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ABSTRACT

As the performance of artificial intelligence systems has dramatically increased,
so too has the environmental impact of creating these systems. While many model
developers release estimates of the power consumption and carbon emissions from
the final training runs for their latest models, there is comparatively little trans-
parency into the impact of model development, hardware manufacturing, and total
water usage throughout. In this work, we estimate the real-world environmental
impact of developing a series of language models, ranging from 20 million to 7
billion active parameters, trained on up to 5 trillion tokens each. When account-
ing for hardware manufacturing, model development, and our final training runs,
we find that our series of models released 270 metric tons of carbon emissions,
equivalent to powering about 53 homes in the United States for one year, and
consumed 1.137 million liters of water, equivalent to about 10 years of water
usage by a person in the United States, even though our data center is extremely
water-efficient. We measure and report the environmental impact of our model
development; to the best of our knowledge we are the first to do so for LLMs, and
we find that model development, the impact of which is generally not disclosed
by most model developers, amounted to ∼80% of that of training. By looking at
detailed time series data for power consumption, we also find that power usage
throughout training is not consistent, fluctuating between ∼15% and ∼85% of
our hardware’s maximum power draw, with negative implications for grid-scale
planning as demand continues to grow. We close with a discussion on the con-
tinued difficulty of estimating the environmental impact of AI systems, and key
takeaways for model developers and the public at large.

1 INTRODUCTION

In recent years, the field of artificial intelligence has progressed at an unprecedented pace, driven
in large part by the development and deployment of large language and multimodal models. How-
ever, the development of these models comes with significant environmental costs (Schwartz et al.,
2020; Strubell et al., 2020; Wu et al., 2022). Training these models requires massive computational
resources, which, in turn, require large amounts of energy. Powering training both emits carbon (by
burning fossil fuels) and consumes water (by evaporating or polluting it in power plants, data cen-
ters, and hardware manufacturing processes; Li et al. (2023)). There is a growing demand for energy
to power AI workloads – for instance, Microsoft recently signed a deal to purchase the next 20 years
of energy generated by re-opening a nuclear power plant1, and meanwhile energy providers are ex-
tending the life of aging fossil fuel energy plants to keep up with demand2. As such, especially as
increasing numbers of stakeholders become involved in the development and use of AI systems, it is
imperative to carefully characterize the true cost of building and deploying state-of-the-art models,
to inform more effective strategies for mitigating potential harms, and planning for future demand.

In this paper, we estimate the energy use and environmental impacts caused by training a series of
dense transformer language models3 ranging in size from 20 million to 7 billion active parameters,
trained on 1.7 to 5 trillion tokens. To do this, we calculate Scope 2 CO2 emissions in accordance with

1
https://www.technologyreview.com/2024/09/26/1104516/three-mile-island-microsoft/

2
https://www.wsj.com/business/energy-oil/electricity-demand-coal-gas-retirement-charts-dd07029a

3Details are currently omitted to preserve anonymity but will be added upon publication.

1

https://www.technologyreview.com/2024/09/26/1104516/three-mile-island-microsoft/
https://www.wsj.com/business/energy-oil/electricity-demand-coal-gas-retirement-charts-dd07029a
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the Greenhouse Gas Protocol’s definitions,4 and Scope 1 and Scope 2 water consumption following
Li et al. (2023); in addition, we calculate “upstream” embodied carbon and water consumption, and
provide “dowstream” estimates from use of our models (which are part, but not all, of Scope 3).

Importantly, we calculate (i) electricity consumption, (ii) carbon emissions, and (iii) water consump-
tion at three points in the machine learning pipeline: early model development (e.g., hyperparameter
tuning and experiments before the final training run), training of the main model, and inference. To
the best of our knowledge, we are the first to report this information for model development of large
language models, and we find the environmental impact of developing even our relatively small
models (only up to 7B parameters) is equivalent to burning 1.5 gasoline tanker trucks of fuel, or the
amount of water consumed by one average person in the United States in 4.5 years. We encour-
age the reader to consider larger models released by other organizations to have equivalently larger
environmental impacts.

Our methodology draws upon best practices from recent publications, aiming to provide the most
thorough reporting yet of the environmental impact of LLMs. For example, unlike previous works
that assume GPUs operate at 100% of their theoretical maximum power draw (Dubey et al., 2024)
and report only the cost to train a small set of released models, we measure power consumption
at sub-second intervals throughout training. We focus our efforts on a wide range of model sizes,
optimized for widespread deployment (Dubey et al., 2024; Mehta et al., 2024; Team et al., 2024),
and estimate what the environmental impact would be if our models were deployed in a variety of
different scenarios. We find that in some scenarios, our models would only need to run inference
on 200,000 instances to match the electricity consumed, carbon emitted, and water consumed of the
entire training process.

