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LLM Agents Struggle at Engineering Time Series Solutions
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Abstract

Large Language Model (LLM) agents are increas-
ingly used for machine learning (ML) research
and engineering tasks, but how well do they han-
dle time series challenges? The results of our
investigation are not optimistic. The application
of agentic AI in support of time series analytics
is not in a mature state yet, and its performance
is not evaluated comprehensively and thoroughly
enough to inspire confidence for real-world ap-
plications. Existing benchmarks lack scalability,
focus narrowly on model building in idealistic,
well-defined settings, and evaluate only a limited
set of research artifacts (such as CSV result files
often submitted to Kaggle competitions), coming
short of assessing other pragmatic aspects of com-
petency of the agentic tools, such as, e.g., data
wrangling abilities. Effective ML engineering,
whether human- or AI-driven, requires a broad
set of diverse skills to competently approach chal-
lenges commonly encountered in practice in order
to deliver complete solutions. Our experiments
demonstrate how state-of-the-art agents struggle
to solve time series ML engineering tasks, and
how current benchmarks do not challenge them
well enough. We argue that our community still
needs more competent agents and more compre-
hensive benchmarks to produce ML engineering
LLM-driven agents capable of solving real world
time series challenges.

1. Introduction
Large Language Model (LLM) agents have shown growing
promise in reducing the mundane, mostly manual efforts re-
quired in machine learning (ML) engineering and improving
the overall productivity of ML practice. Several benchmarks
have been introduced to evaluate the capabilities of LLM

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Ⓒ 2025 Auton Lab, Carnegie Mellon University 1

Multiple Sources
Challenges

Description Resources

Grader

Agent-Agnostic 
Design

Multimodal Outputs

Prediction
Files

Model 
Artifacts

Code

Quantitative Qualitative

Accuracy, Error, … LLM-as-a-judge

AIDE

OpenHands

Holistic Evaluation

Skill Simulators

Code Improvement

Data handling

Hyperparameter Tuning

Figure 1. TimeSeriesGym is a scalable benchmarking environ-
ment for ML engineering agents. It features 34 time series chal-
lenges across 8 unique time series problems, spanning more than
15 domains. Challenges are either carefully designed based on
real-world ML practice, or sourced from Kaggle competitions
and GitHub repositories. TimeSeriesGym enables efficient and
scalable generation of new challenges. Our evaluation methodol-
ogy combines precise quantitative metrics with flexible qualitative
assessment, and provides specialized tools to grade various ar-
tifacts generated during ML engineering. TimeSeriesGym is
compatible with many different agent types.

agents in ML tasks (Tab. 1). However, these benchmarks
have important limitations. First, many of them source ML
challenges primarily from Kaggle, which are well-structured
and do not fully capture the complexity of real-world ML
tasks. Second, evaluations are typically outcome-based, fo-
cusing on overall task completion or downstream model
performance metrics such as accuracy. These metrics com-
bine and obscure the impact of multiple skills that jointly
determine the results, such as effective data wrangling or
code quality improvement capabilities. Third, current bench-
marks lack scalability, as tasks have to be manually curated
and cannot be developed at scale.

To address these limitations, we introduce
TimeSeriesGym, a comprehensive benchmarking
framework designed to evaluate LLM agents on time
series ML engineering tasks (Fig. 1). This framework is
both scalable and agent-agnostic, incorporating traditional
Kaggle-style competitions alongside carefully crafted
tasks that reflect real-world ML engineering practices. We
focus specifically on time series data for two key reasons.
First, time series represents one of the most common
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LLM Agents Struggle at Time Series Machine Learning Engineering

Table 1. Comparison of TimeSeriesGym with existing ML/DS agent benchmarks. Categories include Number: total and time series
(TS) tasks in each benchmark, where each task corresponds to a unique data source (e.g., a single Kaggle competition or GitHub
repository); Source: task origins (K: Kaggle, G: GitHub, H: Hand-crafted); ML Capability: coverage of ML science tasks (e.g.,
modeling, open-ended research) and engineering tasks (e.g., repository utilization, API integration); and Evaluation: capabilities for
evaluating multimodal outputs (e.g., prediction files, model artifacts), specific ML skills (e.g., data handling, model improvement), and
from a holistic perspective (combining quantitative metrics (accuracy, mean absolute error) with qualitative evaluation via code landmarks
or LLM-as-a-judge approaches). We use “+” to indicate TimeSeriesGym’s scalability which enables the generation of an unlimited
number of new challenges using the tools provided.

Number Source ML Capability Evaluation
Total TS K G H Science Engineering Multimodal Skill-based Holistic

MLE-bench (Chan et al., 2025) 75 3 ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗
MLAgentBench (Huang et al., 2024) 13 1 ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗

MLGym (Nathani et al., 2025) 13 0 ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗
RE-Bench (Wijk et al., 2024) 7 0 ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗
DSBench1 (Jing et al., 2025) 74 5 ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗
SUPER2 (Bogin et al., 2024) 45 0 ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓

ML-Bench (Tang et al., 2023) 18 1 ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗
ML-Dev-Bench (Padigela et al., 2025) 30 0 ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✗

TimeSeriesGym (Ours) 23+ 23+ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

forms of structured data in practical applications. Second,
this focus allows us to examine how foundation models
handle structured information processing, with agents
serving as the primary interface through which LLMs
interact with and manipulate such data. Our experimental
results reveal significant limitations in current technology.
Even the most advanced open-source agents demonstrate
poor performance on time series ML engineering tasks,
highlighting fundamental gaps in how existing foundation
models process and work with structured data.

2. TimeSeriesGym and Problems with
Existing Benchmarks

We envision TimeSeriesGym as a scalable benchmarking
environment for time series machine learning engineering.
The current version features 34 challenges from 23 unique
data sources across 8 unique time series problems, spanning
more than 15 domains. These challenges evaluate LLM
agents on a range of realistic ML engineering skills beyond
just model development, including data labeling, model
selection, and the utilization, improvement, and migration
of research code (Tab. 3).

Each challenge in TimeSeriesGym is organized with a
consistent structure: (1) resources including datasets, code
repositories, related paper(s) and documentation relevant
to the challenge; (2) a description file that outlines the
challenge parameters, available resources, and provides spe-
cific instructions and hints for successful completion; and

1For DSBench, we include only data modeling tasks, while
excluding data analysis tasks as they are not directly relevant to
our work. For SUPER, we include repositories used to create the
Expert and Masked sets of the benchmark.

(3) challenge-specific grading functions to evaluate agent
submissions. Some challenges also include leaderboards to
rank agent submissions against human performance. These
leaderboards are readily available for, e.g., challenges de-
rived from Kaggle competitions.

Challenges are derived from Kaggle competitions (currently,
n = 12) and popular benchmarks and research code repos-
itories for time series modeling (TimeSeriesGym Orig-
inals, n = 14). Each challenge is specifically chosen or
designed to evaluate one or more of the following skills:
(1) Data Handling: Ability to handle missing data, use data
labeling tools, and leverage multi-source data for model
building. (2) Modeling: Ability to develop useful time-
series ML models, tune hyperparameters, perform model
selection, and understand, utilize, migrate and improve the
quality of research code. (3) Benchmarking: Training and
rigorously evaluating ML models using standard bench-
marks. We prioritized challenges that reflect core skills
that are regularly exercised by ML engineers, researchers,
and data scientists; and have broad coverage across diverse
domains (e.g., healthcare, finance, epidemiology) and time
series problems (forecasting, classification, time series un-
derstanding). Tab. 3 provides a comprehensive overview
of each challenge within TimeSeriesGym, including its
domain, core problem, evaluation metric, and the skills re-
quired to address it.

