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Abstract

Multi-modal large language models (MLLMs) have shown impressive generaliza-
tion across tasks using images and text modalities. While their extension to video
modality has enabled tasks such as video question answering and video captioning,
their dense spatiotemporal understanding, particularly in referring video segmenta-
tion, is less studied. In this work, we raise the pertinent question of whether motion
is used in referring segmentation and whether video MLLMs designed for this task
truly leverage motion cues when segmenting objects based on natural language
expressions. We identify shortcomings in the current benchmarks, where we show
that a single frame can often suffice for capturing the motion referring expression
without any temporal reasoning. To address this, we introduce a motion-centric
probing and evaluation framework that automatically selects keyframes within
videos designed to mislead models with apparent motion lacking true spatiotem-
poral change. This is used to assess whether models rely on genuine motion cues
or merely static visual features. Our empirical analysis reveals that existing video
MLLMs underutilize motion information in this dense prediction task. It also
shows the kind of properties existing in referring expressions that make it more
motion-oriented than others. We further establish strong baselines using MLLMs
that outperform prior methods, offering new insights into the interplay between
spatial and temporal information in dense video-language understanding tasks. Our
motion-centric evaluation and findings challenge future models to improve dense
spatiotemporal grounding and pixel-level understanding within videos.

1 Introduction

Multi-modal large language models (MLLMs) have recently emerged as general-purpose tools that
can operate on input image/video and text|Liu et al.| (2023); Bai et al.| (2023);|Wang et al.| (2024); Bai
et al] (2025); Liu et al.|(2024); Zhu et al.|(2025). They can be language guided through instructions
in addition to various visual prompting techniques to produce the desired output. They extend
powerful large language models trained within an autoregressive modelling framework, coupled with
pre-trained vision encoders, vision-language alignment and projectors. The extension of multi-modal
large language models to operate on videos has been extensively investigated [Lin et al.| (2023);
Maaz et al.|(2023); [Fu et al.|(2024)); Bai et al.| (2025)); Zohar et al.| (2024)), yet it mainly focused on
coarse output, such as its use in video question answering, video captioning or video-level grounding.
However, few methods focused on dense spatiotemporal output such as pixel-level visual grounding
in videos, also referred to as referring video segmentation|Yan et al.[(2024)); [Munasinghe et al.| (2024).

Video segmentation generally focuses on identifying different segments in a video that can be defined
based on semantics, saliency or language guided [Zhou et al. (2022). The latter is the main focus of
this work, where models aim to segment objects of interest in videos based on a referring expression.
Referring video segmentation emerged with the introduction of A2D sentences |Gavrilyuk et al.|(2018)
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“Except for the two bears in front, all other bears in the distance walking”

(a) (b) (©

Figure 1: Motivation behind our research question, where we show that motion referring expressions
can still be captured from a single image (i.e., middle column) referred to as the keyframe, without
the need of dynamic information. It shows three videos from MeVIS benchmark Ding et al](2023)),
(a) first frame, (b) keyframe that best captures the expression and (c) the last frame. Ground-truth
segmentation highlighted in red. It shows the color, heading, position or category as sufficient cues to
identify the objects without motion.

and referring DAVIS’ 17 [Pont-Tuset et al[ (2017). It is the counterpart task of referring segmentation
in images [Kazemzadeh et al.| (2014); Yu et al.| (2016) extended to videos with the added challenges
in ensuring the temporal consistency of the segmentation across the video and identifying motion
referring expressions (2023). Initial methods relied on the advancements in transformer-
based architectures and masked modelling ), followed by multi-modal large language
models with autoregressive modelling|Yan et al.| (2024); Munasinghe et al(2024). Concurrent to the
aforementioned developments, the benchmarks designed to evaluate these methods were improved to
push the boundaries on the task towards better reasoning (2024) and an understanding of

motion Ding et al] (2023).

