
Are we using Motion in Referring Segmentation?
A Motion-Centric Evaluation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Multi-modal large language models (MLLMs) have shown impressive generaliza-1

tion across tasks using images and text modalities. While their extension to video2

modality has enabled tasks such as video question answering and video captioning,3

their dense spatiotemporal understanding, particularly in referring video segmenta-4

tion, is less studied. In this work, we raise the pertinent question of whether motion5

is used in referring segmentation and whether video MLLMs designed for this task6

truly leverage motion cues when segmenting objects based on natural language7

expressions. We identify shortcomings in the current benchmarks, where we show8

that a single frame can often suffice for capturing the motion referring expression9

without any temporal reasoning. To address this, we introduce a motion-centric10

probing and evaluation framework that automatically selects keyframes within11

videos designed to mislead models with apparent motion lacking true spatiotem-12

poral change. This is used to assess whether models rely on genuine motion cues13

or merely static visual features. Our empirical analysis reveals that existing video14

MLLMs underutilize motion information in this dense prediction task. It also15

shows the kind of properties existing in referring expressions that make it more16

motion-oriented than others. We further establish strong baselines using MLLMs17

that outperform prior methods, offering new insights into the interplay between18

spatial and temporal information in dense video-language understanding tasks. Our19

motion-centric evaluation and findings challenge future models to improve dense20

spatiotemporal grounding and pixel-level understanding within videos.21

1 Introduction22

Multi-modal large language models (MLLMs) have recently emerged as general-purpose tools that23

can operate on input image/video and text Liu et al. (2023); Bai et al. (2023); Wang et al. (2024); Bai24

et al. (2025); Liu et al. (2024); Zhu et al. (2025). They can be language guided through instructions25

in addition to various visual prompting techniques to produce the desired output. They extend26

powerful large language models trained within an autoregressive modelling framework, coupled with27

pre-trained vision encoders, vision-language alignment and projectors. The extension of multi-modal28

large language models to operate on videos has been extensively investigated Lin et al. (2023);29

Maaz et al. (2023); Fu et al. (2024); Bai et al. (2025); Zohar et al. (2024), yet it mainly focused on30

coarse output, such as its use in video question answering, video captioning or video-level grounding.31

However, few methods focused on dense spatiotemporal output such as pixel-level visual grounding32

in videos, also referred to as referring video segmentation Yan et al. (2024); Munasinghe et al. (2024).33

Video segmentation generally focuses on identifying different segments in a video that can be defined34

based on semantics, saliency or language guided Zhou et al. (2022). The latter is the main focus of35

this work, where models aim to segment objects of interest in videos based on a referring expression.36

Referring video segmentation emerged with the introduction of A2D sentences Gavrilyuk et al. (2018)37
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“Except for the two bears in front, all other bears in the distance walking”

“White car move and turn left”

“The plane going left”

(a) (b) (c)

Figure 1: Motivation behind our research question, where we show that motion referring expressions
can still be captured from a single image (i.e., middle column) referred to as the keyframe, without
the need of dynamic information. It shows three videos from MeVIS benchmark Ding et al. (2023),
(a) first frame, (b) keyframe that best captures the expression and (c) the last frame. Ground-truth
segmentation highlighted in red. It shows the color, heading, position or category as sufficient cues to
identify the objects without motion.

and referring DAVIS’17 Pont-Tuset et al. (2017). It is the counterpart task of referring segmentation38

in images Kazemzadeh et al. (2014); Yu et al. (2016) extended to videos with the added challenges39

in ensuring the temporal consistency of the segmentation across the video and identifying motion40

referring expressions Ding et al. (2023). Initial methods relied on the advancements in transformer-41

based architectures and masked modelling Wu et al. (2022), followed by multi-modal large language42

models with autoregressive modelling Yan et al. (2024); Munasinghe et al. (2024). Concurrent to the43

aforementioned developments, the benchmarks designed to evaluate these methods were improved to44

push the boundaries on the task towards better reasoning Yan et al. (2024) and an understanding of45

motion Ding et al. (2023).46

In this work, we ask the major question: “Is Motion properly used in video referring segmentation47

techniques?”, revisiting the temporal understanding in these models beyond what was provided in48

earlier works. While previous interpretability works in video segmentation showed consistent failures49

