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ABSTRACT

The release of sensitive data often relies on synthetic data generation and Person-
ally Identifiable Information (PII) removal, with an inherent assumption that these
techniques ensure privacy. However, the effectiveness of sanitization methods for
text datasets has not been thoroughly evaluated. To address this critical gap, we
propose the first privacy evaluation framework for the release of sanitized textual
datasets. In our framework, a sparse retriever initially links sanitized records with
target individuals based on known auxiliary information. Subsequently, seman-
tic matching quantifies the extent of additional information that can be inferred
about these individuals from the matched records. We apply our framework to
two datasets: MedQA, containing medical records, and WildChat, comprising
individual conversations with ChatGPT. Our results demonstrate that seemingly
innocuous auxiliary information, such as specific speech patterns, can be used to
deduce personal attributes like age or substance use history from the synthesized
dataset. We show that private information can persist in sanitized records at a
semantic level, even in synthetic data. Our findings highlight that current data
sanitization methods create a false sense of privacy by making only surface-level
textual manipulations. This underscores the urgent need for more robust protec-
tion methods that address semantic-level information leakage.

1 INTRODUCTION

The need for protected user and patient data in research and collaboration has made privacy protec-
tion critical (Federal Data Strategy, 2020; McMahan et al., 2017). To mitigate disclosure risks, two
sanitization techniques are widely used (Garfinkel, 2015): removing explicit identifiers and generat-
ing synthetic datasets that mimic the statistical properties of original, seed data. This latter approach
has gained significant traction, especially in medical domains (Giuffrè & Shung, 2023), where it
has been hailed as a silver-bullet solution for privacy-preserving data publishing, as the generated
information is considered not to contain real units from the original data (Stadler et al., 2022; Rankin
et al., 2020). However, the efficacy of synthetic data in truly preserving privacy remains contentious
across legal, policy, and technical spheres (Bellovin et al., 2019; Janryd & Johansson, 2024; Abay
et al., 2019). While these methods eliminate direct identifiers and modify data at a surface level,
they may fail to address subtle semantic cues that could compromise privacy. This raises a critical
question: Do these methods truly protect data, or do they provide a false sense of privacy?

Consider a sanitized medical dataset containing Alice’s record, as illustrated in Figure 1 (example
drawn from the MedQA dataset). Conventional sanitization methods often rely on lexical matching
and removal of direct identifiers like names, deeming data safe when no matches are found (Pilán
et al., 2022). However, privacy risks extend beyond explicit identifiers to quasi-identifiers –
seemingly innocuous information that, when combined, can reveal sensitive details (Sweeney, 2000;
Weggenmann & Kerschbaum, 2018)– and beyond literal lexical matches to semantically similar
ones. An adversary aware of some auxiliary information about Alice’s habits (e.g., stopping mid-
sentence) could still use this information (Ganta et al., 2008) and locate a record with semantically
similar descriptions in the sanitized data. This record could reveal Alice’s age or history of auditory
hallucinations, compromising her privacy, despite the dataset being “sanitized”.
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She abruptly stops talking in the 
middle of sentences. She occasionally 
directs her attention to the ceiling as if 
she were listening to someone.

Auxiliary Information

Sanitized Dataset

Semantic Match
A 21yo woman presents with fatigue, 
describes multiple voices calling her before 
she falls asleep... The patient has no 
significant medical or psychiatric history. She 
doesn’t smoke or drink... 

Detected Leakage
1. Young adult (early 20s)
2. Auditory hallucinations
3. No substance use history

Matched Record:
Matched Record:

Semantic 
Eval

Lexical 
Eval

Semantic 
Eval

A 23-year-old woman is brought to the ER... She says that she feels "empty inside" and 
has been hearing voices telling her that she is worthless... She does not drink alcohol or 
use illicit drugs... Her speech is slow and monotonous; she abruptly stops talking in the 
middle of sentences and does not finish them. She sometimes directs her attention to the 
ceiling as if she were listening to someone. 

Original Record

Data Sanitization

Linking 
Step

Original Dataset

Figure 1: Our privacy evaluation framework overview: First, we use innocuous auxiliary informa-
tion about Alice to find potential matches in the sanitized dataset using a sparse retriever. Second,
we semantically evaluate each piece of inferred information from the matched records, revealing
sensitive details about Alice, such as her age.

To address this gap in evaluation, we introduce the first framework that quantifies the information
inferrable about an individual from sanitized data, given auxiliary background knowledge (Ganta
et al., 2008). Grounded in statistical disclosure control (SDC) guidelines used by the US Cen-
sus Bureau for anonymizing tabular data (Abowd et al., 2023), our two-stage process (Figure 1)
adapts these principles to unstructured text. The first stage, linking, employs a sparse retriever to
match de-identified, sanitized records with potential candidates. This is achieved by leveraging term
frequency-inverse document frequency (TF-IDF) weighting to compute relevance scores between
query terms and documents and then retrieving most relevant matches.

The second stage, semantic matching, assesses the information gained about the target by com-
paring the matched record from the linking step with the original, private data. We operate at a
granular, discrete “claim” level, evaluating individual pieces of information within the linked record
separately, rather than the entire record as a whole, and we consider semantic similarity rather than
lexical matching. This allows for a more nuanced assessment of privacy risks. For example, con-
sider Alice’s case again (Figure 1). We might retrieve a record stating Alice is 21 years old when
she is, in fact, 23. A lexical match would report no leakage, as the ages do not match precisely.
Semantic matching, however, recognizes this close approximation and assigns partial credit for such
inferences, capturing subtle privacy risks.

We evaluate various state-of-the-art sanitization methods on two real-world datasets: MedQA (Jin
et al., 2021), containing diverse medical notes, and a subset of WildChat (Zhao et al., 2024), fea-
turing AI-human dialogues with personal details (Mireshghallah et al., 2024). We compare two
sanitization approaches: (1) identifier removal techniques, including commercial PII removal, LLM-
based anonymizers (Staab et al., 2024), and sensitive span detection (Dou et al., 2024); and (2) data
synthesis methods using GPT-2 fine-tuned on private data, with and without differential privacy (Yue
et al., 2023). For differentially private synthesis, we add calibrated noise to the model’s gradients
during training to bound the impact of individual training examples. We assess both privacy and
utility, measuring leakage with our metric and lexical matching, and evaluating sanitized datasets on
domain-specific downstream tasks.

Our main finding is that current dataset release practices for text data often provide a false sense
of privacy. To be more specific, our key findings include: (1) State-of-the-art PII removal methods
are surface-level and still exhibit significant information leakage, with 94% of original claims still
inferable. (2) Data synthesis offers a better privacy-utility trade-off than identifier removal, showing
9% lower leakage for equivalent or better utility, depending on the complexity of the downstream
task. (3) Without differential privacy, synthesized data still exhibits some leakage (57%). (4) Dif-
ferentially private synthesis methods provide the strongest privacy protections but can significantly
reduce utility, particularly for complex tasks (-4% performance on MedQA task from baseline and
have degraded quality on the synthesized documents). We also conduct comprehensive ablations, in-
cluding using different semantic matching techniques and changing the auxiliary attributes used for
de-identification, providing a thorough analysis of our framework’s performance across various text
dataset release scenarios. Our results highlight the necessity to develop privacy guardrails that go
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beyond surface-level protections and obvious identifiers, ensuring a more comprehensive approach
to data privacy in text-based domains.

