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ABSTRACT

Although large language models (LLMs) have achieved remarkable success across
various domains, their considerable scale necessitates substantial computational
resources, posing significant challenges for deployment in resource-constrained
environments. Layer pruning, as a simple yet effective compression method, re-
moves layers of a model directly, reducing computational overhead. However,
what are the best practices for layer pruning in LLMs? Are sophisticated layer
selection metrics truly effective? Does the LoRA (Low-Rank Approximation)
family, widely regarded as a leading method for pruned model fine-tuning, truly
meet expectations when applied to post-pruning fine-tuning? To answer these
questions, we dedicate thousands of GPU hours to benchmarking layer pruning
in LLMs and gaining insights across multiple dimensions. Our results demon-
strate that a simple approach, i.e., pruning the final layers followed by fine-tuning
the lm head and the remaining last three layers, yields remarkably strong per-
formance. These pruning strategies are further supported by theoretical analy-
ses based on the gradient flow. Following this guide, our method surpasses ex-
isting state-of-the-art pruning methods by 5.62%–17.27% on Llama-3.1-8B-It,
by 2.36%–19.45% on Llama-3-8B and by 4.34%–9.59% on Llama-3-70B. The
code is available at https://github.com/yaolu-zjut/Navigation_
LLM_layer_pruning.

1 INTRODUCTION

In recent years, large language models (LLMs) have achieved unprecedented success in many fields,
such as text generation (Achiam et al., 2023; Touvron et al., 2023; Dai et al., 2025), semantic analy-
sis (Zeng et al., 2025a;b; Chu et al., 2025) and machine translation (Zhang et al., 2023; Wang et al.,
2023). However, these achievements come with massive resource consumption, posing significant
challenges for deployment on resource-constrained devices and scenarios (Ke et al., 2024; 2025). To
address these challenges, numerous techniques have been developed to create more efficient LLMs,
including pruning (Ma et al., 2023; Sun et al., 2023; Lu et al., 2024; Li et al., 2025a; Lu et al., 2025),
knowledge distillation (Xu et al., 2024; Huang et al., 2022; Yang et al., 2024b; Wu et al., 2025),
quantization (Zhou et al., 2025; Yu et al., 2025), low-rank factorization (Saha et al., 2023; Zhao
et al., 2024a), and system-level inference acceleration (Shah et al., 2024; Lee et al., 2024).

Among these methods, pruning has emerged as a promising solution to mitigate the resource de-
mands of LLMs. By selectively removing redundant patterns—such as parameters (Sun et al., 2023),
attention heads (Ma et al., 2023) and layers (Men et al., 2024)—pruning aims to slim down the model
while maintaining its original performance as much as possible. Among different types of pruning,
layer pruning (Kim et al., 2024; Siddiqui et al., 2024) has garnered particular interest due to its direct
impact on pruning the model’s depth, thereby decreasing both computational complexity and mem-
ory usage. Additionally, thanks to the nice structure of the existing LLMs such as Llama (Dubey
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et al., 2024), whose transformer blocks have the exactly same dimension of input and output, layer
pruning becomes a straightforward and simple solution. Therefore, in this paper, we focus on layer
pruning. Unlike existing studies (Men et al., 2024; Yang et al., 2024c; Chen et al., 2024; Zhong
et al., 2024; Liu et al., 2024b) that aim to propose various sophisticated pruning methods, we take a
step back and focus on the following questions:

Q1. Layer Selection: Are sophisticated metrics essential for identifying redundant layers?

Q2. Fine-Tuning: Is the LoRA family the best choice for post-pruning fine-tuning?

To address the aforementioned questions, we conduct extensive benchmarking on layer pruning,
dedicating thousands of GPU hours to systematic experiments. Our study spans 7 layer selection
metrics, 3 state-of-the-art open-source LLMs, 6 fine-tuning methods and 8 common datasets. From
these efforts, we have distilled a practical set of key insights for LLM layer pruning:

1). Reverse-order pruning is simple yet effective, i.e., simply pruning the last several layers
performs better than many complex pruning metrics (Kim et al., 2024; Men et al., 2024).

2). LoRA performs worse than expected, i.e., LoRA, the most commonly used fine-tuning
method in existing pruning approaches (Sun et al., 2023; Ma et al., 2023; Kim et al., 2024;
Men et al., 2024), is not the best choice for post-pruning performance recovery. In contrast,
freezing the other layers and fine-tuning only the last few remaining layers and lm head,
also known as partial-layer fine-tuning, can achieve higher accuracy while reducing the
training time.

Subsequently, we present an analytical framework based on the gradient flow that demonstrates how
gradient weakening in Pre-Layer Normalization (Pre-LN) Transformers reduces the contributions
of deep layers. This framework theoretically explains why pruning the final layers and fine-tuning
the last few layers of the pruned model are effective. Then, we apply these insights and practices
to develop Llama-3.1-6.3B-It-Alpaca and Llama-3-6.3B-Alpaca. Our method surpasses exist-
ing state-of-the-art pruning methods by 5.62%–17.27% on Llama-3.1-8B-It and by 2.36%–19.45%
on Llama-3-8B. To validate the scalability of our method, we further extend our evaluation to the
Llama-3-70B model. Extensive experiments demonstrate that our method achieves stronger gen-
eralization and consistent gains over previous pruning techniques. Finally, we hope our work will
help guide future efforts in LLM layer pruning and inform best practices for deploying LLMs in
real-world applications. In a nutshell, we make the following contributions:

• Novel Best Practices: Through detailed and extensive experiments, we identify reverse-
order as a simple and effective layer selection metric and find that partial-layer fine-tuning
outperforms LoRA-based techniques.

• Theoretical Insights: We present an analytical framework based on the gradient flow,
demonstrating how gradient weakening in Pre-LN Transformers reduces the contributions
of deep layers, thereby explaining the two key practices identified above.

• State-of-the-Art Performance: We carry out extensive experiments on mid-scale
(Llama-3.1-8B-It and Llama-3-8B) and large-scale (Llama-3-70B) models. The ex-
perimental results consistently demonstrate that our method outperforms existing
state-of-the-art pruning methods.

2 RELATED WORK

LLM Layer Pruning. LLM layer pruning is a technique used to reduce the number of layers in
LLMs, aiming to lower computational costs without significantly degrading performance. Specif-
ically, it evaluates the contribution of each layer to the model’s overall performance, using criteria
such as gradients, activation values, parameter weights, or the layer’s influence on the loss function.
Layers that contribute the least are then pruned to reduce complexity. For example, LaCo (Yang
et al., 2024c) achieves rapid model size reduction by folding subsequent layers into the previous
layer, effectively preserving the model structure. Similarly, MKA (Liu et al., 2024b) uses manifold
learning and the Normalized Pairwise Information Bottleneck measure (Tishby et al., 2000) to iden-
tify the most similar layers for merging. ShortGPT (Men et al., 2024) uses Block Influence (BI) to
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measure the importance of each layer in LLMs and remove layers with low BI scores. Kim et al.
(2024) utilize Magnitude, Taylor and Perplexity (PPL) to evaluate the significance of each layer.
Recently, Song et al. (2025) find that deeper layers are crucial for reasoning and that performance
can be recovered through distillation.

Normalization in Language Models. Layer Normalization (Lei Ba et al., 2016) plays a crucial
role in Transformers (Vaswani, 2017) by directly estimating the normalization statistics from the
summed inputs to the neurons within a hidden layer. The original Transformer (Vaswani, 2017) uses
Post-LN, which applies layer normalization after the residual connections. However, subsequent
research (Baevski & Auli, 2018; Nguyen & Salazar, 2019; Li et al., 2023b; 2025b) shows that
putting normalization before the residual connections (Pre-LN) can significantly improve training
stability, especially in large language models (Brown et al., 2020; Chaplot, 2023; Touvron et al.,
2023). Xiong et al. (2020) theoretically prove that Post-LN results in larger gradients near the output
layer, making the use of warm-up essential to prevent instability. By contrast, Pre-LN scales down
gradients with the depth of the model, which ensures more stable gradients during initialization.

3 AN EMPIRICAL EXPLORATION

This paper aims to contribute to the community the best practice of layer pruning such that practi-
tioners can prune an LLM to an affordable size and desired performance with minimal exploration
effort. Specifically, we explore which metric is most effective for identifying unimportant layers
and investigate which fine-tuning method most effectively restores model performance after prun-
ing, helping researchers make informed choices.

3.1 LAYER PRUNING METRICS

Layer pruning aims to find a subset of unimportant layers such that the pruned model maintains
acceptable performance while reducing the model’s complexity. Numerous methods have proposed
various metrics to identify and prune unimportant layers. Herein, we include 7 popular metrics:
Random, Reverse-order, Magnitude-l1 (Kim et al., 2024), Magnitude-l2 (Kim et al., 2024), Taylor,
PPL and BI (Men et al., 2024).

Specifically, for the random selection baseline, we randomly select several layers to prune.
Reverse-order (Men et al., 2024) posits that importance is inversely proportional to the sequence
order. It assigns lower importance scores to the deeper layers and prune them. Magnitude was
first introduced by Li et al. (2016) and subsequently adopted by Kim et al. (2024), which as-
sumes that weights exhibiting smaller magnitudes are deemed less informative. Following Kim
et al. (2024), we compute InMagnitude =

∑
k ||Wn

k ||p, where Wn
k denotes the weight matrix of op-

eration k within the n-th transformer layer. In this paper, we uniformly set p = {1, 2}. As a re-
sult, we term these methods as Magnitude-l1 and Magnitude-l2. For a given calibration dataset
D, the significance of removing weight parameters is indicated by the change in training loss
L := |L(Wn

k , D) − L(Wn
k = 0, D)| ≈ |∂L(D)

∂Wn
k
Wn

k |. Following Ma et al. (2023); Kim et al.
(2024), we omit the second-order derivatives in this assessment. Then we define the Taylor score of
the n-th transformer layer as InTaylor =

∑
k |

∂L(D)
∂Wn

k
Wn

k |. Following Kim et al. (2024), we remove a
single layer and assess its impact on the perplexity (PPL) of the pruned model using the calibration
dataset D. We then prune those layers that lead to a smaller degradation of the PPL. Men et al.
(2024) introduce a metric called Block Influence (BI) as an effective indicator of layer importance.
Specifically, the BI score of the i-th layer can be calculated as follows:

BIi = 1− Ex,t

xT
i,txi+1,t

∥xi,t∥2 ∥xi+1,t∥2
, (1)

where xi denotes the input of the i-th layer and xi,t is the t-th row of xi.