in utilizing dynamic information Kowal et al. (2022, 2024), yet they were not language guided and50

were constrained to precursor methods to MLLMs. Other works in interpretability and benchmarking51

have studied a similar question in video language modelling but they were not designed for dense52

spatiotemporal grounding and were rather confined to coarse video question answering tasks Buch53

et al. (2022). The dense spatiotemporal segmentation task within videos makes it more interesting to54

study the ability of video MLLMs in capturing temporal information. Since models can be deceived55

to use spatial information only, leaving out the temporal information, or they can easily rely on coarse56

temporal information without a proper understanding of the full spatiotemporal dynamics within the57

video. As such, we provide a study of the ability of video MLLMs in utilizing motion information58

within language-guided video segmentation. Towards the latter, we create a motion-centric probing59

and evaluation technique that questions previous efforts on motion referring expressions segmentation60

and can be used to drive better understanding of video MLLMs performance.61

Figure 1 presents the motivation of our work, as it shows the shortcomings in motion referring video62

segmentation benchmarks when considering motion. We show three examples with the first frame,63

keyframe and the last frame from each video with the respective referring expression. It clearly shows64
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that the keyframe (middle column) can be sufficient to understand which object is referred to in the65

expression from one static frame without the need for temporal information or a proper understanding66

of dynamics. Consequently, we propose an automatic mechanism to select such keyframes and use67

them to generate a motion-centric benchmark, challenging video MLLMs to differentiate motion68

from what appears to be fake motion.69

In summary, our contributions include: (i) An empirical analysis of the shortcomings of video MLLMs70

in utilizing temporal information within such a dense prediction task, (ii) proposing a motion-centric71

probing and evaluation technique for referring video segmentation using a simple keyframe automatic72

selection, and (iii) providing strong baselines using Video MLLMs that outperform the state-of-the-art73

methods and allow to study the use of spatial information from a single image vs. coarse temporal74

information in such a challenging setup.75

2 Related Work76

Multi-modal large language models (MLLMs) and benchmarking. Pioneering works in multi-77

modal large language models such as LLaVA Liu et al. (2023/, 2024), Cambrian-1 Tong et al. (2024),78

Qwen-VL Bai et al. (2023) and InternVL Chen et al. (2024b) have driven significant development79

towards the creation of general-purpose agents. Consequent works that built upon these developments80

to equip MLLMs with better spatial and temporal understanding emerged Wang et al. (2024); Bai81

et al. (2025); Chen et al. (2024a); Zhu et al. (2025); Lai et al. (2024); Rasheed et al. (2024); Zhang82

et al. (2024a,b); Munasinghe et al. (2024); Yan et al. (2024); Zohar et al. (2024). Some of these83

methods have the capability to perform visual grounding in either images or videos on the region-level84

or pixel-level Lai et al. (2024); Rasheed et al. (2024); Zhang et al. (2024a,b); Munasinghe et al.85

(2024); Yan et al. (2024). Other works focused on extending to video MLLMs Bai et al. (2025);86

Munasinghe et al. (2024); Yan et al. (2024); Zohar et al. (2024). One of the major drivers behind87

these developments is the evaluation benchmarks that push the limit on these models and ensure88

improved performance, in addition to studies that interpret their behaviour.89

There is an abundance of standard benchmarks used to evaluate MLLMs (e.g., MMU Yue et al. (2024))90

and pixel-level benchmarks (e.g., refCOCO/+/g Yu et al. (2016); Kazemzadeh et al. (2014)). Moreover,91

benchmarks designed to evaluate video MLLMs have emerged, such as MMBench-Video Fang et al.92

(2024) and Video-MME Fu et al. (2024). Concurrent work studying video MLLMs Zohar et al.93

(2024) has shown the bias within such evaluation benchmarks towards using a single image or textual94

input only instead of fully evaluating the use of temporal information. Nonetheless, the majority of95

previous works on video MLLMs benchmarking and analysis focused on coarse output, specifically96

with video question answering. While there are recent benchmarks evaluating pixel-level visual97

grounding in videos Yan et al. (2024); Ding et al. (2023), we show that they are ineffective in assessing98

the ability of video MLLMs to capture dynamics. As such, we propose a novel probing technique99

that is motion-centric and independent of the benchmark. It is coupled with a pixel-level visual100

grounding benchmark towards a motion-centric evaluation. Using this probing technique enables a101

better understanding of video MLLMs and their ability in dense spatiotemporal understanding, which102

goes beyond coarse tasks such as visual question answering.103

Video segmentation. The general task of video segmentation that takes as input a video clip and104

outputs segments within the video based on the definition for the objects of interest that can either be:105