In this work, we ask the major question: “Is Motion properly used in video referring segmentation
techniques?”, revisiting the temporal understanding in these models beyond what was provided in
earlier works. While previous interpretability works in video segmentation showed consistent failures
in utilizing dynamic information [Kowal et al.| (2022}, 2024)), yet they were not language guided and
were constrained to precursor methods to MLLMs. Other works in interpretability and benchmarking
have studied a similar question in video language modelling but they were not designed for dense
spatiotemporal grounding and were rather confined to coarse video question answering tasks
etal] (2022). The dense spatiotemporal segmentation task within videos makes it more interesting to
study the ability of video MLLMs in capturing temporal information. Since models can be deceived
to use spatial information only, leaving out the temporal information, or they can easily rely on coarse
temporal information without a proper understanding of the full spatiotemporal dynamics within the
video. As such, we provide a study of the ability of video MLLMs in utilizing motion information
within language-guided video segmentation. Towards the latter, we create a motion-centric probing
and evaluation technique that questions previous efforts on motion referring expressions segmentation
and can be used to drive better understanding of video MLLMs performance.

Figure[I] presents the motivation of our work, as it shows the shortcomings in motion referring video
segmentation benchmarks when considering motion. We show three examples with the first frame,
keyframe and the last frame from each video with the respective referring expression. It clearly shows
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that the keyframe (middle column) can be sufficient to understand which object is referred to in the
expression from one static frame without the need for temporal information or a proper understanding
of dynamics. Consequently, we propose an automatic mechanism to select such keyframes and use
them to generate a motion-centric benchmark, challenging video MLLMs to differentiate motion
from what appears to be fake motion.

In summary, our contributions include: (i) An empirical analysis of the shortcomings of video MLLMs
in utilizing temporal information within such a dense prediction task, (ii) proposing a motion-centric
probing and evaluation technique for referring video segmentation using a simple keyframe automatic
selection, and (iii) providing strong baselines using Video MLLMs that outperform the state-of-the-art
methods and allow to study the use of spatial information from a single image vs. coarse temporal
information in such a challenging setup.

2 Related Work

Multi-modal large language models (MLLMs) and benchmarking. Pioneering works in multi-
modal large language models such as LLaVA [Liu et al.| (2023/, 2024)), Cambrian- 1 [Tong et al.| (2024)),
Qwen-VL Bai et al.| (2023)) and InternVL [Chen et al|(2024b)) have driven significant development
towards the creation of general-purpose agents. Consequent works that built upon these developments
to equip MLLMs with better spatial and temporal understanding emerged |Wang et al.| (2024); Bai
et al] (2025);|Chen et al.| (20244); Zhu et al.| (2025)); Lai et al.[(2024)); Rasheed et al.|(2024);|Zhang
et al] (2024alb); Munasinghe et al.| (2024); |[Yan et al.| (2024); Zohar et al.| (2024). Some of these
methods have the capability to perform visual grounding in either images or videos on the region-level
or pixel-level [Lai et al.|(2024); Rasheed et al.| (2024)); |[Zhang et al.| (2024alb); Munasinghe et al.
(2024); [Yan et al.| (2024)). Other works focused on extending to video MLLMs Bai et al.[ (2025);
Munasinghe et al.| (2024); [Yan et al.| (2024); Zohar et al.| (2024). One of the major drivers behind
these developments is the evaluation benchmarks that push the limit on these models and ensure
improved performance, in addition to studies that interpret their behaviour.

