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ABSTRACT

Large Multimodal Models (LMMs) exhibit remarkable multi-tasking ability by
learning mixed datasets jointly. However, novel tasks would be encountered se-
quentially in dynamic world, and continually fine-tuning LMMs often leads to per-
formance degrades. To handle the challenges of catastrophic forgetting, existing
methods leverage data replay or model expansion, both of which are not specially
developed for LMMs and have their inherent limitations. In this paper, we propose
a novel dual-modality guided prompt learning framework (ModalPrompt) tailored
for multimodal continual learning to effectively learn new tasks while alleviating
forgetting of previous knowledge. Concretely, we learn prototype prompts for
each task and exploit efficient prompt selection for task identifiers and prompt
fusion for knowledge transfer based on image-text supervision. Extensive exper-
iments demonstrate the superiority of our approach, e.g., ModalPrompt achieves
+20% performance gain on LMMs continual learning benchmarks with ×1.42
inference speed refraining from growing training cost in proportion to the number
of tasks. The code will be made publically available.

1 INTRODUCTION
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Figure 1: Performance comparison on continual
learning benchmark for LMMs.

In recent years, Large Multimodal Model (LMM),
which combines visual encoder (Dosovitskiy et al.,
2021) with a large language model to handle multi-
modal tasks, has gained remarkable performance in
numerous fields including understanding and gener-
ation. As modern models become larger with bil-
lions of parameters (Dubey et al., 2024), they are
expected to learn more than one time and deal with
multiple tasks other than single tasks like retrieval
and image caption (Yao et al., 2022; Dai et al., 2024).
Typically, LMMs (Li et al., 2023; Liu et al., 2024b)
apply two-stage training, first conducting multi-task
pre-training on mixed datasets to establish image-
text alignment and then fine-tuning on the down-
stream dataset to achieve superior performance.

However, while pre-trained model like LLaVA (Liu et al., 2024b) performs well on mixed datasets,
they tend to forget older tasks when fine-tuned on new task. Such forgetting phenomenon is espe-
cially evident in sequentially learning of widely differing multimodal tasks such as VQA (Goyal
et al., 2017) and grounding (Deng et al., 2021). This calls for continual learning of multimodal
large language model, which aims at sequentially fine-tuning models with multimodal tasks and
gets superior performance on new tasks while remaining ability on older tasks.

Existing approaches mainly tackle the forgetting issue from two aspects. (1) Some store part of
training data of older tasks and mix them with dataset of current task to resist forgetting (Rebuffi
et al., 2017). However, rehearsal based method has difficulty caching data from all previous tasks
and may struggle with severe issues involving data privacy and safety, especially in the era of big
data, where people care more about data leakage; (2) others continually extend the model with sep-
arate lightweight components for each task, and LoRA (Hu et al., 2022) appears to be the common
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practice for large models (Wang et al., 2023). However, the frequently employed model expansion
methods expand model size in proportion to the number of tasks since they store separate com-
ponents for each task and integrate them during inference. As the number of tasks increases, the
cost of storage and inference becomes unbearable, particularly in LMMs and therefore hinder their
practical deployments in real-world scenarios. Moreover, as they are not specially designed for
LMMs, they often perform poorly on multimodal benchmarks. The mentioned shortcomings natu-
rally raise an open question: Can we establish a continual learning framework tailored for LMMs
that is rehearsal-free while refraining from computational expansion in proportion to the number of
tasks?

In this paper, we investigate how to retain information of older tasks from dual-modaility (i.e.,
image and text) and therefore improve the performance of continual learning. Generally speaking,
given the suboptimal performance of the existing methodology on LMM continual learning and
that the primary distinction between LLM and LMMs lies in their utilization of image features, we
introduce prompt learning and build a general prompt learning framework for continual learning with
supervision from multimodality. First, we build a set of prototype prompts for each task to represent
task-specific knowledge without the necessity of storing and replaying old samples. Second, to
address the problem of the increasing computational complexity associated with the growing number
of tasks, we develop the prompt selection mechanism. Concretely, we use off-the-shelf text and
visual encoders of CLIP (Radford et al., 2021) to obtain text and visual guidance features, which
represent image-text distribution in feature space. At the same time, to further enhance knowledge
transfer, a learnable lightweight projection layer (e.g., MLP) is exploited to extract prototype features
from prototype prompts for multi-task prompt fusion. We then obtain prototype features that are
most relevant to the current task through dual-modality guidance to promote the performance.

