
Under review as a conference paper at ICLR 2024

EPIC: COMPRESSING DEEP GNNS VIA EXPRESSIVE
POWER GAP-INDUCED KNOWLEDGE DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The teacher-student paradigm-based knowledge distillation (KD) has recently
emerged as a promising technique for compressing graph neural networks
(GNNs). Despite the great success in compressing moderate-sized GNNs, distill-
ing deep GNNs (e.g., with over 100 layers) remains a tough challenge. A widely
recognized reason is the teacher-student expressive power gap, i.e., the embed-
dings of a deep teacher may be extremely hard for a shallow student to approxi-
mate. Besides, the theoretical analysis and measurement of this gap are currently
missing, resulting in a difficult trade-off between the needs of being “lightweight”
and being “expressive” when selecting a student for the deep teacher. To bridge
the theoretical gap and address the challenge of distilling deep GNNs, we pro-
pose the first GNN KD framework that quantitatively analyzes the teacher-student
expressive power gap, namely Expressive Power gap-InduCed knowledge distil-
lation (EPIC). Our key idea is to formulate the estimation of the expressive power
gap as an embedding regression problem based on the theory of polynomial ap-
proximation. Then, we show that the minimum approximation error has an up-
per bound, which decreases rapidly with respect to the number of student layers.
Furthermore, we empirically demonstrate that the upper bound exponentially con-
verges to zero as the number of student layers increases. Moreover, we propose to
narrow the range of tuning the number of student layers based on the upper bound,
and use an expressive power gap-related loss term to further encourage the student
to generate embeddings similar to those of the teacher. Experiments on large-scale
benchmarks demonstrate that EPIC can effectively reduce the numbers of layers
of deep GNNs, while achieving comparable or superior performance. Specifically,
for the 1,001-layer RevGNN-Deep, we reduce the number of layers by 94% and
accelerate inference by roughly eight times, while achieving comparable perfor-
mance in terms of ROC-AUC on the large-scale benchmark ogbn-proteins.

1 INTRODUCTION

Graph neural networks (GNNs) have recently achieved great success in many real-world applica-
tions involving graph data, such as electronic design automation (Ghose et al., 2021; Wang et al.,
2022b), combinatorial optimization (Cappart et al., 2023; Peng et al., 2021), search engines (Zhu
et al., 2021), recommendation systems (Fan et al., 2019; Wu et al., 2022c), and molecular property
prediction (Wieder et al., 2020; Wang et al., 2022a). The key idea of GNNs is to iteratively update
node embeddings based on both node features and graph structures (Gilmer et al., 2017; Hamilton,
2020; Kipf & Welling, 2017). Specifically, at each layer, GNNs aggregate messages from each
node’s neighborhood and then update node embeddings based on aggregation results and node fea-
tures. Thus, the final embedding of a node in an L-layer GNN contains the information about its
L-hop neighborhood (Hamilton, 2020).

Recently, deep GNNs (Li et al., 2021; Liu et al., 2020; Chen et al., 2020; Li et al., 2019; 2020)
have shown leading performance on large-scale public benchmarks such as Microsoft Academic
Graph (MAG) (Wang et al., 2020) and Open Graph Benchmark (OGB) (Hu et al., 2020), due to
their powerful ability to learn long-range interactions (Chen et al., 2022; Cong et al., 2021). Many
techniques improve the prediction performance of deep GNNs from aspects of graph convolutions
(Li et al., 2021; Chen et al., 2020), normalization (Zhao & Akoglu, 2019; Guo et al., 2023a; Zhou
et al., 2020; 2021), and initialization (JAISWAL et al., 2022) to address the challenges of over-

1

Under review as a conference paper at ICLR 2024

smoothing (Li et al., 2019; Zeng et al., 2021), over-squashing (Topping et al., 2022), and information
bottleneck (Alon & Yahav, 2021).

Nevertheless, the large numbers of layers in deep GNNs severely slow down their inference, mak-
ing it difficult to deploy deep GNNs in latency-limited scenarios (Chen et al., 2021; Lee et al.,
2019; Gong et al., 2021). Unlike models without graph dependency (e.g., Multi-layer percep-
trons/Transformers (Vaswani et al., 2017)/CNNs (Krizhevsky et al., 2012)), deep GNNs suffer from
the notorious neighbor explosion issue incurred by data dependency (Hamilton et al., 2017), i.e., the
exponentially increasing dependencies of nodes with the number of layers. Therefore, knowledge
distillation—a promising class of techniques for accelerating inference, while maintaining predic-
tion performance—have recently become popular in real applications of GNNs.

