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Abstract

Traffic signal control is an important problem in urban mobility with a significant potential
of economic and environmental impact. While there is a growing interest in Reinforcement
Learning (RL) for traffic signal control, the work so far has focussed on learning through
simulations which could lead to inaccuracies due to simplifying assumptions. Instead, real
experience data on traffic is available and could be exploited at minimal costs. Recent
progress in offline or batch RL has enabled just that. Model-based offline RL methods, in
particular, have been shown to generalize from the experience data much better than others.
We build a model-based learning framework which infers a Markov Decision Process (MDP)
from a dataset collected using a cyclic traffic signal control policy that is both commonplace
and easy to gather. The MDP is built with pessimistic costs to manage out-of-distribution
scenarios using an adaptive shaping of rewards which is shown to provide better regularization
compared to the prior related work in addition to being PAC-optimal. Our model is evaluated
on a complex signalized roundabout showing that it is possible to build highly performant
traffic control policies in a data efficient manner.

1 Introduction

Road traffic signal control has attracted substantial interest as an application of reinforcement learning
(RL) Wei et al. (2019); Yau et al. (2017). However most published work in the area is unlikely to be applied
in practice as trial and error methods for interacting with the environment are not feasible in the real
world. Similarly trying to infer an RL policy using a simulator does not take advantage of the fact that real
experience data about traffic is available from transportation management operators.

A more appropriate and realistic set up is to use offline RL training to learn from static experience data Lange
et al. (2012). A typical data set will consist of a set of tuples of the form {si, ai, ri, si+1}, i.e., when the
system was in state si, action ai was taken, which resulted in a reward ri and the system then transitioned
into a new state si+1. From the experience data the objective is to learn a policy, i.e., a mapping from state
to action which maximizes the long term expected cumulative reward. In a traffic signal control setting, the
state captures the distribution of traffic on the road network, the action space consists of different phases
(red, green, amber) on signalized intersections and the reward is a metric of traffic efficiency.

Compared to the traditional (i.e., online or off-policy) RL approaches, offline (or batch) RL shifts the focus of
learning from data exploration to data-driven policy building. The offline policy building is challenging due
to deviation in the state-action visitation by the policy being learned and the policy that logged the static
dataset Fujimoto et al. (2019b); Levine et al. (2020). A number of different solution frameworks are proposed
for offline RL that are either model-free or derive a Markov Decision Process (MDP) model from the dataset
(see Section 7). We focus on model-based RL approaches which have been shown to offer better regularization
in presence of uncertain data. Such approaches are characterized by a mechanism to penalize under-explored
or under-represented transitions, a notion referred to as pessimism under uncertainty Fujimoto et al. (2019b).

We build on the DAC framework Shrestha et al. (2020), which derives a finite Markov Decision Process
(MDP) from a static dataset and solves it using an optimal planner. The MDP derivation uses empirical
averages to interpolate contributions from nearby transitions seen in the dataset. We incorporate an adaptive
reward shaping function into the MDP building which makes the learning both robust to dataset properties
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Figure 1: A-DAC, our model-based offline RL approach for traffic control achieves the best performance
out-of-the-box compared to three model-free (DQN Mnih et al. (2016), BCQ Fujimoto et al. (2019b), and
TD3+BC Fujimoto and Gu (2021)) , one model-based RL (MBRL Kidambi et al. (2020)), and our predecessor
(DAC Shrestha et al. (2020)) RL, predecessor of A-DAC. The dataset is collected by a behavioral policy
that cycles through each traffic signal change action. DQN is greedy and prone to exploration errors. BCQ,
TD3+BC and MBRL fail to generalize despite built-in pessimism. DAC is sensitive to its hyperparameters
and needs multiple online evaluations. An Online RL baseline is included for comparison which is matched or
bettered by our approach in a fraction of time.

and significantly faster by eliminating online interactions for policy evaluation. Figure 1 illustrates our
contribution, dubbed Adaptive(A)-DAC, evaluated on a real traffic control setup. A-DAC finds a policy
significantly better than a common behavioral (or data collection) policy in a small fraction of time compared
to online learning and does so out-of-the-box. A key insight of our approach is that data collected from cyclic
policies that are oblivious to rate of traffic arrival and is often the norm in many traffic signal scenarios, can
be leveraged to infer superior policies which improve overall traffic efficiency.

Contributions:

• We formulate traffic signal control as an offline RL problem. While RL has recently been proposed
for offline optimization, to the best of our knowledge, it has not been used for the traffic signal
control before.

• We extend a recent model-based offline RL framework, DAC, to our problem and improve it by
employing an adaptive reward penalty mechanism that enables the best trade-offs in the performance
and the policy building overheads. We provide PAC guarantees for A-DAC under more relaxed and
realistic assumptions on the Q-function.

• We propose a methodology for data collection at a traffic intersection using macro statistics provided
by traffic authorities. We evaluate our approach on a complex signalized roundabout where traffic is
coordinated using eleven phases.

Outline: The rest of the paper is structured as follows. In Section 2, we introduce a small idealized traffic
control problem as a working example. A primer on offline RL methods and their applicability to traffic
control is provided in Section 3. In Section 4, our proposed approach, A-DAC, is introduced and elaborated
upon. Section 5 reasons about suitability of our approach to the traffic control problem. Section 6, then,
evaluates A-DAC and other baselines using a complex signalized roundabout. The most relevant related
work is presented in Section 7 and we conclude in Section 8 with a summary of the work.
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Figure 2: A simple signalized intersection with
two traffic flows: North-South (NS) and East-
West (EW ).