We conclude that more transparency is needed across the industry in reporting the environmental
impact of AI systems. AI systems orders of magnitude larger than those in this paper are being
built, and put into production at a global scale, leading to emissions 10s or 100s of times larger than
what we report. This work is a step in the right direction, but responsibility of calculating, reporting,
and reducing the environmental impact should fall on those training the largest models, as they are
having the largest impact.

2 RELATED WORK

While most publicly available models do not report any climate impact, including CO2 emissions,
water usage, or embodied carbon, a few reports recently have included some estimates. For example,
Luccioni et al. (2023) reported estimates for emissions from the manufacturing process (embodied
emissions), from electricity consumption during training, and from electricity consumption of the
cluster while it was idle (see their Table 2). Dodge et al. (2022) measured electricity consump-
tion and carbon emissions for training language models and computer vision models with granular
timesteps with region-specific carbon intensity, but didn’t measure development costs, water con-
sumption, or inference. Similarly, developers of the Llama models (Touvron et al., 2023a;b; Dubey
et al., 2024) reported electricity consumption and carbon emissions estimates of training their fi-
nal models; they did not estimate development cost or water consumption, and their approach to
carbon intensity varied5. Gemma developers (Team et al., 2024) only report a single number: the
total emissions from pretraining their models, not broken down by model or by different stages of
training, or by electricity consumption and carbon intensity. The OLMo report (Groeneveld et al.,
2024) documents electricity consumption per model, and uses region-specific carbon intensity to
estimate emissions for two regions, but does not estimate other environmental impacts. Energy use
and environmental impacts are not typically documented for proprietary models.

Comparably little transparency has been provided on the water consumption of AI systems. Li et al.
(2023) estimate the water consumption of some closed models like GPT-3, but these estimates are
based on speculation about location of training, energy consumption, etc., as there is very little
public information about GPT-3’s training. Similarly, there are few estimates of embodied carbon
for AI systems, as the manufacturing process is notoriously opaque. In addition, almost all reporting

4
https://ghgprotocol.org/sites/default/files/standards/ghg-protocol-revised.pdf

5Llama 1 did not use the data center location’s carbon intensity, instead using US national average carbon
intensity; Llama 2 did not specify the carbon intensity; Llama 3 used a region-specific carbon intensity

2

https://ghgprotocol.org/sites/default/files/standards/ghg-protocol-revised.pdf
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Figure 1: The environmental impact for model development and final training runs described in
Section 4.1, where we plot each experiment by both its total CO2 emissions and water consumption.
We see that development costs are substantial, and comparable to that of the most expensive full
training runs. We also see that environmental impact is log-linear for both the size of the model
(keeping the size of the dataset consistent), and the size of the training dataset (keeping the model
size consistent), highlighting the multi-dimensional factors that dictate total environmental impact.

of environmental impact is based on training of the final model that is released. Instead of only
focusing on training, Luccioni et al. (2024) estimate the impact of inference of deployed AI systems.
To the best of our knowledge our work provides the first public estimates of environmental impact
of development of an LLM, i.e. hyperparameter tuning and ablations before the main training run.

3 METHODOLOGY

Our goal in this work is to characterize the holistic environmental impacts of large language models
in as much detail as possible, enabling assessment of key challenges and future directions towards
reducing those impacts. Typically studies documenting language model training and development
methodology will address this concern by reporting the cost to train the final, deployed model mea-
sured in GPU hours, kWh energy, and/or CO2e emissions. However, this calculation provides an
incomplete characterization of the factors leading to environmental degradation due to LLMs that
under-estimates impacts and provides insufficient information to inform strategies for developing
and deploying LLMs in a more environmentally conscious way.

Following the more comprehensive analysis provided for the BLOOM model (Luccioni et al., 2023),
we expand our measurement to include both operational GHG emissions arising from the energy
required for the development, training, and inference phases of the ML model lifecycle, as well as
embodied emissions attributed to manufacturing of the hardware supporting those operations. We
also go beyond previous work to report non-GHG externalities such as water use, and finer-grained
data such as variance in energy use throughout training. We describe our methodology for measuring
and estimating these impacts in more detail below.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 OPERATIONAL IMPACTS

Operational environmental impacts of LLMs are those that arise directly from the development
and use of models, and include the GHG emissions arising from energy sources used to power
model training and deployment, including servers and data center cooling. We base our analysis of
operational emissions around the following equation introduced by Schwartz et al. (2020) to describe
the amount of computation required to produce a machine learning artifact, such as an LLM:

Cost(R) ∝ E ·D ·H (1)

where the cost of a scientific result R (e.g. a claim that a particular training setup reaches X accuracy
on benchmark Y) is proportional to the product of the cost of processing a single example E, the size
of the training dataset D, and the number of hyperparameter experiments H. In previous work, E ·
D, the cost of training on the training dataset, is what is most commonly reported, and H, the total
number of experiments, is most often excluded.

