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Abstract

Neural Machine Translation (NMT)001
models have been effective on large002
bilingual datasets. However, the exist-003
ing methods and techniques show that004
the model’s performance is highly de-005
pendent on the number of examples006
in training data. For many languages,007
having such amount of corpora is a008
far fetched dream. Taking inspiration009
from monolingual speakers exploring010
new languages using bilingual dictio-011
naries, we investigate the applicability012
of bilingual dictionaries for languages013
with extremely low, or no bilingual cor-014
pus. In this paper, we explore meth-015
ods using bilingual dictionaries with016
an NMT model to improve translations017
for extremely low resource languages.018
We extend this work for multilingual019
systems, exhibiting zero-shot property.020
We present a detailed analysis of ef-021
fects of quality of dictionary, training022
dataset size, language family, etc., on023
the translation quality. Results on024
multiple low-resource test languages025
show a clear advantage of our bilin-026
gual dictionary-based method over the027
baselines.028

1 Introduction029

With the growing interest in improv-030

ing automatic translation systems, deep031

learning-based models have played a sig-032

nificant role. They have a ubiquitous in-033

fluence on such solutions. Neural Ma-034

chine translation has been ruling the roost035

in recent times both in academia as well036

as in industries. It has outperformed037

other translation methods, and even hu-038

man translators for some languages (Bojar039

et al., 2016) (Bentivogli et al., 2016) (Bar-040

rault et al., 2020). The encoder-decoder041

framework of NMT models allow them to 042

transfer the semantic and syntactic infor- 043

mation more precisely. 044

One of the major challenges for such 045

languages is training corpora of sufficient 046

size. Such models need for large bilingual 047

or monolingual datasets, where usually it 048

ranges between 1-50 million parallel sen- 049

tences. For the extremely low resourced 050

languages, dataset with size lesser than 051

20 thousand parallel sentences, NMT mod- 052

els have not been that successful (Östling 053

and Tiedemann, 2017). The standard ap- 054

proach to this problem has mostly relied 055

on techniques such as transfer learning 056

(Zoph et al., 2016), and data augmentation 057

approaches such as back-translation (Sen- 058

nrich et al., 2015) (Przystupa and Abdul- 059

Mageed, 2019) and data diversification 060

(Nguyen et al., 2019). 061

The use of prior knowledge sources 062

for translation of low-resource languages, 063

such as bilingual dictionaries, is still 064

under-explored. The work of (Duan et al., 065

2020) and (Nag et al., 2020) are closest 066

to ours and both utilize bilingual dictio- 067

nary, but they use additional large mono- 068

lingual corpus while we use an extremely 069

small test language’s bilingual corpus or 070

no bilingual corpora of the test language 071

at all. The existing approaches mostly 072

depend on the availability of some addi- 073

tional corpora like target monolingual cor- 074

pus and target-to-source model for back- 075

translation, sister language for transfer 076

learning or additional computations as 077

in data diversification. One of the most 078

common and widely available prior knowl- 079

edge resources across low resourced lan- 080

guages is the bilingual dictionary which 081

has shown potential in NMT in recent 082
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times.083

In our work, we explore the use of bilin-084

gual dictionary for translation of extremely085

low languages. Any meaningful transla-086

tion requires us to address the points as087

illustrated in Figure 1. In extremely low re-088

source languages, NMT falls behind given089

the lack of enormous quantity of data re-090

quired to train them properly. We study091

the potential of assisting the NMT models092

with the contextual dictionary transforma-093

tion. Our proposed method involves the094

Translation

(c) correct grammar in
target language

(b) preserving the
context

(a) getting source's
word meaning in
target language

Figure 1: Translation (a) word mapping task,
which can be partially, or completely achieved
with bilingual dictionary lookup. (b) is about
the association a word has with its surround-
ing words, which in turn affects its align-
ment. (c) is the transformation of syntactic
features of the source language to the source
language.