Table 1: A small experience dataset collected
using Cyclic traffic signal control policy applied
on the intersection in Figure 2.

State s Action a State s′ Reward r
(1,5) EW (3,3) 2
(3,3) NS (1,5) 2
(6,1) NS (2,3) 4
(2,3) EW (6,1) 2
(0,5) EW (2,3) 2
(2,3) NS (0,5) 2

Table 2: Derived rewards for the core states identified from the experience dataset in Table 1.

State s Averagers (C = 0) DAC @ C = 1 DAC @ C = 2 A-DAC
R̃(s,NS) R̃(s,EW) R̃(s,NS) R̃(s,EW) R̃(s,NS) R̃(s,EW) R̃(s,NS) R̃(s,EW)

(2,3) 2.67 2 2.41 1.77 1.85 1.25 1.58 1.53
(6,1) 2.67 2 2.29 1.16 1.46 -0.7 1.17 0.32
(3,3) 2.67 2 2.45 1.66 1.98 0.89 1.82 1.31
(1,5) 2.67 2 2.14 1.85 0.96 1.52 0.55 1.70
(0,5) 2.67 2 2.03 1.82 0.63 1.43 0.14 1.65

2 Basic Traffic Control

We start with a simple scenario of traffic signal control first presented in Rizzo et al. (2019) where an optimal
model for traffic light phase duration is derived based on simplistic assumptions. When these assumptions are
relaxed in a realistic setting, more complex machinery is required for optimal control which we present later.

Consider a traffic signal at an intersection which controls traffic in only two directions: either from north to
south (NS) or from east to west (EW ) (See Figure 2). Suppose the traffic follows a Poisson process with
the rate of traffic arrival being λ1 and λ2 respectively for the two traffic flows. The traffic starts arriving
from time t = 0 and the total cycle time is T . The number of vehicles entering any incoming traffic arms is
uniformly distributed by definition of the Poisson process and the expected number at time t is given by λt.
The optimal setting for the duration of the green phase for NS can be derived by minimizing the average
delay faced by a vehicle. It evaluates to: λ1

λ1+λ2
T . The equation states that the green phase duration should

be proportional to the arrival rate of the vehicles. It can be easily generalized to a case of n exclusive traffic
flows where the optimal green phase duration for an edge i is λi∑n

i=0
λi
T .

We relax the assumption of the known arrival rate. Instead, we assume an experience dataset of vehicle
movement at the intersection exists where the signal is controlled by a cyclic policy. The Cyclic policy simply
alternates green phase between the NS flow and the EW flow at every time step, mimicking a commonly
observed scenario. The idea is to use the dataset to devise a smarter control policy. We study some of
the recent developments in offline RL towards this problem scenario before introducing a real signalized
roundabout we target. The techniques we develop are general enough to apply directly to the more complex
test environment.

3 Offline Reinforcement Learning

In Reinforcement learning (RL) Sutton and Barto (2018), an agent interacts with an environment, assumed to
be a Markov Decision Process (MDP), in order to learn an optimal control (action selection) policy. The MDP
is given by a tuple (S,A, P,R, γ), with a state space S, an action space A, transition dynamics P (s, a, s′), a
stochastic reward function R(s, a) and a discount factor γ ∈ [0, 1). The agent aims to learn a policy function
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π : S → A which maximizes the expected sum of discounted rewards. Formally, the objective of RL is given
by the following.

max
π

E
at∼π(.|st)

st+1∼P (.|st,at)

[ ∞∑
t=0

γtR(st, at)
]

(1)

The policy π has a Q-function Qπ(s, a) giving the expected infinite-horizon discounted reward starting with
state-action pair (s, a). The optimal policy π∗ maximizes the Q-function over all policies and state-action
pairs. The maximum Q-values are computed by repeated application of the Bellman backup operator B
stated below.

B[Q](s, a) = R(s, a) + γ E
s′∼P (.|s,a)

[
max
a

Q(s′, a)
]

(2)

RL strives to discover a near-optimal policy by exploring actions in the environment. In an offline setting,
the environment is replaced by a static dataset collected apriori. The dataset D is made up of tuples
{(si, ai, ri, s′i)} where each tuple takes action ai from state si to transition to state s′i while giving the reward
ri. The dataset is collected from multiple episodes/ trajectories of the form (s1, a1, r1, s2, . . . , sH) where H is
the trajectory length.

Example: Table 1 presents a sample experience dataset collected by a policy cycling between the actions NS
and EW. It includes three trajectories, each contributing two tuples. Duplicates are removed to make the
example concise.

In the basic traffic control setup outlined in Section 2, an action corresponds to activating green phase for one
of the traffic flows for a fixed time duration, called observation period. Therefore, ai ∈ {NS,EW}. A state is
given by a vector of the number of vehicles arriving from each incoming traffic arm, making it 2-dimensional
in our case. The reward is a non-negative integer denoting the number of vehicles that cross the signal during
the observation period.

3.1 Model-free Learning

The first solution approach we consider is to adapt a popular off-policy Q-learning approach Deep Q Network
(DQN) Mnih et al. (2015) to the offline setting. The offline setting often causes extrapolation errors in
Q-learning which result from mismatch between the dataset and the state-action visitation of the policy under
training. Fujimoto et al. (2019b) proposes a batch-constrained Q learning (BCQ) approach to minimize
distance between the selected actions and the dataset. BCQ trains a state-conditioned generative model of
the experience dataset. In discrete settings, the model Gω gives a good estimate of the behavioral policy πb
used to collect data. That means, we can constrain the selected actions to data using a threshold τ ∈ [0, 1):

π(a|s) = arg max
a′|Gω(a′|s)/maxâ Gω(â|s)>τ

Q(s, a′) (3)

While the BCQ is effective at pruning the under-explored transitions, its benefits are limited when the
behavioral policy tends to a uniform distribution which holds true in our case: The behavior policy πb we
aim to utilize is Cyclic for which πb(a|s) = πb(a) = 1

|A| .