(i) based on semantic categories (i.e., video semantic segmentation) Miao et al. (2021), (ii) within106

foreground/background segmentation framework relying on saliency or tracking (i.e., video object107

segmentation) Karim et al. (2023), (iii) based on language (i.e., referring video segmentation) Munas-108

inghe et al. (2024); Yan et al. (2024); Wu et al. (2022); Ding et al. (2023). We focus on referring video109

segmentation that relies on a referring expression describing the object/s of interest to be segmented110

within an input video. Early methods for referring video segmentation relied on masked modelling111

from RoBERTa Wu et al. (2022); Ding et al. (2023). However, with the MLLMs development, better112

referring video segmentation models were developed that relied on these autoregressive models with113

image/video and text input Munasinghe et al. (2024); Yan et al. (2024). A recent method extended the114

referring video segmentation task to the more challenging video reasoning and segmentation task Yan115

et al. (2024).116

Another track of methods focused on emphasizing motion in referring video segmentation Ding117

et al. (2023). However, our work shows the shortcomings in the aforementioned benchmarks and118
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(a) (b) (c) (d) (e)

Figure 2: Qualitative analysis of our proposed automatic keyframe selection from five examples that
show a single frame can be sufficient to convey the motion expression without any motion involved.
It is mainly conveyed through the use of static cues such as the heading, object type, or position.
Expressions of each example are as follows: (a) “jump to the left then jump back”, (b) “dog playing
with monkey”, (c) “puppy that overwhelms another puppy”, (d) “cow shaking head and looking at
us.” (e) “The little cat walking from behind to the front”.

evaluations, where we show that state-of-the-art methods and our proposed baselines that surpass119

them, all fail in our motion-centric evaluation. Since our probing can deceive models into believing120

there is a depiction of the motion expression when it is only a single static frame. While recent121

interpretability studies looked at video segmentation models and their ability to capture dynamic122

information, they have mainly focused on methods that are not language guided, unlike ours Kowal123

et al. (2022, 2024); Karim et al. (2023).124

3 Method125

In this section, we summarize the shortcomings in the current referring video segmentation methods,126

including the ones that rely on multi-modal large language models. Then we describe our motion-127

centric probing, the respective benchmark and our proposed strong baselines that assess the use of128

spatiotemporal information.129

3.1 Shortcomings in Video MLLMs and Referring Video Segmentation Benchmarks130

While there have been previous works focusing on establishing single-image baselines for video-131

language understanding on coarse-level tasks Buch et al. (2022), (e.g., video question answering132

or video-language retrieval), we are the first to explore this within dense spatiotemporal tasks. We133

focus on referring video segmentation and put emphasis on both standard and motion referring134

expressions Ding et al. (2023). We argue that the majority of referring expressions can be identified135

using strong single-image baselines that do not have an understanding of temporal information. While136

motion referring expressions may seemingly use motion, we show that such expressions can still be137

identified from one static frame. Figure 2 shows five examples that can be sufficiently identified with138

static information without the use of temporal information, thus showing a weakness in the current139

evaluation benchmarks.140

There are three main properties in the motion referring expressions benchmark introduced to evaluate141

the ability of models in capturing motion, these include: (i) the selection of video content that contains142

multiple objects that coexist with motion, (ii) prioritizing referring expressions that do not contain143

static cues such as color, and (iii) the use of multi-object interactions. Except, we argue that these144

properties, standalone, are insufficient. While the selection of videos that have multiple objects145

coexisting can be differentiated through their actions or motion, the majority of these actions or146

motions can be inferred from one frame. Figure 2a,2d,2e show examples that can be identified from147

one frame, where the direction, heading or the object’s current position within the image from the148

referred expression can be deducted from one static frame. The second property is impractical, since149

the identification of the object category can be a significant static cue already, and in other scenarios,150

the only way to differentiate objects is through color. Thus, it is infeasible to fully decouple the151

static cues from the motion information (e.g., Fig. 2b with only one dog in the scene). Finally, the152

interactions between multiple objects can indeed be a drive for evaluating motion, but in certain153

scenarios it can be inferred from a single frame (e.g., Fig. 2c where the expression describing the two154

objects’ interaction can be identified from a single image).155

As such, we propose a motion-centric probing and evaluation to study the shortcomings in video156