use of bilingual dictionary for address-095

ing the points (Figure 1 (a) and (b)) and an096

NMTmodel for (Figure 1 (c)), i.e., we use an097

NMT model to transform a distorted sen-098

tence into a meaningful sentence within099

the same language. Using this method,100

we propose two simple frameworks which101

can be extremely useful for languages with102

extremely less or no corpus available but103

having a bilingual dictionary. Summariz-104

ing the contributions of our paper as fol-105

lows:106

• We introduce a simple and effective107

method for incorporating a bilingual108

dictionary in a neural machine trans-109

lation task.110

• We propose a one-to-one bilingual111

dictionary based NMT model for ex-112

tremely low-resource languages.113

• We propose a many-to-one NMTmodel114

capable of translating for languages it 115

has never seen in the training sets. 116

We provide a brief description of our 117

method in Section 2. We discuss the us- 118

age of the bilingual dictionary, tokenizer, 119

and the NMT model. We explore the appli- 120

cability of our proposed method in two 121

settings, extremely less corpus and no 122

corpus available for concerned language. 123

In Section 3, we describe our one-to-one 124

translation framework useful for transla- 125

tion in extremely low resource setting. We 126

provide a detailed analysis with compar- 127

ison among translation quality, dataset 128

size and dictionary quality. In Section 4, 129

we provide detailed information about our 130

proposed many-to-one translation frame- 131

work, which shows zero-shot property. We 132

summarize and conclude our results and 133

contributions in Section 5. 134

2 Dict-NMT: Assisting NMT model 135

with bilingual dictionary 136

We propose a simple yet effective method 137

of translation, dict-NMT, using an NMT 138

model with the help of the respective 139

languages’ bilingual dictionary. We use 140

a bilingual dictionary as word-to-word 141

translator to convert words from the 142

source language to an intermediate se- 143

quence. This distorted sentence in the 144

target language is then fed to an NMT 145

model, here Transformer, to learn the re- 146

lation between the intermediate sequence 147

and ground truth (Figure 2). This opens 148

up doors for various frameworks for trans- 149

lation. One simple way is to apply this 150

method to a one-to-one translation system 151

(Section 3). Furthermore, one can also 152

devise a many-to-one translation frame- 153

work (Section 4), where the NMT model 154

is trained on word-to-word translations 155

from various languages. This generalised 156

model can then be used even for languages 157

which were not used in the training data. 158

Other possible ways include fine-tuning 159

the generalised model on a specific lan- 160

guage. Other data augmentation methods, 161

such as backtranslation and data diversifi- 162

cation, are also applicable to our proposed 163

method. Another possible way of augment- 164
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ing data is by adding intra-shuffled (i.e.,165

words within a sentence s are shuffled),166

noisy (replace tokens in s with random167

tokens with some probability) sentences168

from target language to the training data.169

We leave these methods for future work.170

2.1 Bilingual Dictionary171

A dictionary is a map of words from the172

source language to the target language,173

where the mapping can be one to many.174

Here, we consider mappings that are word175

to word and not word to phrase.176

First, using the dictionary, we change177

the source language sentences into an in-178

termediate sequence. This step would re-179

duce the workload on our NMTmodel from180

learning the word meanings from the avail-181

able small dataset. If a word in the source182

sentence is present in the dictionary then183

it is converted accordingly in intermedi-184

ate sequence, otherwise, it remains un-185

changed in the intermediate sequence, i.e.,186

we consider the word to be in the target187

language space. When using the dictio-188

nary, there might exist multiple target lan-189

guage words as meaning for a source lan-190

guage word. We settle this problem of pol-191

ysemy by selecting the word most similar192

to the previous word’s dictionary transla-193

tion (using target language’s pre-trained194

word embeddings). This would help us to195

preserve the contextual information.196

More precisely, for any source language197

S and target language T with a bilingual198

dictionary DS→T , the first step is to trans-199

late the text in S word-to-word to T using200

DS→T . In case the mapping is not avail-201

able for any word w in S, it is mapped to202

itself and is considered a random noise203

in T . For the case of polysemous words,204

we take the help of word embeddings of205

T . We select the word (in T ) most similar206

to the previous word’s dictionary transla-207

tion (using target language’s pre-trained208

word embeddings). For instance, given209

is a sentence s = {s1, s2, ..., sn} in S with210

word-to-word translation t = {t1, t2, ..., tn}211

in T . For any si(i > 1) having dictionary212

translations DS→T (si) = {t1i , t2i , ..., tmi }, we213

s1, s2, s3, ... , sn

t'1, t'2, t'3, ... , t'n

Bilingual
Dictionary
(S -> T)