Various knowledge distillation techniques for GNNs (KD4GNN) have achieved great success in
compressing moderate-sized or shallow GNNs (e.g., GCN (Kipf & Welling, 2017), GraphSAGE
(Hamilton et al., 2017), GAT (Veličković et al., 2018), and APPNP (Gasteiger et al., 2018). Knowl-
edge distillation aims to train a lightweight “student” model under the supervision of a well-trained
“teacher” model, where the supervisory signal (i.e., knowledge) can be anything computed by the
teacher model (Gou et al., 2021). Most existing KD4GNN methods (Yang et al., 2022; Guo et al.,
2023b; Yang et al., 2020b; Wu et al., 2022a; Zhang et al., 2020b; He et al., 2022) aim to distill GNNs
into GNNs with fewer layers or parameters by improving the training framework, the selection of
knowledge, or the configurations of teacher models. Another line of impressive works (Yang et al.,
2021; Zhang et al., 2021; Tian et al., 2022) propose to distill GNNs into multi-layer perceptrons
(MLPs) to avoid the dependency on graph structural information, e.g., neighbor nodes and edge
features. The aforementioned works take the significant first step in exploring KD4GNN, and thus
have drawn increasing attention in recent years.

However, distilling deep GNNs (e.g., with over 100 layers) remains a tough challenge. A widely
recognized reason is that knowledge distillation may be ineffective when the expressive power gap
between the teacher and student is large, as the embeddings of the teacher may be extremely hard for
the student to approximate (Mirzadeh et al., 2020; Gao et al., 2021; Li & Leskovec, 2022). A typical
example is distilling GNNs to MLPs. Because MLPs cannot distinguish two nodes with the same
features and different neighbors, their expressive power is much weaker than GNNs, hence they are
not “good students” for distilling deep GNNs. Besides, the theoretical analysis and measurement of
the expressive power gap are currently missing, so it is difficult for us to select for the deep teacher
a student that is shallow, while expressive.

In this paper, we aim to bridge the theoretical gap and address the challenge of distilling deep GNNs
that excel on large-scale graphs and possess numerous layers. Towards this goal, we propose the
first KD4GNN framework that quantitatively analyzes the teacher-student expressive power gap,
namely Expressive Power gap-InduCed Knowledge Distillation (EPIC). Our key idea is to formu-
late the estimation of the expressive power gap as an embedding regression problem based on the
theory of polynomial approximation. Then, we show that the minimum approximation error has an
upper bound, i.e., the EPIC bound, which decreases rapidly with respect to the number of student
layers. Furthermore, our numerical experiments demonstrate that the EPIC bound exponentially
converges to zero as the number of student layers increases, which empirically guarantees that we
can distill deep GNNs into shallow GNNs. Moreover, we propose to narrow the range of tuning the
number of student layers based on the EPIC bound, and use an expressive power gap-related loss to
further encourage the student to generate embeddings similar to those of the teacher. Experiments
on large-scale benchmarks demonstrate that EPIC can effectively reduce the numbers of layers of
deep GNNs, while achieving comparable or superior performance. Specifically, for the 1,001-layer
RevGNN-Deep, we reduce the number of layers by 94% and accelerate inference by roughly eight
times, while achieving comparable performance in terms of ROC-AUC on the large-scale bench-
mark ogbn-proteins.

2 RELATED WORK

In this section, we discuss some works related to our proposed framework.

2.1 DEEP GRAPH NEURAL NETWORKS

Deep GNNs have strong potential to complete tasks involving large-scale graph-structured data due
to their powerful ability to learn long-range interactions (Chen et al., 2022; Cong et al., 2021). Many
works propose various approaches, including skip connection (Li et al., 2019; 2020; Xu et al., 2018;

2

Under review as a conference paper at ICLR 2024

Gasteiger et al., 2018; Chen et al., 2020), graph normalization (Ioffe & Szegedy, 2015; Zhao &
Akoglu, 2019; Zhou et al., 2021; Yang et al., 2020a; Zhou et al., 2020), random dropping (Rong
et al., 2019; Huang et al., 2020), and grouped reversible graph connections (Li et al., 2021), to
train powerful deep GNNs on large-scale graphs (Chen et al., 2022). Various deep GNNs (Li et al.,
2021; Liu et al., 2020; Chen et al., 2020; Li et al., 2019; 2020) have shown leading performance
on large-scale public benchmarks such as Microsoft Academic Graph (MAG) (Wang et al., 2020)
and Open Graph Benchmark (OGB) (Hu et al., 2020). It is worth mentioning that the 1,001-layer
RevGNN-Deep trained on ogbn-proteins is the deepest GNN that has been published so far.
Despite the great success on public benchmarks, deep GNNs suffer from the notorious neighbor
explosion problem incurred by the data dependency (Hamilton et al., 2017), i.e., the exponentially
increasing dependencies of nodes with the number of layers. This poses significant challenges to
employing deep GNNs in latency-limited scenarios. Therefore, we aim to compress deep GNNs via
the promising teacher-student paradigm-based knowledge distillation (KD) techniques.

2.2 KNOWLEDGE DISTILLATION FOR GNNS (KD4GNN)

To compress GNNs, many works propose various KD (Hinton et al., 2015) techniques, which aims
to train lightweight “student” models under the supervision of well-trained “teacher” models.