MLLMs with respect to capturing spatiotemporal dynamics. Additionally, we propose quantitative157
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Figure 3: Detailed mechanism for our motion-centric probing that relies on the automatic selection of
a static keyframe to mislead MLLMs into an existent motion (highlighted in red circles), when there is
no motion involved. The output video combining the original dynamic video and the static keyframe
is used to evaluate the video MLLMs ability to differentiate between true motion vs. deceiving ones.
The last frame shows the predictions from our strongest baseline (i.e., Qwen2.5-VL + SAM 2.0†)
highlighted in red. Even with such a strong video MLLM baseline, it is still misled to believing an
existing motion when there is not. It also shows that the true performance of state-of-the-art video
MLLMs (VideoGLAMM and Qwen2.5-VL + SAM 2.0†) is downgraded by half when using the
motion-centric evaluation vs. the original evaluation on the mini-validation set on MeVIS dataset.

means to analyze the properties existing in referring expressions that can drive better evaluation for158

the use of motion beyond a single image.159

3.2 A Motion-Centric Benchmark160

Benchmark. Figure 3 describes our motion-centric probing. First, we identify the keyframe in the161

video that can approximate the motion expression with one static frame. Towards that, we use a162

multi-modal large language model that has the capability of coarse video grounding, i.e., identifying163

the frames temporally that correspond to a certain expression without identification of the object164

spatially within the frames. In our case, we use Qwen2.5-VL and prompt it to identify the expression165

using the following: Given the query: <EXP>, when does the described content166

occur in the video? Output the first and last seconds for this action in167

JSON format. The output is further processed to identify the temporal window of frames with the168

middle frame labelled as the keyframe capturing this motion. Figure 2 shows five example keyframes169

selected with their motion referring expression. We use the retrieved keyframes to create a video170

containing both the static keyframe in addition to the original video clip as shown in Figure 3.171

Strong baselines. We establish strong single-image and semi-temporal baselines for referring video172

segmentation using powerful multi-modal large language models that can visually ground objects on173

the region level. Models such as Qwen2.5-VL Bai et al. (2025) and InternVL3 Zhu et al. (2025) have174

emerged that show strong capabilities in visually grounding objects and outputting their corresponding175

bounding boxes. We build three baselines that are biased to the static information conveyed from a176

single image. The first baseline relies on the MLLM output, followed by using the segment anything177

model Kirillov et al. (2023); Ravi et al. (2024) to generate the output segmentation per frame for the178

corresponding referring expression (MLLM + SAM). We use the following prompt: Locate the179

<EXP>, output its bbox coordinates using JSON format. The second baseline follows180

a similar procedure but identifies the object in the first frame, then it uses the segment anything model181

2.0 Ravi et al. (2024) for tracking throughout the video, (MLLM + SAM 2.0). The final baseline182
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Method Backbone/Base MLLM RefDAVIS-17 MeVIS
J F J&F J F J&F

ReferFormer VideoSwin-B 58.1 64.1 61.1 29.8 32.2 31.0
LMPM Swin-T - - - 34.2 40.2 37.2
LISA LLaVA-7B 62.2 67.3 64.8 35.1 39.4 37.2
VISA Chat-UniVi-7B 66.3 72.5 69.4 40.7 46.3 43.5
VideoGLAMM VEn.+Phi3-Mini-3.8B 65.6 73.3 69.5 42.1 48.2 45.2
MLLM + SAM Qwen2.5-VL-7B 60.8 66.8 63.8 38.8 45.0 41.9
MLLM + SAM 2.0 Qwen2.5-VL-7B 69.9 66.5 68.2 40.9 47.4 44.2
MLLM + SAM 2.0† Qwen2.5-VL-7B 69.8 75.9 72.9 44.5 51.2 47.8