Attention Encoder-
Decoder Transformer

t1, t2, t3, ... , tn'

Source language
sequence

Intermediate sequence

Target language
sequence

Figure 2: Our proposed method involving
bilingual dictionary for NMT.

select its translation as 214

ti = argmax
t∈DS→T (si)

similarity(tj , t) 215

where j = max{j′ < i|sj ∈ Dom(DS→T )}. 216

We randomly select translation for the first 217

occurring polysemous word. Here, for our 218

experiments, we assume that the target 219

language is a popular one, thus, decent 220

word embeddings for T exist. This method 221

would help us to preserve the contextual 222

information. However, if the first randomly 223

selected word is erroneous, the trailing 224

polysemous words might have incorrect 225

translations. 226

2.2 Tokenizer 227

Tokenization is the process of breaking 228

the given text into smaller chunks. Since 229

the model input and output are in the 230

same language, we share the tokenizer for 231

both of them. The intermediate represen- 232

tation might consist words from foreign 233

language. Thus, instead of using the tra- 234

ditional whitespace tokenizer and giving 235

all such words a <OOV> token, we use 236

subspace tokenizer to handle the large 237

amount of out-of-vocabulary words. This 238

way, the noise created by the tokens of 239

foreign language, would help the model 240

being more robust. 241

2.3 NMT Model 242

Since both intermediate sequence and tar- 243

get belong to the same language, the NMT 244
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Algorithm 1: Dict-NMT. Di = (Si, T ) is a set of parallel sentences from language Si to T .
Corresponding to the language pair (Si, T ), we have a bilingual dictionary Bi where Bi(s) is a
word-to-word translation of s. We train the model M on {Di}ni=1 using {Bi}ni=1.

1 Procedure Train({Di}ni=1, {Bi}ni=1, p):
2 M randomly initialised NMT model.
3 Train M on create_dataset({Di}ni=1, {Bi}n, p) until it converges
4 return M
5 Function create_dataset({Di}ni=1, {Bi}n, p):
6 D′ = φ
7 for D ∈ {Di}ni=1 do
8 for (s, t) ∈ D do
9 if countT (Bi(s)) ≥ p then

