures, (2) RBF-constrained connectivity
maintains competitive performance while reducing computational complexity, and (3) pre-
dictive coding maintains higher representation equivariance under spatial transformations.

2. Related Work

Predictive Coding Networks Predictive coding networks (PCNs) implement hierar-
chical Bayesian inference through local computation (Rao and Ballard, 1999). Each layer
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| maintains value neurons v! and computes top-down predictions v/ = f(W!v!*1), yielding

prediction errors € = v! — ¥!. The network minimizes variational free energy F through
iterative updates:
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Whittington and Bogacz (2017) proved PCNs approximate backpropagation using only lo-
cal computations, with recent work achieving competitive performance while maintaining
biological plausibility (Millidge et al., 2022; Salvatori et al., 2021; Song et al., 2024). How-
ever, standard PCNs employ fully-connected layers, lacking the spatial locality fundamental
to cortical organization.

Sparse and Local Connectivity Biological neural circuits exhibit sparse, spatially-
organized connectivity optimized for computational efficiency. The MICrONS Consortium
mapped ~75,000 neurons, revealing “like-to-like” connectivity where local connections are
stronger between functionally similar neurons (mic, 2025; Ding et al., 2025). Recent ad-
vances show sparse predictive coding develops motion-sensitive receptive fields using local
connectivity (Millidge et al., 2024), while structured sparsity achieves substantial compu-
tational gains—up to 100x throughput improvements (Mocanu et al., 2018; Hunter et al.,
2022). Crucially, this local connectivity preserves spatial relationships essential for equivari-
ant representations, as symmetric local connections naturally maintain geometric structure
under spatial transformations (Cohen and Welling, 2016).

3. Methodology

We propose Radial Basis Predictive Coding Network (RBF-PCN), which constrains pre-
dictive coding dynamics through Gaussian receptive fields, enforcing spatial locality and
gradient sparsity while preserving core PC inference mechanisms. The training procedure
of RBF-PCN is shown in Appendix A.

RBF-Constrained Connectivity Standard PC networks use dense connectivity where
layer I + 1 neurons predict all layer [ activities. We restrict this through spatial receptive
fields defined by Gaussian RBFs. For neurons arranged on 2D grids with coordinates (i, j)
and (k,m) in layers [ and [ + 1 respectively, the RBF influence function is:
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Grm,ij = €xp (- (2)
where o controls receptive field width. This creates connectivity mask M € RN+1 XN with
Mimij = Grm,ij-

Modified Predictive Coding Dynamics The RBF mask modulates forward predic-
tions and backward error propagation. Top-down prediction becomes v! = f ((Wl ®
Ml)le) with error € = v! — ¥, where W' are generative weights and ® denotes element-
wise multiplication. Spatially constrained inference updates become:
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This reduces computational complexity from O(N;41 x N;) to O(Nyy1 X k) where k is the
average connections per neuron after thresholding.

Sparse Learning Through Hard Masking We enforce sparsity by applying a binary
threshold mask S! that selects only connections whose RBF value exceeds a threshold 7.
Weight updates are applied exclusively to these active connections as AW,ﬁmﬂ» ;= aweé jvg{nl.
During forward passes, effective weights are given by (W!®S!')®M!, which preserves smooth
gradients while maintaining sparsity. This dual-level RBF masking represents the key inno-
vation: the binary mask S’ limits which connections are formed, while the continuous mask
M'! modulates their strength according to spatial proximity. Together, these constraints
preserve predictive coding dynamics while reducing computational cost and enforcing bio-

logically motivated locality.

4. Experiment and Results

We evaluate RBF-PCN against standard PCN and backpropagation (BP) baselines through
classification and equivariance experiments. Additional details are in Appendix B.

Supervised Classification We train MLPs with 3-12 hidden layers (512 units each) on
MNIST (Deng, 2012) and CIFAR-10 (Krizhevsky et al., 2009) using three methods: (1)
Standard PCN, (2) RBF-PCN, and (3) BP. All models minimize squared error loss with
batch size 512, trained for 10 epochs (MNIST) and 30 epochs (CIFAR-10).

Table 1: Classification accuracy across methods, datasets, and network depths. Standard
deviation shown after =+.