Table 1: Comparison of our strong single-image and semi-temporal baselines (last three rows) with
respect to the state-of-the-art methods on RefDAVIS’17 and MeVIS datasets. Our baselines are
mostly biased to the static information, yet surpass previous methods. VEn.: vision encoders for
CLIP and InternVideov2 used in VideoGLAMM. †: indicates the use of the automatic keyframe
selection. Best results are bolded.

relies on identifying the keyframe in the input video that can have the referred expression, then it183

uses that as the initialization frame for SAM 2.0 (MLLM + SAM 2.0†). The keyframe is retrieved184

following the previous method in the motion-centric probing. The last baseline can be looked upon as185

a semi-temporal baseline, since it is an intermediate baseline between full spatiotemporal and coarse186

temporal grounding. It identifies the object within the video on the coarse level and for the pixel-level187

grounding it only uses one static keyframe, followed by propagating the segmentation in the video.188

4 Experimental Results189

4.1 Experimental Setup190

Evaluation datasets and metrics. We use established referring video segmentation datasets in191

our evaluation including RefDAVIS17 Pont-Tuset et al. (2017) and the motion referring expression192

dataset MeVIS Ding et al. (2023). For RefDAVIS17 we evaluate on the provided validation split193

that includes 30 videos, while for MeVIS, we use two splits: the mini-validation subset, which194

includes 50 videos with their corresponding ground-truth available and the validation subset that195

includes 140 videos that do not have their ground-truth publicly available but can be evaluated upon196

using MeVIS evaluation server 1. Finally, we evaluate on our constructed motion-centric version of197

MeVIS mini-validation as detailed in Sec. 3.2. We use the standard evaluation metrics for the region198

similarity, J , which computes the mean intersection over union, the contour accuracy, F , and the199

average of both, J&F .200

Compared methods. We compare our strong baselines with respect to state-of-the-art referring201

video segmentation methods, including the prior ones that relied on masked modelling from the202

RoBERTa model, such as ReferFormer Wu et al. (2022) and LMPM Ding et al. (2023). Additionally,203

we compare against recent ones that rely on the power of large language models with autoregressive204

modeling in LISA Lai et al. (2024), VISA Yan et al. (2024) and VideoGLAMM Munasinghe et al.205

(2024). For the motion-centric evaluation, we focus specifically on the best models in each category,206

which have their codes and weights publicly available (i.e., LMPM and VideoGLAMM), in addition207

to our three strong baselines.208

4.2 Strong Baselines Evaluation209

In this section, we show that our baselines already provide state-of-the-art performance, surpassing210

previous Lai et al. (2024); Yan et al. (2024) and concurrent Munasinghe et al. (2024) works. Table 1211

shows results across two benchmarks, including the motion referring expression segmentation dataset.212

It clearly shows that the simple baseline, MLLM + SAM 2.0, that does not incorporate any temporal213

information in the identification of the referred expression, surpasses the state-of-the-art methods214

on MeVIS except our concurrent work, VideoGLAMM. While our strongest baseline, MLLM +215

SAM 2.0†, that relies on partial temporal information, outperforms the previous state of the art.216

1https://codalab.lisn.upsaclay.fr/competitions/15094
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Method Backbone/Base MLLM MeVIS mini-validation MeVIS motion-centric
J F J&F J F J&F

LMPM Swin-T 34.2 40.2 37.2 18.2 26.9 22.6
VideoGLAMM VEn.+Phi3-Mini-3.8B 43.6 52.7 48.2 18.1 25.1 21.6
MLLM + SAM Qwen2.5-VL-7B 48.8 56.0 52.4 24.1 33.8 28.9
MLLM + SAM 2.0 Qwen2.5-VL-7B 46.9 55.3 51.1 22.9 32.8 27.9
MLLM + SAM 2.0† Qwen2.5-VL-7B 49.1 56.9 53.0 23.4 34.2 28.7

Table 2: Quantitative comparison of state-of-the-art models and our proposed baselines on the MeVIS
mini-validation set and our corresponding motion-centric one. VEn.: vision encoders for CLIP and
InternVideov2 used in VideoGLAMM. †: indicates the use of the automatic keyframe selection. It
clearly shows a strong drop in performance for all the models, including our baselines. Best and
second-best results are bolded and underlined, respectively.