3.2 EVALUATION AND DATASETS

To assess the performance of the model, we follow the evaluation of Ma et al. (2023) to per-
form zero-shot task classification on 8 common sense reasoning datasets using the lm-evaluation-
harness (Gao et al., 2023) package: MMLU (Hendrycks et al., 2021), CMMLU (Li et al., 2023a),
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Model Metric
Benchmarks

Avg Acc↑PIQA↑ HellaSwag↑ OpenbookQA↑ ARC-e↑ ARC-c↑ MMLU↑ CMMLU↑ WinoGrande↑

Vicuna-7B-v1.5

Random 0.5223 0.2607 0.1380 0.2614 0.2176 0.2295 0.2500 0.4672 0.2933
PPL 0.7361 0.4734 0.2760 0.6705 0.3456 0.2943 0.2569 0.5896 0.4553

Magnitude-l1 0.5299 0.2586 0.1440 0.2609 0.2253 0.2297 0.2514 0.4893 0.2986
Magnitude-l2 0.5256 0.2578 0.1340 0.2622 0.2108 0.2295 0.2515 0.4838 0.2944

BI 0.6910 0.3987 0.2100 0.5829 0.2654 0.2389 0.2513 0.5036 0.3927
Taylor 0.5250 0.2581 0.1360 0.2584 0.2048 0.2318 0.2526 0.4972 0.2955

Reverse-order 0.7171 0.5005 0.2608 0.6221 0.3848 0.4737 0.3417 0.6267 0.4909

Qwen1.5-7B

Random 0.5408 0.2682 0.1240 0.2630 0.2039 0.2366 0.2457 0.4807 0.2954
PPL 0.7089 0.4195 0.2240 0.5960 0.2944 0.2457 0.2552 0.5185 0.4078

Magnitude-l1 0.6578 0.3989 0.2040 0.5244 0.2901 0.2574 0.2541 0.5249 0.3890
Magnitude-l2 0.5903 0.3657 0.1640 0.4630 0.2381 0.2502 0.2513 0.5312 0.3567

BI 0.7220 0.4190 0.2440 0.5972 0.2671 0.2456 0.2536 0.5383 0.4190
Taylor 0.6970 0.4284 0.2060 0.5160 0.3140 0.5231 0.6079 0.6046 0.4871

Reverse-order 0.6942 0.4444 0.2280 0.5143 0.3302 0.5101 0.7171 0.5912 0.5037

Llama-3.1-8B-It

Random 0.5653 0.2886 0.1400 0.3169 0.1860 0.2275 0.2559 0.5075 0.3110
PPL 0.7628 0.4931 0.2640 0.7290 0.3805 0.3367 0.2724 0.5793 0.4772

Magnitude-l1 0.5408 0.2634 0.1360 0.2845 0.2014 0.2504 0.2503 0.4878 0.3018
Magnitude-l2 0.5413 0.2638 0.1340 0.2841 0.2014 0.2498 0.2504 0.4870 0.3015

BI 0.7176 0.4196 0.2020 0.6107 0.2841 0.2417 0.2494 0.5391 0.4080
Taylor 0.7138 0.4964 0.2740 0.6848 0.4181 0.2861 0.2504 0.7135 0.4796

Reverse-order 0.7002 0.4010 0.2940 0.6170 0.3985 0.6342 0.5449 0.6243 0.5268

Table 1: Zero-shot performance of the pruned models (25% pruning rate, fine-tuning using LoRA).
“Avg Acc” denotes the average accuracy calculated among eight datasets. The best pruning results
are marked in boldface. The sub-optimal ones are underlined. See Table L for more pruning rates.

PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021),
ARC-easy (Clark et al., 2018), ARC-challenge (Clark et al., 2018) and OpenbookQA (Mihaylov
et al., 2018). See the Appendix for more details on the dataset description.

3.3 ARE SOPHISTICATED METRICS ESSENTIAL FOR IDENTIFYING REDUNDANT LAYERS?

The first question is to find the most “redundant” layers to prune. As discussed in the previous
subsection , there are various metrics for layer selection, which can be as straightforward as reverse-
order, or as complicated as BI. However, does a complicated metric always contribute to a better
performance? Probably not. We find that a simple metric, i.e., reverse-order, is competitive among
these metrics. Specifically, we conduct comprehensive experiments on Vicuna-7B-v1.5 (Zheng
et al., 2024), Qwen1.5-7B (Yang et al., 2024a) and Llama-3.1-8B-Instruct (Dubey et al., 2024).
We uniformly prune 8 layers (25% pruning ratio) for Vicuna-7B-v1.5, Qwen1.5-7B and Llama-3.1-
8B-Instruct. Experiments with a 50% pruning ratio are provided in Table L. In the fine-tuning stage,
we use LoRA with a rank d of 8 and a batch size of 64, and the AdamW optimizer. The learning
rate is set to 1× 10−5 with 100 warming steps.

Results. As shown in Table 1, we find that the reverse-order metric delivers stable and superior
results across various models under the 25% pruning rate, making it a reliable choice for pruning.
On average, it outperforms the second-best PPL metric by 6.04% across three models. The result
also holds for the 50% pruning rate, as shown in Table L. We hope our insights can help researchers
make informed choices when selecting the most suitable pruning metrics for their specific models.

Insight #1: The reverse-order are simple yet foolproof metrics for pruning, providing stable
and reliable results across different models and pruning rates.

3.4 IS THE LORA FAMILY THE BEST CHOICE FOR POST-PRUNING FINE-TUNING?

In previous studies (Kim et al., 2024; Men et al., 2024), LoRA is often used to restore the perfor-
mance of pruned models. This raises a question: Is the LoRA family the best choice for post-pruning
fine-tuning? To answer this question, we further use QLoRA (Dettmers et al., 2024) and partial-layer
fine-tuning techniques to conduct experiments. We briefly introduce these methods as follows:

LoRA Fine-tuning. LoRA is one of the best-performing parameter-efficient fine-tuning paradigm
that updates dense model layers using pluggable low-rank matrices (Mao et al., 2024). Specifically,
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Model Method Layer
Benchmarks

Avg Acc↑PIQA↑ HellaSwag↑ OpenbookQA↑ ARC-e↑ ARC-c↑ MMLU↑ CMMLU↑ WinoGrande↑

Vicuna-7B-v1.5

LoRA - 0.7171 0.5005 0.2608 0.6221 0.3848 0.4737 0.3417 0.6267 0.4909
QLoRA - 0.6649 0.4057 0.2700 0.5345 0.3439 0.4809 0.3473 0.6014 0.4561

Partial-layer

lm head only 0.7057 0.4865 0.2880 0.6301 0.4010 0.4819 0.3520 0.6156 0.4951
lm head+last layer 0.7155 0.5054 0.2900 0.6511 0.4113 0.4831 0.3538 0.6283 0.5048

lm head+last two layers 0.7214 0.5060 0.3020 0.6532 0.4002 0.4858 0.3530 0.6267 0.5060
lm head+last three layers 0.7247 0.5103 0.2960 0.6528 0.3985 0.4870 0.3544 0.6219 0.5057

Qwen1.5-7B

LoRA - 0.6942 0.4444 0.2280 0.5143 0.3302 0.5101 0.7171 0.5912 0.5037
QLoRA - 0.6697 0.4028 0.2400 0.4760 0.2969 0.4797 0.6914 0.5825 0.4799

Partial-layer

lm head only 0.7149 0.4735 0.2460 0.5497 0.3524 0.5467 0.7276 0.5967 0.5259
lm head+last layer 0.7220 0.4850 0.2440 0.5690 0.3549 0.5719 0.7283 0.6275 0.5378

lm head+last two layers 0.7214 0.4915 0.2540 0.5783 0.3584 0.5734 0.7275 0.6298 0.5418
lm head+last three layers 0.7296 0.4974 0.2520 0.5808 0.3618 0.5795 0.7272 0.6275 0.5445

Llama-3.1-8B-It

LoRA - 0.7002 0.4010 0.2940 0.6170 0.3985 0.6342 0.5449 0.6243 0.5268
QLoRA - 0.6980 0.3975 0.3000 0.6183 0.3840 0.6032 0.5090 0.6267 0.5171

Partial-layer

lm head only 0.7334 0.4896 0.2860 0.7012 0.4411 0.6122 0.5442 0.6717 0.5599
lm head+last layer 0.7350 0.5107 0.2940 0.7193 0.4531 0.6630 0.5526 0.6582 0.5732

lm head+last two layers 0.7361 0.5204 0.3080 0.7151 0.4633 0.6588 0.5543 0.6567 0.5766
lm head+last three layers 0.7383 0.5323 0.3080 0.7260 0.4684 0.6567 0.5515 0.6646 0.5807

Table 2: Zero-shot performance of pruned models using various fine-tuning methods under 25%
pruning rate (using reverse-order). The best results are marked in boldface, and the sub-optimal
ones are underlined.

LoRA QLoRA lm head only lm head+last layer lm head+last two layers lm head+last three layers

Trainable parameters 15.73M 15.73M 525.34M 743.45M 961.56M 1179.68M

GPU memory 45.83G 14.26G 39.82G 42.12G 44.41G 48.02G

Training time (2 epoch) 10440.30s 17249.01s 6952.92s 7296.76s 7616.83s 7931.36s

Table 3: The training cost of fine-tuning the pruned Llama-3.1-8B-Instruct (with 8 layers removed
in reverse-order) using different methods on 2 NVIDIA A100 GPUs.

for a pre-trained weight matrix W0, LoRA constrains its update by representing the latter with a
low-rank decomposition W0 +∆W = W0 +BA. At the beginning of training, A is initialize with
a random Gaussian initialization, while B is initialized to zero. During training, W0 is frozen and
does not receive gradient updates, while A and B contain trainable parameters. Then the forward
pass can be formalized as:

W0x+∆Wx = W0x+BAx. (2)

QLoRA Fine-tuning. QLoRA builds on LoRA by incorporating quantization techniques to further
reduce memory usage while maintaining, or even enhancing the performance.

Partial-layer Fine-tuning. Compared to LoRA and QLoRA, which inject trainable low-rank factor-
ization matrices into each layer, partial-layer fine-tuning simply freezes the weights of some layers
while updating only the specified layers to save computing resources and time (Shen et al., 2021;
Ngesthi et al., 2021; Peng & Wang, 2020). Following by the common practice of previous stud-
ies (Khan & Fang, 2023), we choose to fine-tune only the later layers that are closer to the output,
while keeping the earlier layers, which capture more general features, frozen. Specifically, we use
two different fine-tuning strategies: one is to finetune only the model head (lm head only), and the
other is to finetune the lm head plus the last layer (lm head + last layer), the last two layers (lm head
+ last two layers), and the last three layers (lm head + last three layers).

In view of the superiority of the reverse-order metric in Section 3.3, we use it to prune here. For the
Vicuna-7B-v1.5, Qwen1.5-7B, and Llama-3.1-8B-Instruct models, we prune 8 layers. Subsequently,
we utilize LoRA, QLoRA and partial-layer fine-tuning methods to restore performance. To verify
the generalizability of these fine-tuning methods, we provide additional fine-tuning results using
the Taylor metric in Table M. For fine-tuning with LoRA and partial-layer methods, we utilize
the AdamW optimizer, while for QLoRA, we opt for the paged adamw 8bit optimizer. All other
hyperparameter settings are the same as in the previous subsection.

Results. As shown in the Table 2 and Table M, we find that fine-tuning with QLoRA slightly hurts
the performance of pruned models compared to LoRA. Excitingly, the effect of partial-layer fine-
tuning is significantly better than LoRA, providing a viable new direction for fine-tuning models
after pruning. When considering fine-tuning methods for LLMs, in addition to performance, the
training cost is also a significant factor to take into account. Therefore, we compare the training
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cost of these fine-tuning methods, including training time, gpu memory and trainable parameters.
Specifically, we conduct experiments on 2 NVIDIA A100 GPUs using the pruned Llama-3.1-8B-
Instruct model (with 8 layers removed in reverse order). Table 3 shows the comparison among
these fine-tuning methods. We find that compared to LoRA, partial-layer fine-tuning involves more
trainable parameters but maintains comparable GPU usage and achieves faster training time. Addi-
tionally, partial-layer fine-tuning outperforms LoRA in effectiveness. In contrast, although QLoRA
consumes less GPU memory, it has much longer training time and yields poorer performance. In
summary, we conclude that partial-layer fine-tuning is an effective approach to restoring the perfor-
mance of pruned models.

Insight #2: Partial-layer fine-tuning can serve as an alternative to LoRA, achieving better
performance recovery for pruned models while reducing the training time.

4 THEORETICAL ANALYSIS

While our extensive experiments in the previous section demonstrate the surprising effectiveness of
pruning the last several layers (reverse-order) and fine-tuning the last few remaining layers of the
pruned model, these empirical successes beg a fundamental question: Why do these strategies work?
We argue that the answer lies in the gradient propagation landscape shaped by the LayerNorm. In
this section, we theoretically analyze these key insights

Notably, Most state-of-the-art LLMs, like GPT, LLaMA, and Mistral, adopt the Pre-Layer Normal-
ization (Pre-LN) Transformer architecture. Our goal is to examine whether this architecture weakens
the gradients of deep layers during backpropagation. To investigate this, we formally characterize
the gradient flow behavior in Pre-LN Transformers and analyze how the gradient norm evolves as it
propagates from deep layers to shallow layers.

Specifically, based on an analytical framework of the gradient flow, we explain two key insights: (1)
in Pre-LN models, the deeper layers contribute less to overall performance, and (2) fine-tuning the
last layer (after pruning several final layers) can recover performance more effectively than applying
LoRA updates on all remaining layers.