2 PRIVACY METRIC

As shown in Figure 1, given a sanitized dataset, our framework employs a linking attack and a
semantic similarity metric to evaluate the privacy protection ability of the sanitizer.

2.1 PROBLEM STATEMENT

Let Doriginal = {x(i)}Ni=1 denote the original dataset and Dsanitized = S(Doriginal) = {y(i)}Mi=1 the
sanitized dataset for the given data sanitization method of interest S. Our goal is to evaluate the
privacy of Dsanitized under a re-identification attack by an adversary which has access to Dsanitized as
well as auxiliary information x̃(i) = A(x(i)) ⊂ x(i) for entries in Doriginal. The access function A
depends on the threat model; in our experiments, A(x) randomly selects three claims from x (see
§2.2 below).

To assess potential privacy breaches that could result from the public release of a sanitized dataset,
we define L(x̃(i),Dsanitized) → ŷ(i) as a linking method that takes some auxiliary information x̃(i)

and the sanitized dataset Dsanitized as inputs and produces a linked record ŷ(i) ∈ Dsanitized. Let
µ(x(i), ŷ(i)) be a similarity metric quantifying the similarity between the original record x(i) and
the linked record ŷ(i). Given these components, we define our privacy metric as:

privacy(Doriginal,Dsanitized) = Ex(i)∈Doriginal
[µ(x(i), L(x̃(i),Dsanitized))]. (1)

2.2 ATOMIZING DOCUMENTS

Documents typically contain multiple discrete pieces of information, complicating the quantifica-
tion of privacy leakage. For example, Alice’s record in Figure 1 encompasses both her habits and
medical information, making it challenging to assign a single privacy metric that accounts for all
sensitive data concurrently. To address this issue and facilitate a more fine-grained approach to
privacy evaluation, we atomize data records. Adopting the core concept introduced by Min et al.
(2023), we decompose each document into atomic claims, where each claim represents a single,
indivisible piece of information. In our framework, we partition each data record x(i) into a set of
atomized claims x(i)

j .

2.3 LINKING METHOD L

We employ a sparse information retrieval technique Lsparse, specifically the BM25 retriever (Lin
et al., 2021), to link auxiliary information with sanitized documents. Our approach concatenates
the auxiliary information x̃(i) into a single text chunk, which serves as the query for searching a
datastore of sanitized documents. The retrieval process then selects the top-ranked document based
on relevance scores as determined by the BM25 algorithm. We evaluate linking performance using
the correct linkage rate metric, which calculates the percentage of auxiliary information correctly
matched to its corresponding sanitized document when ground truth relationships are known.

2.4 SIMILARITY METRIC µ

Upon linking auxiliary information to a sanitized document, we quantify the amount of information
gain using a similarity metric µsemantic. This metric employs a language model to assess the semantic
similarity between the retrieved sanitized document and its original counterpart. The evaluation
process involves querying the language model with claims from the original document that were not
utilized in the linking phase. The model then assesses the similarity between these claims and the
content of the sanitized document. We employ a three-point scale for this assessment: a score of
1 indicates identical information, while a score of 3 signifies that the claim is unsupported by the
sanitized document. In this scoring scheme, a higher value of µ corresponds to a greater degree of
privacy preservation, as it indicates reduced similarity between the original and sanitized documents.

3
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All scores are normalized to the range [0,1]. The specific prompt used for this evaluation can be
found in Appendix D.4.

2.5 BASELINE

To validate our approach, we establish a baseline using established text similarity metrics, defin-
ing complementary functions Llexical and µlexical. Both functions are implemented using ROUGE-L
(Lin, 2004) . Specifically, the baseline linking method Llexical processes auxiliary information x̃(i) by
concatenating it into a single text chunk, following the approach described in Section 2.3, and iden-
tifies the sanitized document with the maximum ROUGE-L score. To compute the baseline privacy
metric µlexical, we calculate one minus the ROUGE-L score between the original document x(i) and
its linked sanitized version. This formulation ensures that higher values indicate stronger privacy
protection.

3 EXPERIMENTAL SETUP

3.1 DATASETS AND UTILITY METRICS

We apply our metric on datasets: MedQA (Jin et al., 2021) and WildChat (Zhao et al., 2024). Each
dataset employs distinct measures of downstream utility to assess the effectiveness of our sanitiza-
tion method. For the MedQA dataset, we evaluate the performance of synthesized data records on its
associated downstream task, which assesses the preservation of information for individual records.
Conversely, for the WildChat dataset, we examine the sanitization method’s ability to capture the
distribution of the original records. This allows for a coarse grained evaluation of the sanitization
method. In addition to these dataset-specific evaluations, we assess the quality of sanitization across
the two datasets. We present all of our prompts in Appendix D.

3.1.1 DATASETS

MedQA Dataset. The MedQA dataset (Jin et al., 2021) comprises multiple-choice questions de-
rived from the United States Medical Licensing Examination, encompassing a broad spectrum of
general medical knowledge. This dataset is designed to assess the medical understanding and rea-
soning skills required for obtaining medical licensure in the United States. It consists of 11,450
questions in the training set and 1,273 in the test set. Each record contains a patient profile para-
graph followed by a multiple-choice question with 4-5 answer options. We allocated 2% of the
training set for a development set to facilitate hyper-parameter tuning. In our study, we treat the pa-
tient profiles as private information requiring sanitization. As the MedQA benchmark is commonly
used to evaluate a language model’s medical domain expertise, we report the model’s performance
on this task as our primary metric.

WildChat Dataset. The WildChat dataset (Zhao et al., 2024) comprises 1 million real user-
ChatGPT interactions containing sensitive personal information (Mireshghallah et al., 2024). This
dataset provides insights into how the general public utilizes large language models. Following the
pre-processing steps outlined in Mireshghallah et al. (2024), we categorize each conversation and
task the sanitization method to generate new conversations. We then evaluate the distribution of
categories in these generated conversations, reporting the chi-squared distance from the original dis-
tribution as a measure of utility. Following the paper, we also use GPT-4o1 as the evaluation model
for determining the category.

To ensure comparability with the MedQA accuracy metric, we normalize the chi-squared distance
to a scale of 0 to 1. We establish a baseline performance by tasking the language model to generate
random categories from the list and treating the resulting distance as the minimum performance
threshold. To address the complexity introduced by bot-generated content within the dataset, we
implement an additional pre-processing step. We summarize each conversation prior to atomizing
the dataset, thereby preventing the atomization process from being overwhelmed by lengthy content.
This approach allows for more precise linking and analysis of privacy leakage.

1https://openai.com/index/hello-gpt-4o/
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3.1.2 QUALITY OF GENERATION METRIC

The downstream tasks previously mentioned often lack granularity, particularly for the WildChat
conversation generation task. Current evaluation methods fail to adequately assess sanitization qual-
ity, as they may classify outputs correctly based on a few key tokens without guaranteeing overall
coherence. To address this limitation and inspired by recent works (Zeng et al., 2024a; Chiang &
Lee, 2023), we employ a Large Language Model as a judge to assess the quality of sanitization out-
puts on a Likert scale of 1 to 5, with a specific focus on text coherence. For this metric, we utilize
GPT-4o as our evaluation model. We provide our prompts used in Appendix D.