10 D′ = D′ ∪ (Bi(s), t)

11

/* countT (Bs) = % of words in s having dictionary translations */

12

13 shuffle D′

14 return D′

15

model is relieved from learning the word245

meanings. The model will now try to focus246

mostly on learning the grammar for the247

target language space. The NMT model248

learns the mappings from the source in-249

variant representations coming from vari-250

ous languages to the target language and251

tries to generalise which would be benefi-252

cial for unknown languages.253

Our proposed method can be applied254

to any NMT model. For our experiments,255

we use the state-of-the-art Transformer256

(Vaswani et al., 2017) model. Since, the257

intermediate sentence, i.e., the input for258

the Transformer, in itself does not make259

any sense, the attention mechanism helps260

to understand the dependencies of words261

through the whole sequence. The encoder-262

decoder framework allows us to find the263

meaning of the words not translated by the264

dictionary while preserving the context.265

3 Dict-NMT for one-to-one266

translation267

We propose a dictionary based one-to-one268

translation framework for extremely low269

resource settings. Given a language pair270

(S, T ), we train an NMT model on the word-271

to-word dictionary translations of S, and 272

T (i = 1 in Algo 1). 273

3.1 Experimental Settings 274

We extensively check the effectiveness 275

of the dictionary (by varying the dictio- 276

nary percentage) across five European 277

languages’ translation tasks as well as 278

the size of the bilingual corpora. We keep 279

Transformer as our baseline model. We 280

use 4 layer Transformer with 100 embed- 281

ding/hidden units, and 400 feed-forward 282

filter size. We tie source and target em- 283

beddings. We keep batch size 32, epochs 284

50, dropout 0.1 and optimizer Adam. In 285

this work, we use the pre-trained BERT 286

WordPiece tokenizer (Devlin et al., 2019), 287

a subword tokenizer. 288

289

3.1.1 Bilingual dictionary 290

For our experiments, we use the publicly 291

available Facebook MUSE’s1 bilingual dic- 292

tionary, which consists of 110 large-scale 293

ground-truth bilingual dictionaries (Con- 294

neau et al., 2017). For preserving the 295

context while dictionary translation, we 296

1https://github.com/facebookresearch/MUSE
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use the Fasttext embeddings (Bojanowski297

et al., 2017).298

3.1.2 Data299

For our experiments, we consider Eu-300

roparl v7 parallel corpus (Koehn, 2002)301

for Pt-En, Sv-En, Nl-En, Pt-En, and Fr-En302

language pairs. Here we selected English303

as our target language in all the cases. The304

intuition behind this is that any bilingual305

dictionary for an extremely low resource306

language would be created by taking a307

commonly used language, so that it can308

be of practical use. As English is one such309

language, we tried our experiments with310

it.311

We filter each sentence such that it con-312

tains at most 80 tokens. We use these data313

in low resource setting, i.e. we use only314

2K, 8K, 16K and 20K data size for each lan-315

guage. We create these datasets accord-316

ing to the percentage of words from each317

sentences available in the corresponding318

dictionary, precisely we did this for 50%-319

80% (Table 1). For each data size 0.05% is320

the test set and rest we use as training321

set.322

3.2 Results and Analysis323

We perform intensive experiments on the324

effectiveness of training data size and dic-325

tionary coverage on the performance of326

the translation system. Table 2 shows327

comparison between the baseline (bilin-328

gual dictionary based word-to-word trans-329

lation) and our proposed method. The330

best scores for each language pair, along331

with the dictionary coverage are reported332

in the table. The best result is chosen333

over the dictionary coverage (50% − 80%),334

i.e. least percentage of words in each sen-335

tence available in the bilingual dictionary,336

and varied dataset size (2K − 20K). We337

report arithmetic mean of scores on 3 dif-338

ferent datasets sampled from the same339

large data. The scores show a significant340

increase from simple word-to-word trans-341

lations (4.8 − 8.6). We performed experi-342

ments for three language pairs with simple343

transformer as well. However, due to very344

less data, the model seemed to struggle345

considerably. For Pt-En, Sv-En, and Fr-En346

Dict
%

Ro-En
(399.37K)

Pt-En
(1.96M)

Fr-En
(2M)

It-En
(1.9M)

Es-En
(1.97M)

50 104K 438.6K 1.4M 941K 1.5M
60 22.6K 77.7K 536.4K 202.6K 631.6K
70 4K 11.3K 106.2K 26.8K 111.4K
80 975 2.5K 17.7K 4.8K 15.9K
90 244 937 2.6K 1.9K 2.5K
100 230 920 2K 1.8K 2K

Italic
Dict
%

Da-En
(1.97M)

Sv-En
(1.86M)

De-En
(1.92M)

Nl-En
(2M)

50 1.3M 1.7M 1.9M 1.7M
60 506.6K 1.3M 1.7M 1M
70 107.9K 563.7K 1M 31.7K
80 20.2K 124.9K 317.5K 55K
90 2.6K 9.2K 28.2K 4.7K
100 1.9K 1.8K 3.3K 1.9K

Germanic
Dict
%

Bg-En
(406.9K)

Cz-En
(646.6K)

Pl-En
(632.57K)

Sl-En
(623.49M)

Sk-En
(640.72K)

50 33.2K 136.8K 137.8K 64.6K 180.4K
60 6.4K 36.6K 36.5K 16K 49.2K
70 1K 9.5K 8.6K 3.9K 11.3K
80 233K 3.1K 2.7K 1.6K 3.5K
90 58K 1.4K 1.1K 1.1K 1.4K
100 57K 1.3K 1K 1.1K 1.3K

Slavic

Table 1: Dataset size after filtering sentences
containing at least Dict% of dictionary words.