In another offline RL approach, a minimalistic change to classic TD3 algorithm is proposed in Fujimoto and
Gu (2021) which modifies the TD3 policy update with a behavioral cloning (BC) term:

π ← arg max
π

E
(s,a)∼D

[
λ Q

(
s, π(s)

)
−
(
π(s)− a

)2
]

(4)

Here, λ is a normalizing scalar that is set to a value inverse of the average critic (Q) function value. This
approach is termed TD3+BC and is regarded as the current state-of-the-art model-free offline RL algorithm.
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3.2 Derived MDP-based Learning

A contrastive approach to constraining the RL to the dataset is to derive an MDP from the data and
either solve it optimally or use model-based policy optimization (MBPO). This approach provides better
generalization since each transition gets more supervision compared to the off-policy approaches. There exist
multiple recent approaches built on this principle called Model-based (MB-)RL. MBRL primarily learn an
approximate transition model and (optionally) a reward model by supervising data followed by a phase of
uncertainty quantification to deal with out-of-distribution visitations Yu et al. (2020); Kidambi et al. (2020);
Argenson and Dulac-Arnold (2020). We employ a simple instantiation, called DAC-MDP Shrestha et al.
(2020), which is based on Averagers’ framework Gordon (1995). The idea is to learn transitions and rewards
as empirical averages over the nearest neighbors in the state-action space. It lends to a natural approximation
and enables an intuitive uncertainty quantifier. Furthermore, the DAC-MDP has a finite structure which
makes the computation very efficient despite an infinite continuous state space. We contribute an adaptive
reward penalty mechanism to the DAC framework which works as an effective uncertainty quantifier. Before
outlining our contributions, we formalize the DAC framework.
Assumption 3.1. We assume a continuous state space S and a finite action space A. We are given a nearest
neighbor function NN(s, a, k, α) that finds at most k nearest neighbors to a state-action pair (s, a) with an
optional maximum distance threshold α. NN uses a metric function d, such as Euclidean, that keeps the
pairs with different actions infinitely distant while the distance between the pairs with the same action is
evaluated on the state metric space: For example, d(si, ai, sj , aj) = ||si − sj || if ai = aj ,∞ otherwise.

We use shorthand dij for distance between pairs (si, ai) and (sj , aj). Notation d′ij indicates a normalized
version of distance dij . Given a smoothness parameter k and a distance threshold α, the derived MDP M̃ is
defined below.
Definition 3.2. MDP M̃ = (S,A, R̃, P̃ , γ) shares the state space and the action space of the underlying
MDP M . For a state-action pair (s, a), let kNN = NN(s, a, k, α) be its nearest neighbors from D. The
reward and transition functions are then defined as:

R̃(s, a) = 1
k

∑
i∈kNN

ri, P̃ (s, a, s′) = 1
k

∑
i∈kNN

I[s′ = s′i]

DAC modifies the reward function to penalize transitions to an under-explored region with an additive penalty
parameterized by a cost parameter C ≥ 0:

R̃(s, a) = 1
k

∑
i∈kNN

(
ri − C ∗ d(s, a, si, ai)

)
(5)

It should be noted that while the reward shaping in model-based online RL acts as a way to incorporate
additional incentive based on domain knowledge to an otherwise sparse reward function Ng et al. (1999), the
offline setting uses it as a means to incorporate pessimism to the MDP.

Example: Table 2 compares the rewards derived with different cost penalties. k = 3 throughout and the
distances are normalized to the maximum distance for ease of presentation. As an example, R̃C=0((2, 3),NS) =
1
3 (r[1] + r[2] + r[5]) = 1

3 (4 + 2 + 2) = 2.67, where r[.] is indexes Table 1. State (2, 3), for which the reward
r from dataset is equal for both actions, is assigned a higher reward for action NS due to influence from a
high-reward neighbor (6, 1).

The DAC framework builds a finite MDP by focusing on core states which are formed by the union of the
destination states in dataset D. The MDP built over the core states is solved using any standard tabular
solver such as value iteration to compute values Ṽ for the core states. We can then compute Q̃ for a non-core
state using a 1-step lookup:

Q̃(s, a) = R̃(s, a) + γ
∑

s′∈P̃ (s,a)

P̃ (s, a, s′).Ṽ (s′) (6)
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Example: Consider a new state (1, 4). Its Q-values on MDP with no cost penalties and γ = 0.99 evaluate to
Q̃C=0((1, 4),NS) = 7.92 and Q̃C=0((1, 4),EW) = 7.25. The policy π̃ would, therefore, choose action NS which
is suboptimal since the state indicates more traffic on the EW lane. Cost penalties help us in this instance:
The MDP derived with C = 2 gives Q̃C=2((1, 4),NS) = 32.6 and Q̃C=2((1, 4),EW) = 32.9. The setting
C = 2 is not arbitrary: it is the lowest C value for which the EW action gets chosen. We discuss this choice
further in the next section.