GNNs-to-GNNs Distillation. Most existing KD4GNN works aim to distill GNNs to GNNs with
fewer layers or parameters. According to their key ideas for improving the distillation, we can
classify them into three categories: (1) what to distill (how to select appropriate knowledge) (Yang
et al., 2022; Huo et al., 2023; Yan et al., 2020; Yang et al., 2020b; Zhang et al., 2020b; He et al.,
2022), (2) how to distill (how to improve the training paradigm to better transfer knowledge) (Guo
et al., 2023b; Zhang et al., 2020b; He et al., 2022), and (3) who will teach (how to select appropriate
teachers) (Huo et al., 2023; Guo et al., 2023b; Zhang et al., 2020b).

GNNs-to-MLPs Distillation. Another line of impressive works (Yang et al., 2021; Zhang et al.,
2021; Tian et al., 2022; Wu et al., 2023) propose to distill GNNs into multi-layer perceptrons (MLPs)
to avoid the dependency on graph structural information, such as neighbor nodes and edge features.
Because MLPs take only node features as input, their inference speed is much faster than GNNs.
However, as shown in Section 6.2, the distillation performance of these methods in the inductive
setting is unsatisfactory, as the expressive power of MLPs is much weaker than GNNs and MLPs do
not have access to the teachers’ soft labels on test nodes to use as guidance.

Distillation for Deep GNNs. The aforementioned works have achieved great success in distilling
moderate-sized or shallow GNNs (e.g., GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al.,
2017), GAT (Veličković et al., 2018), and APPNP (Gasteiger et al., 2018). However, distilling deep
GNNs (e.g., with over 100 layers) remains a tough challenge. A widely recognized reason is that KD
may be ineffective when the expressive power gap between the teacher and student is large, as the
embeddings of the teacher may be extremely hard for the student to approximate (Mirzadeh et al.,
2020; Gao et al., 2021; Li & Leskovec, 2022). Besides, the theoretical analysis and measurement of
this gap are currently missing. Thus, we aim to bridge the theoretical gap and address the challenge
of distilling deep GNNs that excel on large-scale graphs and possess numerous layers. To the best
of our knowledge, this is the first paper that attempts to distill GNNs with more than 100 layers.

2.3 EXPRESSIVE POWER OF GRAPH NEURAL NETWORKS

The expressive power of GNNs has attracted much attention recently. For example, (Xu et al.,
2019) and (Morris et al., 2019) show that message passing-based GNNs are at most as powerful as
1-WL test (Weisfeiler & Leman, 1968) to distinguish non-isomorphic graphs. Thus, many works
propose various techniques to increase the power of GNNs from the perspective of higher-order WL
tests (Morris et al., 2019; Maron et al., 2019; Chen et al., 2019) and graph bi-connectivity (Zhang
et al., 2023). However, the above-mentioned works mainly focus on GNNs’ whole-graph expressive
power. Therefore, to analyze the GNNs’ link expressive power, (Zhang et al., 2020a) proposes a
multi-node representation theory and explains the superior performance of the labeling trick used in
GNNs for link prediction. Besides, for node property prediction, (Wang & Zhang, 2022) shows that
spectral GNNs can produce arbitrary graph signals under some mild conditions.

3 PRELIMINARIES

We introduce notations, GNNs, and KD in Sections 3.1, 3.2, and 3.3, respectively.

3

Under review as a conference paper at ICLR 2024

3.1 NOTATIONS

A graph G = (V, E) is defined by an unordered set of nodes V = {v1, v2, . . . , vn}, where n is the
number of nodes, and a set of edges E ⊂ V ×V among these nodes. The node set V = VL ⊔VU is the
disjoint union of the labeled node set VL and the unlabeled node set VU. The label of a node vi ∈ VL

is yi. Let (vi, vj) ∈ E denote an edge going from vi ∈ V to vj ∈ V and N (vi) = {vj ∈ V|(vi, vj) ∈ E}
denote the neighborhood of vi. Let A ∈ {0, 1}n×n be the adjacency matrix of G (Ai,j = 1 if and only
if (vi, vj) ∈ E , i, j ∈ [n]) and D be the diagonal matrix whose diagonal element Di,i is the degree of
vi, i ∈ [n]. We assume that G is undirected, i.e., vj ∈ N (vi) ⇔ vi ∈ N (vj), hence A is symmetric.
Denote the normalized adjacency matrix by Â = D− 1

2AD− 1
2 . Let I be the identity matrix, and

denote the normalized Laplacian matrix by L̂ = I − Â, whose eigendecomposition is L̂ = UΛU⊤,
where U is the orthogonal matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues. In
some scenarios, nodes are associated with a node feature matrix X ∈ Rn×dx . For a positive integer
L, [L] denotes {1, . . . , L}. For i ∈ [n], let Xi,: ∈ Rdx and Hi,: ∈ Rdh denote the feature and the
embedding of the node vi with dimension dx and dh, respectively. Let H =

(
H⊤

1,:, . . . ,H
⊤
n,:

)⊤ ∈
Rn×dh be the embedding matrix of the graph. We also denote the embeddings of a set of nodes
S = {vik}

|S|
k=1 by HS = (H)S =

(
H⊤

i1,:, . . . ,H
⊤
ik,:

)⊤ ∈ Rdh×|S|. For a matrix W ∈ Rp×q, we denote
its i-th row by Wi,: and j-th column by W:,j , where i ∈ [p] and j ∈ [q], respectively.