Consider an L-layer Transformer with a Pre-LN (Dubey et al., 2024) scheme:

xl+1 = xl + F
(
LN(xl); θl

)
, (3)

where LN is a normalization operator (LayerNorm (Lei Ba et al., 2016) or RMSNorm (Zhang &
Sennrich, 2019)), xl is the input of the l-th layer, xl+1 is the output of the l-th layer (a.k.a. the
input of the (l + 1)-th layer), F (·; θl) is the learnable sub-layer. We can calculate the derivatives of
Equation (3), as follows:

∂xl+1

∂xl
= I +

∂F
(
LN(xl), θl

)
∂LN(xl)︸ ︷︷ ︸
APre−LN

l

· ∂LN(xl)

∂xl︸ ︷︷ ︸
BPre−LN

l

. (4)

In terms of BPre−LN
l , we consider two normalization methods: LayerNorm and RMSNorm, with

their corresponding Jacobian matrices (w.r.t. the input vector x) denoted by BLN(x) and BRMS(x).
For RMSNorm, we have Theorem 4.1.
Theorem 4.1 (Spectral Norm of RMSNorm Jacobian). Let RMSNorm(x) := x

∥x∥RMS+ϵ , where

∥x∥RMS =
√

1
d

∑d
i=1 x

2
i , then the spectral norm of the RMSNorm Jacobian satisfies:∥∥BRMS(x)

∥∥
2
=

1

∥x∥RMS + ϵ
. (5)

Proof. Given RMSNorm(x) := x
∥x∥RMS+ϵ , its Jacobian w.r.t. x is

BRMS(x) =
1

∥x∥RMS + ϵ

[
I − xxT

d (∥x∥RMS + ϵ)2

]
, (6)
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where d is the model dimension. Denote by α := 1
d (∥x∥RMS+ϵ)2 . We have

BRMS(x) =
1

∥x∥RMS + ϵ

[
I − αxxT

]
. (7)

Note that the matrix
[
I − αxxT

]
has:

• x-orthogonal subspace (dim = d−1): each vector v orthogonal to x is an eigenvector with
eigenvalue 1.

• the direction of x has an eigenvalue 1− α ∥x∥2, which is at most 1.

Hence its operator norm (largest singular value) is 1. Multiplying by the scalar 1
∥x∥RMS+ϵ gives the

final spectral norm:

∥BRMS(x)∥2 =
1

∥x∥RMS + ϵ
. (8)

For LayerNorm, we have Theorem 4.2.

Theorem 4.2 (Spectral Norm of LayerNorm Jacobian). Let LayerNorm(x) := x−µ 1√
σ2+ϵ

, where

µ = 1
d

∑d
i=1 xi, σ

2 = 1
d

∑d
i=1(xi − µ)2, then the spectral norm of the LayerNorm Jacobian

satisfies:

∥BLN(x)∥2 =
1√

σ2 + ϵ
× ∥M∥2 =

1√
σ2 + ϵ

. (9)

Proof. Given LayerNorm(x) = x−µ 1√
σ2+ϵ

, its Jacobian w.r.t. x is

BLN(x) =
1√

σ2 + ϵ
M, (10)

where

M = I − 1

d
11T − (x− µ1)(x− µ1)T

d (σ2 + ϵ)
. (11)

Notice that M is a rank-2 modification of the identity. On any vector orthogonal both to 1 and
(x−µ1), the matrix M acts as the identity. Meanwhile, in the 2D subspace spanned by {1, x−µ1},
we have a certain negative correction. The largest singular value of M is still 1 (or less), so we
conclude

∥M∥2 = 1. (12)
Hence,

∥BLN(x)∥2 =
1√

σ2 + ϵ
× ∥M∥2 =

1√
σ2 + ϵ

. (13)

Following the proof of Xiong et al. (2020) and Takase et al. (2023) with the assumption that x
follow a normal distribution. Therefore, we have ∥x∥2RMS = σ2 + µ2. According to Theorem 4.1
and Theorem 4.2, we can derive ∥BRMS(x)∥2 ≤ ∥BLN(x)∥2. In practice, we usually observe
σ2 > 1 in later training stage Li et al. (2024a). Therefore, we have

∥BRMS(x)∥2 ≤ ∥BLN(x)∥2 < 1. (14)

4.1 LARGER GRADIENTS IN SHALLOWER LAYERS

For the Pre-LN model, we have:
∂L
∂θl

=
∂L

∂xl+1

∂xl+1

∂θl

=
∂L
∂xL

(
L−1∏

k=l+1

∂xk+1

∂xk

)
∂xl+1

∂θl

=
∂L
∂xL

(
L−1∏

k=l+1

(
I +APre−LN

k BPre−LN
k

)) ∂xl+1

∂θl
.

(15)
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According to Equation (15), the norm of the gradient factor can be upper bounded by

∥ ∂L
∂θl

∥ ≤ ∥ ∂L
∂xL

∥
L−1∏

k=l+1

(
∥I +APre−LN

k BPre−LN
k ∥

)
∥∂xl+1

∂θl
∥. (16)

According to Equation (4), the derivative of the residual connection in Pre-LN is decoupled from the
term associated with the derivative of LN, which prevents the vanishing gradient problem in early
layers. According to Theorem 4.1 and Theorem 4.2, we have demonstrated that ∥BRMS(x)∥2 ≤
∥BLN(x)∥2 < 1, i.e., ∥BPre−LN

k ∥ < 1. Therefore, when l is close to L, we are more likely to have
a
∏L−1

k=l+1

(
∥I +APre−LN

k BPre−LN
k ∥

)
close to I compared to shallower layers, indicating that deep

layers are less important than shallow layers due to their gradients do not contribute much. The
above derivation theoretically explains why it is reasonable for us to prune the last several layers.

4.2 FINE-TUNING THE LAST REMAINING LAYERS AFTER PRUNING OUTPERFORMS LORA

When pruning the top (or last few) layers and freezing the rest, a key decision is whether to apply
LoRA (Hu et al., 2021) across all remaining layers or to fully fine-tune only the last layer. This
scenario differs from standard fine-tuning settings, where LoRA applied to the full model is often
preferred due to its parameter efficiency and ability to distribute adaptation across all layers.

From Equation (15), we observe that LoRA tends to have a more pronounced effect on shallower
layers. However, in large pretrained models, lower-layer representations are already robust and
broadly transferable to various downstream tasks, often requiring minimal modification. When the
model is not pruned, fine-tuning the full model with LoRA is generally more effective since the
entire network participates in adaptation. In contrast, after pruning, the distribution shift in the last
remaining layer is more severe because it must align the modified feature space with the new output
distribution. If LoRA exerts a weaker influence on deeper (remaining) layers, the final alignment
with the task output may still be suboptimal. By fully fine-tuning only the last remaining layer, we
directly adapt the part of the model that most critically shapes the final output distribution. As a
result, this approach can yield better alignment and higher performance than a distributed LoRA
update across all remaining layers, particularly in scenarios where deeper layers undergo significant
pruning-induced shifts.

5 OBTAINING THE BEST PRUNED MODELS

In the previous sections, we have gained some valuable non-trivial practices and insights on LLM
layer pruning through systematic experiments and provided theoretical proofs that underpin its fea-
sibility. Herein, we use these practices to obtain the Llama-3.1-6.3B-It-Alpaca and Llama-3-6.3B-
Alpaca models and compare their performance against pruned models obtained by various state-
of-the-art LLM pruning methods, including ShortGPT (Men et al., 2024), Shortened LLaMA (Kim
et al., 2024), SLEB (Song et al., 2024), PIP (Cao et al., 2025), LLM-Pruner (Ma et al., 2023),
SliceGPT (Ashkboos et al., 2024), LaCo (Yang et al., 2024c), DeeperLayers Gromov et al. (2024),
FINERCUT (Zhang et al., 2024b), LLM-Streamline (Chen et al., 2024) and GRASP (Liu et al.,
2025).

Specifically, Llama-3.1-6.3B-It-Alpaca and Llama-3-6.3B-Alpaca are obtained by pruning 8 layers
of Llama-3.1-8B-It and Llama-3-8B using the reverse-order metric. The pruned models are then
fine-tuned with partial-layer fine-tuning (lm head + last three layers) on the Alpaca-cleaned dataset.
As shown in Table 4, experimental results show that our Llama-3.1-6.3B-It-Alpaca and Llama-3-
6.3B-Alpaca outperform all baselines in terms of average accuracy. Specifically, as for Llama-
3.1-8B-It, our method achieves an average accuracy of 58.07%, which is 5.62% higher than the
best existing baseline GRASP and 17.27% higher than the worst-performing method ShortGPT.
As for Llama-3-8B, our method achieves an average accuracy of 56.33%, which is 2.36% higher
than the best existing baseline FINERCUT and 19.45% higher than the worst-performing method
ShortGPT. It is worth noting that SLEB (Song et al., 2024) is processed based on the inference-only
approach without any fine-tuning, so we fine-tune the pruned model using LoRA on Alpaca-cleaned
for a fair comparison. We also present the results of pruning without fine-tuning in Table K, where
reverse-order pruning still outperforms SLEB, highlighting its superior performance even without
additional fine-tuning. Finally, we provide the generation results of our Llama-3.1-6.3B-It-Alpaca
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Model PR Method
Benchmarks

Avg Acc↑PIQA↑ HellaSwag↑ OpenbookQA↑ ARC-e↑ ARC-c↑ MMLU↑ CMMLU↑ WinoGrande↑

Llama-3.1-8B-It

0% Original Model 0.7987 0.5910 0.3380 0.8190 0.5171 0.6804 0.5543 0.7372 0.6295

25% ShortGPT (BI) 0.7176 0.4196 0.2020 0.6107 0.2841 0.2417 0.2494 0.5391 0.4080

25% Shortened LLaMA (PPL) 0.7628 0.4931 0.2640 0.7290 0.3805 0.3367 0.2724 0.5793 0.4772

25% Shortened LLaMA (Taylor) 0.7138 0.4964 0.2740 0.6848 0.4181 0.2861 0.2504 0.7135 0.4796

25% SLEB (w/ fine-tuning) 0.7573 0.4973 0.2680 0.6970 0.3865 0.4305 0.3338 0.6385 0.5011

20% LLM-Pruner∗ 0.7200 0.5460 - - - 0.2530 0.2500 - 0.4423

20% SliceGPT∗ 0.6830 0.4750 - - - 0.2880 0.2480 - 0.4235

20% LaCo∗ 0.6980 0.5570 - - - 0.2650 0.2520 - 0.4408

20% LLM-Streamline∗ 0.7150 0.6110 - - - 0.4550 0.2940 - 0.5188

20% GRASP∗ 0.7330 0.6270 - - - 0.4310 0.3070 - 0.5245

25% Llama-3.1-6.3B-It-Alpaca 0.7383 0.5323 0.3080 0.7260 0.4684 0.6567 0.5515 0.6646 0.5807

Llama-3-8B

0% Original Model 0.7965 0.6014 0.3480 0.8005 0.4983 0.6212 0.4752 0.7332 0.6093

25% ShortGPT (BI) 0.6997 0.4095 0.1980 0.5825 0.2662 0.2310 0.2522 0.5194 0.3688

25% Shortened LLaMA (PPL) 0.7612 0.4952 0.2880 0.7024 0.3669 0.2734 0.2546 0.5493 0.4614

25% Shortened LLaMA (Taylor) 0.7138 0.4919 0.2740 0.6595 0.4018 0.3270 0.3179 0.6882 0.4843

25% SLEB (w/ fine-tuning) 0.7514 0.5026 0.2780 0.7071 0.3720 0.3115 0.2683 0.5967 0.3947

20% LLM-Pruner† 0.6950 0.4260 0.2700 0.5230 0.2950 - - 0.6240 0.4722

20% SliceGPT† 0.6540 0.3980 0.2380 0.5950 0.2940 - - 0.6320 0.4685

20% PIP† 0.6960 0.4470 0.2680 0.5790 0.3510 - - 0.6940 0.5058

25% DeeperLayers‡ 0.6260 0.3790 0.2820 0.3770 0.3120 0.3570 - 0.5340 0.4096

25% FINERCUT‡ 0.7480 0.6010 0.3780 0.6220 0.3580 0.4120 - 0.6590 0.5397

25% Llama-3-6.3B-Alpaca 0.7388 0.5476 0.3160 0.7218 0.4394 0.6179 0.4497 0.6748 0.5633

Table 4: Comparison with pruned models obtained through state-of-the-art LLM pruning methods.
Results marked with ∗, † and ‡ are reported from Liu et al. (2025), Cao et al. (2025) and Zhang et al.
(2024b), respectively. All other evaluations are run by us. PR denotes the pruning rate. The best
results are marked in boldface, and the sub-optimal ones are underlined.