4 A-DAC MDP Derivation

We have just shown through example that building offline solutions for traffic control is not trivial even in
the simplest of the scenarios. We build an adaptive approach for reward shaping that retains the optimality
guarantees while improving the efficiency of the DAC framework significantly; the resulting framework is
called as A-DAC.
Definition 4.1. A-DAC automatically adjusts the penalties built into the reward function of the derived
MDP M̃ in the following manner:

Given kNN = NN(s, a, k, α) and rmax = max
i∈kNN

ri

R̃(s, a) = 1
k

∑
i∈kNN

ri − rmax ∗ d′(s, a, si, ai)

It should be noted that d′ is a max-normalized version of d and it brings the penalty term to the units of
rewards. The intuition behind using the max reward in the neighborhood is to penalize the under-explored
but highly rewarding transitions more heavily. Let’s understand with an example.

Example: We saw earlier that for state (2, 3) from Table 2, action NS brings a higher reward in DAC. This
is due to influence from a high-reward-getter neighbor (6, 1). It can be noticed from the same table that
A-DAC’s adaptive rewards make both the actions equally rewarding. Moreover, Q-values for a non-core
state (1, 4) evaluate to Q̃A-DAC((1, 4), ‘NS’) = 31.4 and Q̃A-DAC((1, 4), ‘EW’) = 32.5 selecting the action EW
automatically.

We present a canonical use case in Figure 3 to illustrate how the rewards are shaped in A-DAC. Of the k
neighbors considered, one neighbor is kept floating to simulate different types of neighborhood. e.g. rmax = 1
gives the most homogeneous configuration, while a high rmax replicates an under-represented region. Figure 4
shows how a global cost parameter C would shape the reward for (s, a). While a low C gives high rewards
for an under-represented region, a high C is detrimental to the homogeneous configurations. A-DAC can be
seen to offer a good balance.

Optimality. The policy learned by solving the A-DAC M̃ , denoted π̃, can potentially be arbitrarily
sub-optimal in true MDP M . We obtain a lower bound on the values obtained by policy V π̃ in relation to
the values V ∗ provided by the optimal policy π∗ in M under a “smoothness” assumption.
Assumption 4.2. A-DAC assumes local Lipschitz continuity for Q-function Q: For a state-action pair
(si, ai) and another pair (sj , aj) in its neighborhood, i.e., d′ij < α for α ∈ [0, 1], there exists a local constant
LQ(i, α) ≥ 0 such that |Q(si, ai)−Q(sj , aj)| ≤ LQ(i, α)d′ij .

The local continuity is a much weaker assumption compared to the global smoothness assumed in the DAC
framework. Further, it is found to be practical based on an analysis of our traffic control setup presented in
Section 5. In addition, we assume that the rewards are bounded to [0, Rmax] which holds for most practical
applications including ours. π̃, then, provides the following PAC guarantee.
Theorem 4.3. Given a static dataset D with its sample complexity indicated by covering number (see
Definition A.2) NSA(α) and an A-DAC MDP M̃ built on D with parameters k and α, if Q̃

2
max

ε2
s
ln
(

2NSA(α)
δ

)
≤

k ≤ 2NSA(α)
δ , then

V π̃ ≥ V ∗ − 2εs + d̄maxRmax
1− γ , w.p. 1− δ
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Figure 3: A configuration of k-nearest neighbors for state (s, a) where k − 1 neighbors are at distance 1 each
with reward 1. The remaining neighbor floats at distance rmax bringing in reward rmax where rmax > 1.

Figure 4: Comparison of rewards derived by DAC with different settings of cost C to those obtained by
A-DAC using the configuration in Figure 3 controlled by variable rmax. A-DAC penalizes the configurations
with under-explored regions more while keeping the rewards high for homogeneous configurations.

The proof is presented in Appendix A.The first component εs denotes the maximum sampling error caused
by using a finite number of neighbors; it helps us set a lower bound on k. The second component denotes the
estimation error due to neighbors being at non-zero distance: Quantity d̄max gives the worst case average
distance which is upper bounded by α and gets lower with dataset size.

5 A-DAC’s Feasibility to Traffic Control

We use the simple two action single intersection model in Figure 2 to analyze A-DAC’s feasibility to traffic
control.

We assume a fixed rate of arrival for each of the two incoming lanes where λEW = 3 ∗λNS . The starting state
is assumed to be (NS,EW ) = (1, 3). A maximum capacity (Rmax) of 4 is allowed in order to maintain a
steady flow. On this setup, two experience trajectories are collected using Cyclic control policy as illustrated
in Figure 5. It can be easily seen that this policy moves 3T vehicles in T timesteps. Next, A-DAC is trained
on this toy dataset. Figure 6 shows a rollout with the same starting state. It can be noticed that a cumulative
reward of 4T is achieved, giving 33% improvement over the behavioral policy (and matching the optimal
policy). It shows that A-DAC generalizes well. Inspect state (2,5) as an instance: The only action observed
from it in the dataset is NS, but our policy has learned to take action EW instead.

Finally, using the same model, we can show that for the Q-function, local Lipschitz continuity is the right
condition to enforce. For example, suppose the arrival rate on each lane is λ1 and λ2 respectively. Assume,
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Figure 5: Two experience trajectories from the traffic intersection in Figure 2 taken using Cyclic behavior
policy under a fixed traffic load assumption.

Figure 6: Policy learned by A-DAC using the dataset in Figure 5 improves the behavior policy by 33%.

we start the cycle from the λ1 lane, then the optimal return is:

J(π∗) = λ2
1

λ1 + λ2
+ γ ∗ λ2

2
λ1 + λ2

+ γ2 ∗ λ2
1

λ1 + λ2
+ . . .

= 1
1− γ2 ∗

λ2
1

λ1 + λ2
+ γ

1− γ2 ∗
λ2

2
λ1 + λ2

Now if we assume that the λ1 > 0 and λ2 > 0 and λ1 + λ1 ≥ δ, the above expression is upper bounded by a
convex function c ∗ (λ2

1 + λ2
1) for some c > 0 which is locally Lipschitz (as a function of λ1 and λ2).