3.2 GRAPH NEURAL NETWORKS

In this paper, we focus on node-level tasks on graphs, which aim to predict a discrete or continuous
label for each node. Graph neural networks (GNNs) iteratively update node embeddings based on
node features and graph structures (Hamilton, 2020; Kipf & Welling, 2017). At each layer, GNNs
aggregate messages from each node’s neighborhood and then update node embeddings based on
aggregation results and node features.

A GNN with L layers and parameters (θ(l))Ll=1 generates the final node embeddings H = H(L) as

H(l) = fθ(l)(H(l−1);X,A), l ∈ [L], (1)

where H(0) = X and fθ(l) is the l-th layer with parameters θ(l).

3.3 KNOWLEDGE DISTILLATION

Knowledge Distillation (KD) aims to train a lightweight student model S by transferring the knowl-
edge from a well-trained teacher model T (Tian et al., 2023). The key idea of KD is to encourage
S to mimic the behaviors of T under its supervision, where the supervisory signal (i.e., knowledge)
can be anything computed by T , such as logits and hidden embeddings (Gou et al., 2021).

Specifically, given the knowledge kT and kS computed by T and S, respectively, we define the
knowledge distillation loss as Lkd = dist(kT , kS), where dist(·, ·) is a distance function (note that
we do not require it to be symmetric), such as the Kullback-Leibler divergence and the Euclidean
distance. For example, for the vanilla knowledge distillation proposed in (Hinton et al., 2015), the
knowledge is the soft labels derived by applying the Softmax operation on logits, and the distance
function is the Kullback-Leibler divergence.

4 THEORETICAL ANALYSIS OF EXPRESSIVE POWER GAP

In the knowledge distillation of deep GNNs, a common but knotty problem is how to select an
appropriate value for the number of student layers, given a deep teacher. This problem involves an-
other one that is more essential, i.e., how does the number of layers of one GNN affect its expressive
power? Specifically, deep L-layer teacher GNNs encode the information about nodes’ L-hop neigh-
bors (Hamilton, 2020), while shallow M-layer student GNNs are difficult to encode the long-range
interactions as well as the deep teacher if M ≪ L. To address this problem, we theoretically analyze
the gap between the expressive power of GNNs with different numbers of layers in this section.

We analyze the expressive power of GNNs on node-level tasks from a spectral perspective follow-
ing (Wang & Zhang, 2022). Given a graph G with node features X ∈ Rn×dx and the normalized
Laplacian matrix L̂ = UΛU⊤, where Λ = diag(λ1, . . . , λn) and U ∈ Rn×n is an orthogonal matrix,
a spectral-based L-layer GNN generates node embeddings at the l-th layer as

H(l) = g(l)a (L̂)ϕw(X), l ∈ [L], (2)

where g
(l)
a (t) =

∑l
k=0 akt

k is an l-degree polynomial with parameters a = (ak)
l
k=0 and ϕw is a neural

network with parameters w. In the theoretical analysis, we suppose that the following assumptions

4

Under review as a conference paper at ICLR 2024

1 4 7 10 13 16 19 22 25 27
M

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u E
PI

C(
M

;L
)

1e10

(a) uEPIC on ogbn-arxiv

1 11 21 31 41 51 61 71
M

0

2

4

6

8

u E
PI

C(
M

;L
)

1e34

(b) uEPIC on ogbn-products

1 11 21 31 41 51 61 71 81
M

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

u E
PI

C(
M

;L
)

1e38

(c) uEPIC on ogbn-proteins

1 4 7 10 13 16 19 22 25 27
M

10

12

14

16

18

20

22

lo
g(

u E
PI

C(
M

;L
))

(d) log(uEPIC) on ogbn-arxiv

1 11 21 31 41 51 61 71
M

70

72

74

76

78

80

lo
g(

u E
PI

C(
M

;L
))

(e) log(uEPIC) on ogbn-products

1 11 21 31 41 51 61 71 81
M

80

82

84

86

88

lo
g(

u E
PI

C(
M

;L
))

(f) log(uEPIC) on ogbn-proteins

Figure 1: uEPIC(M ;L) and log(uEPIC(M ;L)) with respect to M on three large-scale datasets.

hold in this paper. For the relationship of our spectral-based theoretical analysis to non-linear GNNs,
please refer to Appendix B.1.
Assumption 1. We assume that (1) the n eigenvalues (λi)

n
i=1 of L̂ are different from each other, (2)

there exists C > 0 such that ∥ϕw(X)∥F < C/n2 for any w.