Method
Benchmarks

Avg Acc↑PIQA↑ HellaSwag↑ OpenbookQA↑ ARC-e↑ ARC-c↑ MMLU↑ CMMLU↑ WinoGrande↑
SLEB 0.7916 0.5805 0.3360 0.8005 0.4974 0.5604 0.4125 0.7238 0.5878

SliceGPT† 0.6960 0.4440 0.3020 0.6970 0.4110 - - 0.7210 0.5452
ShortGPT† 0.7600 0.5710 0.1900 0.7740 0.4790 - - 0.6050 0.5632

PIP† 0.7860 0.5610 0.2960 0.7570 0.4530 - - 0.7330 0.5977
Our 0.7612 0.5887 0.3580 0.7837 0.5606 0.7483 0.6288 0.6993 0.6411

Table 5: Comparison with pruned Llama-3-70B obtained through state-of-the-art LLM pruning
methods under 20% pruning rate. Results marked with † are reported from Cao et al. (2025).

and the original Llama-3.1-8B-It in Table Q. It is evident that the sentences generated by Llama-
3.1-6.3B-It-Alpaca are comparable to those produced by the original model. They exhibit fluency,
relevance, and informativeness regarding the given topic.

Generalization of the proposed method on large-scale models. To further demonstrate the gen-
eralization of the proposed method, we conduct experiments on the LLaMA-3-70B model. Specifi-
cally, we compare our method with SliceGPT (Ashkboos et al., 2024), ShortGPT (Men et al., 2024),
SLEB (Song et al., 2024) and PIP (Cao et al., 2025) under 20% pruning rate. As shown in Ta-
ble 5, our method achieves the highest overall performance with an average accuracy of 64.11%,
outperforming the strongest prior baseline (PIP) by 4.34%.

Varying Pruning Ratios. In this subsection, we explore the performance of our method at different
pruning ratios. We conduct experiments on Llama-3.1-8B, controlling the pruning ratios at approxi-
mately 10%, 20% and 35% and compare our method with ShortGPT, LaCo, SliceGPT, 2SSP (Sandri
et al., 2025) and COMPACT (Kwek & Yin, 2025). All benchmark experimental results are reported
from Kwek & Yin (2025). Since Kwek & Yin (2025) primarily tests datasets such as MMLU,
PIQA, WinoGrande, ARC-e, and ARC-c, our comparisons also focus on these evaluation tasks to
ensure that the comparisons are fair. The experimental results are shown in Table 6. Our method
achieves the highest average accuracy under each pruning rate (10%, 20%, 35%), further demon-
strating the effectiveness of our method.

Joint Pruning and Quantization. In this subsection, we carry out joint pruning and quantization
of the model, to see if their effects can be combined. We follow the setting of SparseGPT (Frantar
& Alistarh, 2023) and MixGPT (Shao et al., 2024), where pruning is applied prior to quantization.
Specifically, we apply 4-bit GPTQ (Frantar et al., 2022) quantization on the Llama-3.1-6.3B-It-
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PR Method MMLU↑ PIQA↑ WinoGrande↑ ARC-e↑ ARC-c↑ Avg Acc↑
10.86% ShortGPT 0.5800 0.7750 0.7020 0.7120 0.4740 0.6486
10.86% LaCo 0.5880 0.7630 0.7230 0.7370 0.4890 0.6600
10.16% SliceGPT 0.4390 0.7100 0.6720 0.6620 0.3940 0.5754
10.86% 2SSP 0.5410 0.7970 0.7160 0.7160 0.4680 0.6476

10% COMPACT 0.5960 0.7840 0.7370 0.7490 0.5030 0.6738
12.50% Ours 0.6785 0.7742 0.6993 0.7656 0.4949 0.6825
19.02% ShortGPT 0.5860 0.7160 0.6840 0.5830 0.4220 0.5982
19.02% LaCo 0.2410 0.7240 0.5530 0.5110 0.2920 0.4642
20.12% SliceGPT 0.2450 0.6190 0.6180 0.4900 0.3030 0.4550
19.99% 2SSP 0.3740 0.7680 0.6840 0.6180 0.3810 0.5650

20% COMPACT 0.5070 0.7590 0.7010 0.6600 0.4280 0.6110
21.88% Ours 0.6378 0.7432 0.6654 0.7445 0.4744 0.6531
35.31% ShortGPT 0.2320 0.5720 0.5910 0.3690 0.2970 0.4122
35.31% LaCo 0.2310 0.5880 0.5310 0.3150 0.2730 0.3876
35.16% SliceGPT 0.2300 0.5500 0.5430 0.3720 0.2350 0.3860
34.77% 2SSP 0.2530 0.6870 0.5930 0.4430 0.2710 0.4494
34.99% COMPACT 0.3590 0.7060 0.6330 0.4840 0.3080 0.4980
34.38% Ours 0.6650 0.7067 0.6772 0.6705 0.4198 0.6278

Table 6: Comparison with pruned Llama-3.1-8B obtained through state-of-the-art LLM pruning
methods under different pruning rates. The best results are marked in boldface.

Method Memory↓ PIQA↑ HellaSwag↑ OpenbookQA↑ ARC-e↑ ARC-c↑ MMLU↑ CMMLU↑ WinoGrande↑ Avg Acc↑
Llama-3.1-6.3B-It-Alpaca 11988.40 MB 0.7383 0.5323 0.3080 0.7260 0.4684 0.6567 0.5515 0.6646 0.5807

Llama-3.1-6.3B-It-Alpaca+GPTQ 1326.93 MB 0.7193 0.5090 0.2860 0.6822 0.3985 0.6093 0.4571 0.6267 0.5360

Table 7: Zero-shot performance of quantized Llama-3.1-6.3B-It-Alpaca.

Alpaca. As shown in Table 7, after applying GPTQ for quantization, the model’s memory footprint
decreased significantly from 11988.40 MB to 1326.93 MB, a reduction of over 89%. Although
this extreme compression leads to a performance degradation, the significant reduction in mem-
ory footprint and acceptable performance retention strongly demonstrate that our layer pruning and
quantization, used in combination as orthogonal techniques, are highly effective.

Method Pruning Rate Acc (%)

ShortGPT 19.02% 0.60
LaCo 19.02% 0.40

SliceGPT 20.12% 0.00
2SSP 19.99% 4.30

COMPACT 20.00% 10.80
Ours 25% 29.19

Table 8: Performance com-
parison on GSM8K.

Performance comparison on GSM8K. To further illustrate the
reasoning capability of the pruned model obtained by our method,
we evaluate the performance of pruned models obtained by various
pruning methods on GSM8K (Cobbe et al., 2021) using Llama-
3.1-8B. All benchmark results are reported from Kwek & Yin
(2025). As shown in Table 8, despite the high pruning rate of
our method, the accuracy is significantly higher than all baselines,
reaching 29.19%. This further demonstrates the effectiveness of our
proposed method.

6 CONCLUSION

In this paper, we revisit LLM layer pruning, focusing on pruning metrics and fine-tuning methods.
From these efforts, we have developed a practical list of best practices for LLM layer pruning.
These pruning strategies are further supported by theoretical analyses based on the gradient flow.
Finally, we use these practices and insights to guide the pruning of Llama-3.1-8B-Instruct, Llama-
3-8B and Llama-3-70B. Extensive experiments demonstrate that our pruning method outperforms
various state-of-the-art pruning methods. Finally, we hope our work will inform best practices for
pruning LLMs in real-world applications (Li et al., 2024b; Shen & Zhang, 2025; Wang et al., 2025;
Liu et al., 2026; Feng et al., 2026; Lu et al., 2026; Zhao et al., 2026).
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APPENDIX

A PROOFS

This proof provides a theoretical analysis, which starts from the chain rule with respect to model
parameters, to explain why, in very deep Pre-LN (pre-layer normalization) Transformers, the per-
formance gain from deeper layers might become marginal. The analysis can also be generalized
to prove why, in very deep Post-LN (post-layer normalization) Transformers, the performance gain
from shallow layers might become marginal. For simplicity, we consider a single residual path per
layer, which contains a LayerNorm operator and a learnable sub-network F . We omit multi-head
attention and FFN specifics to maintain clarity.

A.1 MODEL STRUCTURE AND NOTATION

Consider an L-layer network (a simplified Transformer), where all layers follow Pre-LN residual
blocks (or Post-LN residual blocks). Let:

• x0 be the initial input (e.g., an embedding or the output of a preceding network).
• xl ∈ Rd denote the input to layer l, with l = 0, 1, . . . , L− 1.
• xl+1 denote the output of layer l.

A Pre-LN residual block has the form:

xl+1 = xl + F
(
LN(xl); θl

)
,

where:

• LN(·) is LayerNorm,
• F ( · ; θl) is the learnable sub-network at layer l (e.g. including parameters for attention,

feed-forward, etc.),
• θl collects all parameters at layer l,
• The residual part is represented by xl.

Similarly, a Post-LN residual block has the form:

xl+1 = LN
(
xl + F (xl; θl)

)
.

The final layer’s output xL goes through a Head function to produce a prediction y, which is used to
compute the loss L(y, target), where target stands for the next token. Denote the final prediction
by

y = Head
(
xL, θhead

)
.

Our goal is to examine the gradient

∂L
∂θl

for each layer l = 0, 1, . . . , L− 1.

A.2 CHAIN RULE: GRADIENT

According to the standard backpropagation (chain rule):

∂L
∂θl

=
∂L

∂xl+1︸ ︷︷ ︸
incoming gradient

· ∂xl+1

∂θl︸ ︷︷ ︸
layer w.r.t. parameters

,

where

•
∂xl+1

∂θl
describes how the layer output xl+1 depends on the layer parameters θl.
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•
∂L

∂xl+1
is the “incoming” gradient from deeper layers (from layer l + 1 to L and finally to

the loss). By chain rule:

∂L
∂xl+1

=
∂L
∂xL

· ∂xL

∂xl+1
=

∂L
∂xL

·
L−1∏

k=l+1

∂xk+1

∂xk
.

To understand the gradient flow through layer l, we need to analyze both above factors.

A.3 SINGLE-LAYER JACOBIAN

Recall the Pre-LN block:
xl+1 = xl + F

(
LN(xl); θl

)
.

Taking the derivative w.r.t. xl, we get

∂xl+1

∂xl
= I +

∂F
(
LN(xl), θl

)
∂LN(xl)︸ ︷︷ ︸
APre−LN

l

· ∂LN(xl)

∂xl︸ ︷︷ ︸
BPre−LN

l

.

Denote

APre−LN
l =

∂F (LN(xl), θl)

∂LN(xl)
, BPre−LN

l =
∂LN(xl)

∂xl
.

Thus,

JPre−LN
l ≡ ∂xl+1

∂xl
= I +APre−LN

l BPre−LN
l .

Similarly, for the Post-LN block:

xl+1 = LN
(
xl + F (xl; θl)

)
.

Taking the derivative w.r.t. xl, we get

∂xl+1

∂xl
=

∂LN
(
xl + F (xl; θl)

)
∂(xl + F (xl; θl)︸ ︷︷ ︸

BPost−LN
l

·
(
I +

∂F (xl)

∂xl

)
︸ ︷︷ ︸

APost−LN
l

.

Denote

BPost−LN
l =

∂LN
(
xl + F (xl; θl)

)
∂(xl + F (xl; θl)

,

APost−LN
l =

(
I +

∂F (xl)

∂xl

)
.

Thus,

JPost−LN
l ≡ ∂xl+1

∂xl
= BPost−LN

l APost−LN
l .

In terms of Bl, we consider two normalization methods: LayerNorm and RMSNorm, with their
corresponding Jacobian matrices (w.r.t. the input vector x) denoted by BLN(x) and BRMS(x).

The RMSNorm is defined as follows.