6 Evaluation

This section addresses the following questions:
1. How well is the data collected from simple cyclic behavioral policy exploited by offline learners? (§6.3)
2. Does a partially trained behavior policy offer any added benefits to offline learning? (§6.4)
3. How do different latent state representations used in A-DAC compare? (§6.5)
4. How does A-DAC’s efficiency and hyperparameter sensitivity compare to prior work? (§6.6)

Before delving into these questions, we describe a real complex traffic roundabout environment used in
evaluation (§6.1) and the details of our experimental setup (§6.2).

6.1 Environment for a Signalized Roundabout

We model a signalized roundabout shown in Figure 7. It is a complex intersection containing multiple lanes in
each traffic arm and 10 traffic signals controlling the area. We model the state of traffic as a 68-dimensional
vector, each dimension providing the number of vehicles seen at a designated location. An action corresponds
to a phase of traffic that covers a certain configuration of the traffic signals. Details on engineering the states,
actions, and rewards for this intersection are provided in Appendix B. The appendix also provides details on
creating an experience batch from a micro-simulator bootstrapped with macro traffic statistics when access
to the real experience trajectories data is limited.
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Figure 7: A signalized roundabout A-DAC optimizes. 68 loop detector devices installed in and around the
junction report the traffic they observe which forms the state.
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Figure 8: Comparison of offline RL algorithms on Cyclic batch. Error bars indicate the min-max interval
obtained after 5 runs with different seeds under the best model settings. BCQ, TD3+BC and MBRL fail to
improve the behavioral policy. Both DAC and A-DAC improve the policy significantly, even matching the
Online RL performance with the larger batch, While DAC needs a large evaluation overhead, A-DAC works
out-of-the-box.

6.2 Experimental Setup

We use the signalized roundabout detailed in Section 6.1 for evaluation. Each episode lasts an hour with 360
time steps. O-D matrix data is available for each hour of a typical weekday which allows us to create a single
day batch. A random noise is added to the matrix when creating a larger batch. Two batches are used: (a) 1
day batch giving ≈10k timesteps, and (b) 1 week batch giving ≈70k timesteps.

Behavioral policies. We study two data collection policies:
1. Cyclic: Cycles through all actions. Represents a scenario commonly found across traffic intersections.
2. Partial-RL: An RL policy is partially trained via online interactions. A noisy version of the policy is then
used to control data. This policy has been shown to be suitable for offline learning previously Fujimoto et al.
(2019a).

Batch collection and evaluation is carried out using SUMO microsimulator Lopez et al. (2018). A fixed five
hour workload, that corresponds to five RL episodes, is used for evaluation throughout: it includes two hours
of light traffic, one hour of medium traffic, and two hours of peak traffic. Each single hour episode measures
the cumulative discounted rewards. The average return across the five hours is reported as our performance
measure.
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Figure 9: Comparison of offline RL algorithms on Partial-RL batch. Error bars indicate the min-max
interval obtained after 5 runs with different seeds under the best model settings. Failures of DQN and
MBRL exemplify the deadly triad issue in RL. Both DAC and A-DAC, on account of a more principled
approximation of the dynamics manage to improve the behavior policy, the magnitude being higher on the
larger batch. TD3+BC provides the best improvement where data from a partially trained policy aids the
combination of TD-learning and BC the best.

MDP derivation in DAC requires a nearest neighbor index: We use a memory-mapped fast approximate
nearest neighbor search index ann. Distances are max-normalized by diameter of the state space before
deriving MDP. We use a sampling-based fast approximate algorithm to estimate the diameter. Derived MDP
is solved optimally with a value iteration algorithm mdp which can exploit sparseness in transition matrix for
efficiency gains.

Baselines. We compare A-DAC against recent approaches to offline learning. Firstly, we use three model-free
offline RL baselines, namely, DQN, BCQ, and TD3+BC. Next, we use MOReL Kidambi et al. (2020) as a
representative of a general MBPO approach that covers both a classical (naïve) MBRL and a Pessimistic
MDP-based MBRL. Except for Figure 1, we only report the results on the Pessimistic MDP which we
observed to perform better than the naïve version. Finally, we analyze the DAC-MDP framework. An online
RL policy is also included in the evaluation which uses an off-policy DQN fully trained for close to 100k
timesteps.

6.3 Cyclic Policy Batch

Figure 8 compares the algorithms on the Cyclic dataset. Approaches that employ pessimism, viz., BCQ and
MBRL, fail to improve the batch as the Cyclic policy does not offer much insight that the deep function
approximators (employed either to learn policy or Q-values) can easily exploit. DAC-based policies provide
considerable performance improvements due to the nearest neighbor-based dynamics approximation specialized
for finite spaces like ours. For DAC, we only report results from the best hyperparameters found after 6
online evaluations. As seen in Figure 1, the performance is highly sensitive to these settings. A-DAC, on the
other hand, does not need extra online evaluations.

6.4 Partial RL Policy Batch

Figure 9 compares the offline RL algorithms on the Partial-RL dataset. BCQ manages to exploit this batch
better with its constrained Q-value approximation. Surprisingly, pessimistic MBRL approach fails to even
match the behavioral policy performance. It, along with DQN, suffers from the issue of “the deadly triad
of deep RL” Sutton and Barto (2018) which exemplifies the inherent difficulties in planning with learned
deep-network models. The incorporation of behavioral cloning into TD3 policy updates in TD3+BC makes
the good actions stand out early during training on this dataset and, as an effect, it works much better here
than on Cyclic dataset. DAC framework simplifies the dynamics derivation process thus significantly reducing
the reliance on the learned models. Between DAC and A-DAC, A-DAC, once again, offers better robustness
to hyperparameters.
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Table 3: Comparison of the state representations used in A-DAC. Error bars indicate the min-max interval
obtained after 5 runs with different seeds. The Cyclic policy is improved significantly using native state
representation. The Partial-RL batch is better optimized using the learned state representations.