There is an abundance of standard benchmarks used to evaluate MLLMs (e.g., MMU Yue et al.|(2024))
and pixel-level benchmarks (e.g., refCOCO/+/g|Yu et al.|(2016);|[Kazemzadeh et al.|(2014)). Moreover,
benchmarks designed to evaluate video MLLMs have emerged, such as MMBench-Video Fang et al.
(2024) and Video-MME |Fu et al.| (2024). Concurrent work studying video MLLMs Zohar et al.
(2024)) has shown the bias within such evaluation benchmarks towards using a single image or textual
input only instead of fully evaluating the use of temporal information. Nonetheless, the majority of
previous works on video MLLMs benchmarking and analysis focused on coarse output, specifically
with video question answering. While there are recent benchmarks evaluating pixel-level visual
grounding in videos|Yan et al.|(2024); Ding et al.|(2023)), we show that they are ineffective in assessing
the ability of video MLLMs to capture dynamics. As such, we propose a novel probing technique
that is motion-centric and independent of the benchmark. It is coupled with a pixel-level visual
grounding benchmark towards a motion-centric evaluation. Using this probing technique enables a
better understanding of video MLLMs and their ability in dense spatiotemporal understanding, which
goes beyond coarse tasks such as visual question answering.

Video segmentation. The general task of video segmentation that takes as input a video clip and
outputs segments within the video based on the definition for the objects of interest that can either be:
(i) based on semantic categories (i.e., video semantic segmentation) Miao et al.|(2021)), (ii) within
foreground/background segmentation framework relying on saliency or tracking (i.e., video object
segmentation) Karim et al.|(2023)), (iii) based on language (i.e., referring video segmentation) Munas{
inghe ef all (2024); Yan et al.|(2024); Wu et al.[(2022); |Ding et al.|(2023). We focus on referring video
segmentation that relies on a referring expression describing the object/s of interest to be segmented
within an input video. Early methods for referring video segmentation relied on masked modelling
from RoBERTa[Wu et al.| (2022)); Ding et al.[(2023). However, with the MLLMs development, better
referring video segmentation models were developed that relied on these autoregressive models with
image/video and text input Munasinghe et al.|(2024)); [Yan et al.|(2024). A recent method extended the
referring video segmentation task to the more challenging video reasoning and segmentation task |Yan
et all (2024).

Another track of methods focused on emphasizing motion in referring video segmentation Ding
et all (2023)). However, our work shows the shortcomings in the aforementioned benchmarks and
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Figure 2: Qualitative analysis of our proposed automatic keyframe selection from five examples that
show a single frame can be sufficient to convey the motion expression without any motion involved.
It is mainly conveyed through the use of static cues such as the heading, object type, or position.
Expressions of each example are as follows: (a) “jump to the left then jump back”, (b) “dog playing
with monkey”, (c) “puppy that overwhelms another puppy”, (d) “cow shaking head and looking at
us.” (e) “The little cat walking from behind to the front™.

evaluations, where we show that state-of-the-art methods and our proposed baselines that surpass
them, all fail in our motion-centric evaluation. Since our probing can deceive models into believing
there is a depiction of the motion expression when it is only a single static frame. While recent
interpretability studies looked at video segmentation models and their ability to capture dynamic
information, they have mainly focused on methods that are not language guided, unlike ours

etall (2022} [2024); Karim et al | (2023).

3 Method

In this section, we summarize the shortcomings in the current referring video segmentation methods,
including the ones that rely on multi-modal large language models. Then we describe our motion-
centric probing, the respective benchmark and our proposed strong baselines that assess the use of
spatiotemporal information.

3.1 Shortcomings in Video MLLMs and Referring Video Segmentation Benchmarks

While there have been previous works focusing on establishing single-image baselines for video-
language understanding on coarse-level tasks |[Buch et al.| (2022), (e.g., video question answering
or video-language retrieval), we are the first to explore this within dense spatiotemporal tasks. We
focus on referring video segmentation and put emphasis on both standard and motion referring
expressions (2023). We argue that the majority of referring expressions can be identified
using strong single-image baselines that do not have an understanding of temporal information. While
motion referring expressions may seemingly use motion, we show that such expressions can still be
identified from one static frame. Figure 2]shows five examples that can be sufficiently identified with
static information without the use of temporal information, thus showing a weakness in the current
evaluation benchmarks.