RMSNorm(x) ≡ x

∥x∥RMS + ϵ
,

where ∥x∥RMS =
√

1
d

∑d
i=1 x

2
i . Thus its Jacobian w.r.t. x is

BRMS(x) ≡∂ (RMSNorm(x))

∂x

=
1

∥x∥RMS + ϵ

[
I − xxT

d (∥x∥RMS + ϵ)2

]
,
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where d is the model dimension.

Consider ∥BRMS(x)∥2, the maximum singular value. Denote by α := 1
d (∥x∥RMS+ϵ)2 . We have

BRMS(x) =
1

∥x∥RMS + ϵ

[
I − αxxT

]
.

Note that the matrix
[
I − αxxT

]
has:

• x-orthogonal subspace (dim = d−1): each vector v orthogonal to x is an eigenvector with
eigenvalue 1.

• the direction of x has an eigenvalue 1− α ∥x∥2, which is at most 1.

Hence its operator norm (largest singular value) is 1. Multiplying by the scalar 1
∥x∥RMS+ϵ gives the

final spectral norm:

∥BRMS(x)∥2 =
1

∥x∥RMS + ϵ
.

The LayerNorm is defined as follows.

LayerNorm(x) ≡ x− µ1√
σ2 + ϵ

,

where µ = 1
d

∑d
i=1 xi, σ

2 = 1
d

∑d
i=1(xi − µ)2. Its Jacobian w.r.t. x is

BLN(x) ≡ ∂ (LayerNorm(x))

∂x
=

1√
σ2 + ϵ

M,

where

M = I − 1

d
11T − (x− µ1)(x− µ1)T

d (σ2 + ϵ)
.

Notice that M is a rank-2 modification of the identity. On any vector orthogonal both to 1 and
(x−µ1), the matrix M acts as the identity. Meanwhile, in the 2D subspace spanned by {1, x−µ1},
we have a certain negative correction. The largest singular value of M is still 1 (or less), so we
conclude

∥M∥2 = 1.

Hence,

∥BLN(x)∥2 =
1√

σ2 + ϵ
× ∥M∥2 =

1√
σ2 + ϵ

.

Note that ∥x∥2RMS = σ2 + µ2. We know ∥BRMS(x)∥2 ≤ ∥BLN(x)∥2. In practice, we usually
observe σ2 > 1 in later training stage Li et al. (2024a). Therefore, we have ∥BRMS(x)∥2 ≤
∥BLN(x)∥2 < 1.

A.4 MULTI-LAYER CONCATENATION

Checking the partial derivative w.r.t. xl+1, we have:

∂L
∂xl+1

=
∂L
∂xL

·
L−1∏

k=l+1

∂xk+1

∂xk
=

∂L
∂xL

·
L−1∏

k=l+1

Jk.

For Pre-LN, we have
∂L
∂θl

=
∂L

∂xl+1

∂xl+1

∂θl

=
∂L
∂xL

·

(
L−1∏

k=l+1

JPre−LN
k

)
· ∂xl+1

∂θl

=
∂L
∂xL

·

(
L−1∏

k=l+1

(
I +APre−LN

k BPre−LN
k

))
· ∂xl+1

∂θl
.
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Fine-tuning Method Model Metric Iteration steps
Benchmarks

Avg AccPIQA HellaSwag OpenbookQA ARC-e ARC-c MMLU CMMLU WinoGrande

LoRA Llama-3.1-8B-It

Reverse-order

one-shot 0.7002+0.0107 0.4010+0.0049 0.2940+0.0204 0.6170+0.0100 0.3985+0.0143 0.6342+0.0039 0.5449±0.0045 0.6243±0.0136 0.5268

1:4:8 0.7176±0.0105 0.4538±0.0050 0.2920±0.0204 0.6705±0.0096 0.4121±0.0144 0.6374±0.0039 0.5439±0.0045 0.6369±0.0135 0.5455

1:1:8 0.7160±0.0105 0.4470±0.0050 0.2860±0.0202 0.6637±0.0097 0.4061±0.0144 0.6440±0.0039 0.5425±0.0045 0.6448±0.0135 0.5438

Taylor

one-shot 0.7138±0.0105 0.4964±0.0050 0.2740±0.0200 0.6848±0.0095 0.4181±0.0144 0.2861±0.0038 0.2504±0.0040 0.7135±0.0127 0.4796

1:4:8 0.7149±0.0105 0.4991±0.0050 0.2480±0.0193 0.7071±0.0093 0.3951±0.0143 0.4676±0.0041 0.3480±0.0044 0.6709±0.0132 0.5063
1:1:8 0.6921±0.0108 0.4728±0.0050 0.2140±0.0184 0.6675±0.0097 0.3891±0.0142 0.4576±0.0041 0.3511±0.0044 0.6519±0.0134 0.4870

Partial-layer Llama-3.1-8B-It

Reverse-order
one-shot 0.7383±0.0103 0.5323±0.0050 0.3080±0.0207 0.7260±0.0092 0.4684±0.0146 0.6567±0.0038 0.5515±0.0045 0.6646±0.0133 0.5807

1:1:8 0.7432±0.0102 0.5357±0.0050 0.2980±0.0205 0.7496±0.0089 0.4590±0.0146 0.6539±0.0038 0.5558±0.0045 0.6922±0.0130 0.5859

Taylor
one-shot 0.7345±0.0103 0.5290±0.0050 0.3020±0.0206 0.7399±0.0090 0.4360±0.0145 0.6277±0.0039 0.4763±0.0046 0.7151±0.0127 0.5701

1:1:8 0.6300±0.0113 0.3553±0.0048 0.1760±0.0170 0.5177±0.0103 0.2756±0.0131 0.2611±0.0037 0.2557±0.0041 0.5312±0.0140 0.3753

Table A: Zero-shot performance of pruned models (25% pruning rate) using different pruning strate-
gies. The best results are marked in boldface. “1:1:8” refers to an iterative pruning process where 1
layer is pruned at a time, and a total of 8 layers are pruned by the end of the process.

Due to the existence of I , the gradients will not vanish when a larger number of layers are
concatenated. Besides, for deeper layers, when l is close to L, we are more likely to have a∏L−1

k=l+1

(
∥I +APre−LN

k BPre−LN
k ∥

)
than is close to I than shallow layers, indicating that deep lay-

ers are less important than shallow layers due to their gradients do not contribute much.

For Post-LN, we have
∂L
∂θl

=
∂L

∂xl+1

∂xl+1

∂θl

=
∂L
∂xL

·

(
L−1∏

k=l+1

JPost−LN
l

)
· ∂xl+1

∂θl

=
∂L
∂xL

·

(
L−1∏

k=l+1

BPost−LN
l APost−LN

l

)
· ∂xl+1

∂θl
.

We know ∥BPost−LN
l ∥ < 1. From the definition of APost−LN

l , we know ∥APost−LN
l ∥ is usually

close to 1. Then, we usually have ∥BPost−LN
l APost−LN

l ∥ < 1. This indicates that shallow layers,
which are followed by a larger number of subsequent layers, tend to receive smaller gradients and
may even experience gradient vanishing. Therefore, with Post-LN, shallow layers are not important.

B WILL ITERATIVE PRUNING OUTPERFORM ONE-SHOT PRUNING?

In this subsection, we provide insights into the optimal pruning strategy for LLMs. Although Mu-
ralidharan et al. (2024) have explored pruning strategies and concluded that iterative pruning offers
no benefit, their study focuses on utilizing knowledge distillation (Hinton, 2015) for performance
recovery. In contrast, this paper concentrates on layer pruning with LoRA and partial-layer fine-
tuning, thereby broadening the scope of pruning strategies evaluated. We briefly introduce the one-
shot pruning and iterative pruning:

One-shot Pruning. One-shot pruning scores once and prunes the model to a target prune ratio.

Iterative Pruning. Iterative pruning alternately processes the score-prune-update cycle until achiev-
ing the target prune ratio.

Specifically, we select Llama-3.1-8B-Instruct and Gemma2-2B-Instruct as the base models. For one-
shot pruning, we prune 8 layers from the Llama-3.1-8B-Instruct and 6 layers from the Gemma2-2B-
Instruct in a single step, guided by the reverse-order and taylor metrics. For iterative pruning with
LoRA, we begin by scoring all layers using these metrics. Subsequently, we set the pruning step
to 1 and 4 for Llama-3.1-8B-Instruct, and 1 and 3 for Gemma2-2B-Instruct. After each pruning
step, we fine-tune the model with LoRA and merge LoRA weights back into the fine-tuned model.
This score-prune-fine-tune-merge cycle is repeated until a total of 8 layers are pruned for Llama-
3.1-8B-Instruct and 6 layers for Gemma2-2B-Instruct. For iterative pruning with partial-layer fine-
tuning, we fine-tune the model using partial-layer fine-tuning (lm head + last three layers) after
each pruning step, and then repeat the score-prune-fine-tune cycle. To avoid the fine-tuned layers
being pruned completely, we set the pruning step size to 1. All hyperparameter settings are the same
as in Section 3.3. Experiments with iterative pruning of more layers are provided in Table N.
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Results. By comparing the results of iterative and one-shot pruning in Table A and Table N, we
find that unlike traditional CNN pruning, which often yields significant performance improvements
through iterative pruning (Tan & Motani, 2020; He & Xiao, 2023), the iterative approach for LLMs
may not provide the same benefits and can even lead to performance degradation. We believe that
is because too much training causes the model to suffer from catastrophic forgetting (Zhai et al.,
2024; Liu et al., 2024a), which is evidenced by Figure B. It visualizes the representational similarity
of different pruning strategies. From this, we observe that different pruning strategies yield sig-
nificantly different representations, highlighting the impact of each strategy on the model’s learned
features. Besides, iterative pruning requires more computational overhead than one-shot pruning,
which is not cost-effective with limited performance gains.

Insight: Considering both performance gain and computational overhead, iterative pruning
has no benefit.

C DIFFERENCES FROM TRADITIONAL LAYER PRUNING

Unlike traditional Deep Neural Networks (Szegedy et al., 2014; Simonyan & Zisserman, 2015; He
et al., 2015; Dosovitskiy et al., 2021; Liu et al., 2021) (DNNs), typically trained for a single, spe-
cific task, LLMs are designed to handle a wide range of tasks and are structured with billions of
parameters. These differences in model scale and task complexity fundamentally alter the chal-
lenges associated with layer pruning. For example, in traditional DNN layer pruning (Chen & Zhao,
2018; Wang et al., 2019; Lu et al., 2022; Tang et al., 2023; Guenter & Sideris, 2024), assessing the
importance of each layer is relatively straightforward, as it is tied to a single task. In contrast, the
parameters of LLMs are optimized across diverse tasks, complicating the evaluation of layer impor-
tance. Furthermore, traditional DNN pruning commonly involves full parameter fine-tuning after
pruning, while LLMs often employ Parameter-Efficient Fine-Tuning (PEFT) techniques (Hu et al.,
2021; Meng et al., 2024; Zhao et al., 2024b; Dettmers et al., 2024) such as Low-Rank Approximation
(LoRA) (Hu et al., 2021) to accommodate their massive parameter space. Consequently, traditional
DNN pruning methods may not adequately address the unique challenges posed by LLMs, high-
lighting the need for specialized pruning strategies.

D EXPERIMENTAL DETAILS

For the PPL metric, we follow (Ma et al., 2023; Muralidharan et al., 2024) and use WikiText2 for
calculation. Following (Ma et al., 2023), we randomly select 10 samples from BookCorpus (Zhu
et al., 2015) to compute Taylor and BI, truncating each sample to a sequence length of 128. Unless
otherwise specified, we utilize the Alpaca-cleaned (Taori et al., 2023) with LoRA to recover the
performance. Uniformly, we set the training epoch to 2 and batch size to 64. All experiments are
conducted on 2 NVIDIA A100 GPUs with 40 GB of memory and 4 NVIDIA RTX A5000 GPUs
with 24 GB of memory.

D.1 DATASETS DESCRIPTION

MMLU (Hendrycks et al., 2021) is a massive multitask dataset consisting of multiple-choice ques-
tions from various branches of knowledge. The dataset spans subjects in the humanities, social
sciences, hard sciences, and other areas and covers 57 tasks including elementary mathematics, US
history, computer science, law, and more.