Our method mainly has two advantages. On the one hand, features after tokenization (text) and pro-
jection (image) naturally align the dual-modality information and are effortless to retain knowledge
of both modalities without data from older tasks. On the other hand, computational complexity is
in proportion to the number of tokens other than the number of tasks, therefore we can manage the
time consumption by selecting the number of tokens. We evaluate our approach on continual learn-
ing benchmark for LMMs (Chen et al., 2024) across diverse multi-modal tasks from VQA (Goyal
et al., 2017) to grounding (Kazemzadeh et al., 2014) with various indicators. Comprehensive re-
sults certificate that our method efficiently tunes on new task, substantially boosts performance on
older tasks and even achieves comparable performance to multi-task learning. Our contributions are
summarized as follows:

• To the best of our knowledge, this is the first prompt learning framework for rehearsal-free
continual learning of LMMs to exploit the advantage of multimodal supervision.

• We construct prototype prompts to retain knowledge from previous tasks and exploit an
effective dual-modality guided prompt selection and fusion technique to manage the com-
putational complexity and ensure continual learning ability.

• We conduct extensive experiments on large-scale continual learning benchmark for LMMs,
and the results outperform existing methods by a substantial margin (+20%). We also give
comprehensive analysis to showcase the effectiveness and efficiency of our method.

2 RELATED WORK

Large Multimodal Models. Large multimodal models (LMMs) (Liu et al., 2024b;a; Ye et al., 2024),
which combine vision representation with large language models (LLMs) (Alayrac et al., 2022;
Touvron et al., 2023), have exhibited prpredominant function in numerous multimodal tasks (Liu
et al., 2023; Fu et al., 2023; Lu et al., 2024). They typically consist of a LLM decoder with stacks of
transformers to decode textual embeddings, a vision encoder and a linear projector trained on large-
scale vision-language datasets to align image-text features and project visual representations into
text space. Usually, they first process image pixels with a CLIP image encoder, align features with a
linear projector and then generate responses with concatenation of both image-text representations
in an autoregressive way as LLMs do.

As full fine-tuning is time-consuming and resource-intensive, efficient tuning is the common practice
to reduce the training cost of large models (Han et al., 2024). Methods for parameter efficient tuning
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are mainly three-fold: adapter learning (Zhang et al., 2021), prompt learning (Zhou et al., 2022)
and LoRA (Hu et al., 2022). They update the model with a lightweight module in the form of
intra-block parallel connections, prefixes among input embeddings and low-rank decomposition,
respectively. Mainstream methods employ LoRA as the solution to reduce source consumption for
large models (Smith et al., 2024; Qin et al., 2024).

Continual Learning. Continual learning solves the problem of catastrophic forgetting (Zhai et al.,
2023) when one model sequentially learns multiple tasks. Conventional works are divided into three
categories: regularization based (Kirkpatrick et al., 2017; Zhu et al., 2021), rehearsal based (Re-
buffi et al., 2017; Buzzega et al., 2020; Liu et al., 2021; 2020; Luo et al., 2023) and architecture
based (Smith et al., 2023; Wang et al., 2022a) methods. Specifically, rehearsal based methods are
effective but rely heavily on the quality of data. Architecture methods require similar model ex-
pansion that model size grows in proportion to the number of tasks, which restricts their practical
application. There has been research for vision-language model (Radford et al., 2021). Specifically,
L2P (Wang et al., 2022b) enhances continual learning through prompts from a memory space. Nev-
ertheless, they do not involve large language model and all concentrate on classification tasks (Zheng
et al., 2023; Zhai et al., 2023).

Since the extensive development of LLM, much attention and effort have been paid to the contin-
ual learning of LLMs (Wu et al., 2024; Zhang et al., 2024). Efficient tuning shows the potential of
promoting the performance of continual learning as the backbone is usually frozen to reserve prior
learned knowledge (Gao et al., 2024). Progressive Prompts (Razdaibiedina et al., 2023) assigns a
set of prompts for each task and accumulates them as the number of tasks grows. Pop (Hu et al.,
2023) additionally set prompt of prompts to capture cross-task information. However, they focus on
NLP tasks (Wang et al., 2024b;a; 2023) with no special design for visual features and few works
explore continual learning of LMMs (He et al., 2023). CoIN (Chen et al., 2024) proposes a mul-
timodal continual learning benchmark and applies MoELoRA (Dou et al., 2023) to align previous
instructions. However, it suffers from severe performance drop, indicating that LoRA might not be
the final solution to multimodal continual learning. In this paper, we focus on continual learning for
multimodal tasks and construct prompt learning scheme tailored for LMM continual learning and
computational consumption.