In our analysis, we calculate the total power consumption during model training, development, and
inference, and use this to estimate the total carbon emissions and water consumption during each
stage. We follow previous work (Luccioni et al., 2023; Dubey et al., 2024; Team et al., 2024) to
calculate CO2 emissions from power consumption:

CO2Emissions = P · PUE · CI (2)

where the total carbon emissions is equal to the power usage P, multiplied by the power usage
effectiveness PUE6 of the data center, multiplied by the carbon intensity CI of the local power grid.
We ran every experiment in the same data center, and our data center provider informed us that their
PUE is between 1.1 and 1.2 depending on the current total utilization, so we conservatively assume
a consistent value of 1.2 for our calculations. The power provider, which will be deanonymized
upon publication, last reported a carbon intensity of 0.332 kg CO2e per kWh in 2021.

We follow Li et al. (2023) to calculate water consumed onsite and through power generation:

Consumption = P · PUE · (WUEonsite +WUEoffsite) (3)

where WUEonsite is the water usage effectiveness of the data center, dictated by the cooling hardware
used, and WUEoffsite is the water usage effectiveness of the local power provider, dictated by the
precise mixture of sources of power generation, as thermo- and hydro-electric power plants lead to
evaporated water that is lost and will not re-enter circulation in the local environment.

As our data center uses an efficient closed-loop cooling system with no evaporative cooling, we
assume a WUEonsite of 0.2 liters per kWh following Li et al. (2023). Our data center is in Texas, so
we use the reported average for Texas’ power generation for our WUEoffsite, or 1.29 L per kWh (Reig
et al., 2020). Together, these lead to a total WUE of 1.49 L per kWh.

Both calculations rely on total power usage. To calculate power usage during development and
training, we analyze detailed time series data for a single node throughout each run, logging power
data at sub-second intervals, and extrapolate to the total number of nodes. As we only measure GPU
power consumption, our estimates should be viewed as a lower bound on the true amount of power
consumed during development and training.

3.2 EMBODIED IMPACTS

Embodied impacts are those arising from the production of physical elements required to support
LLM development and use, such as hardware manufacturing and data center construction. To cal-
culate embodied emissions, we follow Luccioni et al. (2023) by amortizing the carbon emissions
from manufacturing over the lifetime of the hardware to get an estimate of the per hour cost, and
multiplying by the number of GPU hours used throughout model development and training. We

6
https://www.techtarget.com/searchdatacenter/definition/power-usage-effectiveness-PUE
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extend this to include water consumption as well, by amortizing estimates of water consumption
during manufacturing over the lifetime of the hardware.

3.3 MODELS, DATA, AND HARDWARE

Most of the models we evaluate are standard dense transformers, with an architecture similar to
Llama (Touvron et al., 2023a;b; Dubey et al., 2024), OLMo (Groeneveld et al., 2024), and other
recent popular models, ranging in size from 20 million to 7 billion active parameters. Each of the
sub-billion parameter models was trained on 1.7 trillion tokens, the 1 billion parameter model was
trained to 3 trillion tokens, and the 7 billion parameter models were trained to 2, 3 and 4 trillion
tokens. We additionally evaluate a mixture-of-experts (MoE) model with 1 billion active and 7
billion total parameters, trained to 5 trillion tokens.

Each model was trained on the same compute cluster, using standard HGX servers with 8 NVIDIA
H100 GPUs per server, with high speed InfiniBand interconnect between each node, and we used
between 2 and 64 nodes concurrently per training run.

3.4 SIMULATING INFERENCE

Because we do not deploy our models, we do not collect or report data about real usage of our mod-
els. We instead report estimated costs associated with deployment of a subset of our models, along
with comparison models, with varying inference configurations. Though in reality causal language
models can have a variety of use cases and be deployed on a variety of hardware infrastructure,
we collect measurements assuming models are served via SGLang (Zheng et al., 2024) on a single
H100 GPU that users interact with the models via chat. All three inference configurations used can
be mapped to a previously proposed realistic online inference scenario (Reddi et al., 2020; Peng
et al., 2023). Specifically, other than the “batching” scenario where all requests are sent instanta-
neously, the requests follow a Poisson distribution, albeit at different rates that influence different
batch sizes. The requests themselves come from the ShareGPT dataset7, and each inference scenario
involves the same sample of 2400 prompts (same random seed). Input and output lengths, therefore,
are the same in theory for a given model, but due to differences in tokenization and model context
length, there are slight variations in mean input/output lengths across models, 225-250 and 190-230
tokens respectively.