CMMLU (Li et al., 2023a) is a comprehensive Chinese assessment suite specifically designed to
evaluate the advanced knowledge and reasoning abilities of LLMs within the Chinese language and
cultural context. It covers a wide range of subjects, comprising 67 topics that span from elementary
to advanced professional levels. CMMLU includes subjects that require computational expertise,
such as physics and mathematics, as well as disciplines within humanities and social sciences.

PIQA (Bisk et al., 2020) is a dataset for commonsense reasoning, and is created to investigate the
physical knowledge of existing models in NLP.
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Dataset
Benchmarks

Avg AccPIQA HellaSwag OpenbookQA ARC-e ARC-c MMLU CMMLU WinoGrande

Alpaca-cleaned 0.7383±0.0103 0.5323±0.0050 0.3080±0.0207 0.7260±0.0092 0.4684±0.0146 0.6567±0.0038 0.5515±0.0045 0.6646±0.0133 0.5807

MMLU 0.6012±0.0114 0.2714±0.0044 0.1700±0.0168 0.3430±0.0097 0.2457±0.0126 0.5888±0.0040 0.5266±0.0045 0.5856±0.0138 0.4165

Table B: The effect of SFT datasets on LLM layer pruning.

HellaSwag (Zellers et al., 2019) is a challenge dataset for evaluating commonsense NLI that is
specially hard for state-of-the-art models.

OpenBookQA (Mihaylov et al., 2018) is a new kind of question-answering dataset modeled after
open book exams for assessing human understanding of a subject.

ARC-easy Clark et al. (2018) and ARC-challenge Clark et al. (2018) are two subsets of the
AI2’s Reasoning Challenge (ARC) dataset, which is a multiple-choice question-answering dataset
containing questions from science exams from grade 3 to grade 9.

WinoGrande (Sakaguchi et al., 2021) is a new collection of 44k problems, inspired by Winograd
Schema Challenge (Levesque et al., 2012), but adjusted to improve the scale and robustness against
the dataset-specific bias. Formulated as a fill-in-a-blank task with binary options, the goal is to
choose the right option for a given sentence which requires commonsense reasoning.

Proportion
Benchmarks

Avg AccPIQA HellaSwag OpenbookQA ARC-e ARC-c MMLU CMMLU WinoGrande

1.0 0.7383±0.0103 0.5323±0.0050 0.3080±0.0207 0.7260±0.0092 0.4684±0.0146 0.6567±0.0038 0.5515±0.0045 0.6646±0.0133 0.5807

0.8 0.7372±0.0103 0.5279±0.0050 0.3100±0.0207 0.7235±0.0092 0.4565±0.0146 0.6515±0.0038 0.5477±0.0045 0.6567±0.0133 0.5764

0.6 0.7399±0.0102 0.5242±0.0050 0.3140±0.0208 0.7100±0.0093 0.4497±0.0145 0.6551±0.0038 0.5487±0.0045 0.6582±0.0133 0.5747

0.4 0.7399±0.0102 0.5194±0.0050 0.3060±0.0206 0.7020±0.0094 0.4548±0.0146 0.6540±0.0038 0.5531±0.0045 0.6630±0.0133 0.574

0.2 0.7383±0.0103 0.5077±0.0050 0.2980±0.0205 0.6860±0.0095 0.4360±0.0145 0.6455±0.0038 0.5458±0.0045 0.6590±0.0133 0.5083

Table C: The number of samples used in SFT.

Model # Params # MACs Memory Latency

Llama-3.1-6.3B-It-Alpaca 6.29B 368.65G 23984MiB 210.35s

Table D: Statistics of Llama-3.1-6.3B-It-Alpaca.

E SENSITIVITY ANALYSIS

In this section, we conduct sensitivity analyses on the number of calibration samples, the choice of
SFT dataset and various pruning rates for LLM layer pruning.

The effect of number of calibration samples on LLM layer pruning. It is worth noting that
some data-driven layer pruning methods, such as BI and Taylor, rely upon calibration samples to
generate layer activations. Therefore, we explore the effect of the number of calibration samples
on pruning. Specifically, we calculate BI and Taylor metrics using 1, 5, 10, 30, and 50 calibration
samples, prune 8 layers based on these metrics, finetune the pruned Llama-3.1-8B-Instruct models
using LoRA, and evaluate their performance through lm-evaluation-harness package. For ease of
comparison, we report the average accuracy on 8 datasets. For more details, see Table O. Besides,
we report the model perplexity on the WikiText and Penn Treebank test set. As shown in Table J,
we observe that the pruned models, obtained using varying numbers of calibration samples, do
affect the model complexity and zero-shot performance, which suggests that for data-driven pruning
methods, performance stability should also be considered a key criterion when evaluating the quality
of pruning technique. It is worth noting that the reverse-order pruning method can complete the
pruning without any calibration samples.

The effect of SFT datasets on LLM layer pruning. In the main text, we uniformly utilize Alpaca-
cleaned (Taori et al., 2023) to fine-tune the pruned models. Herein, we aim to assess how fine-
tuning a pruned model using different SFT datasets affects its performance. Specifically, we conduct
experiments using the Reverse-order metric to remove 8 layers from the Llama-3.1-8B-Instruct and
fine-tune the pruned model using lm head + last three layers on MMLU (training set) (Hendrycks
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et al., 2021). We set the maximum sequence length to 512 for MMLU. From Table B, we observe
that fine-tuning with different SFT datasets significantly affects the performance of pruned models,
highlighting the need for further exploration to identify the most suitable datasets for fine-tuning
pruned models.

The effect of different pruning rates on LLM layer pruning. We investigate the impact of pruning
the LLM at various pruning rates in Figure A. Specifically, we conduct one-shot pruning on Llama-
3.1-8B-Instruct using reverse-order and taylor metrics and evaluate their effects on the model’s per-
formance with LoRA. All hyperparameter settings remain consistent with those in Section 3.3. As
shown in Figure A, we observe that as the number of pruned layers increases, the performance of the
model on all datasets tends to decrease and eventually converges. However, certain datasets, espe-
cially MMLU, CMMLU, and ARC-c, are highly sensitive to layer changes and degrade faster than
others. Besides, after cutting off about 16 layers, the model was damaged, so we set the maximum
pruning rate in the paper to 16 layers.

The effect of different numbers of samples used in SFT. According to Table B, the choice of
SFT dataset significantly impacts model performance. To investigate further, we conduct additional
experiments analyzing the effect of the number of samples used in SFT. Specifically, we use 20%,
40%, 60%, 80% and 100% of the Alpaca-cleaned dataset for partial fine-tuning. As shown in Ta-
ble C, we find that the number of samples used in SFT indeed affects the performance of the pruned
model. Using only 20% of the dataset leads to a substantial performance decline.

Pruning without any subsequent training. To demonstrate the effectiveness of our reverse-order
pruning method, we compare it with SLEB, a well-known retraining-free pruning method in a set-
ting without post-pruning training. To further illustrate the effectiveness of our method and provide
a more comprehensive comparison, we also add LLM-Pruner to this ”no-fine-tuning” comparative
experiment. Specifically, we apply SLEB, LLM-Pruner, and Reverse-order algorithms to prune the
Llama-3.1-8B-It and Llama-3-8B models, respectively, and then evaluate their zero-shot perfor-
mance directly on benchmarks without any fine-tuning. As shown in Table K, even without any
fine-tuning recovery, our simple reverse-order pruning significantly outperforms SLEB and LLM-
Pruner in terms of average accuracy on Llama-3.1-8B-It and Llama-3-8B. This further demonstrates
the effectiveness of our method, proving its strong competitiveness even as a pure, retraining-free
compression technique.

Generality of partial-layer fine-tuning. In Table 2 of the main text, we have demonstrated the
effectiveness of partial-layer fine-tuning on reverse-order pruning. To verify the robustness of our
partial-layer fine-tuning method, we further apply it to a completely different pruning metric, Tay-
lor, in Table H. Experimental results show that after using Taylor pruning, the average accuracy
using traditional LoRA for fine-tuning is only 0.4796. However, when we switch to our proposed
partial-layer fine-tuning on the same model using Taylor pruning, the average accuracy significantly
improves to 0.5701. This experiment fully demonstrates that our partial-layer fine-tuning strategy is
not only applicable to reverse-order pruning, but is also a universally effective performance recovery
method.

How many layers are appropriate for partial-layer fine-tuning? In this subsection, we aim to
extend partial-layer fine-tuning beyond the last three layers. Herein, we include experiments for
more settings (e.g., last 4, 5, 6, 7, 8, 9, 10 layers) on Llama-3.1-8B-Instruct. As shown in Table E, as
the number of fine-tuned layers increases, the average accuracy improves slightly, but the increase
is very limited. However, during this process, GPU memory usage increases from 48.02GB to
69.99GB, and training time also increases from 7931.36s to 10316.53s. Therefore, considering
both performance and computational cost, fine-tuning the last 3 layers can achieve most of the
performance improvement with relatively low training resource consumption.

Partial-layer Fine-tuning vs. Full Fine-tuning. In this subsection, we explore the effects of the
proposed partial-layer fine-tuning and full fine-tuning (training from scratch). Due to the extremely
high cost of ”training from scratch” on larger models, we choose TinyLlama-1.1B (Zhang et al.,
2024a) as our test model. Specifically, we prune the last four layers. Then, we compare two ap-
proaches: fine-tuning only the last three layers of the remaining layers and training from scratch.
As shown in Table F, fine-tuning the last 3 layers achieves an average score of 37.62, while training
from scratch achieves an average score of 37.84. This experiment strongly demonstrates that our
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Type MMLU CMMLU PIQA OpenbookQA WinoGrande HellaSwag ARC-e ARC-c Avg Acc GPU memory Training time (2 epoch)

lm head+last 3 layers 0.6567 0.5515 0.7383 0.3080 0.6646 0.5323 0.7260 0.4684 0.5807 48.02G 7931.36s
lm head+last 4 layers 0.6487 0.5530 0.7405 0.2940 0.6685 0.5370 0.7285 0.4625 0.5791 49.50G 8242.46s
lm head+last 5 layers 0.6429 0.5545 0.7448 0.3080 0.6811 0.5391 0.7420 0.4659 0.5848 51.49G 8572.35s
lm head+last 6 layers 0.6414 0.5495 0.7476 0.3040 0.6898 0.5418 0.7462 0.4633 0.5855 55.18G 8902.82s
lm head+last 7 layers 0.6487 0.5530 0.7405 0.2940 0.6685 0.5370 0.7285 0.4625 0.5791 58.89G 9289.69s
lm head+last 8 layers 0.6445 0.5441 0.7497 0.2980 0.6859 0.5457 0.7572 0.4582 0.5854 62.59G 9607.29s
lm head+last 9 layers 0.6487 0.5432 0.7519 0.2960 0.6835 0.5475 0.7529 0.4642 0.5860 66.30G 9975.59s

lm head+last 10 layers 0.6576 0.5437 0.7470 0.3000 0.6748 0.5497 0.7521 0.4753 0.5875 69.99G 10316.53s

Table E: Zero-shot performance of pruned Llama-3.1-8B-It models using various fine-tuning meth-
ods under 25% pruning rate (using reverse-order).

Method MMLU↑ CMMLU↑ PIQA↑ OpenbookQA↑ WinoGrande↑ HellaSwag↑ ARC-e↑ ARC-c↑ Avg Acc↑
lm head+last three layers 0.2497 0.2479 0.6480 0.1940 0.5541 0.3937 0.4520 0.2705 0.3762

Full fine-tuning 0.2478 0.2497 0.6670 0.1880 0.5667 0.3879 0.4714 0.2491 0.3784

Table F: Zero-shot performance of the pruned model using partial-layer and full fine-tuning.

method can achieve performance almost equivalent to training a model of the same size from scratch
with a much lower computational cost than training from scratch.

Perplexity of the pruned models. Perplexity is an important metric for evaluating the language
modeling capabilities of pruned models. Therefore, we evaluate the performance of various pruned
models (20% pruning rate, Llama-3-8B) on WikiText-2. As shown in Section E, our method
achieves the lowest perplexity value of 19.16, significantly outperforming all other pruning methods.
This further demonstrates that our proposed method can maximally preserve the general generative
capabilities of the pruned model.