3 MODALPROMPT: A NOVEL PROMPT BASED CONTINUAL LEARNING
FRAMEWORK FOR LMMS

Continual learning of LMMs seeks to address the issue of learning with ongoing datasets. Denote
that LMM fθ(·) is pre-trained on large-scale vision-language data to align image-text features. Given
T tasks {T1, · · · , TT } with corresponding multimodal data Dt = {Xt,i

v , Xt,i
instruct, y

t,i}Nt
i=1, t =

1, · · · , T , where Xt,i
v , Xt,i

instruct, y
t,i stands for ith sample of image, text and ground truth for tth

dataset (Nt in total). A continual learner aims to fine-tune fθ(·) sequentially on current data Dt while
retaining knowledge on all previous tasks T<t. For a given dataset Dt, multimodal model generates
responses for each input {Xt

v, X
t
instruct} after aligning and concatenating image-text features:

f([Xt
v;X

t
instruct]; θt), (1)

where [·; ·] represents concatenation operation. Fine-tuning objective for LMMs is a negative log-
likelihood auto-regressive language loss and when learned continuously, the model is sequentially
optimized on different tasks and θ is continuously updated to adapt to newly emerged dataset:

LLMM(θ) = E(Xt
v,X

t
instruct,y)∼Dt

[
−

L∑
ℓ=1

log pθ(y
ℓ|Xt

v, X
t
instruct, y

<ℓ)
]
, (2)

where L is the length of each sample pair in the dataset. The model predicts the answer in an
auto-regressive way, i.e., outputs the ℓth response conditioned on all instruction and answer tokens
before index ℓ. Sequentially learning continuous tasks will do favor for new tasks, but may cause
catastrophic forgetting in older tasks.

In this paper, we aim to resolve the problem of continual learning in a more challenging setting.
The characteristic of LMM continual learning includes: (1) diverse multimodal generative ques-
tions: continual learning procedure is focused on generative tasks other than discriminative tasks

3
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Figure 2: Left: prompt selection module. Prototype features are obtained from the projection of
prototype prompts to get task-specific knowledge in feature space. Middle: dual-modality guidance
process. Prototype features that are the most similar to current multimodal features are selected to
enhance training and evaluated tasks. Right: prototype prompts and original multimodal inputs are
concatenated and fed into large language model to generate responses.

like image classification (Wang et al., 2022b) and with the existence of vision information, type of
task is much more diverse and covers abundant scenarios; (2) free from task identifiers: during in-
ference, the model does not possess prior knowledge regarding which specific task current question
belongs to; (3) absence of replay samples: due to data privacy, no samples are replayed to refresh
knowledge of previous tasks.

3.1 DUAL-MODALITY GUIDANCE PROMPT SELECTION FOR TASK IDENTIFIERS

We start from direct fine-tuning of LMMs employing prompt learning framework, i.e., tuning in-
dependent prompts for respective datasets. Given a set of prompts Xt

p with length N that is well-
trained on task Tt, t ∈ {1, · · · , T} in the form of direct fine-tuning, the crucial problem is that the
model has no ability to recognize which set of prompts promotes particular datasets during inference,
i.e., without access to data from older tasks, task-specific prompts should obtain cues for image-text
distribution and be discriminant about which set of prompts counts during inference. Therefore, it
is necessary to measure similarity between image-text distribution of certain tasks and task-specific
prompts. To achieve this goal, we propose the dual-modality guidance for prompt selection during
evaluation to tackle the issue. Specifically, for representations of each set of prompts, we use the
average of prompts as prompt features:

xt
p =

1

N

∑
Xt

p. (3)

Considering that CLIP well captures image-text distributions in features space, for image Xv and
text Xinstruct in each sample of current task (without identifiers), we reuse off-the-shelf vision and
text encoder from CLIP to extract multimodal knowledge of specific task:

xv = Projv(EI(Xv)), xinstruct = ET (Xinstruct), (4)

where EI(·) : Rnv×dv → Rdv , ET (·) : Rnt×dt → Rdt and Projv(·) : Rdt → Rdv , are CLIP vision
encoder, text encoder and linear projection, respectively. nv,nt,dv and dt are length of image
inputs, length of text inputs, visual dimension and textual dimension, respectively. The utilization
can be effortless as they are well-trained and frozen for feature extraction.1

The dual-modality features could serve as guiding cues for selecting prompts that are close to multi-
modal distributions of current task in feature space. Concretely, we exploit the similarity of prompt
features with dual-modality features, respectively:

αt = sim(xt
p,xv), βt = sim(xt

p,xinstruct), t = 1, · · · , T, (5)

where similarity is a measurement that defines the correlation between features, and we use simple
yet effective cosine similarity as:

sim(xi,xj) =
xi · xj

||xi|| ||xj ||
. (6)

1As LMM uses vision encoder to extract image features, extra consumption merely comes from text encoder.
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With dual-modality guidance, the model has the ability to determine which prompts may boost
the performance of evaluated task. We then select the prompts among 1, · · · , T with the largest
similarity of multimodal supervision:

X̃p = Xp ◦ Ik{α+ β}, (7)

where Ik represents selecting the index with the largest k elements, and ◦ means selecting accord-
ing to index. The dual-modality guidance prompt selection module has to advantages: (1) help
choose the tasks which may help boost the performance; (2) manage the inference speed as the time
complexity are in proportion to the number of selected prompts other than the number of tasks.