ML engineering benchmarks can be resource-intensive.
For instance, experiments on a single seed for MLE-Bench
cost approximately USD 2500. To improve accessibility of
these benchmarks, we propose TimeSeriesGym-Lite,
a carefully selected subset of six challenges designed to
efficiently evaluate LLM agents on critical ML engineering
skills while maintaining coverage across multiple domains

2
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and time series problems. This collection enables rapid
and cost-effective assessment of novel LLM agents without
sacrificing the diversity of skills being tested (see Tab. 5).

Generating challenges at scale. We provide key mech-
anisms to enable efficient and scalable generation of new
challenges. First, we offer clear and detailed documentation
that explains how to add new challenges to the benchmark.
Second, we provide specialized tools to create skill-specific
challenges (e.g., simulating missing data) and evaluate them.
Using these resources, our team successfully created sev-
eral new challenges in two hours of effort, each testing
specific ML engineering skills. This scalability ensures
that TimeSeriesGym can grow and adapt as time series
machine learning techniques continue to advance.

Multimodal, skill-based, holistic evaluation. Existing
benchmarks typically summarize agent performance us-
ing metrics such as accuracy, completion rate, or compe-
tition rankings (Chan et al., 2025). Although these met-
rics provide useful summaries, they do not offer much ac-
tionable feedback for improvement. TimeSeriesGym
addresses this limitation through an evaluation framework
designed to provide specific actionable feedback through
multiple complementary approaches. First, we design chal-
lenges that isolate and test specific skills, such as handling
missing data (e.g., Optiver Realized Volatility
Prediction with Missing Data). Poor perfor-
mance on these targeted challenges clearly indicates po-
tential skill gaps, enabling developers to focus their ef-
forts on specific skills. Second, we develop fine-grained
evaluation tools that assess multiple dimensions of perfor-
mance simultaneously. For example, in code migration
tasks (e.g., Convert ResNet from TensorFlow
to PyTorch), our evaluation tools examine whether an
agent follows instructions and naming conventions, com-
pletes all required function definitions, in addition to suc-
cessful execution– providing a multidimensional perfor-
mance profile rather than a binary success/failure indicator.

Our evaluation methodology deliberately combines multi-
ple assessment approaches: quantitative metrics (accuracy,
mean absolute error), programmatic analysis (regular expres-
sion matching, code inspection), and qualitative evaluation
(LLM-as-a-judge) (see Appendix F). This hybrid approach
balances the reliability of objective metrics with the flexi-
bility of subjective assessment. Although LLM-based eval-
uation offers valuable insight, especially for open-ended
tasks such as research code enhancement, we recognize that
LLMs can be inconsistent and prone to hallucination. To
mitigate these concerns, we strategically complement sub-
jective assessments with precise quantitative metrics, creat-
ing a robust evaluation system that leverages the strengths of
each approach while offsetting their individual limitations.

Furthermore, TimeSeriesGym provides specialized tools

to grade diverse artifacts generated throughout the ML engi-
neering lifecycle– from submission files (CSV, H5, etc.) to
source code (.py) and trained models (.pth, .pkl)– en-
abling comprehensive assessment of the entire development
process rather than focusing solely on final outputs.

3. Experiments and Results

Table 2. Main Results. Each experiment was run with 3 random
seeds, with results showing mean ± standard deviation. The table
compares scaffold types (OpenHands vs. AIDE), model choices
(GPT-4.1, o3, Claude 3.7), resource allocations (4/50 to
12/150 hours/steps), and time utilization approaches. Key findings
include: (1) AIDE outperforms OpenHands as a scaffold, (2) the
reasoning model o3 achieves significantly higher valid submission
rates (94.4%) than other models, and (3) Claude 3.7 produces
the most reasonable submissions (38.9%).

Lite Model Resources Valid Reasonable
Submission Submission

(hours / steps) (%) (%)

OpenHands
✓ + gpt-4.1-2025-04-14 4 / 50 44.4± 19.3 11.1± 9.6

AIDE

✗ + gpt-4.1-2025-04-14 4 / 50 57.3± 7.9 12.5± 0

✓
+ gpt-4.1-2025-04-14

4 / 50
66.7± 16.7 27.8± 9.6

+ o3-2025-04-16 94.4± 9.6 33.3± 0.0
+ claude-3-7-sonnet-20250219 50.0± 16.7 38.9± 19.3

Effect of Scaling Resources

4 / 50 66.7± 16.7 27.8± 9.6
✓ + gpt-4.1-2025-04-14 8 / 100 72.2± 9.6 22.2± 9.6

12 / 150 61.1± 9.6 50.0± 0.0

Setting. We run agents in an Ubuntu 20.04 Docker container
with all necessary resources (datasets, code repositories,
etc.) and basic Python packages useful for ML engineering.
Agents can access the internet and install additional pack-
ages as needed. For each challenge, agents have a maximum
of 4 hours and 50 steps (Huang et al., 2024; Padigela et al.,
2025; Nathani et al., 2025) and use a machine with 128
vCPUs, 503 GB RAM, 1.8 TiB SSD, and a single NVIDIA
A100-SXM4-80GB GPU3. Unless otherwise specified, we
repeat each experiment with 3 different seeds (0, 1, and 2)
to calculate mean and standard deviation.

Metrics. We report the raw scores achieved by each agent
on every challenge (Tab 3). Although these scores are useful
for tracking progress on individual challenges, they cannot
be easily combined across different challenges. To measure
the performance of agents at a high level, we report two key
metrics: the percentage of challenges where the agent made
a (1) valid, and (2) reasonable submission. A submission
is valid if the grader returns any non-null score. What
counts as a reasonable attempt varies by challenge type
(Tab. 2). For Kaggle challenges, we define a reasonable

3In practice, agents share this machine as we run multiple
challenges in parallel. This represents a realistic setting similar
to how ML engineers routinely share computing resources. We
found no instances where this sharing might have disadvantaged
any agent.

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

LLM Agents Struggle at Time Series Machine Learning Engineering

attempt as scoring above median on the competition’s public
leaderboard. For the remaining challenges, a reasonable
submission shows a genuine attempt at generating a valid
submission, rather than hallucinating an output that matches
the submission format. We determine this by examining
agent logs either manually or using LLM-as-a-judge.

3.1. Observations

AIDE is the better open-source scaffold. We eval-
uated GPT-4.1 (gpt-4.1-2025-04-14) using two
open-source scaffolds: AIDE (Jiang et al., 2025) and
OpenHands (Wang et al., 2024). Following MLE-bench,
we make minor modifications to adapt these scaffolds to our
benchmark (see Appendix C). Our results in Tab. 2 confirm
previous findings: GPT-4.1 produces more valid (66.7%
vs 44.4%) and reasonable (27.8% vs 11.1%) submissions
with AIDE than with OpenHands. This is expected be-
cause AIDE is specifically designed for data science tasks,
which account for the majority of the TimeSeriesGym
challenges.

Reasoning models produce substantially more valid
submissions. To identify the best base model, we
conducted experiments using the best scaffold (AIDE)
with two state-of-the-art proprietary LLMs: GPT-4.1
(gpt-4.1-2025-04-14) and Claude 3.7 Sonnet
(claude-3-7-sonnet-20250219), and a reasoning
model o3 (o3-2025-04-16). As shown in Tab. 2, our
experiments on TimeSeriesGym-Lite revealed that o3
created significantly more valid submissions than other mod-
els, while Claude 3.7 produced the highest number of
reasonable attempts (38.9%).

Challenges in TimeSeriesGym are hard for state-of-
the-art agents. We tested AIDE with GPT-4.1 on all
TimeSeriesGym challenges and found poor overall per-
formance. The agent produced valid submissions for only
57.3% of challenges and reasonable submissions for just
12.5%. We found that this agent especially struggled with
TimeSeriesGym original challenges, where it failed to
produce valid submissions for 5 out of 13 challenges (Tab. 8).
These results show that even the best agents struggle with
ML engineering tasks, particularly those that go beyond
standard Kaggle data science challenges and involve work-
ing with multi-file code repositories.