Given a well-trained L-layer GNN denoted G
(L)
T with embeddings H

(L)
T ∈ Rn×dh and an M-layer

GNN denoted G
(M)
S with embeddings H

(M)
S ∈ Rn×dh , where M < L, we next analyze their expres-

sive power gap. Suppose that the embeddings are computed by

H
(L)
T = g(L)

a ϕwT
(X), H

(M)
S = g

(M)
b ϕwS

(X), (3)
respectively. We formulate the estimation of their expressive power gap as finding the minimum
approximation error of H(M)

S to H
(L)
T in terms of the Frobenius norm, i.e.,

e(M ;L) ≜ min
b,wS

∥H(M)
S −H

(L)
T ∥F , (4)

The following theorem gives an upper bound of e(M ;L) and shows that the upper bound decreases
monotonically with respect to M . For the detailed proof, please refer to Appendix B.
Theorem 1. Given an n-node graph G with node features X and the normalized Laplacian ma-
trix L̂ = UΛU⊤, an L-layer well-trained GNN (G(L)

T) and an M-layer GNN (G(M)
S) that compute

embeddings as shown in Eq. (3), we suppose that Assumption 1 holds, then we have

e(M ;L) ≤ uEPIC(M ;L) ≜ C∥P(M)(P(M))⊤d(M) − d(M)∥2, (5)

where e(M ;L) is defined by Eq. (4), uEPIC(M ;L) is named the EPIC bound, and P(M) ∈ Rn×(M+1)

is the left-singular matrix of

V(M) =

1 λ1 · · · λM
1

...
...

. . .
...

1 λn · · · λM
n

 , (6)

and

d(M) =

(
L∑

k=M+1

akλ
k
1 , . . . ,

L∑
k=M+1

akλ
k
n

)⊤

. (7)

Moreover, uEPIC(M ;L) decreases monotonically with respect to M . Specifically, we have
uEPIC(L;L) = 0, which leads to e(L;L) = 0.

5

Under review as a conference paper at ICLR 2024

Graph data

Candidate
GNN students

1-layer

M*-layer

L-layer

…

#Layers

EPIC Bound

New search
interval

Selection of
#Layers

Logits of
the student

L-layer

Well-trained
teacher GNN

Hidden embeddings
of the deep teacher

Hidden embeddings
of the shallow student

Logits of
the teacher

Soft label
loss

Input

Input
Generate

embeddings

Output

Output

Generate
embeddings

0 1
1

0

0
0

0

1

1

···

···

···

···
···

···𝐀 =

Eigenvalues of 𝐋መ : 𝜆ଵ, … , 𝜆௡

EPIC Bound

…

Feature
distillation loss

Figure 2: The overall framework of EPIC. Given a graph G and a well-trained L-layer teacher GNN,
we compute EPIC bounds for different values of numbers of student layers and narrow the range of
tuning the number of student layers (see Section 5.1). Then, we use an expressive power gap-related
loss (i.e., a feature distillation loss) to further encourage the student to generate embeddings similar
to those of the teacher (see Section 5.2).

Please note that the monotonically decreasing property of uEPIC(M ;L) does not depend on L and
a = (ak)

L
k=0. To further study how the EPIC bound uEPIC(M ;L) decreases as M increases, we

conduct numerical experiments on large-scale datasets ogbn-arxiv, ogbn-products, and
ogbn-proteins. As shown in Figure 1, uEPIC(M ;L) converges exponentially to zero (note that
uEPIC(L;L) = 0) as M increases. This empirically guarantees that we can distill deep GNNs into
shallow GNNs. For more details about the experiments, please refer to Section 6.4.

5 EXPRESSIVE POWER GAP-INDUCED KNOWLEDGE DISTILLATION

Based on our theoretical analysis in Section 4, we propose a GNN KD framework that takes the
teacher-student expressive power gap into account, namely Expressive Power Gap-Induced Knowl-
edge Distillation (EPIC). Figure 2 illustrates the overall framework of EPIC. Specifically, given a
graph G and a well-trained deep GNN with L layers, we first compute EPIC bounds for different
values of numbers of student layers and select an appropriate value for the number of student layers
such that the student is shallow, while expressive. Then, to further encourage the student to generate
embeddings similar to those of the teacher, we propose an expressive power gap-induced loss term.
5.1 SELECTION OF NUMBER OF STUDENT LAYERS

Pre-processing: Computing EPIC Bounds. Given an L-layer teacher GNN (G(L)
T) and an n-node

training graph G with the adjacency matrix A ∈ Rn×n, we first compute the normalized Laplacian
L̂ = I−D− 1

2AD− 1
2 ∈ Rn×n, where D is the degree matrix, and the eigenvalues (λi)

n
i=1 of L̂.