There are three main properties in the motion referring expressions benchmark introduced to evaluate
the ability of models in capturing motion, these include: (i) the selection of video content that contains
multiple objects that coexist with motion, (ii) prioritizing referring expressions that do not contain
static cues such as color, and (iii) the use of multi-object interactions. Except, we argue that these
properties, standalone, are insufficient. While the selection of videos that have multiple objects
coexisting can be differentiated through their actions or motion, the majority of these actions or
motions can be inferred from one frame. Figure 2a[2d[2¢| show examples that can be identified from
one frame, where the direction, heading or the object’s current position within the image from the
referred expression can be deducted from one static frame. The second property is impractical, since
the identification of the object category can be a significant static cue already, and in other scenarios,
the only way to differentiate objects is through color. Thus, it is infeasible to fully decouple the
static cues from the motion information (e.g., Fig. 2] with only one dog in the scene). Finally, the
interactions between multiple objects can indeed be a drive for evaluating motion, but in certain
scenarios it can be inferred from a single frame (e.g., Fig. 2c] where the expression describing the two
objects’ interaction can be identified from a single image).

As such, we propose a motion-centric probing and evaluation to study the shortcomings in video
MLLMs with respect to capturing spatiotemporal dynamics. Additionally, we propose quantitative
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Figure 3: Detailed mechanism for our motion-centric probing that relies on the automatic selection of
a static keyframe to mislead MLLMs into an existent motion (highlighted in red circles), when there is
no motion involved. The output video combining the original dynamic video and the static keyframe
is used to evaluate the video MLLMs ability to differentiate between true motion vs. deceiving ones.
The last frame shows the predictions from our strongest baseline (i.e., Qwen2.5-VL + SAM 2.07)
highlighted in red. Even with such a strong video MLLM baseline, it is still misled to believing an
existing motion when there is not. It also shows that the true performance of state-of-the-art video
MLLMs (VideoGLAMM and Qwen2.5-VL + SAM 2.07) is downgraded by half when using the
motion-centric evaluation vs. the original evaluation on the mini-validation set on MeVIS dataset.

means to analyze the properties existing in referring expressions that can drive better evaluation for
the use of motion beyond a single image.

3.2 A Motion-Centric Benchmark

Benchmark. Figure [3|describes our motion-centric probing. First, we identify the keyframe in the
video that can approximate the motion expression with one static frame. Towards that, we use a
multi-modal large language model that has the capability of coarse video grounding, i.e., identifying
the frames temporally that correspond to a certain expression without identification of the object
spatially within the frames. In our case, we use Qwen2.5-VL and prompt it to identify the expression
using the following: Given the query: <EXP>, when does the described content
occur in the video? Output the first and last seconds for this action in
JSON format. The output is further processed to identify the temporal window of frames with the
middle frame labelled as the keyframe capturing this motion. Figure [2]shows five example keyframes
selected with their motion referring expression. We use the retrieved keyframes to create a video
containing both the static keyframe in addition to the original video clip as shown in Figure[3]

Strong baselines. We establish strong single-image and semi-temporal baselines for referring video
segmentation using powerful multi-modal large language models that can visually ground objects on
the region level. Models such as Qwen2.5-VL Bai et al.| (2025) and InternVL3 (2025) have
emerged that show strong capabilities in visually grounding objects and outputting their corresponding
bounding boxes. We build three baselines that are biased to the static information conveyed from a
single image. The first baseline relies on the MLLM output, followed by using the segment anything
model [Kirillov et al.|(2023); Ravi et al.|(2024) to generate the output segmentation per frame for the
corresponding referring expression (MLLM + SAM). We use the following prompt: Locate the
<EXP>, output its bbox coordinates using JSON format. The second baseline follows
a similar procedure but identifies the object in the first frame, then it uses the segment anything model
2.0 for tracking throughout the video, (MLLM + SAM 2.0). The final baseline