Agents do not improve with more time. We wondered
if the agents perform poorly on TimeSeriesGym simply
because they need more time. To test this idea, we ran AIDE
with GPT-4.1 on TimeSeriesGym -Lite and gave it
2 or 3 times more hours and steps to solve each challenge.
Our results show that extra time does not always improve
performance (Tab. 9). Even with the maximum time (12
hours and 150 steps), the agent only made reasonable sub-
missions in about 50% of challenges. Although this might

seem promising, it is not very impressive, since the bar for
a “reasonable” submission is quite low.

4. Open Questions and Opportunities
Key limitations of existing scaffolds. Agentic scaffolds
such as AIDE and OpenHands provide structured work-
flows that excel in single-shot, self-contained benchmarks
(e.g., Kaggle competitions) but reveal significant limita-
tions in repository-level challenges that require multiple
file edits and iterative reasoning. AIDE’s one-step solution
strategy and fixed action set—restricted to predefined opera-
tions such as “data preview” when debugging—often lead
to unsuccessful attempts in large codebases, as the agent’s
attention is diluted across irrelevant files and fails to iden-
tify critical information. Conversely, OpenHands supports
multi-step trajectories yet suffers from a greedy exploita-
tion bias: it commits fully to a single approach without
exploring alternative solution paths or revisiting earlier de-
cisions when trajectories prove unfruitful. The planning
algorithm of the CodeAct agent used by OpenHands is
similarly greedy and short-horizon, limiting adaptation to
complex multistage development workflows. These findings
highlight the need for more adaptive scaffolds that dynami-
cally expand their action repertoire, balance exploration and
exploitation through parallel solution threads, and support
nested workflows reflective of real-world machine learning
engineering tasks. We provide illustrations of agent failures
in Appendix E.

Optimal resource allocation. Consistent with previous
work, agents were given 4 hours and 50 steps to solve each
challenge - but is this sufficient? Alternative frameworks
like MLE-bench provide substantially more resources (24
hours and approximately 2000 steps). Our scaling experi-
ments, which gave agents up to 12 hours and 150 steps for a
subset of challenges, did not reveal significant performance
improvements. Therefore, we believe that further increas-
ing resources is an option, but practical academic budget
constraints make such approaches largely infeasible. This
raises important questions about how to balance resource
limitations with fair opportunities to assess LLM agents.

5. Conclusion
We propose TimeSeriesGym, a scalable and agent-
agnostic benchmarking framework to evaluate LLM agents
on ML engineering tasks in time series. We show that while
frontier LLMs combined with AIDE scaffolding (Jiang et al.,
2025) can achieve moderate to high success rates in produc-
ing valid submissions, they still do not generate reasonable
solutions, particularly on TimeSeriesGym-Originals
that emulate the complexity of real-world time series tasks.
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Impact Statement
Societal Impact. AI agents promise to substantially reduce
manual effort in ML engineering while expanding the pro-
ductivity and accessibility of ML tools. This automation
presents several social implications worth considering. First,
by lowering technical barriers, these agents could democ-
ratize ML capabilities, allowing users without an extensive
programming background to leverage advanced analytics.
Second, automated ML workflows can accelerate scientific
discovery in multiple application domains, including health-
care, climate science, and materials research. However,
several challenges require careful attention from the commu-
nity. The primary concern is proper attribution when agents
repurpose existing code, potentially obscuring original au-
thorship and violating licenses. Furthermore, automated
ML systems can perpetuate or amplify existing biases in
training data without human oversight. There is also the risk
of workforce displacement for entry-level ML engineers as
routine tasks become increasingly automated. Furthermore,
these agents might generate plausible but flawed solutions
that appear correct to non-experts, leading to undetected
errors in critical applications. The resource-intensive na-
ture of running sophisticated agents could also exacerbate
computational divides between well-resourced and under-
resourced organizations. As we advance agent capabilities
through benchmarks like TimeSeriesGym, the research
community must simultaneously develop frameworks for
responsible deployment that address these challenges while
maximizing societal benefits.

Data leakage and plagiarism. In designing
TimeSeriesGym, we identify two key risks related to
data leakage and plagiarism that could compromise the
integrity of the benchmark: (1) Pretraining contamination:
Current LLMs may have been exposed to public content
from existing challenges (e.g., Kaggle competitions),
including task descriptions, data, or shared solutions. This
can lead to memorization and inflated performance that
overstates agents’ true capabilities, and (2) Future LLM
leakage: Once the benchmark is public, future LLMs may
be pretrained on its content, making the benchmark less
effective in evaluating real generalization.

To address such risks, we present both empirical findings
and mitigation strategies. For case (1), we have two key
observations. First, in both Kaggle-based and original
challenges in TimeSeriesGym, agents either performed
poorly or did not produce valid output, suggesting minimal
benefit from any potential LLM contamination. Second, we
conducted a formal analysis using available tools to assess

agents’ familiarity with all competitions in this benchmark.
The results show no evidence of systematic prior exposure
or memorization, further supporting the integrity of the
benchmark in its current state. For case (2), the scalabil-
ity of TimeSeriesGym enables efficient generation of
new challenges and skill-specific variations. This allows
the benchmark to evolve continuously and remain effective
even if the current version is eventually included in future
LLM pretraining.

Finally, we raise a broader question around plagiarism and
code reuse. Several TimeSeriesGym challenges, such
as leveraging MOMENT (Goswami et al., 2024) for anomaly
detection, require agents to use existing code repositories to
solve open-ended ML tasks. In such cases, it becomes dif-
ficult to clearly define and assess plagiarism. For example,
if an agent cites the code it uses, should it be considered
plagiarism or appropriate reuse, similar to how human ML
practitioners build on public code with proper reference?
As the ability to effectively and properly leverage existing
resources is important in real-world ML practice, we believe
that it is crucial to develop clear, legally correct definitions
and evaluation criteria for data contamination and plagia-
rism in the context of LLM agents. We highlight this as an
important direction for future work.

Reproducibility statement
Upon acceptance, we will provide TimeSeriesGym as
an open-source project under the permissive MIT License.
The repository will include detailed documentation on run-
ning experiments, adding new challenges, and incorporating
different agentic scaffolds. Tab. 3 lists all challenges in
TimeSeriesGym, while Tab 4 provides their sources and
licenses. We describe our exact experimental settings and
compute resources in Sec. 3, with scaffold hyperparame-
ters detailed in Tab. 7. The cost to run each experiment is
reported in Tab. 6.
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A. Related Work
Machine learning agent benchmarks. Several benchmarks have been proposed to evaluate LLM agents on automating
ML and DS tasks. These benchmarks are typically structured around three key components: (1) task curation, (2) agent
capabilities being evaluated, and (3) evaluation protocol. Benchmarks differ in how they curate ML/DS tasks. For example,
MLE-bench (Chan et al., 2025) and DSBench (Jing et al., 2025) compile tasks from online competition platforms such as
Kaggle, while other benchmarks source tasks from ML-related Github repositories (Bogin et al., 2024; Tang et al., 2023) or
hand-craft tasks based on ML research problems or engineering workflows (Huang et al., 2024; Nathani et al., 2025; Wijk
et al., 2024; Padigela et al., 2025). With regard to agent capabilities, some benchmarks (Chan et al., 2025; Huang et al.,
2024; Nathani et al., 2025; Wijk et al., 2024; Jing et al., 2025) focus on comprehensive ML science skills by evaluating
agents on end-to-end problem solving skills, while others (Bogin et al., 2024; Tang et al., 2023; Padigela et al., 2025) focus
on more modular engineering-oriented capabilities within the ML pipeline, such as using GitHub repositories or integrating
APIs. Evaluation protocols also differ in output formats and granularity. MLE-bench (Chan et al., 2025) and DSBench (Jing
et al., 2025) require agents to output results in specific formats (e.g., CSV files) that can be directly scored using predefined
metrics such as accuracy, while other benchmarks (Huang et al., 2024; Nathani et al., 2025; Wijk et al., 2024) allow for
more flexible outputs in addition to prediction files, such as model artifacts and code. ML-Dev-Bench (Padigela et al.,
2025) further extends the evaluation by specific skills (e.g., data handling, model improvement), while SUPER (Bogin et al.,
2024) provides a more holistic evaluation by combining outcome-based evaluation with qualitative code inspection to assess
agents’ progress towards completing the tasks.