Response generation. For each evaluated task, prompt learning feeds several efficient prompts
together with multimodal inputs in a prefix way to generate answers for multimodal inputs:

f([X̃p;Xv;Xinstruct]; θ), (8)

where X̃p is the selected prompts through prompt selection module.

3.2 MULTI-TASK PROMPT FUSION FOR KNOWLEDGE TRANSFER

Another key issue for continual learning is how to retain knowledge from older tasks and boost
the performance of current task. Motivated by the dual-modality prompt selection, we propose to
transfer similar knowledge in training procedure through multi-task prompt fusion, in which we
continually integrate knowledge of older tasks during sequential prompt learning. We term set of
prompts for each task as prototype prompts. The difference lies in that during training, prototype
prompts of all previous tasks are frozen for knowledge reuse and only current prototype prompts are
trainable, as shown in Fig. 2.

When training the tth task, the trainable prototype prompts are supposed to draw close to vision-
language features of current task and absorb potential knowledge that may boost the performance.
To enhance knowledge transfer, the dual-modality features could serve as guiding cues for prompts
to accurately get close to multimodal distributions of current task in feature space. Therefore, we
build prototype features from a lightweight projection layer:

xt
p = Projp(X

t
p), (9)

where Projp(·): RN×dt → Rdt projects the prototype prompts into task-specific prototype features
in image-text feature space. It is effective in distinguishing whether prompts of older tasks are
favorable for current tasks, i.e., fusing prompts of similar tasks would enhance knowledge transfer
and consequently boost the performance.

To explicitly utilize the knowledge of prior tasks, we design multi-task prompt fusion to figure out
prototype prompts that promote current task. Concretely, we fuse the prototype prompts among
1, · · · , t with the largest similarity of multimodal supervision for knowledge transfer:

X̃t
p = X≤t

p ◦ Ik{α≤t + β≤t}. (10)

It differs from Eqn. 7 in that during training, only prompts trained on older tasks can be selected. In
order to optimize parameters of current task, prototype prompts of current task are always selected.

Intuitively, we explicitly integrate prompt fusion into training procedure and utilize supervision
from both modalities that caters for LMMs to measure the distance with distribution of current task
and therefore transfer previous knowledge to boost the performance of current task, i.e., prototype
prompts that are close to current feature distribution. Detailed analyses are shown in Sec. 4.2.

Training objectives. Different from evaluation process, the inputs for continual learning of task Tt
are prefixed with fused prototype prompts X̃t

p described above. The parameters of large language
model θ are frozen, and only parameters of prototype prompts corresponding to current task θtp are
trainable. The optimization target for task Tt is to find optimal parameters θtp that minimize the
language loss:

Lt
LMM(θtp) = E(Xt

v,X
t
instruct,y

t)∼Dt

[
−

L∑
ℓ=1

log p(yℓ|[X̃t
p, Xv, Xinstruct, y

<ℓ], θ, θ1p, · · · , θtp)
]
. (11)

5
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Additionally, the projection layer along with prototype prompts of current task is optimized together
to reserve prototype feature during training process. Since we are to maximum the similarity with
dual-modality features to keep knowledge of current task, we design prototype loss as:

Lt
Proto =

[
1− sim(xt

p,xinstruct)
]
+

[
1− sim(xt

p,xinstruct)
]
. (12)

Total training objective is the sum of the prototype similarity loss and language loss:

Lt
Total = Lt

Proto + Lt
LMM. (13)

The trainable parameters are optimized with both understanding responses and learning prototypes
in feature spaces in the training procedure. Parameters of current task are frozen afterwards and are
used to retain knowledge of learned tasks when new task occurs.

4 EXPERIMENTS

4.1 SETUP

We apply LLaVA (Liu et al., 2024b) as base LMM, and CLIP-Large-336 (Radford et al., 2021) as
vision and text encoder for dual-modality feature extraction. The prototype prompts can be easily
constructed by extending the vocabulary size of the language tokenizer. The length for each proto-
type prompt is set to 10. We select 3 prototypes for LMM prompt learning. Implementation details
are shown in Appendix A.2.

Datasets. We follow the setting of CoIN (Chen et al., 2024), which is a continual instruction tun-
ing benchmark for LMMs, and employs numerous vision-language tasks to evaluate the continual
learning ability. Datasets are composed of GQA (Hudson & Manning, 2019), OCRVQA (Mishra
et al., 2019), Vizwiz (Gurari et al., 2018), VQAv2 (Goyal et al., 2017), ScienceQA (Lu et al.,
2022), TextVQA (Singh et al., 2019), ImageNet (Deng et al., 2009) and RefCoco (Mao et al.,
2016; Kazemzadeh et al., 2014). Most of these datasets are visual question answering tasks of
different fields, e.g., GQA for visual reasoning and ScienceQA for science knowledge, except for
ImageNet (classification) and RefCoco (grounding). More details about instructions and statistics
can be found in Chen et al. (2024).