Original Motion-Centric Original Motion-Centric

Figure 4: Qualitative analysis comparing the original MeVIS mini-validation set performance vs.
the motion-centric one that incorporates an additional static keyframe to the video to confuse video
MLLMs. Predictions of our strongest baseline, Qwen2.5-VL + SAM 2.0† are highlighted in red.
Motion referring expressions for the examples are as follows: (i) first column is “front elephant
walking to backwards”, (ii) second column is “black car move and turn left”.

Thus, it confirms that our baselines, without temporal or with semi-temporal information, establish217

strong results that we can safely use for our motion-centric probing and evaluation. While our218

baselines rely on a stronger base multi-modal large language model, they are only meant to motivate219

the motion-centric evaluation and identify their shortcomings on our proposed benchmark and the220

corresponding analysis of the referring expressions.221

4.3 A Motion-Centric Evaluation222

In this section, we focus on the motion-centric evaluation, where we show that both the state-of-the-art223

methods and our strong baselines still fall short in differentiating between the objects in the static224

keyframe and real motion. Table 2 shows the evaluation on the mini-validation set of MeVIS and225

the corresponding motion-centric version. Across all the methods, there is an obvious decrease of226

around half the original performance on the standard videos that do not include that static keyframe.227

It highlights the major shortcoming that the majority of the methods do not have an understanding of228

the temporal information and are largely still biased to one static frame.229

Qualitative comparison original vs. motion-centric. Figure 4 shows the qualitative analysis for230

our strongest baseline, MLLM + SAM 2.0†, which relies on identifying the keyframe and then231

propagating the information across the video. Even with the strongest baseline, the models tend to232

segment the objects based on static cues in the referred expression. Hence, in the two examples233

provided, the “front elephant” and the “black car” got segmented regardless of the motion incurred234

and without an understanding of the full referring expression.235

Qualitative ablation on motion-centric. Furthermore, we show a qualitative ablation of our strongest236

two baselines compared to our concurrent work, VideoGLAMM, in Figure 5 on the motion-centric237

benchmark. It shows three example sequences with three frames each, where our baseline, Qwen2.5-238

VL + SAM 2.0†, that uses partial temporal information, not the full spatiotemporal information, has239

a better ability to differentiate the static frame from the dynamic video than the baseline that does240
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(a) VideoGLAMM (b) Qwen2.5-VL + SAM 2.0 (c) Qwen2.5-VL + SAM 2.0†

Figure 5: Qualitative ablation comparing our two strongest baselines and concurrent work from
VideoGLAMM. The motion referring expressions are as follows: (i) The first three rows are “two
fighting cows heading each other”. (ii) The second three rows are “4 lizards moving around”. (iii)
The final three rows are “Panda turning around and moving forward from leftmost to rightmost.”

not use any temporal information, Qwen2.5-VL + SAM 2.0. This is evident in the following: (i) the241

first example our strongest baseline does not segment the static frame, (ii) in the second example it242

wrongly segments only two lizards in the static frame which appear to be about to move and (iii) in243

the third example it segments the correct bear but also segments false positive ones unlike the static244

baseline that was biased to the expression “rightmost” or “leftmost”. Nonetheless, even with such245

a strong baseline that outperforms state-of-the-art results, it is quite challenging to differentiate the246

static from the moving objects, where static cues in the referred expression can be misleading. Note247

that in our motion-centric probing, there is an additional challenge from the expressions that use248

location cues, e.g., “leftmost” or “rightmost”, as it raises the question of what reference defines these249

locations. However, models that can capture motion can overcome such a challenge since it is not250

only using the static cues but rather the motion and full expression describing it.251

Analysis on the referring motion expressions. In order to study the type of referred expression that252

can be misleading beyond the visual contextual information, we use our strongest baseline, Qwen2.5-253