Scalable dynamic benchmarks and holistic evaluation. Scalable benchmarks reduce manual data curation efforts
by generating target problems at scale using carefully designed templates (Cai et al., 2024; Ye et al., 2024) or data
engines (Ho et al., 2024), among which TimeSeriesExam (Cai et al., 2024) further improves problem sample quality by
applying Item Response Theory (IRT) (Embretson & Reise, 2013; Guinet et al., 2024) to intelligently select questions
with contextualized difficulty and appropriate discrimination. To remain effective against data contamination from LLM
pretraining, dynamic benchmarks such as GAIA (Mialon et al., 2023) and LiveCodeBench (Jain et al., 2024) propose
to continually incorporate problems newly released after LLM training cut-offs. While most benchmarks target specific
capabilities, holistic evaluation (Liang et al., 2022; Goswami et al., 2023) provides a comprehensive picture through
evaluating models on a wide range of datasets and tasks across diverse domains using multiple complementary metrics, to
capture both the breadth and depth of model capabilities.

B. TimeSeriesGym Challenges
B.1. Curating Challenges

To identify Kaggle challenges for inclusion in the TimeSeriesGym, we began with the Meta Kaggle dataset (Risdal &
Bozsolik, 2022), focusing specifically on Featured and Research competitions. Featured competitions are real-world ML
challenges that pose difficult, commercially oriented prediction problems, while Research competitions offer opportunities to
work on problems that may not have clean or straightforward solutions4. We employed Gemini 2.0 Flash to analyze
competition descriptions and titles, identifying 453 competitions that likely involve time series data. Subsequently, these
were ranked based on three key metrics: participant count, maximum reward offered, and presence of a public leaderboard.
From the resulting shortlist of 100 high-quality competitions, we made our final selections to ensure comprehensive coverage
across diverse tasks and domains within the time series analytics landscape.

To complement the selected Kaggle challenges, we include 14 TimeSeriesGym Original challenges, manually curated
based on recommendations from experienced ML engineers and researchers. These challenges are specifically designed to
evaluate advanced technical skills that Kaggle competitions typically cannot easily assess, yet are essential for effective
ML engineering. Examples include utilizing state-of-the-art models (e.g., Implement the MOMENT (Goswami
et al., 2024) time series foundation model for anomaly detection), migrating frameworks
(e.g., Convert ResNet-1D classification models from TensorFlow to PyTorch), and improving
research code quality (e.g., Improve PTB-XL ECG Classification Code. These capabilities represent critical
competencies of skilled ML engineers that extend beyond the scope of standard Kaggle-like competitions.

4https://www.kaggle.com/docs/competitions
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B.2. Design Choices

Focus on time series tasks. We focused on time series modeling tasks for two key reasons. First, time-series data are
ubiquitous, and effectively modeling them can significantly advance critical domains such as healthcare and economics.
Despite this importance, existing agentic AI benchmarks include relatively few time series challenges (Tab. 1). Second,
compared to text and images, time series data require modest resources for storage and modeling, making TimeSeriesGym
efficient to run. Moreover, modeling time-series data remains relatively underexplored outside specialized research
communities, meaning that LLMs are less likely to have encountered such data and tasks during training. This characteristic,
combined with the fact that TimeSeriesGym evaluates general machine learning skills, makes it an excellent testbed to
evaluate AI agent capabilities. Moreover, the tools in this benchmark can be easily used to include non-time-series problems
as well.

How much freedom should the agents be given? When designing challenges for TimeSeriesGym, we had to strike a fine
balance between giving agents freedom to solve problems creatively while keeping enough structure in place to allow for a pre-
cise and fine-grained evaluation. For example, in the PTB-XL ECG Classification with Hyper-parameter
Optimization challenge, we required agents to use a PyTorch-based neural network and save their models, files and
code before and after tuning. This allowed us to inspect models and code to check if the hyperparameters changed, and
measure how these changes improved performance.

Agent-agnostic design. TimeSeriesGym is agnostic to specific agent implementations. Following MLE-bench (Chan
et al., 2025), it is easy to add new challenges and agentic scaffolds. To illustrate this flexibility, we include latest implementa-
tions of 3 different scaffolds, AIDE (Jiang et al., 2025), ResearchAgent (Huang et al., 2024), and OpenHands (Wang
et al., 2024) with fundamentally different designs. Unlike MLGym (Nathani et al., 2025), we do not advocate for a default
agentic scaffold, as we believe that agent designs will continue to evolve and no single scaffold will work best for all ML
engineering tasks.

C. Implementation Details for Scaffolds
Table 7 summarizes the hyperparameters used for the two scaffolds: AIDE (Jiang et al., 2025) and OpenHands’
CodeAct (Wang et al., 2024). We did not directly use the MLE-bench (Chan et al., 2025) modifications to the agentic
scaffolds for two main reasons. First, the official scaffold implementation has undergone updates since MLE-bench. Second,
certain changes made in MLE-bench were not applicable to our benchmark, which involves more diverse modes of evaluation.
Therefore, we modified the latest version of the agentic scaffolds to enhance robustness, improve execution stability, and
support a broader range of competitions.

C.1. AIDE

We forked the original AIDE repository in May 2025 and added useful changes from the MLE-bench project. These include
better API calls and support for more API providers. Our key modifications are summarized below:

1. Updated instructions to cover all types of tasks, not just Kaggle challenges

2. Modified the prompt to work with different file types, since our tasks use many input/output formats

3. Fixed the interpreter handling to prevent timeouts and system hangs

C.2. OpenHands

We forked the original OpenHands repository from tag v0.34.0 (May 2025). We reduced the RAM allowance to 10
GiB (from 100 GiB) as we did not observe any memory-related issues during our tests.

D. Detailed Evaluation Results
D.1. Obsevations

Cost. On average, it cost us USD 63.00 to run AIDE with gpt-4.1-2025-04-14 for a maximum of 4 hours and 50
steps on TimeSeriesGym. In contrast, the Lite benchmark was much more affordable at USD 8.00 per run. Therefore,
to save both time and money, we conducted most of our experiments on TimeSeriesGym -Lite.
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Challenge Problem Domain Skills Evaluation Metric

Kaggle Challenges

AMP-Parkinson’s Disease

Progression Prediction
Time-to-Event Regression Healthcare

Data Handling

(Dealing with Missing Values,

Utilize Multi-Source Data)

Modeling

(Hyper-parameter Tuning

& Model Selection)

Symmetric Mean Absolute

Percentage Error

ASHRAE - Great Energy Predictor III Forecasting Energy
Root Mean Square

Logarithmic Error

Child Mind Institute– Detect Sleep States Classification Healthcare
Event Detection

Average Precision

Google Brain - Ventilator Pressure Prediction Regression Healthcare Mean Absolute Error

G2Net Gravitational Wave Detection Classification Geology
Area Under

ROC Curve

HMS - Harmful Brain Activity Classification Classification Healthcare KL Divergence