Then, for each M ∈ [L − 1], we compute the matrix V(M) ∈ Rn×(M+1) defined by Eq. (6) and
its singular value decomposition (SVD) V(M) = P(M)Σ(M)(Q(M))⊤, where P(M) ∈ Rn×(M+1),
Σ(M) ∈ R(M+1)×(M+1), and Q(M) ∈ R(M+1)×n. If G(L)

T is a spectral GNN, we use its real parameters
as a = (ak)

L
k=0. Otherwise, we let ak = 1 for k = 0, . . . , L. Note that this does not affect the

monotonically decreasing property of the EPIC bound. Then, we compute the vector d defined by
Eq. (7) and the EPIC bound uEPIC(M ;L) by Eq. 5 (we can simply let C = 1).

It is worth noting that we do not need to compute EPIC bounds in the inference stage of GNNs,
hence the computation of EPIC bounds do not affect the inference speed of GNNs, which is the
focus of this paper and most knowledge distillation methods.

Narrowing the Range of Tuning the Number of Student Layers. After computing EPIC bounds
(uEPIC(M ;L))L−1

M=1, we plot uEPIC(M ;L) as a function of M . By observing the plot, we find the

6

Under review as a conference paper at ICLR 2024

maximum value Mmax such that uEPIC(M ;L) decreases slowly when M > Mmax. Then we tune
the number M of student layers in [1,Mmax], which is much smaller than [1, L] since uEPIC(M ;L)
converges exponentially to zero as M increases.
5.2 EXPRESSIVE POWER GAP-RELATED LOSS

To further improve the expressive power of the student G
(M)
S , we concatenate its embeddings at

top-K layers and multiply it by a linear mapping matrix W ∈ RKdS×dT as

Ĥ
(M)

S =
[
H

(M−K+1)
S · · · H

(M)
S

]
W ∈ Rn×KdT , (8)

where K is a hyperparameter, dS is the width of G(M)
S , and dT is the width of the teacher G(L)

T . We
take Ĥ

(M)
S as the final embedding matrix of G(M)

S .

To encourage G
(M∗)
S to generate embeddings similar to those of G(L)

T , we use an expressive power
gap-related loss (feature distillation loss), i.e.,

LEP = ∥(Ĥ(M)
S)Vtr − (H

(L)
T)Vtr∥2F , (9)

where Vtr is the train set. Besides, we also use the ground truth loss and the soft label loss, i.e.,

LGT =
∑
v∈Vtr

CE(ŷv,yv), LSL =
∑
v∈Vtr

DKL(ŷv, zv), (10)

where CE(·, ·) is the cross-entropy function, DKL(·, ·) is the Kullback-Leibler divergence, ŷ is the
prediction of G(M)

S , y is the vector of ground truth labels, and z is the vector of soft labels predicted
by G

(L)
T . The final loss function L is the weighted sum of the three loss terms, i.e.,

L = LGT + λLSL + µLEP, (11)

where λ and µ are the weight coefficients of loss terms. We summarize EPIC in Algorithm 1. Please
note that it does not involve the process of updating parameters.

6 EXPERIMENTS
Algorithm 1 EPIC: Expressive Power Gap-Induced Knowl-
edge Distillation

1: Input: The training graph G with nodes Vtr, node fea-
tures X, edge features E (if G has them), and the ad-
jacency matrix A. The ground truth labels (y)Vtr , soft
labels (z)Vtr and embeddings (H

(L)
T)Vtr of the teacher

G
(L)
T . The well-trained parameters a = (ak)

L
k=0 (if G(L)

T

is spectral). The weight coefficients λ and µ. The num-
ber K of concatenated embeddings and ratio γ.

2: Compute L̂ = I−D− 1
2AD− 1

2 and eigenvalues (λi)
n
i=1

3: for M = 1, . . . , L− 1 do
4: Compute V(M) by Eq. (6)
5: Compute the SVD by V(M) = P(M)Σ(M)(Q(M))⊤

6: Compute d(M) by Eq. (7)
7: Compute uEPIC(M ;L) by Eq. (5)
8: end for
9: Find Mmax by observing the plot of uEPIC(M ;L)

10: for M = 1, . . . ,Mmax do
11: Compute Ĥ

(M)
S by Eq. (8)

12: Compute LEP, LGT, LSL, and L by Eqs. (9)-(11)
13: end for

We first introduce experimental set-
tings in Section 6.1. We then show
the main results of EPIC on distill-
ing deep GNNs on large-scale bench-
marks in Section 6.2. After that, in
Section 6.3, we conduct experiments
to study the decreasing trend of the
EPIC bound. Finally, we provide ab-
lation studies in Section 6.4. We run
all experiments on a single GeForce
RTX 3090 Ti (24 GB).

6.1 EXPERIMENTAL SETTINGS

We conduct all experiments in the
practical setting of the inductive
training, i.e., test nodes are strictly
unseen during training (Wu et al.,
2022b). Specifically, given a graph
G = (V, E) with node features X and
ground truth labels y, where V =
VL ⊔ VU is the disjoint union of the
labeled node set VL and the unlabeled
node set VU, we remove all edges
connected to nodes in VU from E to
form EL and GL = (VL, EL). For details of the inductive setting, please refer to Appendix A.2.