VL + SAM 2.0†, and compute the false positives in the static frame within our motion-centric254

evaluation per video and referred expression. Specifically, we compute the ratio of the segmented255

area in the static frame with respect to the full area of the image and group the referred expressions256

into two major groups: the ones that resulted in less than 2% false positive segmentation in the static257

frame, and the ones that have higher than 2%. In the total of 793 pairs of videos and motion referring258

expressions, we find that almost half of the expressions at 380 out of 793, are in the second group,259

which shows the major concern with the original MeVIS benchmark evaluation vs. our motion-centric260

evaluation. Furthermore, we prompt GPT-4o with the referred expressions from the two groups261
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Dynamic Group Static Group
- Richer in dynamic verb phrases - More abstract or static at times
- Describes multi-step actions - Static poses
- Shows how actions unfold in context - Less about sequences, more about

simple states or high-level sum-
maries

- Captures transitions and directional
movement

Table 3: Differentiating the properties of the two major groups of referring expressions based on
analysing the false positives in the static frame. The first group has less than 2% false positives in the
static keyframe and as such we refer to as the Dynamic group. While the second group has more than
2% false positives and is referred to as the Static group. The differences are automatically generated
using GPT-4o by parsing the referring expressions from each group.

Multi-Step Action Dynamic VP Static VP Multi-Object Category Name Color Shape Heading

20

40

60

Expression Properties

Pe
rc

en
ta

ge

Dynamic Group Static Group

Figure 6: Fine-grained analysis on the properties of the two major groups of referring expressions
which are the Dynamic and Static groups. VP: verb phrase.

and inquire “Which group captures better motion actions?”. The answer includes a differentiation262

between the two groups’ characteristics as summarized in Table 3 and a correct identification that263

Group 1 (i.e., Dynamic Group), captures motion actions better.264

We take another step to study both the dynamic and static cues conveyed from the referred motion265

expressions from the identified two groups. Towards that, we use GPT-4o to identify eight main266

properties in each of the referring expressions through prompting it with the following: (i) “Does267

the following expression have a multi-step action: <EXP>?”, (ii) “Does the following expression268

have a multi-object interaction: <EXP>?”, (iii) “Does the following expression have a rich dynamic269

verb phrase: <EXP>?”, (iv) “Does the following expression include color: <EXP>?”, (v) “Does the270

following expression include shape: <EXP>?”, (vi) “Does the following expression describe heading271

or direction: <EXP>?”, (vii) “Does the following expression have a verb indicating static position:272

<EXP>?” and (viii) “Does the following expression have the subject as an identifiable category:273

<EXP>?”. We show the percentage of expressions within each group that received a response “yes”274

from GPT-4o for the previous properties, highlighting the differences between both the dynamic and275

static groups in Figure 6. It shows that the dynamic group is mainly differentiated from the static one276

with multi-step actions and more dynamic verb phrases. While the static verb phrases in the static277

group are on par with the dynamic ones. On the other hand, three main properties differentiate the278

static vs. dynamic group of referred expressions, which are the multi-object interactions, the use279

of the category name and the color. Such properties give static cues in the referred expression that280

suffice to use a single image to segment the object.281

5 Conclusion282

In conclusion, we have shown the shortcomings in both referring video segmentation methods and the283

benchmarks used for their evaluation. We propose a novel benchmark that is motion-centric through284

the use of a static keyframe paired with the dynamic video to mislead the referring segmentation285

methods into the existence of the object without motion. Additionally, we propose three strong286

baselines that outperform the state of the art while being static biased.287
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A Additional Implementation Details401

For our three baselines, we use the following weights for Qwen2.5-VL that are available from402

Hugging Face “Qwen2.5-VL-7B-Instruct”. For the motion-centric probing and to avoid any bias in403

our strong baselines in predicting the segmentation tied to a certain location in the image, we rather404

prompt the models with two versions of the same video; one that has the static key-frame on the left405

side and another on the right side. Then we use the combination of both predictions for the final406

evaluation. We found this to be a better evaluation of their capabilities in identifying the real motion407

referring expression from the fake motion in the static keyframe. Throughout all the experiments, we408

use an A6000 GPU to run the evaluation of all the models discussed.409

B Limitations410

Our work has limitations tied to evaluating video multi-modal large language models that are411

conducting spatiotemporal referring segmentation. Such models are GPU memory hungry and require412

specialized GPUs for inference, let alone their training. Consequently, it limits the contributors to the413

benchmarks and developing better models that overcome these issues with a focus on motion-centric414

evaluation, where low-resourced communities who do not have access to such resources can find it415