LANL Earthquake Prediction Time-to-Event Regression Geology Mean Absolute Error

M5 Forecasting - Accuracy Forecasting Sales
Weighted Root Mean Squared

Scaled Error

Online Product Sales Forecasting Sales
Root Mean Square

Logarithmic Error

Optiver Realized Volatility Prediction Forecasting Finance
Root Mean Square

Percentage Error

Recruit Restaurant Visitor Forecasting Forecasting Sales
Root Mean Square

Logarithmic Error

Sberbank Russian Housing Market Forecasting Housing
Root Mean Square

Logarithmic Error

TimeSeriesGym Originals

Convert ResNet TensorFlow

implementation to PyTorch
Classification

Algorithm Code Migration Custom Code GradingConvert STOMP Algorithm

implementation in R to Python
Data Mining

Evaluate MOIRAI time series foundation model

on the Context Is Key (CiK) benchmark
Context-aided Forecasting

Climatology, Economics, Energy,

Mechanics, Public Safety, Retail,

Synthetic, Transportation

Modeling

(Using Research Code)

Resolved (Binary)Evaluate Chronos time series foundation model

on the NN5 dataset within Context Is Key

(CiK) benchmark

Implement & Evaluate CSDI to Impute PM2.5 Data
Imputation Weather Mean Absolute Error

Train & Evaluate CSDI to Impute PM2.5 Data

GIFT-EVAL: A Benchmark for General Time Series

Forecasting Model Evaluation
Forecasting

Nature, Web, CloudOps,

Economics/Finance, Energy,

Sales, Transportation,

Mean Absolute Percentage Error

Hexagon ML UCR Time Series Anomaly Detection Anomaly Detection
Healthcare, Gait, Energy,

Synthetic, Devices

Adjusted Best

F1 Score

Long Horizon Time Series Forecasting

Using Time Series Library
Forecasting

Energy, Epidemiology, Finance,

Transportation, Weather

Mean Squarred

Error

Long-Horizon Weather Forecasting using

Time Series Library’s Itransformer
Forecasting Weather Exact Match

MIT-BIH ECG Arrhythmia Detection Classification Healthcare Accuracy

MOMENT for Anomaly Detection

on UCR datasets
Anomaly Detection

Healthcare, Gait, Energy,

Synthetic, Devices
Exact Match

PTB-XL ECG Classification Classification Healthcare Accuracy

TimeSeriesExam: A Time Series Understanding Exam Time Series Understanding Synthetic Time Series Understanding Accuracy

Derived Challenges

Google Brain - Ventilator Pressure Prediction Regression Healthcare
Data Handling

(Dealing with missing data)

Mean Absolute

Error

Improve PTB-XL ECG Classification Code Classification Healthcare
Code Enhancement

(Experiment Tracking,

Readability, Reproducibility)

MIT-BIH Arrhythmia Detection

with Weak Supervision
Classification Healthcare

Data Handling

(Labeling)
Accuracy

Optiver Realized Volatility Prediction Forecasting Finance
Data Handling

(Dealing with missing data)

Root Mean Square

Percentage Error

Optiver Realized Volatility Prediction

with Hyper-parameter Optimization
Forecasting Finance

Modeling (Hyper-parameter

Tuning & Model Selection)

Improvement in Root Mean

Square Percentage Error

PTB-XL ECG Classification

with Hyperparameter Optimization
Classification Healthcare Improvement in Accuracy

Table 3. This table presents the TimeSeriesGym benchmark’s diverse collection of time series challenges across three categories:
Kaggle Challenges, TimeSeriesGym Originals, and Derived Challenges. The challenges span multiple domains (healthcare, finance,
energy, weather, transportation), problem types (classification, regression, forecasting, anomaly detection), and required skills (data
handling, model building, code migration). Each challenge uses appropriate evaluation metrics for its task type. The benchmark combines
established Kaggle competitions with novel custom tasks, creating a comprehensive testbed for evaluating ML engineering agents across
realistic scenarios that practitioners face in real-world applications.
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Challenge Source License

Kaggle Challenges

AMP-Parkinson’s Disease

Progression Prediction
Kaggle Subject to Competition Rules

ASHRAE - Great Energy Predictor III Kaggle Subject to Competition Rules

Child Mind Institute–

Detect Sleep States
Kaggle CC BY-NC-SA 4.0

Google Brain - Ventilator

Pressure Prediction
Kaggle Subject to Competition Rules

G2Net Gravitational

Wave Detection
Kaggle Subject to Competition Rules

HMS - Harmful Brain

Activity Classification
Kaggle CC BY-NC 4.0

LANL Earthquake Prediction Kaggle Subject to Competition Rules

M5 Forecasting - Accuracy Kaggle Subject to Competition Rules

Online Product Sales Kaggle Subject to Competition Rules

Optiver Realized

Volatility Prediction
Kaggle Subject to Competition Rules

Recruit Restaurant

Visitor Forecasting
Kaggle Subject to Competition Rules

Sberbank Russian

Housing Market
Kaggle Subject to Competition Rules

TimeSeriesGym Originals

Convert ResNet TensorFlow

implementation to PyTorch
GitHub GNU General Public License v3.0

Convert STOMP Algorithm

Implementation in R to Python
GitHub Apache License 2.0

Evaluate MOIRAI time series

foundation model on the

Context Is Key (CiK) benchmark

GitHub Apache License 2.0

Evaluate Chronos time series

foundation model on the NN5 dataset

within Context Is Key (CiK) benchmark

– Apache License 2.0

GIFT-EVAL: A Benchmark for General

Time Series Forecasting Model Evaluation
GitHub Apache License 2.0

Hexagon ML UCR Time Series

Anomaly Detection
UCR Not available

Long Horizon Time Series Forecasting

Using Time Series Library
GitHub MIT License

Long-Horizon Weather Forecasting

using Time Series Library’s Itransformer
– MIT License

MIT-BIH ECG Arrhythmia Detection PhysioNet Open Data Commons Attribution License v1.0

MOMENT for Anomaly Detection

on UCR datasets
GitHub MIT License

PTB-XL ECG Classification PhysioNet Creative Commons Attribution 4.0 International Public License

TimeSeriesExam: A Time Series

Understanding Exam
Hugging Face MIT License

Table 4. This table provides transparency about the source and licensing information for each challenge in the TimeSeriesGym
benchmark. For the Kaggle challenges, most are subject to Kaggle’s competition rules, with a few under Creative Commons licenses.
The TimeSeriesGym Original challenges come from diverse sources including GitHub repositories, HuggingFace, etc. with various
open-source licenses (Apache, MIT, GPL, Creative Commons). This diversity of sources and licenses demonstrates the benchmark’s
foundation in accessible, reusable datasets and code while ensuring proper attribution and compliance with original creators’ terms.
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Figure 2. The prompt we use to initialize all scaffolds, adapted from MLE-bench (Chan et al., 2025).
# Machine Learning Engineer Challenge: TimeSeriesGym Competition

## Your Role
You are a Machine Learning Engineer tasked with solving complex ML problems in the

TimeSeriesGym offline competition. This competition tests your ability to understand
problems, follow instructions, and build/train/evaluate ML models.