184
185
186
187
188

189

190

191
192
193
194

196
197
198
199
200

201
202
203
204
205
206
207
208

209

210
211
212
213
214
215
216

Method Backbone/Base MLLM RefDAVIS-17 MeVIS
J F  J&F J F  J&F

ReferFormer VideoSwin-B 58.1 64.1 61.1 29.8 322 310
LMPM Swin-T - - - 342 402 372
LISA LLaVA-7B 622 673 648 | 351 394 372
VISA Chat-UniVi-7B 66.3 725 694 | 407 46.3 435
VideoGLAMM VEn.+Phi3-Mini-3.8B | 65.6 73.3 69.5 | 42.1 482 452
MLLM + SAM Qwen2.5-VL-7B 60.8 668 638 | 388 450 419
MLLM + SAM 2.0 Qwen2.5-VL-7B 699 665 682 | 409 474 442
MLLM + SAM 2.0} Qwen2.5-VL-7B 698 759 729 | 445 512 478

Table 1: Comparison of our strong single-image and semi-temporal baselines (last three rows) with
respect to the state-of-the-art methods on RefDAVIS’17 and MeVIS datasets. Our baselines are
mostly biased to the static information, yet surpass previous methods. VEn.: vision encoders for
CLIP and InternVideov2 used in VideoGLAMM. 7: indicates the use of the automatic keyframe
selection. Best results are bolded.

relies on identifying the keyframe in the input video that can have the referred expression, then it
uses that as the initialization frame for SAM 2.0 (MLLM + SAM 2.07). The keyframe is retrieved
following the previous method in the motion-centric probing. The last baseline can be looked upon as
a semi-temporal baseline, since it is an intermediate baseline between full spatiotemporal and coarse
temporal grounding. It identifies the object within the video on the coarse level and for the pixel-level
grounding it only uses one static keyframe, followed by propagating the segmentation in the video.

4 Experimental Results

4.1 Experimental Setup

Evaluation datasets and metrics. We use established referring video segmentation datasets in
our evaluation including RefDAVIS17 |Pont-Tuset et al.[(2017) and the motion referring expression
dataset MeVIS Ding et al.| (2023). For RefDAVIS17 we evaluate on the provided validation split
that includes 30 videos, while for MeVIS, we use two splits: the mini-validation subset, which
includes 50 videos with their corresponding ground-truth available and the validation subset that
includes 140 videos that do not have their ground-truth publicly available but can be evaluated upon
using MeVIS evaluation server[ﬂ Finally, we evaluate on our constructed motion-centric version of
MeVIS mini-validation as detailed in Sec.[3.2] We use the standard evaluation metrics for the region
similarity, 7, which computes the mean intersection over union, the contour accuracy, F, and the
average of both, J&F.

Compared methods. We compare our strong baselines with respect to state-of-the-art referring
video segmentation methods, including the prior ones that relied on masked modelling from the
RoBERTa model, such as ReferFormer|(Wu et al.| (2022)) and LMPM Ding et al.| (2023)). Additionally,
we compare against recent ones that rely on the power of large language models with autoregressive
modeling in LISA [Lai et al.| (2024)), VISA |Yan et al.|(2024) and VidleoGLAMM Munasinghe et al.
(2024). For the motion-centric evaluation, we focus specifically on the best models in each category,
which have their codes and weights publicly available (i.e., LMPM and VideoGLAMM), in addition
to our three strong baselines.

4.2 Strong Baselines Evaluation

In this section, we show that our baselines already provide state-of-the-art performance, surpassing
previous [Lai et al.|(2024)); Yan et al.|(2024) and concurrent Munasinghe et al.[(2024) works. TableE]
shows results across two benchmarks, including the motion referring expression segmentation dataset.
It clearly shows that the simple baseline, MLLM + SAM 2.0, that does not incorporate any temporal
information in the identification of the referred expression, surpasses the state-of-the-art methods
on MeVIS except our concurrent work, VidleoGLAMM. While our strongest baseline, MLLM +
SAM 2.0, that relies on partial temporal information, outperforms the previous state of the art.