Evaluation metrics. Denote that At,i(i ≤ t) is the performance of task i after training on task
t (T tasks in total). For final performance evaluation (number of dataset as the variable for a given
incremental stage), we measure each dataset using metrics like DirectT (directly fine-tuning the
initial LMM with each data, i.e., Ai,i, i = 1, · · · , T , which solely focuses on the effectiveness of
fine-tuned task) and ContinualT (evaluating after sequential training on all tasks, i.e., AT,i, i =
1, · · · , T ). For time-dependent continuous evaluation (number of incremental stage as the variable
for given datasets), we evaluate continuous metrics at each incremental stage across all seen datasets.
Other metrics include:

(1) Backward Transfer (BWT): Bt =
1

t− 1

t−1∑
i=1

(Ai,i − At,i), t = 2, · · · , T . It reflects the relative

variation between current performance and direct tuning performance, measuring the catastrophic
forgetting on all tasks. Lower BWT represents better anti-catastrophic forgetting performance.

(2) Mean Accuracy (MA): Mt =
1
t

∑t
i=1 At,i. It measures the average performance of all tasks at

each incremental stage and is introduced to evaluate continual learning ability of all previous tasks.
Higher MA stands for better continual learning ability. The above two metrics are averaged across
all data on each incremental stage except the first one, i.e., t = 2, . . . , T .

(3) Continual Average Accuracy (CAA): In addition to ContinualT, which focuses on performance
after tuning on all datasets, we propose to average performance throughout the entire tuning process.

CAAi =
1

T − i

T∑
t=i+1

At,i, i = 1, 2, . . . , T − 1. It measures the absolute performance of each data

across the sequential tuning. It is vital to keep the performance from dropping severely when the
fine-tuning task varies greatly.

6
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Table 1: Comprehensive comparison of continual learning ability. DirectT is instantly evaluated
after tuning on corresponding dataset and ContinualT is evaluated after tuning on OCR-VQA.

Metric Method ScienceQA TextVQA ImageNet GQA VizWiz REC VQAV2 OCRVQA

Multi-task 46.22 47.19 95.47 56.40 53.35 34.27 58.62 55.08
Zero-shot 49.91 3.31 2.17 3.02 0.85 0.00 0.68 1.05

DirectT

Finetune 82.45 50.14 95.01 55.65 51.42 34.00 59.17 52.92
MoELoRA 75.78 51.80 79.60 57.95 58.70 36.77 64.58 57.50

Ours 77.05 58.50 42.26 62.17 48.81 36.88 66.91 59.68

ContinualT

Finetune 26.00 25.38 28.51 33.07 26.52 0.10 40.00 52.92
MoELoRA 47.34 32.91 38.73 37.15 42.48 0.97 42.77 57.50

Ours 68.42 56.40 41.13 61.11 50.13 36.69 66.90 59.68
∆ +21.08 +23.49 +2.40 +23.96 +7.65 +35.72 +24.13 +2.18

CAA

Finetune 13.79 15.74 17.30 28.84 15.20 0.06 40.00 -
MoELoRA 39.12 27.10 20.01 40.65 28.72 1.36 42.77 -

Ours 68.36 56.30 39.66 61.45 50.02 36.66 66.90 -
∆ +29.23 +29.20 +19.65 +20.80 +21.30 +35.30 +24.13 -

Table 2: Continual performance metrics at each incremental stage.

Method
TextVQA ImageNet GQA VizWiz REC VQAV2 OCRVQA
B2 ↓ M2 ↑ B3 ↓ M3 ↑ B4 ↓ M4 ↑ B5 ↓ M5 ↑ B6 ↓ M6 ↑ B7 ↓ M7 ↑ B8 ↓ M8 ↑

Finetune 44.30 44.14 65.53 32.18 52.62 31.35 51.43 25.79 66.16 6.31 43.40 23.92 35.47 29.06
MoELoRA 41.31 43.13 52.47 34.08 32.76 41.71 33.81 37.71 41.41 25.59 30.80 34.34 26.12 37.48

Ours 6.55 64.50 4.40 56.34 3.16 57.63 4.51 54.15 3.98 50.96 2.02 54.35 1.68 55.06

We employ ContinualT, CAA and BWT, MA to measure the performance of final continual perfor-
mance and continuous continual performance, respectively.