↪→
↪→

## Core Requirements
- You must solve each task by training a model and generating predictions on the test set
- Hand-labeling the data to produce submissions is strictly prohibited

## Environment Setup

### Critical Files and Locations
- **Competition Instructions**: Located at `/home/data/description.md` - This is your

primary reference for understanding the specific problem↪→
- **Dataset**: All data files are in `/home/data/` directory
- **Submission Path**: Your final submission MUST be saved to `/home/submission/` in the

format specified in the instructions↪→
- **Environment Instructions**: These general instructions can be found at

`/home/instructions.txt`↪→

### Test Dataset Information
- We've created our own train/test splits for evaluation purposes
- The data in `/home/data/` may differ slightly from what's described in the competition

instructions↪→
- Use the provided train/test splits for your work

## Submission Instructions

### File Format and Location
- Your submission MUST be saved to the exact path: `/home/submission/`
- The file format must strictly follow the specifications in `description.md`
- Failing to use the correct path or format will result in a failed evaluation

### Validation Process
1. Before finalizing your submission, validate its format using the validation server
2. Use the command: `curl -X POST -F "file=@${SUBMISSION_FILE}"

http://localhost:5000/validate`↪→
3. Alternatively, use the provided script: `/home/validate_submission.sh`
4. The validator will confirm if your submission format is valid (but won't provide a

score)↪→
5. Make corrections if needed and revalidate until you receive a confirmation

### Final Submission
- Once validated, ensure your final submission file remains at `/home/submission/`
- Only the last file in this location will be evaluated
- Double-check that your model's predictions cover the entire test set
- Review the submission format requirements one last time before completing

## Evaluation Criteria
- Your submission will be graded based on the metric specified in the competition

instructions↪→
- Your goal is to achieve the highest possible score

## Important Rules
- Viewing or copying others' solutions is prohibited and will result in disqualification
- In case of conflicts between these instructions and `/home/data/description.md`, these

general instructions take priority↪→

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

LLM Agents Struggle at Time Series Machine Learning Engineering

Table 5. TimeSeriesGym -Lite is a streamlined collection of six diverse time series challenges carefully selected to evaluate LLM
agents while balancing thoroughness with efficiency. The challenges cover essential ML engineering skills including basic data science,
handling missing/multi-source data, code migration, hyperparameter optimization, research code modeling, and data labeling. The
collection spans multiple domains (healthcare, finance, algorithms) and various time series tasks (classification, forecasting, anomaly
detection, code migration). This cost-effective subset allows researchers to quickly benchmark agent capabilities across critical ML
engineering skills without the resource requirements of the full TimeSeriesGym benchmark.

Challenge Required Skills Time Series Task Domain

Child Mind Institute - Basic data science
Classification Healthcare

Detect Sleep States (data handling and modeling)

Optiver Realized Handling missing and
Forecasting Finance

Volatility Prediction multi-source data

Convert ResNet TensorFlow
Classification Code Migration Algorithm

implementation to PyTorch

PTB-XL ECG Hyperparameter optimization
Classification Healthcare

Classification & model selection

MOMENT Anomaly Modeling
Anomaly Detection

Healthcare, Gait,

Score Calculation (Using research code) Synthetic, Energy, Devices

MIT-BIH Arrhythmia
Data labeling Classification Healthcare

Detection

Table 6. Average cost to run experiments on a single seed in the default evaluation setup i.e. AIDE with gpt-4.1-2025-04-14 with
a maximum of 4 hours and 50 steps.

Benchmark Averge Cost (USD)

TimeSeriesGym 62.12
TimeSeriesGym -Lite 7.96

Table 7. Scaffold hyperparameters. $TARGET MODEL denotes the model being evaluated.

AIDE

agent.code.model $TARGET MODEL
agent.feedback.model gpt-4.1-2025-04-14
agent.steps 50
agent.search.max debug depth 20
agent.search.debug prob 1
agent.time limit 14400
exec.timeout 32400

OpenHands

agent CodeActAgent
model $TARGET MODEL
max time in hours 4
max steps 50

Agents do not utilize time effectively. We suspected that agents do not improve with more time because they do not use it
well. To test this idea, we compared two settings: the default approach of reminding the agent about remaining time (and
steps) before each step, versus removing these reminders completely. Surprisingly, we did not find significant differences
between these settings. In fact, agents without time reminders produced more reasonable submissions. This may suggest
that agents do not use their time wisely– they tend to rush toward solutions instead of carefully exploring promising options,
especially towards the end of the experiment. This raises important research questions about how to design agents that use
their time and resources more strategically.

Frontier LLM challenges. Since frontier LLMs are pretrained on large-scale public data, there is a risk that they may
have encountered and memorized content from public challenges, e.g., online Kaggle competition discussions or solutions,
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Figure 3. GPT-4.1’s familiarity with TimeSeriesGym challenges, compared to its familiarity with MLE-bench.
which can potentially inflate benchmark performance and limit its generalizability. To assess this risk, we followed the
approach used by MLE-bench to measure GPT-4.1’s familiarity with TimeSeriesGym challenges and compared the
familiarity score distribution to that of MLE-bench. As shown in Fig. 3, GPT-4.1 exhibited a similar level of familiarity
with TimeSeriesGym challenges as with MLE-bench challenges (with a Kolmogorov–Smirnov (KS) Test (Massey Jr,
1951) p-value of 0.363, indicating no significant difference). Given that MLE-bench found no systematic impact of LLM
familiarity on experiment results, GPT-4.1’s familiarity with TimeSeriesGym is within a reasonable range and does
not compromise its integrity.

Summary. This section provides a focused illustration of how TimeSeriesGym enables efficient and cost-effective
experimentation with LLM agents, helping researchers uncover actionable insights about agent capabilities and limitations.
Our findings demonstrate the TimeSeriesGym’s value for advancing generic ML engineering agents.

D.2. Full Benchmark Evaluation Result

We provide detailed evaluation results for each task in TimeSeriesGym in Table 8. Each task was executed with three
random seeds; we report both the average and best scores across these runs. Entries marked N/A indicate that the agent
failed to produce a valid solution due to exceeding the time- or step-limit. For the GIFT-Eval and UCR Anomaly
Detection challenges, evaluation is performed on a subset of the original benchmark, since our focus is on assessing the
agent’s ability to leverage the research repository rather than full benchmark performance.

D.3. Ablation Study Evaluation Result
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Challenge Evaluation Metric Best @ 3 Average @ 3

Kaggle Challenges

AMP-Parkinson’s Disease
Progression Prediction

Symmetric Mean Absolute
Percentage Error

111.22 120.50

ASHRAE - Great Energy Predictor III
Root Mean Square
Logarithmic Error

1.02 1.92

Child Mind Institute– Detect Sleep States
Event Detection

Average Precision
0.02 0.01

Google Brain - Ventilator Pressure Prediction Mean Absolute Error 0.58 5.40

G2Net Gravitational Wave Detection
Area Under
ROC Curve

0.51 0.50

HMS - Harmful Brain Activity Classification KL Divergence 1.16 1.56
LANL Earthquake Prediction Mean Absolute Error 2.18 2.89

M5 Forecasting - Accuracy
Weighted Root Mean Squared

Scaled Error
0.82 3.13

Online Product Sales
Root Mean Square
Logarithmic Error

0.91 1.08

Optiver Realized Volatility Prediction
Root Mean Square
Percentage Error

0.28 0.30

Recruit Restaurant Visitor Forecasting
Root Mean Square
Logarithmic Error

0.55 0.60

Sberbank Russian Housing Market
Root Mean Square
Logarithmic Error

0.39 0.40

TimeSeriesGym Originals

Convert ResNet TensorFlow
implementation to PyTorch

Custom Code Grading Test Cases 5/9 5/9

Convert STOMP Algorithm
implementation in R to Python

Custom Code Grading Test Cases 2/4 1.6/4

Evaluate MOIRAI time series foundation model
on the Context Is Key (CiK) benchmark

Resolved (Binary) N/A N/A

Evaluate Chronos time series foundation model
on the NN5 dataset within Context Is Key

(CiK) benchmark
Resolved (Binary) N/A N/A

Implement & Evaluate CSDI to Impute PM2.5 Data Mean Absolute Error N/A N/A

Train & Evaluate CSDI to Impute PM2.5 Data Mean Absolute Error N/A N/A
GIFT-EVAL: A Benchmark for General Time Series*

Forecasting Model Evaluation
Mean Absolute Percentage Error N/A N/A

Hexagon ML UCR Time Series Anomaly Detection*
Adjusted Best

F1 Score
0.38 0.38

Long Horizon Time Series Forecasting
Using Time Series Library

Mean Squarred
Error

N/A N/A

Long-Horizon Weather Forecasting using
Time Series Library’s Itransformer

Exact Match (Binary) N/A N/A

MIT-BIH ECG Arrhythmia Detection Accuracy 0.87 0.84
MOMENT for Anomaly Detection

on UCR datasets
Exact Match (Binary) N/A N/A

PTB-XL ECG Classification Accuracy 0.81 0.80
TimeSeriesExam: A Time Series Understanding Exam Accuracy N/A N/A