"https://codalab.lisn.upsaclay.fr/competitions/15094
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Method Backbone/Base MLLM | MeVIS mini-validation | MeVIS motion-centric
J F J&F J F TJ&F

LMPM Swin-T 342 402 372 | 182 269 226
VideoGLAMM VEn.+Phi3-Mini-3.8B | 43.6 527 482 | 18.1 251  21.6
MLLM + SAM Qwen2.5-VL-7B 488 560 524 | 241 338 289
MLLM + SAM 2.0 Qwen2.5-VL-7B 469 553 511 | 229 328 279

MLLM + SAM 2.0t Qwen2.5-VL-7B 49.1 569 530 | 234 342 287

Table 2: Quantitative comparison of state-of-the-art models and our proposed baselines on the MeVIS
mini-validation set and our corresponding motion-centric one. VEn.: vision encoders for CLIP and
InternVideov2 used in VideoGLAMM. {: indicates the use of the automatic keyframe selection. It
clearly shows a strong drop in performance for all the models, including our baselines. Best and
second-best results are bolded and underlined, respectively.

Original Motion-Centric Original Motion-Centric

Figure 4: Qualitative analysis comparing the original MeVIS mini-validation set performance vs.
the motion-centric one that incorporates an additional static keyframe to the video to confuse video
MLLMs. Predictions of our strongest baseline, Qwen2.5-VL + SAM 2.0t are highlighted in red.
Motion referring expressions for the examples are as follows: (i) first column is “front elephant
walking to backwards”, (ii) second column is “black car move and turn left”.

Thus, it confirms that our baselines, without temporal or with semi-temporal information, establish
strong results that we can safely use for our motion-centric probing and evaluation. While our
baselines rely on a stronger base multi-modal large language model, they are only meant to motivate
the motion-centric evaluation and identify their shortcomings on our proposed benchmark and the
corresponding analysis of the referring expressions.

4.3 A Motion-Centric Evaluation

In this section, we focus on the motion-centric evaluation, where we show that both the state-of-the-art
methods and our strong baselines still fall short in differentiating between the objects in the static
keyframe and real motion. Table [2 shows the evaluation on the mini-validation set of MeVIS and
the corresponding motion-centric version. Across all the methods, there is an obvious decrease of
around half the original performance on the standard videos that do not include that static keyframe.
It highlights the major shortcoming that the majority of the methods do not have an understanding of
the temporal information and are largely still biased to one static frame.

Qualitative comparison original vs. motion-centric. Figure 4 shows the qualitative analysis for
our strongest baseline, MLLM + SAM 2.0}, which relies on identifying the keyframe and then
propagating the information across the video. Even with the strongest baseline, the models tend to
segment the objects based on static cues in the referred expression. Hence, in the two examples
provided, the “front elephant” and the “black car” got segmented regardless of the motion incurred
and without an understanding of the full referring expression.

Qualitative ablation on motion-centric. Furthermore, we show a qualitative ablation of our strongest
two baselines compared to our concurrent work, VideoGLAMM, in Figure|§|on the motion-centric
benchmark. It shows three example sequences with three frames each, where our baseline, Qwen2.5-
VL + SAM 2.07, that uses partial temporal information, not the full spatiotemporal information, has
a better ability to differentiate the static frame from the dynamic video than the baseline that does
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(a) VideoGLAMM (b) Qwen2.5-VL + SAM 2.0 (c) Qwen2.5-VL + SAM 2.0

Figure 5: Qualitative ablation comparing our two strongest baselines and concurrent work from
VideoGLAMM. The motion referring expressions are as follows: (i) The first three rows are “two
fighting cows heading each other”. (ii) The second three rows are “4 lizards moving around”. (iii)
The final three rows are ‘“Panda turning around and moving forward from leftmost to rightmost.”