4.2 MAIN RESULTS

Final continual performance. We sequentially fine-tune data from benchmark in the order of
ScienceQA, TextVQA, ImageNet, GQA, VizWiz, REC, VQAV2 and OCRVQA and evaluate after
tuning on all tasks. From Tab. 1, we can conclude that: (1) Our method achieves remarkable im-
provements on all continual learning metrics (ContinualT and CAA), and substantially outperforms
existing methods with +20% gain (+17.6% and +25.7% for ContinualT and CAA, respectively).
Notably, the results after sequential tuning (ContinualT) even against multi-task training, strongly
demonstrating the effectiveness of the dual-modality guided prompt learning framework. (2) When
learning different types of tasks, our approach undergoes slight performance drop and still gets
competitive results other than losing the ability to respond to the task (decreasing to zero when
MoELoRA is evaluated on Grounding), indicating the continual learning ability of the proposed
method. (3) CAA of previous methods drop significantly compared with ContinualT, indicating
that CAA more comprehensively reflects continuous learning performance, and CAA of our method
has almost no degradation, implying that our method consistently achieves superior performance
across the continuous tuning. (4) Tasks equipped with our task selection module are able to ben-
efit from similar tasks, e.g., ImageNet/Grounding, VQA tasks, which is favourable for inter-task
boosting when number of tasks are increasing. This strongly certificates that our prompt fusion and
selection module is helpful in retaining knowledge of previous tasks and promoting the performance
of similar tasks. See Appendix A.1 for full experimental results.

Continuous continual performance. We also evaluate continuous metrics at each incremental stage
in Tab. 2 to examine the time-variant continual learning performance. In particular, compared with
previous methods, our method is especially effective in alleviating catastrophic forgetting (BWT) to
the most (33.2% mitigation) and also gets promotion in absolute performance evaluation (19.9%
concerning MA). It is evident that we outperform the state-of-the-art LoRA-base method by a sub-
stantial margin with respect to both anti-catastrophic forgetting and enhancing mean accuracy, fur-
ther validating the superiority of our approach.
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Table 3: Effectiveness of guidance from multimodal supervision. Dual-modality similarity guidance
achieves the best results.

Guidance ScienceQA TextVQA ImageNet GQA VizWiz REC VQAV2 OCRVQA

Only Image 66.24 56.94 21.49 60.46 49.98 36.36 66.55 57.59
Only Text 65.59 55.90 13.41 60.65 47.86 36.18 66.33 57.21

Dual Modality 68.42 56.40 41.13 61.11 50.13 36.69 66.90 59.68

Table 4: Effectiveness of the proposed prompt selection and fusion for continual learning. Both of
them plays a key role in the framework and lacking either of them causes severe performance drop.

fusion selection ScienceQA TextVQA ImageNet GQA VizWiz REC VQAV2 OCRVQA

✓ 44.28 50.36 34.80 43.56 46.28 7.00 37.71 34.90
✓ 52.53 52.26 37.02 51.70 47.35 10.37 54.26 53.02
✓ ✓ 68.42 56.40 41.13 61.11 50.13 36.69 66.90 59.68

4.3 ABLATION STUDY

We conduct numerous ablation studies to carefully validate the effectiveness of components and
hyper-parameters in the proposed method.

Effectiveness of dual-modality guidance. The dual-modality guided prompt selection is the core
component of the proposed prompt learning framework. The difference between LMM continual
learning and that of large language model mainly lies in the information incorporated from image
features. Therefore, we comprehensively consider exploiting multimodal supervision using a mix-
ture of dual-modality guidance. To this end, we analyze the impact of dual-modality guidance and
replace it with single-modality guidance.

It is evident in Tab. 3 that either image or text information solely performs inferior to the pro-
posed multimodal strategy, and image information from multimodal dataset plays an inescapable
function in guiding continual learning especially in datasets that rely heavily on image scenes like
TextVQA. This strongly showcases that our dual-modality guidance tailored for LMMs suits the
best and largely improves the performance of multimodal continual instruction tuning by retaining
robust and reliable prototype features in feature space and therefore helping multimodal features
from all continuous tasks.
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Figure 3: Impact of number of prototype
prompts. p2/p5/p10 represents 2/5/10 number of
prototype prompts for each task, respectively.
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Figure 4: Influence of number of prompt selec-
tion. s1/s2/s3 stands for selecting 1/2/3 number of
prompts during evaluation, respectively.

Effectiveness of prompt selection and fusion. We design the dual-modality prompt selection for
task identifier and multi-task prompt fusion for knowledge transfer. To validate the effectiveness
of the proposed mechanisms, we ablate each of them to demonstrate their usefulness. Specifically,
without prompt selection, we concatenate all prompts like Progressive Prompts (Razdaibiedina et al.,
2023). It is shown in Tab.4 that multi-task prompt fusion is significant in promoting the continual
learning in the form of knowledge transfer. Also, without selection, knowledge of different types of
tasks would confuse the model and lead to performance drop.