Derived Challenges

Google Brain - Ventilator Pressure Prediction

With Missingness
Mean Absolute

Error
2.72 6.66

Improve PTB-XL ECG Classification Code
Code Enhancement

(Experiment Tracking,
Readability, Reproducibility)

N/A N/A

MIT-BIH Arrhythmia Detection
with Weak Supervision

Accuracy 0.87 0.77

Optiver Realized Volatility Prediction

With Missingness
Root Mean Square
Percentage Error

0.33 0.33

Optiver Realized Volatility Prediction
with Hyper-parameter Optimization

Improvement in Root Mean
Square Percentage Error

-0.01 -0.15

PTB-XL ECG Classification
with Hyperparameter Optimization

Improvement in Accuracy 0.08 0.03

Table 8. Comprehensive performance metrics for LLM agents on all TimeSeriesGym challenges, including best and average scores
from three runs. Agents struggle to solve TimeSeriesGym Original challenges. Derived challenges demonstrate how added complexity
(missingness, hyperparameter optimization) affects performance. These results highlight both the capabilities and limitations of current
ML engineering agents across diverse time series tasks.
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Challenge 8 hours /
100 steps

12 hours /
150 steps

OpenHands o3 claude-3-7 No
Reminder

Child Mind Institute––
Detect Sleep States

0.02 / 0.02 0.00 / 0.00 0.00 / 0.00 0.11 / 0.11 N/A N/A

Optiver Realized Volatility
Prediction with Missingness

0.32 / 0.33 0.31 / 0.31 0.64 / 0.64 0.42 / 0.43 0.25 / 0.25 0.32 / 0.32

Convert ResNet TensorFlow to
PyTorch

0.56 / 0.56 0.89 / 0.89 0.56 / 0.44 0.56 / 0.56 0.89 / 0.78 0.56 / 0.56

PTB-XL ECG Classification with
Hyperparameter Search

0.45 / 0.22 0.45 / 0.10 N/A 0.14 / 0.10 0.09 / 0.06 0.05 / 0.03

MOMENT Anomaly Score
Calculation

N/A N/A 0.00 / 0.00 0.00 / 0.00 N/A N/A

MIT-BIH Arrhythmia Detection
with Weak Supervision

0.83 / 0.56 0.80 / 0.60 0.73 / 0.72 0.53 / 0.45 0.79 / 0.66 0.74 / 0.68

Table 9. This table presents detailed ablation study results comparing agent performance across six different configurations on the
TimeSeriesGym-Lite benchmark. Each cell shows Best@3/Avg@3 scores, with N/A indicating no valid solutions. The experiments
compare time variations (8 hours/100 steps vs. 12 hours/150 steps), scaffold differences (OpenHands), model types (o3, claude-3-7),
and whether agents are reminded of remaining time. Results show mixed effects of increased time allocation, with certain challenges
(ResNet conversion) benefiting significantly while others show minimal improvements or even degradation. Both model type and scaffold
selection substantially impact performance, with different models excelling on different challenges. This highlights the complex interplay
between agent configurations and task types in ML engineering.
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step 19
FileReadAction(path='/home/data/moment/momentfm/models/moment.py',
start=0, end=-1, thought='', action=<ActionType.READ: 'read'>,
security_risk=None, impl_source=<FileReadSource.OH_ACI: 'oh_aci'>,
view_range=[1, 60])

step 20
FileReadAction(path='/home/data/moment/momentfm/models/moment.py',
start=0, end=-1, thought='', action=<ActionType.READ: 'read'>,
security_risk=None, impl_source=<FileReadSource.OH_ACI: 'oh_aci'>,
view_range=[61, 120])

...

step 25
FileReadAction(path='/home/data/moment/momentfm/models/moment.py',
start=0, end=-1, thought='', action=<ActionType.READ: 'read'>,
security_risk=None, impl_source=<FileReadSource.OH_ACI: 'oh_aci'>,
view_range=[361, 420]

Figure 4. OpenHands wastes 5 steps on inspecting model file while the correct way to import the model is in README

global_scope: dict = {}
while True:

code = code_inq.get()
os.chdir(str(self.working_dir))
with open(self.agent_file_name, "w") as f:

f.write(code)

event_outq.put(("state:ready",))
try:

exec(compile(code, self.agent_file_name, "exec"), global_scope)
except BaseException as e:

...

Figure 5. AIDE ’s interpreter does not execute code under main environment

E. Failure Mode Illustration
E.1. Agents Miss Important Information

As illustrated in Listing 4, OpenHands spends five consecutive steps scanning to the end of the model file in an attempt to
discover the correct import method for MOMENT. This behavior reveals two critical shortcomings. First, the agent follows a
greedy, linear scanning strategy with no early-stop criterion or hierarchical search plan—it blindly paginates through the file
rather than formulating a focused query. Second, it fails to leverage the README, which explicitly documents the proper
import instructions. Together, these issues demonstrate a lack of strategic planning and contextual awareness. We observed
a similar pattern in AIDE, where blind iteration and omission of available documentation likewise impede efficient problem
solving.

E.2. AIDE Interpreter Execution Can Trigger Undesirable Behavior

Shown in Listing 5, AIDE invokes Python’s exec in a persistent global scope, then employs an LLM-based “judge” to
inspect the generated code and its stdout. Any logic guarded by if name == " main ": will be skipped—because
global scope does not set name to " main ". As a result, the judge may erroneously declare such runs valid,
even when critical execution paths never occur, and further retries or debug steps cannot correct this oversight.

E.3. AIDE Single-File Approach is Error-prone

17



935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

LLM Agents Struggle at Time Series Machine Learning Engineering

import os
import subprocess
import sys
import shutil
import numpy as np

def install_requirements(tsl_dir):
req_file = os.path.join(tsl_dir, "requirements.txt")
req_file_abs = os.path.abspath(req_file)
print(f"Installing requirements from {req_file_abs} ...")
try:

subprocess.run(
[sys.executable, "-m", "pip", "install", "--upgrade", "pip"], check=True

)
subprocess.run([sys.executable, "-m", "pip", "install", "wheel"], check=True)
subprocess.run(

[sys.executable, "-m", "pip", "install", "-r", req_file_abs],
check=True,
cwd=tsl_dir,

)
except subprocess.CalledProcessError as e:

print("Failed to install requirements!")
print("Output:", e.output if hasattr(e, "output") else "No output")
sys.exit(1)

def prepare_weather_data(tsl_dir, input_dir):
dataset_dir = os.path.join(tsl_dir, "dataset", "weather")
os.makedirs(dataset_dir, exist_ok=True)
src_weather = os.path.join(input_dir, "weather.csv")
dst_weather = os.path.join(dataset_dir, "weather.csv")
if not os.path.exists(dst_weather):

print(f"Copying {src_weather} to {dst_weather}")
shutil.copy(src_weather, dst_weather)

else:
print(f"{dst_weather} already exists.")

def run_itransformer(tsl_dir, submission_dir):
runpy = os.path.join(tsl_dir, "run.py")
pred_file = os.path.abspath(os.path.join(submission_dir, "pred.npy"))
# Set label_len to 96 as per the competition instructions
cmd = [

sys.executable,
runpy,
"--task_name",
"long_term_forecast",

... #skip to save space

if __name__ == "__main__":
main()

Figure 6. AIDE’s solution for utilizing Time-Series-Library repository
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As shown in Listing 6, AIDE encapsulates the entire forecasting workflow in a single script. Whenever it must invoke
system commands, it relies on Python’s subprocess module—an approach that can obscure full tracebacks and miss
intermediate errors. Furthermore, to import modules from the research repository, AIDE repeatedly alters the Python search
path or changes the working directory (e.g., via sys.path.append), which is inefficient and brittle.
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F. Two-Faceted Grading Approach
We implemented a dual grading methodology to provide comprehensive evaluation of submitted solutions. This section
introduces the general concept of our two complementary evaluation approaches: exact grading and judge-based grading.