not use any temporal information, Qwen2.5-VL + SAM 2.0. This is evident in the following: (i) the
first example our strongest baseline does not segment the static frame, (ii) in the second example it
wrongly segments only two lizards in the static frame which appear to be about to move and (iii) in
the third example it segments the correct bear but also segments false positive ones unlike the static
baseline that was biased to the expression “rightmost” or “leftmost”. Nonetheless, even with such
a strong baseline that outperforms state-of-the-art results, it is quite challenging to differentiate the
static from the moving objects, where static cues in the referred expression can be misleading. Note
that in our motion-centric probing, there is an additional challenge from the expressions that use
location cues, e.g., “leftmost” or “rightmost”, as it raises the question of what reference defines these
locations. However, models that can capture motion can overcome such a challenge since it is not
only using the static cues but rather the motion and full expression describing it.

Analysis on the referring motion expressions. In order to study the type of referred expression that
can be misleading beyond the visual contextual information, we use our strongest baseline, Qwen?2.5-
VL + SAM 2.01, and compute the false positives in the static frame within our motion-centric
evaluation per video and referred expression. Specifically, we compute the ratio of the segmented
area in the static frame with respect to the full area of the image and group the referred expressions
into two major groups: the ones that resulted in less than 2% false positive segmentation in the static
frame, and the ones that have higher than 2%. In the total of 793 pairs of videos and motion referring
expressions, we find that almost half of the expressions at 380 out of 793, are in the second group,
which shows the major concern with the original MeVIS benchmark evaluation vs. our motion-centric
evaluation. Furthermore, we prompt GPT-40 with the referred expressions from the two groups
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Dynamic Group Static Group

- Richer in dynamic verb phrases - More abstract or static at times

- Describes multi-step actions - Static poses

- Shows how actions unfold in context - Less about sequences, more about
- Captures transitions and directional simple states or high-level sum-
movement maries

Table 3: Differentiating the properties of the two major groups of referring expressions based on
analysing the false positives in the static frame. The first group has less than 2% false positives in the
static keyframe and as such we refer to as the Dynamic group. While the second group has more than
2% false positives and is referred to as the Static group. The differences are automatically generated
using GPT-40 by parsing the referring expressions from each group.
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Multi-Step Action Dynamic VP Static VP Multi-Object Category Name Color Shape Heading

Expression Properties

Figure 6: Fine-grained analysis on the properties of the two major groups of referring expressions
which are the Dynamic and Static groups. VP: verb phrase.

and inquire “Which group captures better motion actions?”. The answer includes a differentiation
between the two groups’ characteristics as summarized in Table [3|and a correct identification that
Group 1 (i.e., Dynamic Group), captures motion actions better.

We take another step to study both the dynamic and static cues conveyed from the referred motion
expressions from the identified two groups. Towards that, we use GPT-40 to identify eight main
properties in each of the referring expressions through prompting it with the following: (i) “Does
the following expression have a multi-step action: <EXP>?", (ii) “Does the following expression
have a multi-object interaction: <EXP>?7", (iii) “Does the following expression have a rich dynamic
verb phrase: <EXP>?", (iv) “Does the following expression include color: <EXP>?", (v) “Does the
following expression include shape: <EXP>?", (vi) “Does the following expression describe heading
or direction: <EXP>7?”, (vii) “Does the following expression have a verb indicating static position:
<EXP>?" and (viii) “Does the following expression have the subject as an identifiable category:
<EXP>?7". We show the percentage of expressions within each group that received a response “yes”
from GPT-4o for the previous properties, highlighting the differences between both the dynamic and
static groups in Figure[6] It shows that the dynamic group is mainly differentiated from the static one
with multi-step actions and more dynamic verb phrases. While the static verb phrases in the static
group are on par with the dynamic ones. On the other hand, three main properties differentiate the
static vs. dynamic group of referred expressions, which are the multi-object interactions, the use
of the category name and the color. Such properties give static cues in the referred expression that
suffice to use a single image to segment the object.