3.2 DATA SANITIZATION TECHNIQUES

We analyze various data sanitization techniques, as illustrated in Figure 2. Our focus encom-
passes two primary categories of sanitization: sample-level sanitization and dataset-level saniti-
zation through synthesis. Sample-level sanitization operates on individual records, aiming to re-
move private information from each record, and it maintains a one-to-one correspondence between
the original and sanitized datasets. We implement Prompt-based Sanitization (Staab et al., 2024),
Prompt-based Sanitization with Paraphrasing, Named Entity Recognition and Anonymization
(Dou et al., 2024), and Data Sanitization via Scrubbing in this category. In contrast, dataset-level
sanitization seeks to regenerate the distribution of the input dataset, where sanitized records may
not directly correspond to those in the original dataset. We use Synthesis via Differentially Private
Fine-tuning, and Synthesis via Language Model Fine-Tuning in this category. We incorporate two
additional baselines: No Sanitization and Remove All Information. Detailed description of these
methods is available in Appendix A, and prompts used in our analysis are provided in Appendix D.

Removal of Identifiers 
(Sample-level, one-to-one)

Dataset Synthesis 
(dataset level, many-to-many)

LLM 
Anonymizer 

Staab et al.

Detect & 
Abstract 
Dou et al.

Vanilla 
Synthesis

Differentially 
Private 

Synthesis
PII Removal 

Azure AI 
commercial tool

Figure 2: Overview of the data sanitization techniques evaluated using our framework.

3.3 PRIVACY METRIC SETUP

We evaluate our privacy metric µ using LLaMA 3 8B (Dubey et al., 2024). To improve the model’s
consistency, we query the LLaMA model three times for each similarity metric evaluation and de-
termine the final classification based on the mode of these responses. In addition, we assume the
attacker possesses three randomly selected claims for each record. To maintain consistency across
experiments, we apply the linking method with the same set of three claims per record.

4 EXPERIMENTAL RESULTS

In this section we discuss our experimental results, starting with a comparison of the privacy-utility
trade-off of different sanitization methods (removal of identifiers and vanilla data synthesis). Then,
we study how differential privacy can be used to provide rigorous privacy guarantees for synthesis,
but at the cost of utility. After that we ablate the impact of the choice of auxiliary side information
in the linking of records and sanitized data. Finally, we conduct a human evaluation to see how
well our metric correlates to people’s perception of leakage of data. We provide a few qualitative
examples of matched documents in Table 6 in the Appendix.
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4.1 PRIVACY-UTILITY TRADE-OFF: COMPARING DIFFERENT SANITIZATION METHODS

We present a analysis of the privacy-utility trade-off across various data sanitization methods in
Table 1. The lexical distance utilizes ROUGE-L as the similarity matching function Llexical, with
the corresponding privacy metric µlexical calculated as one minus the ROUGE-L score, as introduced
in §2.5. Semantic distance is obtained using our prompt-based method µsemantic after linking the
auxiliary information to the sanitized document with Lsparse, which evaluates whether the retrieved
information semantically supports the original data, as discussed in §2.4. The task utility for MedQA
is measured by the accuracy of answers to multiple-choice questions defined in the dataset, evaluated
post-sanitization. Notably, the remove all information baseline achieves an accuracy of 0.44. For
WildChat, utility is determined by a normalized chi-squared distance related to the classification of
documents, as described in §3.1.1. Text coherence, as introduced in §3.1.2, is a text quality metric
ranging from 1 to 5. The higher the score, the better quality outputting generation is.

The analysis of Table 1 reveals that both identifier removal and data synthesis techniques exhibit
privacy leakage, as evidenced by semantic match values consistently below 1.0 (perfect privacy).
Notably, identifier removal methods show a significant disparity between lexical and semantic sim-
ilarity. This gap demonstrates that these techniques primarily modify and paraphrase text without
effectively disrupting the underlying connected features and attributes, leaving them susceptible
to inference. This finding is particularly concerning for widely adopted commercial tools such as
Azure AI. In contrast, data synthesis methods show a reduced lexical-semantic gap and higher pri-
vacy metric values, suggesting potentially enhanced privacy protection. However, it is crucial to
note that while low privacy metric values indicate risk, high values do not guarantee privacy. Al-
though data synthesis consistently achieves higher privacy measures across both datasets, its utility
is not always superior. In the WildChat dataset, data synthesis performs comparably or occasion-
ally inferiorly to identifier removal methods like PII scrubbing. Similarly, in the MedQA dataset, it
underperforms compared to the Sanitize and paraphrase method. These observations highlight the
trade-off between privacy protection and data utility.

Table 1: Privacy-utility comparison of different sanitization methods across datasets. Lexical dis-
tance reflects using ROUGE-L as the similarity matching function after the linking stage, providing
a surface-level evaluation. Semantic distance demonstrates higher leakage (lower value of privacy
metric) in most cases, hinting that although the text is manipulated, attributes can still be inferred.

Privacy ↑ Utility ↑

Dataset Method Lexical
Distance

Semantic
Distance

Task
Utility

Text
Coherence

MedQA

No Sanitization 0.08 0.04 0.69 3.79
Remove All Info - - 0.44 -

Sanitize & Paraphrase 0.66 0.31 0.65 3.60
Azure AI PII tool 0.20 0.06 0.67 3.29
Dou et al. (2024) 0.61 0.34 0.61 2.84
Staab et al. (2024) 0.53 0.33 0.62 3.07

Data Synthesis 0.46 0.43 0.62 3.44

WildChat

No Sanitization 0.04 0.19 0.99 4.06

Sanitize & Paraphrase 0.73 0.44 0.62 3.76
Azure AI PII tool 0.17 0.21 0.99 3.68
Dou et al. (2024) 0.27 0.22 0.99 2.97
Staab et al. (2024) 0.49 0.40 0.98 3.49

Data Synthesis 0.86 0.83 0.93 3.28

4.2 PRIVACY-UTILITY TRADE-OFF: DATA SYNTHESIS WITH DIFFERENTIAL PRIVACY

In the previous section, we showed that data synthesis offers an improved privacy-utility trade-off
compared to identifier removal methods. However, this sanitization technique remains imperfect,
as there is still privacy leakage. To address this, researchers often integrate data synthesis with

6
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Table 2: Privacy-utility comparison of data synthesis using differential privacy with different levels
of ε, across datasets. Lower ε means more private. Lexical distance reflects using ROUGE-L as the
similarity matching function. Even high values of ε provide low leakage, albeit at the cost of utility
and quality.

Privacy ↑ Utility ↑

Dataset Privacy
Budget

Lexical
Distance

Semantic
Distance

Task
Utility

Text
Coherence

MedQA

ε = ∞ 0.46 0.43 0.62 3.44
ε = 1024 0.79 0.92 0.40 2.25
ε = 64 0.79 0.92 0.41 2.14
ε = 3 0.79 0.93 0.40 2.04

WildChat

ε = ∞ 0.86 0.83 0.93 3.28
ε = 1024 0.88 0.87 0.88 1.83
ε = 64 0.88 0.88 0.81 1.84
ε = 3 0.89 0.89 0.70 1.64

differential privacy (DP) to establish formal bounds on potential data leakage (Yue et al., 2023). The
bounding of the leakage in DP is governed by the privacy budget, denoted as ε. A higher ε value
corresponds to reduced privacy. Table 2 presents an evaluation of the previously discussed metrics
under various DP conditions. The row where ε = ∞ is equivalent to not applying differential
privacy, i.e. the vanilla data synthesis row from Table 1.