A-DAC state representation
Batch type Batch size Loop Counts BCQ DQN

Cyclic 1 day 495± 5 473± 10 459± 12
1 week 487± 7 507± 5 460± 10

Partial-RL 1 day 477± 8 460± 10 488± 8
1 week 481± 5 504± 9 491± 4

Table 4: Comparison of offline RL algorithms based on the overhead required to build and evaluate policy
given a Cyclic experience batch. DAC and A-DAC use the state representation from BCQ. An Online RL
algorithm is also included for completeness.

Algorithm Time (minutes) Number of timesteps
Online RL 660 100k
BCQ 99 24k
DQN 101 25k
TD3+BC 100 20k
MBRL 65 18k
DAC 180 28k
A-DAC 113 24k

6.5 State Representations in A-DAC

Results for A-DAC (and for DAC) presented so far, did not discuss the latent state representations used by
the model. We analyze the following three state representations:
1. Loop Counts: 68 dimensional native representation, corresponding to counts from the loop detector
devices.)
2. BCQ: Deep representation learned by BCQ algorithm. Penultimate layer of a learned Q-network is used
as a surrogate high dimensional state.
3. DQN: Deep representation learned by DQN algorithm. The original state vector is mapped to a high
dimensional space in a manner similar to BCQ.

Table 6.5 shows that the native state representation can exploit simplistic Cyclic batch really well. For a
Partial-RL batch, however, a representation learned by a strong offline exploration algorithm, such as BCQ,
offers more benefits provided a sufficiently large sized batch is available. DQN uses a highly discriminative
model which leads to a largely unchanged state representation with increasing data size. Results point at the
flexibility of DAC framework to use state representations learned from other batch learning approaches and
improve them further.

6.6 Efficiency and Hyperparameter Sensitivity

DAC results presented so far are obtained from the best policy from 6 policies trained with different
hyperparameters based on a guideline given in Shrestha et al. (2020). It should be recalled that DAC requires
two hyperparameters: a smoothness parameter k, and a cost penalty C. A-DAC uses the parameter k as
well as a distance threshold α for smoothness while the cost penalty is not required. We compare sensitivity
of the algorithms to each parameter in Appendix C. The main takeaways are presented next.

DAC has been shown to be robust to the smoothness parameter k; It holds for A-DAC’s smoothness
parameters too. We set a high value of α, such as 0.8, and use a low value of k, 5 by default, which enables
efficient computation while achieving robust results. DAC is highly sensitive to parameter C. A significant
time overhead is required for online evaluations in order to tune this parameter. A-DAC offers robustness
guarantees that are experimentally verified.

11
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We compare the total time overhead for our baselines in Table 3 using conservative settings for evaluation
stopping criteria or for the amount of policy optimization. In addition to the policy evaluation, we have to
use significant computation overhead for building the MDP and solving it optimally. (See Appendix C for
details.) With DAC, this overhead multiplies by the number of MDPs it derives in order to explore the best
policy. While computational advances in future can potentially reduce this overhead, it is unlikely to be a
non-trivial component of the overall optimization time.

7 Related work

7.1 Traffic Signal Control

Classical transportation engineering approaches such as SCATS or Max-pressure rely on classical model-based
control theory or rule-based signal control plans Wei et al. (2019). RL approaches built over the years develop
different models for the state and the reward functions in order to optimize objectives such as throughput,
waiting time, or carbon emissions. Recent deep learning RL approaches such as deep policy gradient or
graph convolutions have found success on more complex problems such as coordinated multi-agent control.
We cite two survey papers: one on classical RL approaches Yau et al. (2017) and another covering a more
comprehensive literature Wei et al. (2019). Shi et al. (2021) is the only work to the best of our knowledge
that uses offline RL for traffic modeling but it is targeted at autonomous driving. Our work should be treated
as an important first step towards exploiting the big potential of offline RL for traffic signal control.

7.2 Offline Model-free RL

Off-policy model-free RL methods Mnih et al. (2016) adapted to batch settings have been shown to fail in
practice due to extrapolation errors Fujimoto et al. (2019b). Various regularizers are applied ranging from
KL-divergence Kumar et al. (2019); Jaques et al. (2019), uncertainty quantifiers Agarwal et al. (2020), or
simply behavior cloning Fujimoto and Gu (2021) leading to a mixed success.

7.3 Offline Model-based RL

Compared to model-free, the model-based offline approaches have proven to be more data-efficient while also
benefiting from more supervision Levine et al. (2020); Yu et al. (2020). Our work builds on this recent success
of MBRL to offline batches. Uncertainty quantifiers are critical for generalization of the model Argenson and
Dulac-Arnold (2020). Reward penalties act as a strong regularizer Yu et al. (2020); Kidambi et al. (2020)
and fits naturally to the nearest neighbor approximation used in our MDP model Shrestha et al. (2020).
The strong approximation of the dynamics and optimal planning on account of finite problem structure are
key to our approach avoiding the deadly triad of deep RL Sutton and Barto (2018). Further, our adaptive
mechanism for shaping the reward penalties makes the MDP more robust to input data.