5 Conclusion

In conclusion, we have shown the shortcomings in both referring video segmentation methods and the
benchmarks used for their evaluation. We propose a novel benchmark that is motion-centric through
the use of a static keyframe paired with the dynamic video to mislead the referring segmentation
methods into the existence of the object without motion. Additionally, we propose three strong
baselines that outperform the state of the art while being static biased.
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A Additional Implementation Details

For our three baselines, we use the following weights for Qwen2.5-VL that are available from
Hugging Face “Qwen2.5-VL-7B-Instruct”. For the motion-centric probing and to avoid any bias in
our strong baselines in predicting the segmentation tied to a certain location in the image, we rather
prompt the models with two versions of the same video; one that has the static key-frame on the left
side and another on the right side. Then we use the combination of both predictions for the final
evaluation. We found this to be a better evaluation of their capabilities in identifying the real motion
referring expression from the fake motion in the static keyframe. Throughout all the experiments, we
use an A6000 GPU to run the evaluation of all the models discussed.

B Limitations

Our work has limitations tied to evaluating video multi-modal large language models that are
conducting spatiotemporal referring segmentation. Such models are GPU memory hungry and require
specialized GPUs for inference, let alone their training. Consequently, it limits the contributors to the
benchmarks and developing better models that overcome these issues with a focus on motion-centric
evaluation, where low-resourced communities who do not have access to such resources can find it
impossible to participate in that kind of research.

C Impact Statement

Video multi-modal large language models are widely used in various applications, such as robotics,
medical image processing and is even useful in temporal imagery in remote sensing. The pixel-level
understanding within such MLLMs is necessary for such applications that require the localization
and even in certain scenarios, the delineation of the boundaries for the objects of interest. It is even
more important to maintain a good spatiotemporal understanding to capture motion and dynamics in
the input video. In our work, we have investigated the shortcomings of video MLLMs in the video
referring segmentation task, while providing a more challenging motion-centric benchmark to push
these models into a better understanding of the temporal information.

However, as with many other Al advancements, there are risks that could be entailed from the
deployment of such models. There could be inherent biases emerging in such video MLLMs,
impacting various underrepresented groups. We think that our benchmarking efforts, probing and
providing a tool to understand the pitfalls in the understanding and reasoning of these models could
be an initial direction for mitigating such biases. Nonetheless, we leave it for future work to explore
this further.
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NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claimed a novel probing and benchmark that are motion-centric, accom-
panied with strong baselines that outperform the state-of-the-art in video MLLMs. All of
which reflect our contributions and have been confirmed in the results section.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In Appendix B we discuss the limitations.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: No theoretical results.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide implementation details in Sec. 4.1 Appendix A.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in the supplemental
material?

Answer:

Justification: We promise to make the code and datasets publicly available upon acceptance
to protect our work.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the necessary implementation details in Sec. 4.1 and Appendix A.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined, or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This paper proposes a novel probing and benchmark, along with strong
baselines that do not require training on our behalf. Such large-scale MLLMs will be
computationally infeasible to provide error bars for the randomness from training them
beyond our limited resources.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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10.

11.

12.

13.

14.

15.

Answer: [Yes]

Justification: It is mentioned in Appendix A.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We follow NeurIPS Code of Ethics.
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Appendix C includes that.
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our benchmark is based on publicly available datasets. As such, they do not
incur high risk. Additionally, we do not release pre-trained models but rather discuss strong
baselines and interpretability techniques that rely on publicly released models’ weights.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We evaluate on two publicly released datasets, which we cite and use their
licences for research purposes only.

New assets

Question: Are new assets introduced in the paper well documented, and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We provide a probing technique that is used to create a motion-centric bench-
mark along with strong baselines. Nonetheless, we do not create standalone assets.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing or human subjects involved.
Guidelines:

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Not required for our research.
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16.

Guidelines:
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We describe it in the method Sec. 3, then describe the implementation details
in Sec. 4.1 and Appendix A.
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