Our analysis reveals that implementing DP, even with relaxed guarantees such as ε = 1024, signifi-
cantly enhances privacy protection. The lexical privacy metric increases from 0.46 to 0.79, and the
semantic privacy metric from 0.43 to 0.92. However, this enhanced privacy comes at the cost of task
utility. For MedQA, utility drops from 0.62 to 0.40, falling below the baseline of not using private
data (0.44). Interestingly, the WildChat dataset exhibits a smaller utility decrease for task classifi-
cation when DP is applied. We attribute this disparity to the differing complexity and nature of the
tasks. Medical question answering is a complex, sparse task where contextual nuances significantly
impact the answer. Conversely, the WildChat utility metric assesses the ability to infer the user’s
intended task, which is essentially a simple topic modeling task achievable with limited keywords,
even in less coherent text. This effect is evident in the text coherence metric, where the introduction
of DP significantly degrades textual coherence from 3.28 to 1.83, where a score of 1 indicates the
sanitized document has a “Very Poor” quality.

A final observation from this experiment reveals that, unlike in the previous section, certain ε values
yield privacy metrics via lexical overlaps that are much lower than semantic similarity. Qualitative
manual inspection attributes this to extremely low text quality. In these cases, there is minimal infor-
mation leakage, and the non-zero lexical overlap (i.e., privacy metric not reaching 1.0) stems from
matches in propositions, articles, and modifiers (e.g., “a”, “the”) with the original text, indicating
false leakage. However, in privacy contexts, false negatives are more critical than false positives, as
false alarms are less catastrophic than overlooking real leakage (Bellovin et al., 2019).

4.3 ANALYSIS: CHANGING THE AVAILABLE AUXILIARY INFORMATION

In real-world re-identification attacks, an adversary’s access to auxiliary information influences their
ability to link and match records in sanitized datasets. Our previous experiments utilized random
three claims from each record as the adversary’s accessible information. To assess the impact of this
choice on the adversary’s information gain and matching capabilities, we conducted experiments
using both randomly selected claims and the first three claims.

Table 3 presents the results of these experiments, focusing on the correct linkage rate (defined in
§2.3) for sample-level, identifier removal methods. We limited our analysis to these methods due to
the availability of ground truth mappings for verification, which is not possible with dataset synthesis
techniques that lack one-to-one mapping among records in the original and sanitized dataset.

7
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Table 3: Comparison of successful linkage rates for various data sanitization methods across
datasets, assuming access to different auxiliary information (claims) for performing matching and
retrieval in re-identification attempts. The high variance in these rates highlights the significant im-
pact that available auxiliary side-information has on potential data leakage.

Dataset Method First Three
Claims

Random Three
Claims

Last Three
Claims

MedQA

No Sanitization 0.99 0.99 0.99

Sanitize & Paraphrase 0.58 0.66 0.78
Scrubbing 0.81 0.91 0.94
Dou et al. (2024) 0.70 0.67 0.69
Staab et al. (2024) 0.58 0.69 0.78

WildChat

No Sanitization 0.98 0.98 0.98

Sanitize & Paraphrase 0.59 0.62 0.56
Scrubbing 0.89 0.88 0.82
Dou et al. (2024) 0.88 0.88 0.83
Staab et al. (2024) 0.66 0.69 0.68

The results demonstrate a high variance in the adversary’s ability to correctly link records and re-
identify individuals across different claim selections, underscoring the significant impact of acces-
sible information on re-identification success. Notably, for the MedQA dataset, methods relying
on Large Language Models (LLMs), such as sanitize & paraphrase and the approach proposed by
Staab et al. (2024), exhibit the highest variance. This variance is particularly pronounced between
scenarios where the adversary has access to the first three claims versus the last three claims. We
hypothesize that this phenomenon may be attributed to the non-uniform instruction following char-
acteristics of LLMs, resulting in uneven preservation of information across different sections of the
text.

4.4 HUMAN EVALUATION OF THE SIMILARITY METRIC

We conducted a small-scale human study to assess the efficacy of our language model in reflect-
ing human preferences for the similarity metric µ, as defined in Section 2.4. Three of the authors
provided annotations for 580 claims. The results, presented in Table 4, demonstrate a high inter-
annotator agreement with a Fleiss’ kappa of 0.87. We then evaluate the same 580 claims using
LLaMA 3 8B, using a majority voting system over three queries. This method achieved a Spearman
correlation coefficient of 0.93 with the mode of human annotations, comparable to the strong perfor-
mance of GPT-4o, which achieves a coefficient of 0.96. In contrast, the lexical algorithm ROUGE
demonstrated a lower correlation, with an absolute Spearman coefficient of 0.81.

Table 4: Inter-rater agreement and model correlations for semantic similarity inference task.

Metric/Model Measure Value P-value
Human Agreement Fleiss’ Kappa 0.8748 -

LLaMA 3 8B Spearman Correlation 0.9252 2.37e-245

GPT-4o Spearman Correlation 0.9567 5.37e-312

ROUGE-L recall Spearman Correlation -0.8057 1.48e-133

5 RELATED WORK

Privacy evaluations of dataset disclosure. Evaluating privacy prior to dataset release has been
a longstanding practice in the statistical disclosure control (SDC) field (Hundepool et al., 2012).
This practice spans various fields, including legal, technical, and medical domains (Bellovin et al.,
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2019; Garfinkel, 2015; Giuffrè & Shung, 2023). Traditionally, these evaluations have focused on re-
identification risks, particularly for tabular data in census or medical contexts (Abowd et al., 2023;
El Emam et al., 2011). While there have been attempts to create text anonymization benchmarks
(Pilán et al., 2022), these primarily concentrate on span detection and anonymization rather than
comprehensive re-identification and focus on scrubbing methods rather than data synthesis, contrary
to our work. Recent work in the security literature has begun to challenge the perceived safety of
synthetic data, but these studies have primarily focused on simple, low-dimensional tabular or image
data (Stadler et al., 2022; Yale et al., 2019; Annamalai et al., 2024), raising concerns about the pri-
vacy guarantees of synthetic data. However, these investigations have not extended to unstructured
text, leaving a critical gap.

Data sanitization through removal of identifiers. Traditional approaches to data sanitization have
centered on the detection and removal of Personally Identifiable Information (PII) (Mendels et al.,
2018; Montani et al., 2022) relying on named entity recognition (NER) systems and masking. Re-
cently, LLMs have been employed for this task: Staab et al. (2024) developed an iterative prompting
method using GPT-4 to achieve implicit attribute removal, moving beyond simple token replace-
ment. Similarly, Dou et al. (2024) proposed a two-step approach, combining a self-disclosure de-
tection model with an abstraction technique to reduce privacy risks in text data. Morris et al. (2022)
introduced an unsupervised deidentification method that focuses on removing words that could lead
to reidentification, using a learned probabilistic reidentification model. Their approach, motivated
by K-anonymity, does not rely on specific rule lists of named entities but instead learns from aligned
descriptive text and profile information. However, their method requires a dataset of aligned text
and profiles, which may not always be available in real-world scenarios. All these approaches target
certain pre-defined categories of attributes for protection, on a record level.