impossible to participate in that kind of research.416

C Impact Statement417

Video multi-modal large language models are widely used in various applications, such as robotics,418

medical image processing and is even useful in temporal imagery in remote sensing. The pixel-level419

understanding within such MLLMs is necessary for such applications that require the localization420

and even in certain scenarios, the delineation of the boundaries for the objects of interest. It is even421

more important to maintain a good spatiotemporal understanding to capture motion and dynamics in422

the input video. In our work, we have investigated the shortcomings of video MLLMs in the video423

referring segmentation task, while providing a more challenging motion-centric benchmark to push424

these models into a better understanding of the temporal information.425

However, as with many other AI advancements, there are risks that could be entailed from the426

deployment of such models. There could be inherent biases emerging in such video MLLMs,427

impacting various underrepresented groups. We think that our benchmarking efforts, probing and428

providing a tool to understand the pitfalls in the understanding and reasoning of these models could429

be an initial direction for mitigating such biases. Nonetheless, we leave it for future work to explore430

this further.431
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Question: Do the main claims made in the abstract and introduction accurately reflect the434

paper’s contributions and scope?435

Answer: [Yes]436

Justification: We claimed a novel probing and benchmark that are motion-centric, accom-437

panied with strong baselines that outperform the state-of-the-art in video MLLMs. All of438

which reflect our contributions and have been confirmed in the results section.439

2. Limitations440

Question: Does the paper discuss the limitations of the work performed by the authors?441

Answer: [Yes]442

Justification: In Appendix B we discuss the limitations.443

3. Theory assumptions and proofs444
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a complete (and correct) proof?446

Answer: [NA]447
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4. Experimental result reproducibility449

Question: Does the paper fully disclose all the information needed to reproduce the main ex-450
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of the paper (regardless of whether the code and data are provided or not)?452

Answer: [Yes]453

Justification: We provide implementation details in Sec. 4.1 Appendix A.454

5. Open access to data and code455
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material?458
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Justification: We promise to make the code and datasets publicly available upon acceptance460
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Answer: [NA]471
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8. Experiments compute resources476

Question: For each experiment, does the paper provide sufficient information on the com-477

puter resources (type of compute workers, memory, time of execution) needed to reproduce478

the experiments?479
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Answer: [Yes]480

Justification: It is mentioned in Appendix A.481

9. Code of ethics482
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?484
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10. Broader impacts487
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societal impacts of the work performed?489

Answer: [Yes]490

Justification: Appendix C includes that.491

11. Safeguards492

Question: Does the paper describe safeguards that have been put in place for responsible493

release of data or models that have a high risk for misuse (e.g., pretrained language models,494

image generators, or scraped datasets)?495

Answer: [NA]496

Justification: Our benchmark is based on publicly available datasets. As such, they do not497

incur high risk. Additionally, we do not release pre-trained models but rather discuss strong498

baselines and interpretability techniques that rely on publicly released models’ weights.499

12. Licenses for existing assets500

Question: Are the creators or original owners of assets (e.g., code, data, models), used in501

the paper, properly credited and are the license and terms of use explicitly mentioned and502

properly respected?503

Answer: [Yes]504

Justification: We evaluate on two publicly released datasets, which we cite and use their505

licences for research purposes only.506

13. New assets507

Question: Are new assets introduced in the paper well documented, and is the documentation508

provided alongside the assets?509

Answer: [NA]510

Justification: We provide a probing technique that is used to create a motion-centric bench-511

mark along with strong baselines. Nonetheless, we do not create standalone assets.512

14. Crowdsourcing and research with human subjects513

Question: For crowdsourcing experiments and research with human subjects, does the paper514
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well as details about compensation (if any)?516
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Justification: No crowdsourcing or human subjects involved.518
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15. Institutional review board (IRB) approvals or equivalent for research with human520
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Question: Does the paper describe potential risks incurred by study participants, whether522
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approvals (or an equivalent approval/review based on the requirements of your country or524

institution) were obtained?525

Answer: [NA]526
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16. Declaration of LLM usage529

Question: Does the paper describe the usage of LLMs if it is an important, original, or530

non-standard component of the core methods in this research? Note that if the LLM is used531

only for writing, editing, or formatting purposes and does not impact the core methodology,532
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