Dataset Method Depth 3 Depth 6 Depth 9 Depth 12
BP 0.98 + 0.0006  0.98 4+ 0.0017 0.98 £ 0.0032 0.97 £+ 0.0049

MNIST PCN 0.99 4 0.0007 0.98 £+ 0.0018 0.94 + 0.0082 0.17 £+ 0.0669
RBF-PCN  0.98 £ 0.0004 0.97 £ 0.0007 0.11 £ 0.0000 0.12 £ 0.0025
BP 0.55 + 0.0064 0.55 + 0.0003 0.54 4+ 0.0037 0.53 &+ 0.0015

CIFAR-10 PCN 0.55 + 0.0027  0.48 4+ 0.0048 0.42 £+ 0.0040 0.28 £+ 0.0065

RBF-PCN  0.53 &£ 0.0056 0.46 £ 0.0045 0.10 £+ 0.0028 0.10 £+ 0.0013

RBF-PCN matches standard PCN performance in shallow networks (3-6 layers) while
reducing computational cost through local connectivity. This shows that local connectivity
preserves representational capacity for moderately complex tasks. Both PCN variants de-
grade in deeper networks, whereas backpropagation remains stable across all tested depths.

Equivariance Analysis We evaluate equivariance of learned representations under spa-
tial transformations. For translations, we compute similarity Strans = sim(f(Zs(x)), Ts(f(x))),
where Ty is a shift by s € {£4} pixels and sim denotes cosine similarity. For rotations, we
compute Spot = sim(f(Rg(z)), Ro(f(x))), with Ry a rotation by 6 € [0°,180°]. We also
report equivariance error, defined as Eyans = || f(Ts(z)) — Ts(f(x))]|/|| f(x)|| for translation
and Eroq = ||f(Ro(x)) — Ro(f(@))]|/IIf (@)]] for rotation.
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Figure 1: Cosine Similarity of depth-6 models on CIFAR-10 and MNIST, showing the re-
sponse of learned representations to translation and rotation.

Figure 1 shows results for depth-6 models. Translation equivariance (panels a,c) is simi-
lar across methods, with PCN variants slightly outperforming BP. For rotation equivariance
(panels b,d), RBF-PCN achieves highest similarity on CIFAR-10 while standard PCN excels
on MNIST. Both PCN variants outperform BP, suggesting better preservation of geometric
relationships.

5. Conclusion

We introduced Radial Basis Predictive Coding Networks (RBF-PCN), which enforce spatial
locality through Gaussian receptive fields while preserving core predictive coding dynamics.
Our results demonstrate that RBF-PCN maintains competitive classification performance
with standard PCN in shallow networks while reducing computational complexity through
sparse connectivity. Importantly, both predictive coding variants exhibit superior equivari-
ance to spatial transformations compared to backpropagation. These results highlight that
biologically-inspired spatial constraints can enhance both efficiency and geometric repre-
sentation learning. Future work should address deeper network performance and explore
adaptive receptive fields for better scalability.
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Appendix A. RBF-PCN Training Procedure

The key steps of the RBF-PCN training procedure are summarized in Algorithm 1. Con-
tinuous masks M! and binary masks S’ are computed first, followed by iterative inference
and weight updates.

Algorithm 1 RBF-PCN Training

Initialize weights W', RBF width o, threshold 7
Compute continuous masks M : // Eq. 2

Compute binary masks S ;
for each training batch (x,y) do
for t < 1to T do
Forward: v/ = f((W!'® St © M')vi*1)
Compute errors: € = vl — ¥ ;
Update value neurons ; // Eq. 3
end
Update weights ;
Apply hard masking: W! «+ W'! © St ;
end

Appendix B. Experimental Details
B.1. Experimental Overview

To evaluate the effectiveness of our proposed methods, we conduct comprehensive experi-
ments across three diverse tasks that test different aspects of neural network learning ca-
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pabilities. These tasks span supervised learning with discrete outputs, unsupervised recon-
struction of noisy data, and feature learning from complex textures, providing a systematic
assessment of model performance across varying network depths and architectures.

B.2. Tasks and Datasets
B.2.1. TASK 1: SUPERVISED CLASSIFICATION

The first experimental task focuses on multi-class classification using standard computer
vision benchmarks. We evaluate performance on MNIST (Deng, 2012) and CIFAR-10
(Krizhevsky et al., 2009) datasets, where all images are resized to 28 x 28 for consistency.
Models are trained to predict one-hot encoded labels by minimizing the squared error loss,
defined as half the squared L2 norm between predicted and target labels. Training is con-
ducted for 10 epochs on MNIST and 30 epochs on CIFAR-10 to ensure convergence while
maintaining computational efficiency.

B.2.2. TAsK 2: IMAGE DENOISING

The second task examines unsupervised learning capabilities through image reconstruction.
We employ MNIST images (resized to 28 x 28) corrupted with Gaussian noise of standard
deviation 0.5, creating a challenging denoising scenario. Symmetric encoder—decoder models
are trained to minimize reconstruction loss, defined as half the squared L2 norm between
reconstructed and clean images. This task requires models to learn meaningful internal
representations that can distinguish signal from noise, with training conducted over 30
epochs.