For the transductive setting, instead of training a student model, we can store the final node em-
bedding matrix H

(L)
T of teachers in cheap RAM or hard drive storage to accelerate inference, whose

7

Under review as a conference paper at ICLR 2024

Table 1: Distillation performance of EPIC and baselines in the inductive setting on three large-
scale datasets. The “#Layers” refers to the number of GNN-layers. The “Perf.” refers to the
performance, whose metric is Accuracy for ogbn-arxiv and ogbn-products, and ROC-AUC
for ogbn-proteins. The “#Layers↓” refers to the relative decrease of numbers of graph convo-
lutional layers compared to the teacher.

Datasets Teacher LSP-GCN GLNN NOSMOG EPIC (Ours)
#Layers Perf. #Layers Perf. Perf. Perf. #Layers #Layers↓ Perf.

Arxiv 28 72.91±0.00 4 67.12±0.33 56.16±0.36 62.46±0.39 3 89.29% 73.06±0.13
Products 112 77.86±0.00 4 72.43±0.28 60.11±0.06 - 7 93.75% 78.58±0.27
Proteins 1,001 85.91±0.08 4 - 74.40±0.09 60.63±1.67 60 94.01% 85.85±0.09

runtime is marginal and space complexity O(|V|) is similar to the node features X. Therefore, the
acceleration of inference without performance degradation under the transductive setting is trivial.

To distill deep GNNs on large-scale graphs and enforce a fair comparison, we select the datasets,
the teacher models, the baselines, and the hyperparameters as follows.

Datasets. We evaluate the proposed EPIC on three large-scale OGB (Hu et al., 2020) datasets,
i.e., ogbn-arxiv, ogbn-products, and ogbn-proteins. These datasets have more than
100,000 nodes and 1,000,000 edges, and have become standard large-scale benchmarks in recent
years. For more details, please refer to Appendix A.1.

Teacher Models. For ogbn-products and ogbn-proteins, we select the one with the high-
est ranking on the public leaderboard among GNNs with over 100 layers. For the relatively smaller
ogbn-arxiv, we select the one with the highest ranking on the public leaderboard among GNNs
with over 10 layers. Based on these criteria, we select RevGCN-Deep (with 28 layers) (Li et al.,
2021), RevGNN-112 (with 112 layers) (Li et al., 2021), and RevGNN-Deep (with 1,001 layers) (Li
et al., 2021) as our teacher models on ogbn-arxiv, ogbn-products, and ogbn-proteins,
respectively. For more details, please refer to Appendix A.3.

Baselines. We compare EPIC with three representative KD4GNN frameworks, i.e., LSP (GNNs-
to-GNNs) (Yang et al., 2020b), GLNN (GNNs-to-MLPs) (Zhang et al., 2021), and NOSMOG
(GNNs-to-MLPs) (Tian et al., 2022). For more details, please refer to Appendix A.4 and A.5.

Hyperparameters. We follow the most of hyperparameters used to train our teachers (Li et al.,
2021), except for the additional hyperparameters in EPIC such as the width of the student dS , the
weight coefficients λ and µ, the number K of concatenated embeddings, and the ratio γ for selecting
the number of student layers. For a fair comparison, We use the grid search to find the best hyper-
parameters for EPIC and the three baselines (please see Appendix A.4 and A.6 for more details).

6.2 MAIN RESULTS

Distillation Performance of EPIC. In this section, we refer to the student(s) trained with EPIC as
EPIC(s). Table 1 reports the distillation performance of EPIC and baselines in the inductive setting
on three large-scale datasets. The numbers of the EPIC student layers are selected in the narrowed
range based on EPIC bounds. We train each teacher for only once, as training deep GNNs takes a
long time. For RevGNN-Deep on ogbn-proteins, we report the mean and standard deviation
by running 50 mini-batch inferences with different random seeds. For the students, we train each
one for five times with different seeds, run 50 mini-batch inferences with different seeds for each
trained student (we run full-batch inference if the GPU memory can afford it), and report the mean
and standard deviation.

As shown in Table 1, EPIC reduces the numbers of teacher layers by at least 89.29%, while achieving
comparable or even superior performance. Specifically, on ogbn-arxiv and ogbn-products,
EPICs outperform their teachers with relative decreases of numbers of layers by 89.29% and
93.75%, respectively. On ogbn-proteins, the performance of EPIC is slightly lower than its
1,001-layer teacher, while its relative decrease of the number of layers is as high as 94%.

8

https://ogb.stanford.edu/docs/leader_nodeprop/
https://ogb.stanford.edu/docs/leader_nodeprop/

Under review as a conference paper at ICLR 2024

Table 2: Comparisons of inference time
between EPICs and deep teachers. The
unit of time in the table is seconds. The
“Spd.↑” refers to the relative improvements
of inference speed brought by EPIC.