Method Wanda LLM-Pruner ShortGPT OWL GISP Ours

Perplexity↓ 29.92 23.21 118.62 29.49 24.18 19.16

Table G: Comparison of perplexity of models obtained by different pruning methods.

Pruning Mixture-of-Experts (MoE) models. To further demonstrate that our pruning algorithm
can be applied to different model architectures, especially MoE models, we pruned the Mixtral
8x7B (Jiang et al., 2024) model. Specifically, we prune the last 5 blocks of the Mixtral 8x7B and
compare it with the MoE pruning baseline UMD (He et al., 2024) with the same pruning rate.
As shown in Table H, our method achieves an average accuracy of 0.6673, which is higher than
UMD’s 0.6558. This further demonstrates that our method has good architectural generality: even
in complex MoE models, our simple reverse pruning strategy can still outperform existing MoE
pruning baselines and achieve better performance.

Performance comparison on HumanEval. To further illustrate the reasoning capability of the
pruned model obtained by our method, we evaluate the performance of pruned models obtained by
various pruning methods on HumanEval (Chen et al., 2021) using CodeQwen1.5-7B-Chat (Bai et al.,
2023). We set the pruning rate to 20% and compare it with ShortGPT, UIDL (Gromov et al., 2024),
Linearity (Razzhigaev et al., 2024), SLEB, and LLM-Pruner. As shown in Table I, our method
achieves the highest Pass1 at 48.72, significantly exceeding ShortGPT (42.68) and LLM-Pruner
(15.85). Finally, the superior performance in code benchmarks further validates the effectiveness
and generality of our method.

Statistics of Llama-3.1-6.3B-It-Alpaca. Table D presents the statistic of Llama-3.1-6.3B-It-
Alpaca, including parameters, MACs, memory requirements and latency. Following Ma et al.
(2023), the statistical evaluation is conducted in inference mode, where the model is fed a sentence
consisting of 64 tokens. The latency is tested under the test set of WikiText2 on a single NVIDIA
A100 GPU.

Limitations and Future Work. In this paper, we focus primarily on layer pruning due to the
straightforward nature of pruning layers in LLMs, where the input and output dimensions are iden-
tical. However, we plan to further investigate weight pruning (Sun et al., 2023; Frantar & Alistarh,
2023) and width pruning (Ma et al., 2023) in future experiments. Besides, in this paper, we gain
insights by focusing solely on the upper bound of the ℓ2-norm of the gradient flow. We acknowl-
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Method MMLU PIQA OpenbookQA WinoGrande HellaSwag ARC-c Avg Acc

UMD 0.6790 0.7930 0.4200 0.7430 0.7870 0.5130 0.6558
Ours 0.6957 0.7890 0.4321 0.7674 0.7981 0.5216 0.6673

Table H: Performance comparison of pruned MoE models.

Method ShortGPT UIDL Linearity SLEB LLM-Pruner Ours

HumanEval(Pass@1) 42.68 0.00 0.00 20.73 15.85 48.72

Table I: Performance comparison on HumanEval.

edge that matrix multiplication is significantly more complex than a simple norm, particularly in
the context of LLMs. A comprehensive analysis is beyond the scope of this paper and is left for
future work. Besides, since quantization may alter gradient flow or activation distribution, making
otherwise unimportant layers crucial. Therefore, we will investigate the impact of quantization on
layer importance in the future.
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Figure A: The effect of different pruning rates on LLM layer pruning.
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Verification PPL on WikiText2 PPL on PTB Avg Acc

Metric BI Taylor BI Taylor BI Taylor

Calibration Samples

1 51.06 65.43 90.97 94.35 0.40 0.36
5 43.54 65.43 79.34 94.35 0.43 0.36

10 53.53 65.43 101.64 94.35 0.41 0.36
30 50.03 55.42 88.02 77.63 0.42 0.55
50 59.73 55.42 103.19 77.63 0.41 0.55

Table J: The effect of number of calibration samples on LLM layer pruning. For more details, please
refer to Table O.

Model Method
Benchmarks

Avg AccPIQA HellaSwag OpenbookQA ARC-e ARC-c MMLU CMMLU WinoGrande

Llama-3.1-8B-It
SLEB (w/o fine-tuning) 0.7252±0.0104 0.4415±0.0050 0.2380±0.0191 0.6423±0.0098 0.3166±0.0136 0.3396±0.0040 0.2756±0.0042 0.5888±0.0138 0.4192

LLM-Pruner (w/o fine-tuning) 0.7356±0.0105 0.4518±0.0050 0.2760±0.0198 0.6713±0.0100 0.3473±0.0144 0.3413±0.0038 0.2704±0.0047 0.6559±0.0135 0.4687

Reverse-order (w/o fine-tuning) 0.7002±0.0107 0.4021±0.0049 0.2920±0.0204 0.6178±0.0100 0.3993±0.0143 0.6346±0.0039 0.5458±0.0045 0.6251±0.0136 0.5271

Llama-3-8B
SLEB (w/o fine-tuning) 0.7111±0.0106 0.4401±0.0050 0.2280±0.0188 0.6014±0.0100 0.2807±0.0131 0.2674±0.0037 0.2502±0.0040 0.5683±0.0139 0.3689

LLM-Pruner (w/o fine-tuning) 0.7220±0.0105 0.4578±0.0050 0.2840±0.0189 0.6338±0.0100 0.3319±0.0144 0.2700±0.0036 0.2612±0.0044 0.6125±0.0138 0.4467

Reverse-order (w/o fine-tuning) 0.6921±0.0108 0.4035±0.0049 0.3040±0.0206 0.6014±0.0100 0.3720±0.0141 0.5603±0.0040 0.4216±0.0045 0.5975±0.0138 0.4940

Table K: Comparisons with retraining-free (pruning without fine-tuning) pruning method.
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Figure B: Visualization of the layer similarity matrix of 16-layer pruned Llama-3.1-8B-It models
(using Taylor) obtained by different pruning strategies. Left: one-shot pruning; Middle: iterative
pruning with pruning step = 1; Right: iterative pruning with pruning step = 8.

Model Metric
Benchmarks

Avg AccPIQA HellaSwag OpenbookQA ARC-e ARC-c MMLU CMMLU WinoGrande

Vicuna-7B-v1.5

Dense 0.7720±0.0098 0.5642±0.0049 0.3300±0.0210 0.7555±0.0088 0.4326±0.0145 0.4858±0.0040 0.3518±0.0044 0.6953±0.0129 0.5484

Random 0.5773±0.0115 0.3083±0.0046 0.1560±0.0162 0.3775±0.0099 0.2176±0.0121 0.2650±0.0037 0.2542±0.0041 0.5067±0.0141 0.3328

PPL 0.6572±0.0111 0.3524±0.0048 0.1940±0.0177 0.4971±0.0103 0.2406±0.0125 0.2361±0.0036 0.2510±0.0040 0.5328±0.0140 0.3702
Magnitude-l1 0.5239±0.0117 0.2585±0.0044 0.1400±0.0155 0.2635±0.0090 0.2184±0.0121 0.2295±0.0035 0.2527±0.0040 0.4893±0.0140 0.2970

Magnitude-l2 0.5245±0.0117 0.2590±0.0044 0.1300±0.0151 0.2656±0.0091 0.2210±0.0121 0.2293±0.0035 0.2512±0.0040 0.4791±0.0140 0.2950

BI 0.5250±0.0117 0.2598±0.0044 0.1440±0.0157 0.2740±0.0092 0.1928±0.0115 0.2296±0.0035 0.2476±0.0040 0.4988±0.0141 0.2965

Taylor 0.5283±0.0116 0.2585±0.0044 0.1300±0.0151 0.2572±0.0090 0.2167±0.0120 0.2614±0.0037 0.2513±0.0040 0.4901±0.0140 0.2992

Reverse-order 0.5642±0.0116 0.2919±0.0045 0.1700±0.0168 0.3258±0.0096 0.2645±0.0129 0.4372±0.0041 0.3069±0.0043 0.5872±0.0138 0.3685

Qwen1.5-7B

Dense 0.7845±0.0096 0.5785±0.0049 0.3160±0.0208 0.7125±0.0093 0.4053±0.0143 0.5967±0.0039 0.7277±0.0039 0.6575±0.0133 0.5973

Random 0.6409±0.0112 0.3268±0.0047 0.1940±0.0177 0.4617±0.0102 0.2261±0.0122 0.2321±0.0036 0.2529±0.0040 0.5083±0.0141 0.3553
PPL 0.6529±0.0111 0.3233±0.0047 0.1700±0.0168 0.4360±0.0102 0.2099±0.0119 0.2297±0.0035 0.2541±0.0041 0.5225±0.0140 0.3498

Magnitude-l1 0.5452±0.0116 0.2690±0.0044 0.1280±0.0150 0.2837±0.0092 0.1962±0.0116 0.2548±0.0037 0.2479±0.0040 0.4862±0.0140 0.3013

Magnitude-l2 0.5348±0.0116 0.2651±0.0044 0.1520±0.0161 0.2858±0.0093 0.1843±0.0113 0.2659±0.0037 0.2519±0.0040 0.5059±0.0141 0.3057

BI 0.6001±0.0114 0.2905±0.0045 0.1880±0.0175 0.4099±0.0101 0.2090±0.0119 0.2420±0.0036 0.2472±0.0040 0.4901±0.0140 0.3346

Taylor 0.5223±0.0117 0.2540±0.0043 0.1460±0.0158 0.2403±0.0088 0.2176±0.0121 0.2393±0.0036 0.2478±0.0040 0.4854±0.0140 0.2941

Reverse-order 0.5783±0.0115 0.3100±0.0046 0.1640±0.0166 0.3047±0.0094 0.2363±0.0124 0.2507±0.0037 0.2564±0.0041 0.5391±0.0140 0.3299

Llama-3.1-8B-It

Dense 0.8003±0.0093 0.5910±0.0049 0.3380±0.0212 0.8182±0.0079 0.5179±0.0146 0.6790±0.0038 0.5552±0.0045 0.7395±0.0123 0.6299

Random 0.5588±0.0116 0.2730±0.0044 0.1280±0.0150 0.2826±0.0093 0.1903±0.0115 0.2406±0.0036 0.2555±0.0041 0.5020±0.0141 0.3039

PPL 0.6643±0.0110 0.3548±0.0048 0.1960±0.0178 0.4718±0.0102 0.2483±0.0126 0.2394±0.0036 0.2446±0.0040 0.5454±0.0140 0.3706

Magnitude-l1 0.5316±0.0116 0.2576±0.0044 0.1360±0.0153 0.2572±0.0090 0.1980±0.0116 0.2344±0.0036 0.2526±0.0040 0.4933±0.0141 0.2951

Magnitude-l2 0.5316±0.0116 0.2576±0.0044 0.1360±0.0153 0.2572±0.0090 0.1980±0.0116 0.2344±0.0036 0.2526±0.0040 0.4933±0.0141 0.2951

BI 0.5773±0.0115 0.2878±0.0045 0.1520±0.0161 0.3674±0.0099 0.1706±0.0110 0.2342±0.0036 0.2466±0.0040 0.5036±0.0141 0.3174

Taylor 0.6088±0.0114 0.3288±0.0047 0.1660±0.0167 0.4318±0.0102 0.2790±0.0131 0.2310±0.0036 0.2534±0.0041 0.6093±0.0137 0.3635

Reverse-order 0.6376±0.0112 0.3163±0.0046 0.1960±0.0178 0.4019±0.0101 0.3106±0.0135 0.2502±0.0036 0.2482±0.0040 0.6101±0.0137 0.3714

Table L: Zero-shot performance of the pruned models (50% pruning rate, fine-tuning using LoRA).
“Avg Acc” denotes the average accuracy calculated among eight datasets. The best results are
marked in boldface, and the sub-optimal ones are underlined.
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Model Method Layer
Benchmarks

Avg AccPIQA HellaSwag OpenbookQA ARC-e ARC-c MMLU CMMLU WinoGrande

Llama-3.1-8B-It

LoRA - 0.7138±0.0105 0.4964±0.0050 0.2740±0.0200 0.6848±0.0095 0.4181±0.0144 0.2861±0.0038 0.2504±0.0040 0.7135±0.0127 0.4796

QLoRA - 0.6496±0.0111 0.3260±0.0047 0.1820±0.0173 0.4520±0.0102 0.2969±0.0134 0.3425±0.0040 0.2627±0.0041 0.5793±0.0139 0.3864

Partial-layer

lm head only 0.6752±0.0109 0.3685±0.0048 0.2100±0.0182 0.5349±0.0102 0.3276±0.0137 0.4315±0.0041 0.3373±0.0044 0.6795±0.0109 0.4456

lm head+last layer 0.7029±0.0107 0.4676±0.0050 0.2140±0.0184 0.6393±0.0099 0.3763±0.0142 0.5682±0.0041 0.4483±0.0046 0.6748±0.0132 0.5114

lm head+last two layers 0.7252±0.0104 0.5173±0.0050 0.2800±0.0201 0.7104±0.0093 0.4232±0.0144 0.6058±0.0040 0.4659±0.0046 0.7040±0.0128 0.5540

lm head+last three layers 0.7345±0.0103 0.5290±0.0050 0.3020±0.0206 0.7399±0.0090 0.4360±0.0145 0.6277±0.0039 0.4763±0.0046 0.7151±0.0127 0.5701

Table M: Zero-shot performance of the pruned models using various fine-tuning methods under 25%
pruning rate (using Taylor metric). “Avg Acc” denotes the average accuracy calculated among eight
datasets. The best results are marked in boldface, and the sub-optimal ones are underlined.