F.1. Grading Methodologies

F.1.1. EXACT GRADING METHODOLOGY

The exact grading approach represents a deterministic, checklist-based evaluation focused on verifying specific required
components. This objective method evaluates submissions against explicit criteria with binary pass/fail outcomes, providing
clear feedback on technical requirements. The exact grading methodology emphasizes quantifiable metrics and compliance
with predefined specifications.

Key aspects of exact grading include:

• Binary verification of required components (present/absent)

• Point-by-point scoring against a predefined checklist

• Focus on technical compliance with specifications

• Reproducible results with minimal subjective interpretation

F.1.2. JUDGE-BASED QUALITATIVE METHODOLOGY

The judge-based approach provides a nuanced evaluation that assesses artifacts beyond mere presence of required components.
This method employs large language models (LLMs) as judges to evaluate submissions against custom criteria with chain-
of-thought reasoning.

Key aspects of judge grading include:

• Scoring on a continuous scale

• Evaluation of code quality, architecture design, and implementation elegance

• Detailed reasoning explaining score justification

• Ability to recognize exceptional implementations that exceed basic requirements

F.2. Implementation for PTB-XL Classification Challenge

F.2.1. EXACT GRADING IMPLEMENTATION

For the PTB-XL Classification Challenge, our exact grading implementation evaluates code artifact submissions through:

1. Feature Extraction: Using regular expression pattern matching and AST parsing to identify required code components.

2. Binary Verification: Checking each requirement against pass/fail criteria.

3. Static Analysis: Using linting tools to check against PEP 8 standards.

4. File Structure Validation: Verifying required files and directories.

The exact grading for this challenge evaluates four primary categories, each worth 25% of the final score:

• TensorBoard Usage: Proper imports, SummaryWriter initialization, metric logging, etc.

• Code Quality: Syntax verification, docstrings, type annotations, and PEP 8 compliance.

• Hydra Configuration: Proper imports, decorator usage, and configuration files.

• Model Accuracy: Prediction accuracy against ground truth labels.
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F.2.2. JUDGE-BASED IMPLEMENTATION

For this challenge, we employed G-Eval (Liu et al., 2023), a framework that uses LLMs with chain-of-thought reasoning.
The implementation evaluates code through:

1. Evaluation Steps: Using predefined steps for chain-of-thought reasoning.

2. Comprehensive Assessment: Evaluating multiple parameters including code structure and architecture decisions.

3. Score Calculation: Generating normalized scores on a 0.0-1.0 scale.

4. Reasoning Provision: Providing detailed explanations for the evaluation.

F.3. Comparative Analysis

The two approaches serve complementary purposes:

Aspect Exact Grading Judge Grading

Objectivity High (deterministic) Moderate (LLM-based)
Granularity Binary (present/absent) Continuous (quality scores)

Feedback Detail Limited (requirement verification) Rich (explanatory reasoning)
Reproducibility High (automated) Moderate (LLM consistency)

Evaluation Scope Technical compliance Code quality, effectiveness
Methodology Rule-based checks LLM with chain-of-thought

Scalability Low (manual rule design) High (natural language criteria)

Table 10. Transposed Comparison of Exact and Judge-Based Grading Approaches

F.4. Combined Grading Benefits

Using both approaches provides several advantages:

• Ensures baseline technical requirements are met (exact grading)

• Rewards exceptional implementations and identifies subtle weaknesses (judge grading)

• Balances objective verification with subjective quality assessment

• Provides comprehensive feedback on both technical compliance and code quality

• Creates a fair and holistic evaluation system

F.5. Grading Examples for PTB-XL Challenge

Below are example outputs from both grading systems applied to the same submission for the PTB-XL Classification
Challenge.

F.5.1. EXACT GRADING OUTPUT

TensorBoard Usage (25% of total score)
TensorBoard SummaryWriter is properly imported: 0.2/0.2
SummaryWriter is initialized: 0.2/0.2
Metrics are logged with add_scalar: 0.2/0.2
Model graph is logged with add_graph: 0.2/0.2
Found 2 log files in runs/
TensorBoard log files are present: 0.2/0.2
Final score: 1.00/1.00

Code Quality and Documentation (25% of total score)
Syntax check passed: 0.1/0.1
Model file has module docstring: 0.1/0.1
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Training file has module docstring: 0.1/0.1
Both files have type annotations: 0.1/0.1
Model classes have docstrings: 0.05/0.05
Functions have docstrings: 0.1/0.1
Docstrings have Args/Returns sections: 0.1/0.1
Linting score: 0.25/0.25
Model file has no PEP 8 violations
Training file has no PEP 8 violations
Model file follows style guidelines
Training file follows style guidelines
Final score: 0.90/0.90

Hydra Configuration Usage (25% of total score)
Hydra is properly imported: 0.2/0.2
@hydra.main decorator is used: 0.2/0.2
OmegaConf/DictConfig is used: 0.2/0.2
Config is used for model parameters: 0.2/0.2
Config file exists with model parameters: 0.2/0.2
Final score: 1.00/1.00

Model Accuracy (25% of total score)
Model prediction accuracy: 1.0/1.0

Evaluation Summary
TensorBoard score: 1.00/1.0 (25% weight)
Code quality score: 1.00/1.0 (25% weight)
Hydra config score: 1.00/1.0 (25% weight)
Model accuracy: 1.0 (25% weight)
Overall score: 1.00/1.0

F.5.2. JUDGE-BASED GRADING OUTPUT

File: example/model.py
Type: Model Script

- Code Quality and Documentation
Score: 0.90
Reason: The module has clear docstrings explaining the model's purpose and

architecture. Function parameters and return types are well-annotated. Class and
method docstrings include accurate Args and Returns sections. The code adheres to
PEP 8, with proper spacing and naming conventions. The architecture is logically
structured, but the module-level docstring could be more detailed.

↪→
↪→
↪→
↪→

- Model Architecture Design
Score: 0.93
Reason: The model utilizes configuration parameters effectively. Architecture includes

convolutional layers suitable for ECG classification. Implements an efficient
forward method and utility functions like parameter counting. Supports
hyperparameter flexibility. Minor issue: model summary function could be better
integrated.

↪→
↪→
↪→
↪→

- Model Configuration Handling
Score: 0.86
Reason: Configuration object is accepted with fallback defaults. Parameters are

correctly extracted from config. Compatible with Hydra; well-documented parameter
usage. Lacks explicit demonstration of usage with multiple configurations.

↪→
↪→

------------------------------------------------------

File: example/train.py
Type: Training Script

- TensorBoard Usage
Score: 1.00
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Reason: SummaryWriter is correctly imported and initialized. Metrics are logged with
add_scalar. Model graph is logged with add_graph. Writer is closed properly after
training.

↪→
↪→

- Code Quality and Documentation
Score: 0.93
Reason: Clear module-level docstring and good use of type annotations. Functions are

well-documented with Args and Returns. Adheres to PEP 8. Code structure is logical,
variable naming is clear. Minor improvements possible in consistency.

↪→
↪→

- Hydra Configuration Usage
Score: 1.00
Reason: Hydra is imported and used with @hydra.main. OmegaConf and DictConfig are

correctly used. Configuration passed to model with appropriate
config_path/config_name.

↪→
↪→

- Model Training Completeness
Score: 0.96
Reason: Includes full training pipeline: data loading, preprocessing,

training/validation loops. Implements loss calculation, optimizer, LR scheduling,
checkpointing, and final predictions.

↪→
↪→
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