Data sanitization through synthesis. To provide untargeted, dataset-level protection, data synthesis
has been employed (Garfinkel, 2015), sometimes with the assumption that synthesis alone provides
some degree of privacy (Liu et al.). To address this, differentially private data synthesis techniques
have been developed. Xie et al. (2018) proposed DP-GAN, a differentially private generative adver-
sarial network for tabular data synthesis. Torkzadehmahani et al. (2019) extended this approach with
DP-CGAN, incorporating conditional information to improve utility. For textual data, Weggenmann
et al. (2022); Igamberdiev & Habernal (2023); Bo et al. (2021); Igamberdiev et al. (2022) proposed
and benchmarked differentially private VAE, BART, and autoencoder with embedding rewards, to
sanitize text. Yue et al. (2023); Mattern et al. (2022); Mireshghallah et al. (2022); Kurakin et al.
(2023) introduce differentially private fine-tuning approachs for large language models to generate
synthetic text. These approaches aim to provide formal privacy guarantees while maintaining data
utility.

6 DISCUSSION

Dataset Structural Difference Leads to Difference in Performance. In MedQA, we found highly
structured patterns with consistent medical attributes - 89% of records contained patient age, 81% in-
cluded specific symptoms, and 63% contained medical history information, with an average of 15.6
distinct medical claims per document. This structured nature made the atomization process more
systematic - we could reliably separate claims about symptoms, medical history, and demographics.
However, this revealed a key privacy challenge: even after sanitization, the semantic relationships
between medical attributes remained intact, making re-identification possible through these linked
attributes. This was particularly problematic due to the sparsity of specific age-symptom-history
combinations in medical data - unique combinations of these attributes could often identify a single
patient even when individually sanitized.

The structural differences led to interesting patterns in sanitization effectiveness. For MedQA, while
DP-based synthesis achieved strong privacy scores (0.92), it showed significant utility degradation
(-22%) on medical reasoning tasks compared to non-dp data synthesis method, leaving the util-
ity lower than the model’s internal knowledge. This sharp utility drop occurred because medical
reasoning requires precise preservation of sparse, specialized attribute combinations - even small
perturbations in the relationships between symptoms, age, and medical history can change the di-

9
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agnostic implications. Identifier removal performed poorly (privacy score 0.34) as it couldn’t break
these revealing semantic connections between medical attributes.

In contrast, WildChat showed more promising results with DP-based synthesis, maintaining better
utility (only -12% degradation from non-dp to an epsilon of 64). This better privacy-utility balance
stems from two key characteristics of conversational data: First, the information density is lower -
unlike medical records where each attribute combination is potentially crucial, conversations contain
redundant information and natural paraphrasing. Second, the success criteria for conversations are
more flexible - small variations in phrasing or exact details often don’t impact the core meaning or
usefulness of the exchange. This made the dataset more robust to the noise introduced by DP-based
synthesis while still maintaining meaningful content.

7 CONCLUSION

This paper introduces a novel dataset-level privacy metric that addresses key limitations in current
data sanitization methods for unstructured text. By using a re-identification attack model and a
semantic-based privacy metric, our approach captures privacy risks more effectively than traditional
lexical matching techniques. Our framework integrates both privacy and utility assessments for the
sanitized dataset, providing a comprehensive evaluation of the trade-offs involved in different saniti-
zation techniques. Experiments on MedQA highlight that while differential privacy provides strong
privacy protection, it often drastically reduces data utility. Conversely, prompt-based LLM sanitiza-
tion and data scrubbing methods maintain utility but fail to adequately protect privacy. Fine-tuning
offers a better balance for some tasks but struggles with sample-specific details. Our work advances
privacy evaluation by providing a holistic framework, helping researchers better navigate the trade-
offs between privacy and utility and providing a test bed for future research in data sanitization.

LIMITATIONS AND FUTURE WORKS

While our approach offers valuable insights into data privatization methods, several limitations war-
rant consideration. Firstly, our study does not encompass the full spectrum of data privatization
techniques, particularly those that do not directly manipulate the data itself. Secondly, although we
have conducted preliminary investigations into the efficacy of our approach at various stages of the
pipeline, further rigorous studies are necessary to fully validate its accuracy, especially concern-
ing the computations of privacy metric. Additionally, our analysis was confined to a single dataset
within the medical domain, which limits the generalizability of our findings. Consequently, future
research should focus on evaluating the method’s applicability across diverse datasets and domains
to establish its broader relevance and robustness.

Our work does not pass judgment on whether or not these inferences are privacy violations as some
might be necessary for maintaining downstream utility. Instead, we provide a quantitative measure
of potential information leakage, taking a crucial step towards a more comprehensive understanding
of privacy in sensitive data releases and laying the groundwork for developing more robust protection
methods. Ideally, one would want contextual privacy metric, which can take into account (i) which
information is more privacy-relevant and (ii) which information is private in the context that the
textual information is being shared. These are extremely challenging questions that we believe are
beyond the scope of this paper. Nevertheless, they represent exciting research directions to pursue,
particularly given recent advances in LLMs.

ETHICS STATEMENT

Our research demonstrates that current data sanitization methods do not fully guarantee individual
privacy protection. We acknowledge the potential risks associated with developing an automated re-
identification process, which could be exploited maliciously. However, we argue that the long-term
benefits of this research outweigh these risks. By facilitating the development of more sophisti-
cated and effective data sanitization techniques, our work contributes to enhancing overall privacy
protection in data-driven research and applications. We emphasize the importance of responsible
disclosure and ethical usage of our findings to mitigate potential misuse.
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This study utilizes two primary datasets: WildChat and MedQA. WildChat (Zhao et al., 2024) com-
prises user interactions with GPT-3.5 and GPT-4 models through publicly accessible APIs hosted on
Hugging Face spaces. Users accessed these models without creating accounts or providing personal
information, consenting to data collection and agreeing to usage terms in exchange for free access.
The dataset includes hashed IP addresses and country locations, offering authentic, real-world con-
versations for analysis of user safety in large language model interactions.

WildChat enables quantitative assessment of users’ self-disclosure patterns and the types of sensitive
information shared with AI assistants. This provides a unique opportunity to evaluate potential
privacy and information security risks associated with data collection in human-AI interactions.

The MedQA dataset (Jin et al., 2021), derived from medical board examinations, offers a compre-
hensive and standardized corpus of questions and answers for assessing medical knowledge. Cu-
rated by experts, this dataset contains no true identities and serves as a controlled complement to the
real-world data from WildChat.
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A BENCHMARKED SANITIZATION METHODS

Prompt-based Sanitization (Staab et al., 2024). This approach utilizes Large Language Models
(LLMs) to remove sensitive information through iterative prompting. We implement the sanitization
pipeline proposed by Staab et al. (2024), which employs a two-step process of adversarial inference
and sanitization. In the adversarial inference step, the language model attempts to infer sensitive
attributes from the text. Subsequently, in the sanitization step, the model is prompted to sanitize
the text referencing the inference results. We perform three rounds of this process, focusing on all
attributes identified in the original study: age, education, income, location, occupation, relationship
status, sex, and place of birth. For this sanitization method, we employ GPT-4o as our LLM.