Datasets Arxiv Products Proteins

Teacher 0.52±0.01 14.17±0.05 113.29±0.75

EPIC 0.08±0.00 1.06±0.04 14.11±0.42

Spd.↑ 6.50× 13.37× 8.03×

Table 3: The absolute improvements of
performance brought by LSL and LEP.
The improvements are denoted ∆SL and
∆EPIC, respectively.

Datasets Arxiv Products Proteins

Vanilla EPIC 72.91 77.71 85.00

LSL 72.94 77.83 85.25
∆SL 0.03 0.12 0.25

LSL + LEP 73.06 78.58 85.85
∆EPIC 0.12 0.75 0.60

To further demonstrate the effectiveness of EPIC, we
compare it with LSP (Yang et al., 2020b), GLNN
(Zhang et al., 2021), and NOSMOG (Tian et al., 2022).
For LSP, we follow the original paper (Yang et al.,
2020b) to use 4-layer GCNs as students. We do not
report the result of LSP-GCN on ogbn-proteins,
as the vanilla GCN is difficult to encode graphs with
edge features. For GLNN and NOSMOG, the stu-
dents are MLPs. We do not report the result of NOS-
MOG on ogbn-products, as it takes more than 50
hours to generate positional encodings for test nodes,
which is much longer than the overall inference time
of the teacher. As shown in Table 1, the performance
of baselines in distilling deep GNNs is unsatisfac-
tory, although they have achieved success in distilling
moderate-sized GNNs. We attribute the reason to the
weak expressive power of GCNs and MLPs. When
distilling deep GNNs, the embeddings of teachers are
extremely hard for them to approximate, hence the
knowledge distillation becomes ineffective. Besides,
in the inductive setting, shallow students do not have
access to the teachers’ soft labels on test nodes to use
as guidance, which further poses challenges to knowl-
edge distillation.

Acceleration Effect of EPIC. Table 2 shows the in-
ference time of EPICs and their teachers. We report the mean and standard deviation by running
inference for five times with different random seeds. For the deep teachers on ogbn-arxiv,
ogbn-products, and ogbn-proteins, EPIC achieves speedups of 6.50×, 14.06× and 8.03×,
respectively. This demonstrates the effectiveness of EPIC in accelerating the inference of deep
GNNs.

6.3 ANALYSIS OF EPIC BOUND

In this section, we conduct numerical experiments to empirically analyze the EPIC bound. We
plot the line charts of the EPIC bound uEPIC(M ;L) and the log-EPIC bound log(uEPIC(M ;L))
with respect to the number of student layers M on ogbn-arxiv, ogbn-products, and
ogbn-proteins, as shown in Figure 1. We observe that uEPIC(M ;L) decreases rapidly when
M is small, and then remains at a low level. Besides, we observe that log(uEPIC(M ;L)) decreases
linearly, which implies that uEPIC(M ;L) converges exponentially to zero (note that uEPIC(L,L) = 0)
as M increases. This empirically guarantees that we can distill deep GNNs into shallow GNNs.

6.4 ABLATION STUDIES

In this section, we conduct ablation studies to analyze the improvements of performance brought by
LSL and LEP. As shown in Table 3, both LSL and LEP bring improvements of performance to the
EPIC students. Specifically, compared to vanilla EPIC students, LSL improves the performance by
0.03, 0.12, and 0.25 on ogbn-arxiv, ogbn-products, and ogbn-proteins, respectively.
On this basis, LEP brings improvements of performance by 0.12, 0.75, and 0.60 on the three datasets,
respectively. These results illustrate the effectiveness of the feature distillation loss and its potential
in combination with other distillation loss terms.

7 CONCLUSION

In this paper, we propose the first GNN KD framework that quantitatively analyzes the teacher-
student expressive power gap, namely EPIC. We show that the minimum error of approximating the
teacher’s embeddings with the student’s embeddings has an upper bound, which decreases rapidly
w.r.t. the number of student layers. We empirically demonstrate that the upper bound converges
exponentially to zero as the number of student layers increases. Moreover, we propose to narrow
the range of tuning the number of student layers based on the upper bound, and use an expressive
power gap-related loss to further encourage the student to generate embeddings similar to those of
the teacher. Experiments on large-scale benchmarks demonstrate that EPIC can effectively reduce
the numbers of layers of deep GNNs, while achieving comparable or superior performance.

9

	Introduction
	Related Work
	Deep Graph Neural Networks
	Knowledge Distillation for GNNs (KD4GNN)
	Expressive Power of Graph Neural Networks

	Preliminaries
	Notations
	Graph Neural Networks
	Knowledge Distillation

	Theoretical Analysis of Expressive Power Gap
	Expressive Power Gap-Induced Knowledge Distillation
	Selection of Number of Student Layers
	Expressive Power Gap-Related Loss

	Experiments
	Experimental Settings
	Main Results
	Analysis of EPIC Bound
	Ablation Studies

	Conclusion