8 Conclusion

We have modeled traffic signal control as an offline RL problem and learnt a policy from a static batch of
data without interacting with a real or simulated environment. The offline RL is a more realistic set up as it
is practically infeasible to learn a policy by interacting with a real environment. Similarly in a simulator it is
not clear how to integrate real data that is often available through traffic signal operators.

We have introduced a model-based learning framework, A-DAC, that uses the principle of pessimism under
uncertainty to adaptively modify or shape the reward function to infer a Markov Decision Process (MDP).
Due to the adaptive nature of the reward function, A-DAC works out of the box while the nearest competitor
requires substantial hyperparameter tuning to achieve comparable performance. An evaluation is carried out
on a complex signalized roundabout showing a significant potential to build high performance policies in
a data efficient manner using simplistic cyclic batch collection policies. In future, we would like to explore
other applications in the traffic domain which can benefit from offline learning.
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A Proof for Optimality Guarantee

In this section, we present the proof for Theorem 4.3 using the construction proposed in Pazis and Parr (2013)
for Probably Approximately Correct (PAC) exploration in continuous state MDPs, with some additional
modification due to our pessimistic setting.

We assume that the rewards lie in [0, Rmax]. We further assume local Lipschitz continuity of the Q-function
as defined in Assumption 4.2. The local Lipschitz continuity assumption allows us to use samples from nearby
state-actions as required by A-DAC model and approximate Q-function without much error.
Definition A.1. For a state-action pair (si, ai), the pessimistic Q-value function used in A-DAC MDP M̃ is
defined as:

Q̃(si, ai) = 1
k

∑
j∈NN(si,ai,k,α)

(
max{0, rj + γ Ṽ (s′j)− rmaxd′ij }

)
(7)

where d′ij := d(si, ai, sj , aj) max-normalized by the diameter of the state-action sample space, α is the distance
threshold used in the nearest neighbor function, and rmax = maxj∈NN(si,ai,k,α) rj .

The number of samples required to get a good approximation depends on the covering number of the
state-action space NSA(α) defined next.
Definition A.2. The covering number NSA(α) of a state-action space is the size of the largest minimal set
C of state-action pairs such that for any (si, ai) reachable from the starting state, there exists (sj , aj) ∈ C
such that d′ij ≤ α.

Let π̃ be the optimal policy of A-DAC MDP M̃ . Our goal is to bound the value V π̃(s) of π̃ in the true MDP
M in terms of the optimal value V ∗(s) for any state s. The following lemma suggests that it is sufficient to
bound the Bellman error Q̃(s, a)−B[Q̃](s, a) across all (s, a) pairs with respect to the true MDP.
Lemma A.3. [Theorem 3.12 from Pazis and Parr (2013)] Let ε− ≥ 0 and ε+ ≥ 0 be constants such that
∀(s, a) ∈ (S,A), −ε− ≤ Q(s, a)−B[Q](s, a) ≤ ε+. Any greedy policy π over a Q-function Q then satisfies:

∀s ∈ S, V π(s) ≥ V ∗(s)− ε− + ε+
1− γ

In order to use this lemma, we want to bound the quantity Q(s, a)− B[Q](s, a) for a fixed point solution
Q̃ to the pessimistic Q-function in Definition A.11. For a locally Lipschitz continuous value function
(Assumption 4.2), the value of a state-action pair can be expressed in terms of any other state-action pair in
its neighborhood as Q(si, ai) = Q(sj , aj) + ξijLQ(i, α)d′ij , where ξij is a fixed but possibly unknown constant
in [−1, 1]. For a sample (sj , aj , rj , s′j), let

xij = rj + γV (s′j) + ξijLQ(i, α)d′ij
Then:

Es′
j
[xij ] = Es′

j
[rj + γV (s′j)] + ξijLQ(i, α)d′ij

= Q(sj , aj) + ξijLQ(i, α)d′ij

Consider a state-action pair (s0, a0) and its k-nearest neighbors given by NN(s0, a0, k, α), we can estimate
the Q-value for the pair by averaging over the predicted values of its neighbors:

Q̂(s0, a0) = 1
k

∑
i∈NN(s0,a0,k,α)

x0i (8)

Let us define a new Bellman operator B̂ corresponding to the definition of Q̂ above. While B denotes the
exact Bellman operator, B̃ denotes the approximate Bellman operator for the pessimistic value function in
Definition A.1.

1It can be easily proven that Q̃ has a unique fixed point by showing that the Bellman operator B̃ is a contraction in maximum
norm.
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The Bellman error can be decomposed into two parts: (a) the maximum sampling error εs caused by using
a finite number of neighbors, and (b) the estimation error εd due to using neighbors at non-zero distance.
The following lemma from Pazis and Parr (2013) bounds the minimum number of neighbors k required to
guarantee certain εs with probability 1− δ:

Lemma A.4. [Lemma 3.13 from Pazis and Parr (2013)] If Q̃
2
max

ε2
s
ln
(

2NSA(α)
δ

)
≤ k ≤ 2NSA(α)

δ ,

∀(s, a), |B̂[Q̃](s, a)−B[Q̃](s, a)| ≤ εs, w.p. 1− δ

The proof (not included here) applies Hoeffding’s inequality to bound the difference in the true expectation
(given by operator B) and its estimation using mean over k samples (given by operator B̂).

The second piece of the Bellman error requires us to bound the term εd = B̃[Q̃](s, a)− B̂[Q̃](s, a).
Lemma A.5. For all known state-action pairs (s, a)

0 ≤ B̃[Q̃](s, a)− B̂[Q̃](s, a) ≤ d̄maxRmax

Proof. We can simplify the estimation error εd by using the definitions (7) and (8).