Prototype prompts. The number of prototype prompts represents prototype features in aligned
image-text space and the similarity between feature distribution of current multimodal data plays a
key role in performance stability and robustness of continual learning. Drawing on the parameter
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Table 5: Efficiency comparison of LoRA based methods (MoELoRA) and ours. We average the
training time for one epoch across all datasets.

Method
GPU memory GPU memory

Training time↓ Inference time↑ Trainable parameters↑
(Model)↓ (Total)↓

MoELoRA 15564 M 16784 M 10.74 h 2.41 token/s 4.73%
Ours 14055 M 15517 M 3.81 h 3.43 token/s 0.27%

selection of prompt based methods in LLM (Razdaibiedina et al., 2023), we set the number of
prototype prompts for each task to 10. We alternate the number of prototype prompts to analyze
its stability. Results in Fig. 3 elucidate that increasing prompt numbers brings slight performance
improvement. Considering both effectiveness and efficiency, we do not expand the quantity.

Selection features. One primary advantage of the prompt learning framework is that it relies on
the number of prefix prompts other than task numbers and we can keep the number of prompts un-
changed through prompt selection strategy. In this section, we explore the influence as the number of
selection prompts k varies in Fig. 4. It is illustrated that the performance is generally proportional to
the number of selection features with diminishing marginal benefits. It is also notable that selecting
one set of prompts performs better than employing two sets, and three yields the best results. It can
be interpreted that one set focuses on exploiting prompts of current tasks only, and produces slightly
better outcomes than two sets, in which features between previous and current tasks may disturb
the representation and generate suboptimal results. However, one set does not consider facilitation
among similar tasks and still gets inferior results. By contrast, three sets bring performance gain,
which indicates that aggregating more prompts of similar feature distribution is consistent with the
objective of continual learning and as a result boosts the performance.

Taking both proficiency and efficiency into account, we choose three sets of prototype prompts,
i.e., 30 prompts in total to concentrate on both retaining knowledge of older tasks and reducing
computational complexity.

4.4 FURTHER ANALYSIS

Efficiency comparison. As prompt learning serves as another way to efficiently fine-tune large
models, it is necessary to assess the efficiency of the methods. Therefore, we compare our approach
with LoRA based method (Chen et al., 2024) in terms of additional parameters, average inference
latency and GPU memory consumption. Tab. 5 reveals that our strategy achieves better results with
lower memory, lower inference latency and lower trainable parameters. Specifically, we merely
train 0.27% of total parameters, which is 5% of MoELoRA. Therefore, our method achieves faster
inference speed (×1.42), reduces training time (×0.35) and GPU memory consumption, firmly sub-
stantiating the efficiency of our approach. The achievements can be attributed to simple prompt
learning implementation and the prompt selection module that manages the computational com-
plexity, consequently improving the inference efficiency.

Figure 5: Similarity between prototype
features (column) and multimodal task
features (row). Larger value indicates
more similar distribution.

Similarity of dual-modality features. The ability of our
framework to learn continually is largely guaranteed by
the prompt selection module and prototype prompts repre-
sented in vision-language feature space. To further analyze
the effectiveness of the dual-modality guidance tailored for
LMMs, we calculate the similarity matrix between proto-
type prompts and multimodal task guidance. In Fig. 5, the
similarity heatmap vividly illustrates the vision-language
distributions of continual learning tasks. First, multimodal
features of a few tasks are similar (reflected by mostly large
values in the similarity matrix), showcasing that most mul-
timodal tasks share common sense and can promote each
other continually. However, some tasks, such as GQA and
OCRVQA, are not similar to other tasks, which may be due
to their task-specific ability not needed by other common
tasks (visual reasoning for GQA and OCR for OCRVQA);
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Question: Is that shoe 
behind a dog? Answer 
the question using a 
single word or phrase.

GQA after OCRVQA VizWiz after OCRVQA

Question: what does the 
sky look like in this 
photograph? Answer the 
question using a single 
word or phrase.

       ClearGT

MoELoRA 

Finetune

Ours blueCloudy

blue       NoGT

MoELoRA 

Finetune

Ours YesNo

Yes

TextVQA after OCRVQA

Question: what number 
is on the nose of this 
plane? Answer the 
question using a single 
word or phrase. 

188GT

MoELoRA 

Finetune

Ours 88188

88

Figure 7: Continual learning responses of several examples from TextVQA, GQA and VizWiz after
fine-tuning on OCRVQA. Our method can maintain the performance of previous tasks.

second, the similarity is asymmetric, which may be attributed to their task inclusion relationship.
For instance, GQA requires higher-level reasoning ability, while some other tasks may merely need
to answer questions based on visual-language information. Therefore, features of GQA task are
similar to the prototype features of other tasks (more specifically), but other tasks are not similar
to the prototype of GQA (more basically). The visualization of dual-modality features exhibits the
connection between prior obtained knowledge (prototype features) and given task (multimodal task
features), and therefore contributes fundamentally to continual learning ability of LLMs.