Prompt-based Sanitization with Paraphrasing. Drawing insights from Zeng et al. (2024b), who
explored record rewriting, we extend the prompt-based method to involve a two-step process: initial
sanitization followed by paraphrasing. We first apply the sanitization prompt from Staab et al. (2024)
without attribute inference, then use an LLM to paraphrase the sanitized text, potentially enhancing
privacy protection.

Named Entity Recognition and Anonymization (Dou et al., 2024). We evaluate the self-
disclosure detection model developed by Dou et al. (2024). This two-step process first applies their
span detector to identify potential self-disclosures in each sentence of a record, then uses their span
abstraction model to sanitize the detected spans.

Data Sanitization via Scrubbing. We evaluate an industry standard data sanitization method that
focuses on identifying and removing personally identifiable information (PII). This approach utilizes
the Azure AI Language PII detection service2 to identify and redact PII from the dataset with the
“*” character.

Synthesis via Differentially Private Fine-tuning. We furthermore evaluate a data synthesis tech-
nique, specifically fine-tuning with differential privacy (DP). DP algorithms aim to limit the impact
of individual data points by producing output distributions that remain statistically similar regard-
less of the inclusion of any specific data point. We adopt the method described by Yue et al. (2023),
which generates synthetic text while maintaining formal DP guarantees. This approach controls
generation by conditioning the output on categorical information of the desired data. Prior to fine-
tuning a generative model, the method preprocesses data records by prepending a “control code”, a
categorical label, to each data excerpt. During inference, the generation process is controlled by first
selecting the categorical information, thereby conditioning the output.

In our experiments, we apply this method to our datasets with privacy budget values of ε ∈
{3, 8, 16, 64, 512, 1024} that are commonly used in the differnetial privacy literature.

For the MedQA dataset, we employ a “control code” comprising both the question and its corre-
sponding answer, effectively setting the category to be sample-specific. Specifically, we prepend a
text snippet in the format “Question: . . . |Answer: . . . ” to each record x(i). During the generation
of sanitized records, we provide this same text snippet with the record portion omitted, treating the
generated content as the sanitized information.

For the WildChat dataset, we do not control the generation in order to better evaluate the distribution
of the synthesized record category distribution.

Synthesis via Language Model Fine-Tuning. To refine our language model, we implement a data
processing pipeline that builds upon the methodology outlined in the preceding section. This pro-
cess incorporates the previously described ”control code” technique, which allows for more precise
guidance of the model’s behavior. The fine-tuning procedure involves iteratively exposing the pre-
trained model to our curated dataset, adjusting its parameters to optimize performance on privacy-
preserving text generation tasks. This approach enables the model to learn task-specific features
while maintaining its general language understanding capabilities. We implement a data processing

2https://learn.microsoft.com/en-us/azure/ai-services/language-service/
personally-identifiable-information/overview
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pipeline similar to the one described in the previous section. Specifically, we employ the “control
code” as described above and perform normal fine-tuning process.

Sanitization Baselines. We incorporate two additional baselines: No Sanitization and Remove
All Information. The No Sanitization baseline utilizes the original, unmodified text to establish
a performance reference point, serving as both a lower bound for privacy protection and an upper
bound for data utility. Conversely, the Remove All Information baseline, evaluated on MedQA,
eliminates the provided information, revealing the underlying knowledge and inherent biases of the
language model.
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B ADDITIONAL ABLATION STUDIES

B.1 SENSITIVITY TO PERTURBED AUXILIARY INFORMATION

Table 5: Privacy comparison when ablating on whether perturbing the auxiliary information.

Sanitization Method Semantic
Distance

Semantic
Distance with
Paraphrased

Aux Info

MedQA

No Sanitization 0.04 0.22

Sanitize & Paraphrase 0.31 0.35
Azure AI PII tool 0.06 0.26
Dou et al. (2024) 0.34 0.50
Staab et al. (2024) 0.33 0.57

WildChat

No Sanitization 0.19 0.26

Sanitize & Paraphrase 0.44 0.50
Azure AI PII tool 0.21 0.30
Dou et al. (2024) 0.22 0.28
Staab et al. (2024) 0.40 0.47

We examine how perturbations in auxiliary information affect our privacy metric, simulating sce-
narios where auxiliary information undergoes transformation during transmission. Using the prompt
detailed in Appendix D.2.2, we employ LLaMA 3 8B to paraphrase the auxiliary information, re-
ducing direct textual overlap.

For example, the original auxiliary information “Auscultation of the lungs does not reveal any sig-
nificant abnormalities. He consumed 3 glasses of the drink before symptoms developed. On physical
examination, he is disoriented.” is paraphrased into “A thorough examination of the patient’s lungs
did not uncover any notable issues. He had consumed three servings of the beverage before his
symptoms began to manifest. Upon physical inspection, the patient displayed signs of disorienta-
tion.” Overall, the bi-gram overlap (measured by ROUGE-2 precision) between the paraphrased and
original auxiliary information decreases from 71.0% to 19.9% for MedQA and from 40.5% to 21.0%
for WildChat.

We repeat our privacy analysis using the paraphrased auxiliary information and the results are in
Table 5. Relative performance patterns across sanitization methods remain consistent whether using
original or paraphrased auxiliary data—methods showing higher leakage with original auxiliary data
also show higher leakage with paraphrased data. Even with substantially reduced lexical overlap,
all sanitization methods still exhibit significant information leakage, with semantic distance ranging
from 0.22 to 0.57 when using paraphrased auxiliary data. A semantic distance of 0.57 means roughly
that 43% of the information is leaked (assuming no partial information leakage). Given BM25 is par-
ticularly sensitive to paraphrasing, we expect we would be able to recover even more information
using a semantic (dense) retriever.

These results demonstrate that existing sanitization approaches fail to prevent information leakage,
even when evaluated under conditions of reduced textual overlap.
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Table 6: Examples from MedQA dataset, sanitized and original, re-identified and inferred using our
method.

Original Record Our Method Match Claims Used for Matching Privacy Leaks Detected by Se-
mantic Similarity

A 23-year-old woman is brought
to the emergency department ...
She says that she feels ”empty in-
side” and has been hearing voices
telling her that she is worthless.
... She does not drink alco-
hol or use illicit drugs. ... On
mental status examination, her
speech is slow and monotonous;
she abruptly stops talking in the
middle of sentences and does not
finish them. She occasionally di-
rects her attention to the ceiling
as if she were listening to some-
one.

A 21-year-old woman presents
to an outpatient psychiatrist with
chief complaints of fatigue and
”hearing voices.” She describes
multiple voices which sometimes
call her name or say nonsensi-
cal things to her before she falls
asleep at night. ... The patient
has no significant past medical or
psychiatric history. She does not
smoke or drink alcohol. ...

She abruptly stops talking in the
middle of sentences.
She does not finish her sentences.
She occasionally directs her at-
tention to the ceiling as if she
were listening to someone.

1. Young adult (early 20s)
2. Presence of auditory halluci-
nations
3. No substance use history
4. Potential psychotic disorder

A 34-year-old woman, gravida 1,
para 0, at 16 weeks’ gestation
comes to the physician for a rou-
tine prenatal visit. ... Serum stud-
ies show:
Alpha-fetoprotein decreased
Unconjugated estriol decreased
Human chorionic gonadotropin
increased
Inhibin A increased

A 26-year-old primigravid
woman comes to the physician
... for her first prenatal visit. ...
Maternal serum studies show low
α-fetoprotein and free estriol
concentrations, and increased in-
hibin A and β-human chorionic
gonadotropin concentrations.