B.2.3. TASK 3: UNSUPERVISED FEATURE LEARNING

The third task investigates the ability to learn meaningful representations from complex
textures without supervision. We use 32x32 patches extracted from the Describable Tex-
tures Dataset (DTD) (Cimpoi et al., 2014), which provides diverse texture patterns that
challenge feature learning algorithms. Models are trained to minimize texture reconstruc-
tion loss, defined as half the squared L2 norm between reconstructed and input patches,
over 30 epochs.

B.3. Model Architectures and Implementation
B.3.1. NETWORK ARCHITECTURES

For the classification tasks, we employ multi-layer perceptrons (MLPs) with varying depths
from 3 to 12 hidden layers, each containing 512 units. This architecture choice allows us to
systematically evaluate how model depth affects learning dynamics and performance. The
denoising task utilizes MLP autoencoders with symmetric encoder-decoder structures, en-
suring that the encoding and decoding processes have equivalent representational capacity.
For texture learning, we implement convolutional autoencoders (CNNs) that can effectively
capture spatial hierarchies and local texture patterns through their convolutional structure.

Table 2 summarizes the detailed architectural specifications for each model type across
different tasks. The MLP architectures maintain consistent hidden layer sizes of 512 units,



while CNN architectures follow a progressive channel expansion pattern. For autoencoder
tasks, symmetric encoder-decoder structures are employed with appropriate bottleneck lay-
ers to encourage meaningful representation learning.

Table 2: Detailed network architecture specifications for different tasks and model types.

Task Architecture Component Specification
Model Type Multi-Layer Perceptron
Classification Depth Range 3-12 hidden layers
(MLP) Layer Sizes Input — 512 — --- — 512 — Output
Hidden Units 512 units per layer
Model Type MLP Autoencoder
Depth Range 3-12 hidden layers per encoder/decoder
Denoising Encoder Layers Input — 512 — .- — 512 — 256
(MLP-AE) Decoder Layers 256 — 512 — --- — 512 — Input
Hidden Units 512 units per layer
Bottleneck Size 256 units
Model Type CNN Autoencoder
Depth 3 layers per encoder/decoder
3X32x32
— 16x16x16
Encoder Progression — 32x8x8
— 64x4x4
Feature — 64x2x2 (bottleneck)
Learning G252
(CNN-AE) — 64x4x4
Decoder Progression — 32x8x8
— 16x16x16

Kernel Sizes
Stride

Padding

Output Activation

— 3x32x32 (output)

3x3 for all layers

2 (downsampling/upsampling)
1 for all layers

Tanh (range [-1, 1])

B.3.2. DATA NORMALIZATION

All input data undergoes standardization using dataset-specific normalization parameters
to ensure stable training dynamics and consistent convergence behavior across different
datasets. Table 3 presents the normalization parameters used for each dataset.

B.3.3. RBF-PCN CONFIGURATION

The RBF-PCN models are configured with a receptive field width of ¢ = 6.0, which de-
termines the spatial extent of radial basis function activations. The sparsity parameter is
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Table 3: Dataset normalization parameters used for input preprocessing.

Dataset Mean (p) Standard Deviation (o)
MNIST [0.5] [0.5]

CIFAR-10 [0.4914, 0.4822, 0.4465] [0.2023, 0.1994, 0.2010]
DTD Textures [0.5] [0.5]

set to 7 = 10™%, encouraging sparse representations while maintaining sufficient model ex-
pressivity. During training, we employ 7" = 20 inference steps to ensure that the predictive
coding dynamics reach a stable state before parameter updates.

B.3.4. TRAINING PARAMETERS AND EXPERIMENTAL SETUP

Learning rates are carefully tuned for different model components, with representation
learning rates «,, selected from {0.01,0.001} and parameter learning rates ay chosen from
{0.001,0.0001}. All experiments are conducted on a single NVIDIA A8000 GPU with 80 GB
memory, providing sufficient computational resources for the deep architectures under in-
vestigation. To ensure statistical reliability, each experimental condition is evaluated across
three different random seeds, and results are reported based on the best hyperparameter
combination and best epoch for each model and task.

B.4. Evaluation Metrics
B.4.1. CLASSIFICATION PERFORMANCE

Classification performance is measured using accuracy, which represents the proportion of
correctly classified examples. This metric provides a direct assessment of the model’s ability
to learn discriminative features and make accurate predictions on unseen data.

B.4.2. RECONSTRUCTION QUALITY ASSESSMENT

For reconstruction tasks, we employ three complementary metrics that capture different
aspects of image quality. Mean Squared Error (MSE) measures the average squared pixel-
wise differences between reconstructed and target images, with lower values indicating better
reconstruction fidelity. Peak Signal-to-Noise Ratio (PSNR) provides a decibel-scale measure
of the signal-to-error ratio, where higher values indicate superior reconstruction quality.
The Structural Similarity Index (SSIM) quantifies perceptual similarity between images
on a scale from 0 to 1, with values closer to 1 indicating better preservation of structural
information that correlates with human visual perception.