Language Dict % BLEU
Base w D

Pt-En 55% 6.9 15.4
Sv-En 70% 8.4 17.0
Nl-En 65% 5.9 10.7
Fr-En 65% 8.6 15.4
Da-En 65% 7.7 16.1

Table 2: Results: Best BLEU score for each
language. w D is “with dictionary", i.e. our
proposed method, Base is “dictionary base-
line" which is simply word-to-word transla-
tion . We get the best scores for maximum
data size (i.e., 20K). Training set dictionary
coverage (Dict%) is given for each correspond-
ing score. The BLEU scores are calculated us-
ing SacreBLEU’s corpus_bleu (Post, 2018)

language pairs, best scores on 20K dataset 347

came to be 1.56, 1.39, and 1.37 respectively. 348

This shows there is a clear advantage of 349

using the proposed method for extremely 350

low resource languages. 351

In Figure 3, we have heat-maps of BLEU 352
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Figure 3: BLEU Scores for One-to-One translation method. We report the scores on test data
with 80% dictionary coverage, as it was maximum in every case.

scores for different languages calculated353

over different datasets. The x-axis shows354

the size of the dataset and the y-axis355

shows the dictionary percentage. We can356

have the following observations from the357

maps,358

• BLEU VS Dataset size: The model359

clearly benefits from increasing the360

dataset size in an extremely low re-361

source setting. There is a direct corre-362

lation between the score and the num-363

ber of training examples.364

• BLEU VS Training data dictionary365

coverage: Dictionary coverage can be366

seen as inversely proportional to the367

amount of noise generated by the un-368

translated words from the dictionary.369

The best scores for each column of370

any map are always somewhere in the371

middle (except 20K dataset of French).372

We suspect this behavior is linked to373

finding the correct balance of noise374

and generalisation. With more noise375

(less dictionary coverage), the method376

seems to get more robust, however,377

it underfits when it is exposed to too378

many of them.379

4 Dict-NMT for many-to-one 380

translation 381

A conventional idea for a many-to-one 382

model would involve mapping the source 383

text to a common representation space 384

which would then further be used by the 385

model to generate the translations. Fixing 386

the target language, we can create a com- 387

mon representation for any given source 388

language by translating the source text 389

word-to-word into the target language us- 390

ing the bilingual dictionary. This is similar 391

to how we humans translate any foreign 392

language with the help of a bilingual dic- 393

tionary. 394

We propose a many-to-one translation 395

framework, which, just using a bilin- 396

gual dictionary, can translate for lan- 397

guages which are not present in the train- 398

ing phase- absolute zero-shot translation. 399

Given a test language pair (S, T ), we train 400

an NMT model on dictionary based word- 401

to-word translations of language pairs 402

{(Si, T )}ni=1, where S 6= Si for i = 1, .., n. 403

Our goal is to make the model invariant 404

of source language. We achieve this via 405

adding word-to-word dictionary transla- 406

tions from various languages coming from 407

different families (Algo 1). 408
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4.1 Experimental Settings409