εd = B̃[Q̃](si, ai)− B̂[Q̃](si, ai)

= 1
k

∑
j∈NN(si,ai,k,α)

(
− rmax − ξijLQ(i, α)

)
∗ d′ij

We can set ξij = − Rmax

LQ(i,α) which will bound the quantity inside the bracket from [0, Rmax],∀(s, a) since
0 ≤ rmax ≤ Rmax. The worse case average distance is defined as d̄max, therefore ensuring that εd ≤
d̄maxRmax.

Finally, to prove the PAC bound in Theorem 4.3, we need to bound the quantity Q̃(s, a)−B[Q̃](s, a). To
achieve that, we combine the above two lemmas and apply the operators on the fixed point solution Q̃ ,
giving us :

If Q̃
2
max

ε2s
ln
(2NSA(α)

δ

)
≤ k ≤ 2NSA(α)

δ
,∀(s, a),−εs ≤ Q̃(s, a)−B[Q̃](s, a) ≤ εs + d̄maxRmax

Putting these bounds in Lemma A.3 gives us the final result.

B Modeling Environment for a Signalized Roundabout

We model a signalized roundabout (Figure 7) used previously to learn an online RL policy using policy
gradient Rizzo et al. (2019). It consists of three types of lanes or traffic arms: (a) approaching/ incoming
lanes, (b) outgoing lanes, and (c) circulatory lanes that enable traffic flow redirection. Each traffic arm has
multiple lanes. It is important to consider each lane separately because the way the incoming traffic ‘weaves
in’ to the circulatory lanes impacts the wait time of vehicles. Movement in or out of the circulatory lanes is
controlled by traffic signals numbering 10 in total.

States. A state corresponds to the number of vehicles counted by the loop detector devices installed on every
lane. For each approaching or outgoing lanes, there are two devices per lane, one close to the roundabout
and another several meters farther. The detectors number 68 in total.

Actions. Actions correspond to traffic control phases activated for a fixed time duration. A phase is provided
for each set of non-conflicting flows. For example, traffic moving from north to south and from south to
north does not conflict and therefore constitutes a single phase. In all, we use a discrete set of 11 actions as
modeled in Rizzo et al. (2019).
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Rewards. Traffic signal control typically serves a dual objective: maximize throughput and avoid long traffic
queues. We optimize only the first objective here and leave the the later for a future demonstration. For
throughput maximization, the rewards are modeled as the cumulative capacity: The cumulative capacity
C(t) at time t is the number of vehicles that left the roundabout from time 0 to t. Reward at time step t is
then defined as R(t) = C(t)− C(t− 1).

O-D Driven Traffic Simulation: Access to real experience trajectories data is often very limited and/ or
allows only a specific behavioral policy (e.g. Cyclic in our case) offering little room for experimentation. We
describe the process employed to augment the batch collection process in our environment.

A micro-simulator is set up using real network configuration with traffic signals and loop detector devices
correctly placed. Traffic is generated using an Origin-Destination (O-D) matrix provided by traffic authorities.
The O-D matrix corresponds to macro statistics for a relatively small, but significantly larger than the traffic
phase duration, period of the day. It enumerates the number of vehicles that move between each pair of
traffic zones positioned in the close vicinity of the roundabout. The O-D data is fed to our simulator which
generates vehicles following the provided source, destination, and frequency requirements. The routes are
generated using a random trip generator.

C Additional Evaluation

C.1 Hyperparameter Sensitivity of DAC

We analyze the sensitivity of each hyperparameter individually. A-DAC retains DAC’s robustness to
smoothness parameter k; Figure 10 provides the evidence. For a small value of k (ranging between 2− 10),
we find that parameter α has a minimal role. For instance, Figure 11 studies the impact of α when k is set to
5. Except for very low values of α, the performance remains unaffected. It should be noted that having a
large distance threshold does not harm since our adaptive reward computation penalizes distant neighbors.
Based on this, we set α to 0.8 by default.

When it comes to parameter C, Figure 12 shows that DAC is highly sensitive to the parameter. The values
for C are varied between the minimum and the maximum rewards observed in the dataset. The robustness
offered by A-DAC by adapting rewards based on local neighborhood ensures that A-DAC does not need to
spend expensive cycles on hyperparameter tuning.

C.2 Computational Overhead

A breakdown of computation time overhead is presented in Figure 13. All numbers are obtained from a
server running a 16-core 2nd generation Intel Xeon processor with 128GB RAM. Our implementation uses
fast approximate solutions to nearest neighbor searches and diameter computations. But the MDP build and
MDP solve operations suffer as they process a transition matrix growing quadratically with the number of
core states. Designing a distributed GPU based implementation for optimal planning is left as a future work.
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Figure 10: Analyzing the impact of smoothness parameter k in A-DAC. The setting k = 1 makes the
MDP deterministic and incapable of exploiting the different transitions observed in the experience data.
Performance is not much sensitive to values of k > 1.
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Figure 11: Analyzing the impact of smoothness parameter α in A-DAC. Low settings result in insufficient
neighbors used in approximation that has an adverse effect. High settings are more robust.
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Figure 12: Comparing the impact of cost penalty C in DAC to the adaptive reward penalties in A-DAC. DAC
is highly sensitive to C and requires a careful tuning. A-DAC manages to match or better the performance
of the best C setting in DAC out-of-the-box.
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Figure 13: Computation time breakdown between different processes in A-DAC. The nearest neighbor
querying and the diameter computation use fast approximate algorithms and scale well. But MDP build and
solve stages suffer from quadratic time complexity.
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