Serum human chorionic go-
nadotropin levels are increased.
Serum inhibin A levels are
increased.
The patient wants a definitive
diagnosis as quickly as possible.

1. Pregnant woman
2. First pregnancy
3. Abnormal serum markers
4. Potential fetal abnormality

A 58-year-old chronic smoker
known to have chronic bron-
chitis for the last 20 years
presents to his physician ...
Right heart catheterization is per-
formed, which indicates a pul-
monary artery pressure of 30 mm
Hg and a pulmonary capillary
wedge pressure of 13 mm Hg.
There is a significant drop in pul-
monary artery pressure after the
administration of inhaled nitric
oxide.

A 51-year-old man comes to the
physician because of progres-
sively worsening dyspnea on ex-
ertion and fatigue for the past 2
months. ... Coarse crackles are
heard at the lung bases bilater-
ally. ... An x-ray of the chest
shows globular enlargement of
the cardiac shadow with promi-
nent hila and bilateral fluffy infil-
trates. ...

Right heart catheterization indi-
cates a pulmonary artery pressure
of 30 mm Hg.
Right heart catheterization in-
dicates a pulmonary capillary
wedge pressure of 13 mm Hg.
There is a significant drop in pul-
monary artery pressure after the
administration of inhaled nitric
oxide.

1. Middle-aged man
2. Progressive breathing diffi-
culty
3. Indication of lung disease
4. Potential heart involvement

A 56-year-old woman comes to
the emergency department be-
cause of worsening pain and
swelling in her right knee for
3 days. She underwent a to-
tal knee arthroplasty of her right
knee joint 5 months ago. ... Anal-
ysis of the synovial fluid shows:
... WBC count 78,000/mm3
Segmented neutrophils 94%
Lymphocytes 6%
Synovial fluid is sent for culture
and antibiotic sensitivity.

A 42-year-old woman comes to
the emergency department be-
cause of worsening severe pain,
swelling, and stiffness of her
right knee for the past 3 days. ...
Arthrocentesis of the right knee
joint yields cloudy fluid with a
leukocyte count of 25,000/mm3
and 80% neutrophils. ...

Analysis of the synovial fluid
shows lymphocytes 6%.
Synovial fluid is sent for culture.
Synovial fluid is sent for antibi-
otic sensitivity.

1. Middle-aged woman
2. Right knee problem
3. Joint inflammation
4. Potential infection

C EXAMPLES TABLE

D PROMPTS USED

D.1 ATOMIZING RECORDS

Please breakdown the following input into a set of atomic,
independent claims, and return each of the claim in a new line
.

{icl_samples}

{document}
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D.2 PROMPT-BASED SANITIZATION WITH PARAPHRASING

D.2.1 SANITIZATION VIA QUERYING A LANGUAGE MODEL

This prompt is adapted from Staab et al. (2024).

You are an expert anonymizer that carefully adapts small parts of
the text to make it anonymous. You follow the instructions and
format precisely and you try to change as little as possible,
keeping the original text in tact as much as possible. Only

generalize information and do not invent new information.
Example: ’my husband and I’ -> ’my partner and I’ is valid, but ’

my husband and I’ -> ’my wife and I’ is not.
Example: ’my husband and I have a dog’ -> ’my partner and I have a

dog’ is valid, but ’my husband and I have a dog’
-> ’my partner and I have a cat’ is not.
Example: ’my husband and I’ -> ’I’ is also valid as it only

removes information.
Below I give you a medical record from a user. Your task is to

anonymize the record to protect user’s privacy, while keeping
the rest of the text intact.

Record:
{document}

In a first step briefly explain the changes you will make. In a
new line write a single # and then return the anonymized text.
Only change relevant parts and keep everything else as is.

Make sure you keep the original meaning, i.e. do not invent
new information instead generalize information. Do not add
indicators besides #, i.e. do not add phrases such as
Anonymized text: or similar.

D.2.2 PARAPHRASING VIA QUERYING A LANGUAGE MODEL

Given the following text, generate a paraphrased version that
maintains the original meaning, context, and tone while using
different words and sentence structures. Ensure that the
paraphrased text is clear, coherent, and logically organized.

text: {document}

In a new line return the anonymized text. Make sure you keep the
original meaning, i.e. do not invent new information instead
generalize information. Do not add any indicators, i.e. do not
add phrases such as paraphrased text: or similar.

D.3 LLM ARE ADVANCED ANONYMIZER PROMPTS

These prompts are adapted from Staab et al. (2024).

D.3.1 ADVERSARIAL INFERENCE - WILDCHAT

Let us play a guessing game. The following is the a conversation
between a user and an AI chatbot. Your task is to guess the
user’s attributes including Age, Education, Income, Location,
Occupation, Relationship Status, Sex, Place of Birth? Only
include attributes that might be inferred from the text.
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Type: <target_attribute>
Inference: Your detailed inference
Guess: Your top 3 guesses in a list separated by ;
Certainty: Based on your inference how certain you are from 1-5. 1

is very uncertain only based on biases and 5 has clear
evidence in the conversation. Only give the number.

Conversation: {document}

D.3.2 ADVERSARIAL INFERENCE - MEDQA

Let us play a guessing game. The following is a synthetic patient
record. Your task is to guess the patient’s attributes
including Age, Education, Income, Location, Occupation,
Relationship Status, Sex, Place of Birth? Only include
attributes that might be inferred from the text.

Type: <target_attribute>
Inference: Your detailed inference
Guess: Your top 3 guesses in a list separated by ;
Certainty: Based on your inference how certain you are from 1-5. 1

is very uncertain only based on biases and 5 has clear
evidence in the record. Only give the number.

Record: {document}

D.3.3 SANITIZATION - WILDCHAT

--System Prompt--
You are an expert anonymizer that carefully adapts small parts of

the text to make it anonymous. You follow the instructions and
format precisely and you try to change as little as possible,
keeping the original text in tact as much as possible. Only

generalize information and do not invent new information.

Example: ’my husband and I’ -> ’my partner and I’ is valid, but
’my husband and I’ -> ’my wife and I’ is not.

Example: ’my husband and I have a dog’ -> ’my partner and I
have a dog’ is valid, but ’my husband and I have a dog’ ->
’my partner and I have a cat’ is not.

Example: ’my husband and I’ -> ’I’ is also valid as it only
removes information.

--User Prompt--
Below I give you a conversation between a user and an AI chatbot

as well as personal inferences made about the user that can be
made from the conversation. Your task is to anonymize the

conversation to prevent these inferences, while keeping the
rest of the text intact.

Conversation:
{document}

In a first step briefly explain the changes you will make. In a
new line write a single # and then return the anonymized text.
Only change relevant parts and keep everything else as is.
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Make sure you keep the original meaning, i.e. do not invent
new information instead generalize information.

Inference that can be made from the user (do not include the below
in the sanitization):

{inference}

D.3.4 SANITIZATION - MEDQA

--System Prompt--
You are an expert anonymizer that carefully adapts small parts of

the text to make it anonymous. You follow the instructions and
format precisely and you try to change as little as possible,
keeping the original text in tact as much as possible. Only

generalize information and do not invent new information.

Example: ’my husband and I’ -> ’my partner and I’ is valid, but
’my husband and I’ -> ’my wife and I’ is not.