We perform a comprehensive study on the410

effect of dataset size, no. of languages,411

inclusion of test language family, and dic-412

tionary coverage in test set, on the transla-413

tion quality. We perform our experiments414

on European languages with English as415

the target language. We keep the tokenizer,416

NMT model and its hyperparameters simi-417

lar to that of previous experiment’s setting.418

We use Facebook MUSE’s bilingual dictio-419

nary for this experiment as well.420

4.1.1 Dataset421

We perform our experiments on Europarl422

v7 parallel corpus, fixing English as our423

target language. We used languages from424

three families, namely, Italic (Romanian,425

Spanish, Portuguese, French, Italian),426

Slavic (Bulgarian, Czech, Polish, Slovene,427

Slovak) and Germanic (Danish, Swedish,428

German, Dutch). We use Romanian, Bul-429

garian, and Danish as our test languages.430

We analyse our results on training data, in-431

tra and inter combination of the language432

families with sizes 50K, 150K, 500K, and433

1M . We test our experiments on 600 sen-434

tences. create_dataset()(Algo 1) shows how435

we created training data for our experi-436

ment. In our experiments, for a training437

set create_dataset({Di}ni=1, {Bi}n, p) (Algo438

1), we take equal number of sentences439

from all n languages. The case of poly-440

semy is handled the same way as it was441

in the previous experiment. We use the442

notation "All" for the combination of the443

above mentioned languages from all three444

language families (Italic, Germanic, and445

Slavic).446

4.2 Results and Analysis447

We present the best scores for three lan-448

guage pairs, Ro-En, Bg-En and Da-En in449

Table 3. We further compare the scores450

with word-to-word dictionary translations.451

We choose the best score over varied train-452

ing data size (50K - 1M ), Test set dictionary453

coverage (0% - 80%), and combination of454

language families. There is a significant455

difference in scores of baseline and our456

proposed method. Considering the fact457

that the training sample has no examples 458

from test languages, the resultant score 459

demonstrates the zero-shot property of the 460

proposed method. 461

Language Dict % BLEU
Base w D

Ro-En 50% 9.4 28.1
Bg-En 50% 8.2 15.4
Da-En 50% 7.7 13.4

Table 3: Results: Best BLEU score for each
language. w D is “with dictionary", i.e. our
proposed method, Base is “dictionary base-
line" which is simply word-to-word transla-
tion . We get the best scores for "All" dataset
(Germanic Italic Slavic) with 500K parallel
sentences. Training set dictionary coverage
(Dict %) is given for each corresponding score.
The test set of Ro and Bg has atleast 80% dic-
tionary coverage, while Da has 70% (the raw
dataset was too little to make a decent test
dataset with similar number of samples).

We perform experiments to test effect 462

of dataset size, inclusion of test language 463

family, and test data dictionary coverage. 464

• BLEU VS Test data dictionary cov- 465

erage: From figure 5, it is evident that 466

the scores increase with the increase 467

in dictionary coverage of test data, i.e., 468

the NMT model gets better assisted 469

with more word-to-word translations 470

in a given sentence. 471

• BLEU VS Training set data size: 472

With increase in data size, the scores 473

increase as well (Table 4). However, 474

it tends to converge on the data size 475

between 500K and 1M . 476

• Effect of addition of language fam- 477

ilies: From Figure 6 it can be ob- 478

served that the score stays the least 479

for model trained just on Germanic 480

family. There is a slight increase in 481

score for Italic family. However, it in- 482

creases significantly when we start 483

combining language families together. 484

We get the highest score for "All", 485

which is a combination of all three 486

language families. There is a slight 487

decrease in score when we add sen- 488

tences from two different languages. 489
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Figure 4: BLEU VS Training Dataset Size
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Figure 5: BLEU VS Test Data Dictionary Coverage. Here, the reported scores are for model
trained on "All" dataset with size 500K

We suspect less number of parameters490

of the model to be the reason behind491

such behaviour. For better generali-492

sation on more number of languages,493

we believe larger NMT models would494

be beneficial.495
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Figure 6: BLEU VS Effect of Test Family (Ro-
manian) (TGS = Turkish + Greeek)

5 Conclusion 496

Using Europarl corpus, we showed that 497

our method of incorporating bilingual dic- 498

tionaries for NMT tasks can be quite ef- 499

fective. Given a dictionary, it not only 500

works for languages with extremely low 501

corpus, but also for languages with no 502

parallel or monolingual corpus at all. We 503

analyze the extent of improvement that 504

can be done by varying dictionary percent- 505

age and with the range of size of datasets. 506

This work can be extended by blending 507

our method with other state-of-the-art ap- 508

proaches such as back translation, and 509

transfer learning. We believe this work will 510

motivate researchers to explore other pos- 511

sibilities of incorporating bilingual dictio- 512

naries for NMT in extremely low resource 513

settings. 514
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