Figure 6: Selection probability of each
task (row) from prototype prompts (col-
umn). Results are reported in percentage
so the sum of rows equals one.

Selection of prototype prompts. To figure out the actual
selection of prototype prompts during inference in addition
to soft distribution construction and help have an intuitive
understanding of the function of prompt selection module,
we report the selection results of each previous task in per-
centage under continual learning setting, i.e., ContinualT,
in Fig. 6. The results expose that the proposed module cor-
rectly matches and prioritizes prototype prompts of the cor-
responding task as prefixes to enhance the continual learn-
ing performance of LLMs, demonstrating the robustness
and usefulness of the learned prototype features. Addition-
ally, the module also selects prototype prompts from tasks
of similar type, which similarly achieves excellent perfor-
mance. This strongly indicates that tasks of the same type
can mutually promote the performance, and our method
leverages this characteristic excellently.

Visualization. Fig. 7 provides examples during continual learning procedure to explicitly illustrate
the effectiveness of our method. It is elucidated in Fig. 7 that our method can maintain performance
on different types of previous tasks. Concretely, our model keeps general knowledge and the ca-
pability to answer the question requiring comprehensive understanding. For example, the model
identifies the specific part location of objects (nose of the plane), overcomes occlusion in TextVQA
and distinguishes spatial orientation, identifies objects in GQA. Moreover, it also deduces appropri-
ate answers with analogous meanings to the ground truth based on image and text questions (e.g.,
cloudy and clear in VizWiz). Based on the retained knowledge, the model gives the correct answer
outperforming existing continual learning methods. The visualizations strongly demonstrate that our
model can retain the ability to understand and respond to diverse generative tasks instead of merely
overfitting given data (output the exact ground truth) when learning continually.

5 CONCLUSION

In this paper, we analyze the limitations of current methods of continual learning for LMMs, and
propose to exploit prompt learning for continually learning image-text generative tasks to retain
knowledge of older tasks from multimodal supervision. Specifically, we construct a set of proto-
type prompts for each task to represent distribution in feature space and propose prompt fusion and
selection module to both enhance the performance from mutual promotion of similar tasks and man-
age the computational complexity of the model. Comprehensive experiments and analyses validate
the effectiveness and efficiency of our framework that our model achieves substantial improvements
while maintaining computational complexity.
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A APPENDIX

A.1 DETAILED CONTINUAL LEARNING RESULTS

We showcase brief results in the main results. We provide detailed continual learning performance
during evaluation at each incremental stage. Upper and bottom of Tab. 6 are comparison of CoIN
and Ours. It can be concluded that our method achieves consistent and significant imporvements
against previous LoRA based method, validating the effectiveness of our method.

Table 6: Detail continual learning results of CoIN and our method.
CoIN ScienceQA TextVQA ImageNet GQA VizWiz REC VQAV2 OCRVQA

ScienceQA 75.78
TextVQA 34.47 51.80
ImageNet 22.61 0.04 79.60

GQA 32.37 34.04 42.48 57.95
VizWiz 45.32 38.13 2.63 43.80 58.70

REC 58.76 9.08 5.64 31.87 11.45 36.77
VQAV2 33.01 48.42 10.61 49.78 32.23 1.75 64.58

OCRVQA 47.34 32.91 38.73 37.15 42.48 0.97 42.77 57.50

Ours ScienceQA TextVQA ImageNet GQA VizWiz REC VQAV2 OCRVQA
ScienceQA 77.05
TextVQA 70.50 58.50
ImageNet 68.57 58.18 42.26

GQA 68.82 56.08 43.43 62.17
VizWiz 67.48 55.05 37.60 61.81 48.81

REC 66.58 55.68 35.92 61.95 48.74 36.88
VQAV2 68.12 56.43 40.22 60.92 51.19 36.63 64.99

OCRVQA 68.42 56.40 41.13 61.11 50.13 36.69 65.02 57.59

A.2 ADDITIONAL IMPLEMENTATION DETAILS

Our framework is constructed depending on deepspeed repository 2 and the instructions are from
CoIN 3. In evaluation of ImageNet, we give option choices for each question-answer pairs to avoid
inaccurate descriptions. All training and evaluation experiments are conducted on NVIDIA A6000.
During training, batch size is adaptively adjusted to maximize the memory utilization.

A.3 LIMITATIONS AND FUTURE WORKS

While our method achieves substantial improvements, we conduct experiments on LLaVA-7b and
does not scale the experiments due to resource limitations. We believe that the effectiveness of our
framwork and will treat scaling model size and application to other LMM models as future work.

2https://github.com/microsoft/DeepSpeed
3https://github.com/zackschen/CoIN
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