B.5. Complete Experimental Results

Table 4 presents a comprehensive summary of experimental results across all three tasks and
varying network depths. The better-performing method in each experimental condition is
highlighted in bold font to facilitate comparison. The results reveal that both methods face
significant challenges when applied to very deep architectures, particularly those with 9-12
layers, suggesting fundamental limitations in training dynamics for such configurations.



Table 4: Complete experimental results across 3 tasks. The better method in each row is
shown in bold. Both methods struggle with very deep architectures (9-12 layers).

Task Dataset/Model Depth PCN Performance RBF-PCN Performance Metric
3 0.99 £ 0.0007 0.98 £ 0.0004 Accuracy
/ 6 0.98 + 0.0018 0.97 + 0.0007 Accuracy
MNIST/MLP 9 0.94 £+ 0.0082 0.11 + 0.0000 Accuracy
. . 12 0.17 £+ 0.0669 0.12 £ 0.0025 Accuracy
Classification
3 0.55 £+ 0.0027 0.53 £+ 0.0056 Accuracy
, 6 0.48 + 0.0048 0.46 £ 0.0045 Accuracy
CIFAR-10/MLP 9 0.42 + 0.0040 0.10 £+ 0.0028 Accuracy
12 0.28 + 0.0065 0.10 £+ 0.0013 Accuracy
3 13.39 + 0.19 12.84 £ 0.07 PSNR (dB)
6 8.47 £+ 0.15 5.94 + 0.00 PSNR (dB)
9 5.95 + 0.00 5.94 £ 0.01 PSNR (dB)
12 5.94 4+ 0.01 5.94 + 0.01 PSNR (dB)
3 0.67 £+ 0.02 0.65 £ 0.01 SSIM
Denoising MNIST/MLP-AE 6 0.52 4+ 0.03 0.41 £ 0.01 SSIM
9 0.42 + 0.00 0.42 + 0.01 SSIM
12 0.41 + 0.01 0.41 + 0.00 SSIM
3 0.05 £+ 0.00 0.05 + 0.00 MSE
6 0.14 + 0.00 0.25 £ 0.00 MSE
9 0.25 £ 0.00 0.25 + 0.00 MSE
12 0.25 4+ 0.00 0.25 + 0.00 MSE
3 15.73 £ 0.41 15.78 + 0.35 PSNR (dB)
Texture Learning DTD/CNN-AE 3 0.73 + 0.02 0.73 + 0.02 SSIM
3 0.03 £+ 0.00 0.03 + 0.00 MSE

B.6. Equivariance Analysis

To assess the robustness and geometric properties of learned representations, we conduct
a detailed analysis of equivariance under spatial transformations for the classification task.
This analysis examines how well the learned features preserve their response patterns when
input images undergo translation and rotation transformations, which is crucial for under-
standing the geometric understanding encoded in the network representations.

Figure 2 presents the equivariance error measurements for depth-6 models evaluated
on both CIFAR-10 and MNIST datasets. The analysis encompasses both translation and
rotation transformations, providing insights into how the different methods handle spatial
invariances. These results complement and align with the equivariance analysis presented
in the main text, offering additional granular details about the spatial transformation prop-
erties of the learned representations.

B.7. Reconstruction Results

Here in Figure 3 and 4, we show the denoising and reconstruction results of depth-3 models
for both Task 2 (Denoising) and Task 3 (Texture Learning), comparing PCN and RBF-PCN
reconstructions with the original inputs.

10
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Equivariance error analysis for depth-6 models on CIFAR-10 and MNIST

datasets, measuring the response of learned representations to translation and

rotation transformations.

The results demonstrate the spatial transformation

properties of different methods and align with the cosine similarity analysis pre-

sented in Figure 1.

11




Original 7 Original 8 Original 9

Original 1 Original 2 Original 3 Original 4 Original 5 Original 6

=

Noisy 7 Noisy 8

Noisy 1 Noisy 2 Noisy 3

(a) Original & Noisy Data

Denoised 1 Denoised 2 Denoised 3 Denoised 4 Denoised 5 Denoised 6 Denoised 7 Denoised 8 Denoised 9

‘ BfNERE

) PCN Reconstruction

Denoised 1 Denoised 2 Denoised 3 Denoised 4 Denoised 5 Denoised 6 Denoised 7 Denoised 8 Denoised 9

7 Elllﬂﬁ

) RBF-PCN Reconstruction

Figure 3: Denoising results of depth-3 models.
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Figure 4: Texture Learning results of depth-3 models.
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