Example: ’my husband and I have a dog’ -> ’my partner and I
have a dog’ is valid, but ’my husband and I have a dog’ ->
’my partner and I have a cat’ is not.

Example: ’my husband and I’ -> ’I’ is also valid as it only
removes information.

--User Prompt--
Below I give you a medical record from a user as well as personal

inferences made about the user that can be made from the
record. Your task is to anonymize the record to prevent these
inferences, while keeping the rest of the text intact.

Record:
{document}

In a first step briefly explain the changes you will make. In a
new line write a single # and then return the anonymized text.
Only change relevant parts and keep everything else as is.

Make sure you keep the original meaning, i.e. do not invent
new information instead generalize information.

Inference that can be made from the user (do not include the below
in the sanitization):

{inference}

D.4 PRIVACY METRIC

**Task**:
For each of the following claims, rate how well the provided

passage supports it on a scale of 1 to 3, where:
- **1** means "Same Information,"
- **2** means "Different but Similar Information," and
- **3** means "unsupported."

Use the rubric below to guide your evaluation and include a brief
explanation for your rating to justify your decision. Focus on
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the content and facts being discussed, ignoring wording
differences. Evaluate each claim separately and do not group
them together in your output.

**Rubric**:
1. *Same Information*: The claim exactly matches the corresponding

information in the passage. The claim could be a direct quote
from the passage or a paraphrase that captures the same

information.
2. *Different but Similar Information*: The claim is not identical

to the passage but captures the same or closely related
information. For example, the claim could be an abstraction of
the corresponding information in the passage, or it could

have minor differences that do not significantly change its
overall meaning.

3. *Unsupported*: The claim is not supported by the passage. It
could either be not discussed at all in the passage or
inconsistent with the passage.

{icl_samples}

**Input**:
{atomized_claims}

Original text: {context}
**Output**:

D.5 QUALITY OF GENERATION

D.5.1 QUALITY OF GENERATION - MEDQA

You are provided with a concise medical case summary. Your task is
to evaluate this summary based on its clinical relevance,

completeness, and coherence. Use the following 5-point scale:
1 (Very Poor): The summary is severely lacking in critical

information, contains major contradictions, or is so
incomplete that it fails to provide a meaningful picture of
the patient’s condition.

2 (Poor): The summary includes some relevant information but omits
several important details. It may fail to connect symptoms

with potential diagnoses or lack crucial elements of the
patient’s history or examination findings.

3 (Satisfactory): The summary provides a basic overview of the
patient’s presentation, including key elements such as age,
gender, chief complaint, and some relevant history or
examination findings. However, it may lack depth or miss some
important details.

4 (Good): The summary is coherent and includes most important
clinical information. It presents a clear picture of the
patient’s case, including age, gender, chief complaint,
relevant medical/social history, and key physical examination
findings. Minor details may be missing, but overall it
provides a solid foundation for clinical reasoning.

5 (Excellent): The summary is comprehensive, clinically insightful
, and well-structured. It presents a complete picture of the
patient’s case, including age, gender, chief complaint,
relevant medical/social history, key physical examination
findings, and any immediate test results. The summary
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effectively highlights the most clinically relevant
information and provides a strong basis for forming a
differential diagnosis.

Evaluation Instructions:

Read the case summary carefully.
Assess the summary based on the above criteria, focusing on its

clinical relevance, completeness, and coherence.
Provide a brief explanation (2-3 sentences) justifying your rating

, highlighting specific strengths or weaknesses.
Assign a rating from 1 to 5.

Your response should follow this format:
Explanation: [Your 2-3 sentence justification]
Rating: [Your rating (1-5)]
Remember, you are evaluating the quality and completeness of the

case summary itself, not making a diagnosis or judging the
medical decisions. Your evaluation should focus on how well
the summary captures and presents the essential clinical
information needed for initial patient assessment.

Medical Profile: {Document}

D.5.2 QUALITY OF GENERATION - WILDCHAT

Your task is to evaluate the quality of synthetic conversations,
including both the user input and the AI response. Each entry
represents a complete exchange. Assess the overall coherence,
relevance, and quality of the conversation using the following
5-point criteria:

Very Poor (1 point): The conversation is incoherent or nonsensical
, with significant disconnects between user input and AI
response, and/or contains harmful, offensive, or entirely
inappropriate content.

Poor (2 points): The conversation lacks flow or logical
progression, the AI response is only marginally related to the
user input, and there are noticeable inconsistencies or

errors in the exchange.
Average (3 points): The conversation demonstrates a basic

connection between input and response, is mostly coherent with
some minor errors, and the AI response adequately addresses

the user’s input.
Good (4 points): The conversation flows well with a clear logical

progression, the AI response is relevant and enhances the
conversation, and the exchange demonstrates good quality
interaction with minimal errors.

Excellent (5 points): The conversation flows naturally and
logically, the AI response not only addresses the user input
but significantly enhances the conversation, and the exchange
demonstrates exceptional quality interaction, including
creativity, insight, or nuanced understanding.

Evaluation Instructions:

Carefully read the entire conversation exchange.
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Assess the overall quality based on the above criteria, focusing
on coherence, relevance, and the relationship between user
input and AI response.

Provide a brief explanation (3-4 sentences) justifying your rating
, highlighting specific strengths or weaknesses in both the
user input and AI response.

Assign a rating from 1 to 5.

Your evaluation should follow this format:
Explanation: [Your 3-4 sentence justification, addressing both

user input and AI response]
Rating: [Your rating (1-5)]
Additional Considerations:

Evaluate how well the AI understood and interpreted the context
provided by the user.

Assess the appropriateness of the conversation’s tone, style, and
content for the given context.

Consider the balance between the complexity of the user’s input
and the depth of the AI’s response.

For creative or open-ended prompts, evaluate the originality and
engagement level of the entire exchange.

For task-oriented conversations, assess how effectively the
exchange moves towards completing the implied or stated task.

Remember, you are evaluating the quality of the entire synthetic
conversation. Consider how well the exchange mimics a natural
human-AI interaction, and whether it achieves its apparent
communicative goal.

Conversation: {Document}

D.6 UTILITY

D.6.1 UTILITY - MEDQA

Solve the following medical multiple choice question and answer
correctly:

Question:
{question}
Options:
A. {options[’A’]}
B. {options[’B’]}
C. {options[’C’]}
D. {options[’D’]}

Answer:

D.6.2 UTILITY - WILDCHAT

Read the following conversation between a user and an AI chatbot.
Which tasks from the following list are being explicitly
requested by the user? Return only the most likely task name.

Tasks:
- summarization
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- model jailbreaking (e.g. asking model to roleplay as DAN,
NsfwGPT, Niccolo Machiavelli, IMMORAL, AIM, or Kevin)

- generating prompts for AI models
- story and script generation
- song and poem generation
- generating character descriptions
- code generation
- code editing and debugging
- generating communications (email, text messages, etc.)
- generating non-fictional documents (resumes, essays, etc.)
- editing existing text
- comparison, ranking, and recommendation
- brainstorming and generating ideas
- information retrieval
- solving logic, math, and word problems
- explanation, how-to, practical advice
- personal advice about mental health, relationships, etc.
- back-and-forth role-playing with the user
- answering multiple choice question
- translation
- general chitchat

Conversation:
{context}

Answer:
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