Fine-tuning Method Model Method Iteration steps
Benchmarks

Avg AccPIQA HellaSwag OpenbookQA ARC-e ARC-c MMLU CMMLU WinoGrande

LoRA

Llama-3.1-8B-It

Reverse-order

one-shot 0.6376±0.0112 0.3163±0.0046 0.1960±0.0178 0.4019±0.0101 0.3106±0.0135 0.2502±0.0036 0.2482±0.0040 0.6101±0.0137 0.3714

1:8:16 0.6376±0.0112 0.3160±0.0046 0.1980±0.0178 0.3990±0.0100 0.3106±0.0135 0.2526±0.0037 0.2504±0.0040 0.6046±0.0137 0.3711

1:1:16 0.6333±0.0112 0.3259±0.0047 0.2020±0.0180 0.4146±0.0101 0.2961±0.0133 0.2426±0.0036 0.2690±0.0041 0.5912±0.0138 0.3718

Taylor

one-shot 0.6088±0.0114 0.3288±0.0047 0.1660±0.0167 0.4318±0.0102 0.2790±0.0131 0.2310±0.0036 0.2534±0.0041 0.6093±0.0137 0.3635
1:8:16 0.6230±0.0113 0.3516±0.0048 0.1480±0.0159 0.4604±0.0102 0.2355±0.0124 0.2541±0.0037 0.2546±0.0041 0.5312±0.0140 0.3573

1:1:16 0.5430±0.0116 0.2692±0.0044 0.1580±0.0163 0.2921±0.0093 0.1937±0.0115 0.2334±0.0036 0.2481±0.0040 0.5091±0.0141 0.3058

Partial-layer Llama-3.1-8B-It

Reverse-order
one-shot 0.6578±0.0111 0.4137±0.0049 0.2200±0.0185 0.5707±0.0102 0.3294±0.0137 0.3854±0.0040 0.3190±0.0043 0.6504±0.0134 0.4433

1:1:16 0.6774±0.0109 0.4164±0.0049 0.2200±0.0185 0.5863±0.0101 0.3362±0.0138 0.4170±0.0041 0.3460±0.0044 0.6385±0.0135 0.4547

Taylor
one-shot 0.6649±0.0110 0.3985±0.0049 0.2100±0.0182 0.5581±0.0102 0.3251±0.0137 0.3054±0.0039 0.2876±0.0042 0.6212±0.0136 0.4214
1:1:16 0.5876±0.0115 0.2813±0.0045 0.1300±0.0151 0.3986±0.0100 0.1980±0.0116 0.2508±0.0037 0.2502±0.0040 0.4957±0.0141 0.3240

Table N: Zero-shot performance of pruned models (50% pruning rate) using different pruning strate-
gies. “Avg Acc” denotes the average accuracy calculated among eight datasets. The best results are
marked in boldface. “1:1:12” refers to an iterative pruning process where 1 layer is pruned at a time,
and a total of 12 layers are pruned by the end of the process.

Model Metric Calibration Samples Removed Layers
Benchmarks

Avg AccPIQA HellaSwag OpenbookQA ARC-e ARC-c MMLU CMMLU WinoGrande

Llama-3.1-8B-Instruct

BI

1 2,3,5,6,7,8,11,12 0.7029±0.0107 0.4167±0.0049 0.2060±0.0181 0.6136±0.0100 0.2739±0.0130 0.2362±0.0036 0.2512±0.0040 0.5225±0.0140 0.40
5 3,4,5,8,9,10,13,19 0.7236±0.0104 0.4400±0.0050 0.2420±0.0192 0.6730±0.0096 0.3311±0.0138 0.2524±0.0037 0.2553±0.0041 0.5485±0.0140 0.43

10 2,3,4,5,6,7,8,9 0.7176±0.0105 0.4196±0.0049 0.2020±0.0180 0.6107±0.0100 0.2841±0.0132 0.2417±0.0036 0.2494±0.0040 0.5391±0.0140 0.41
30 2,3,4,10,11,12,13,14 0.7209±0.0105 0.4328±0.0049 0.2040±0.0180 0.6414±0.0098 0.3259±0.0137 0.2500±0.0036 0.2576±0.0041 0.5517±0.0140 0.42
50 2,3,4,5,6,7,10,13 0.7100±0.0106 0.4091±0.0049 0.2180±0.0185 0.6221±0.0099 0.2875±0.0132 0.2492±0.0036 0.2529±0.0040 0.5462±0.0140 0.41

Taylor

1 27, 26, 25, 24, 28, 23, 29, 22 0.6088±0.0114 0.3288±0.0047 0.1660±0.0167 0.4318±0.0102 0.2790±0.0131 0.2310±0.0036 0.2534±0.0041 0.6093±0.0137 0.36
5 24, 26, 25, 28, 27, 23, 29, 22 0.6088±0.0114 0.3288±0.0047 0.1660±0.0167 0.4318±0.0102 0.2790±0.0131 0.2310±0.0036 0.2534±0.0041 0.6093±0.0137 0.36

10 24, 26, 25, 28, 27, 23, 29, 22 0.6088±0.0114 0.3288±0.0047 0.1660±0.0167 0.4318±0.0102 0.2790±0.0131 0.2310±0.0036 0.2534±0.0041 0.6093±0.0137 0.36
30 24, 23, 25, 26, 22, 27, 28, 20 0.7280±0.0104 0.4985±0.0050 0.2460±0.0193 0.6961±0.0094 0.4130±0.0144 0.6611±0.0038 0.4915±0.0046 0.7032±0.0128 0.55
50 24, 23, 25, 26, 22, 27, 28, 20 0.7280±0.0104 0.4985±0.0050 0.2460±0.0193 0.6961±0.0094 0.4130±0.0144 0.6611±0.0038 0.4915±0.0046 0.7032±0.0128 0.55

Table O: The effect of number of calibration samples on LLM layer pruning.

Baseline # Parameters (TTokens)
Benchmarks

Avg AccPIQA HellaSwag OpenbookQA ARC-e ARC-c MMLU CMMLU WinoGrande

Vicuna-7B-v1.5 6.74B (370M) 0.7720 0.5642 0.3300 0.7555 0.4326 0.4858 0.3518 0.6953 0.5484

ChatGLM2-6B 6.24B (1.4T) 0.5403 0.2589 0.1420 0.2597 0.2005 0.2431 0.2537 0.5288 0.3034

Baichuan2-7B 7.51B (2.6T) 0.7666 0.5363 0.3020 0.7475 0.4206 0.5024 0.5220 0.6819 0.5599

Qwen1.5-7B 7.72B (18T) 0.7845 0.5785 0.3160 0.7125 0.4053 0.5967 0.7277 0.6575 0.5973

LLaMA3-8B 8.03B (15T+) 0.7965 0.6014 0.3480 0.8005 0.4983 0.6212 0.4752 0.7332 0.6093

Gemma2-7B 8.54B (6T) 0.8025 0.6039 0.3300 0.8110 0.5009 0.6143 0.4430 0.7435 0.6061

Llama-3.1-8B-It 8.03B (15T+) 0.8003 0.5910 0.3380 0.8182 0.5179 0.6790 0.5552 0.7395 0.6299
Llama-3-6.3B-Alpaca 6.29B (12.74M) 0.7388 0.5476 0.3160 0.7218 0.4394 0.6179 0.4497 0.6748 0.5633

Llama-3.1-6.3B-It-Alpaca 6.29B (12.74M) 0.7383 0.5323 0.3080 0.7260 0.4684 0.6567 0.5515 0.6646 0.5807

Table P: Performance of our pruned models with respect to similarly-sized community models.
”TTokens” denotes the training tokens. The best results are marked in boldface, and the sub-optimal
ones are underlined.
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Model Generated Sentences

Llama-3.1-6.3B-
It-Alpaca

To be or not to be, that is the question that has been asked thousands of times throughout history. but have
you ever wondered what it would be like to not exist? what would it feel like to not have consciousness or
awareness of any kind? would it be like being asleep or a combed out hair? no, it would be something else
entirely. it would be like not being here at all, like being a tree or a rock, a piece of furniture or a piece
of trash. nothingness is not something we can really comprehend because we can’t experience it. we can’t
even imagine it because we can’t imagine.

It fills me with such pride and joy knowing that I have been able to help shaped the lives of countless stu-
dents over the years. I am proud of the numerous accomplishments and achievements of my students, and I
am proud of the role I have played in shaping them into the people they are today. As a teacher, I believe it
is my duty to provide an optimal learning environment that fosters growth and development of my students.
I believe in making learning fun and engaging, and I am dedicated to pushing the bounds of innovation in
the classroom. I am dedicated to ensuring that my students leave my classroom with the knowledge and
skills they need ...

What’s great about the holiday season? Christmas lights, Christmas shows, Christmas presents, Christmas
holiday traditions. But what’s not great about the holiday season? crowds, stress, Santa Claus, Christmas
holiday stress, Christmas holiday stressors. It’s important to remember to do things that help you relax
during the holiday season, such as taking time for yourself, engaging in relaxation techniques, practicing
mindfulness, engaging in physical activity, practicing gratitude, practicing self-care, engaging in activities
that bring you joy, and spending time with loved ones. These are all important components of stressors
prevention during the holiday season. Here are some tips to help you. ...

Llama-3.1-8B-It

To be or not to be, that is the question. How does one decide whether a being is alive or not? The issue of
what constitutes life has puzzled philosophers and scientists alike for centuries. A being is alive if it meets
the criteria of life, which are: Metabolism: The ability to carry out basic functions such as respiration,
photosynthesis, and nutrient uptake. Homeostasis: The ability to maintain a stable internal environment,
despite changes in the external environment. Growth and Development: The ability to increase in size and
complexity over time. Reproduction: The ability to produce offspring, either sexually or asex

It fills me with such pride and joy to see my friends’ passions ignite into flame and to watch them soar to
great heights! It was an absolutely honour to have been able to share this experience with you and to bear
witness to your hard work and dedication! It was an absolute pleasure to get to know you and share our
experiences, but I know that this is just the beginning of an amazing journey! I feel so grateful to have you
in my life, and I am constantly in awe of your love, kindness, and generosity! It’s been such an incredible
journey watching you discover and grow, and I feel so lucky to have...

What’s great about the holiday season? In addition to being able to spend time with loved ones and get
some much-needed R&R, many people enjoy the idea of giving back to others. Whether it’s volunteering,
donating to charity, or participating in a Secret Santa gift exchange, the holiday season can be a time of
kindness and generosity. But have you ever thought about how you might be able to combine your love of
cooking and giving back this holiday season? If so, you might be interested in hosting a charity-themed
potluck dinner or bake sale. Here are a few ideas to get you started: Host a potluck dinner to...

Table Q: Generated Examples from the Llama-3.1-6.3B-It-Alpaca and Llama-3.1-8B-It.
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