In our inference experiments, we measure cumulative energy consumption using CodeCarbon
Courty et al. (2024) tracking, which was checked against the same time series monitoring used
throughout training. Notably, we measure total power and energy consumption associated with only
the relevant processes, excluding the overhead associated with, for example, holding the model in
memory or listening for requests.

The hardware used for our inference simulations is from the same cluster as that used in training,
but we use only a single H100 GPU at a time. See Appendix A for details about our inference
methodology and assumptions.

4 RESULTS

4.1 BUILDING OUR MODELS

In this section, we aim to report a full accounting of the environmental impact of training our series
of models, from hardware manufacturing, to development, and the final training runs. We follow the
methodology outlined in Section 3.1 and Section 3.2.

When calculating environmental impact, we use information from our data center provider and their
power provider to assume a carbon intensity of 0.332 kg CO2 emitted per kWh, a power usage
effectiveness (PUE) of 1.2, and a total water usage effectiveness (WUE) of 1.49 liters per kWh.

Hardware manufacturing NVIDIA does not release the embodied carbon emissions or water
consumption about the hardware it produces, so we assume the same embodied carbon emissions

7
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/

ShareGPT_V3_unfiltered_cleaned_split.json,anon8231489123/ShareGPT_Vicuna_unfiltered

5

https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json, anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json, anon8231489123/ShareGPT_Vicuna_unfiltered
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Table 1: We developed our models in four distinct groups, based on parameter count and architec-
ture: less than 1 billion, 1 billion, and 7 billion parameters, and our mixture-of-experts model with 1
billion active and 7 billion total parameters. We found that ∼55% of our total environmental impact
came from developing the 7B models, and the total impact was emissions equivalent to 1.5 tanker
trucks’ worth of gasoline, and water consumption equal to 4 and a half years of water used by the
average person in the United States.

GPU
Hours

Total
MWh # Runs

Carbon
Emissions
(tCO2eq)

Equivalent
to ...

Water
Consump.

(kL)

Equiv. to...
(water usage,

1 person)

<1B 29k 19 20 6 675 gallons of
gasoline 28 3 mo

1B 164k 109 227 36 40x NY ↔ SF
flights, 1 person 163 1 yr, 5 mo

7B 269k 196 375 65 150 oil barrels 291 2 yr, 7 mo
MoE 27k 19 35 6 3 tons of coal 28 3 mo

Total 490k 342 657 114 1.5 gasoline
tanker trucks 510 4 yr, 6 mo

as Luccioni et al. (2023), or 3700 kg of CO2eq per 8x server node, equal 463 kg per GPU. There
is little public information on how much water is required to produce a single GPU, though chip
manufacturing facilities require millions of liters per day8. Some estimates9 place TSMC water
usage at 12.33 liters per square centimeter of hardware, which equals 100.4 liters per H100, which
we use for our analysis.

We additionally estimate the environmental impact from mining rare earth metals used during man-
ufacturing, assuming an H100 is 0.1% rare earth metal by mass. Mining 1 kg rare earth materials
consume about 11 kL of water, and releases 65.4 kg CO2eq (Browning et al., 2016), and one silicon
wafer weighs 125 grams and produces about 63 H100s10. Together, these add an additional 2.2 liters
consumed and 0.013 kg CO2eq per GPU.

Internally, we assume a 4 year lifespan for our GPUs, leading to an embodied emissions of 0.013 kg
of CO2eq and 0.003 liters of water consumed per GPU hour. We used 1.17 million GPU hours in
total, leading to a total of 16 tCO2eq emitted and 3.4 kL of water consumed during manufacturing.

Development Before launching our final training runs for each model, we ran a series of controlled
experiments to improve and stabilize our training setup, and to determine our final hyperparameters
and data mixtures. We ran these in four distinct groups: small models (less than 1 billion param-
eters), 1 billion parameter models, 7 billion parameter models, and our mixture-of-experts model.
We report detailed development costs for each group in Table 1.

Unsurprisingly, we find that the majority of development costs (∼55%) were incurred at the 7 billion
parameter scale, due to both the relative size of the model and our own prioritization, and we see
this both in the total environmental impact and the number of individual runs per category. Using
our data center’s efficiency factors, we find that our development runs led to 114 tCO2eq emitted
and 510 kL of water consumed.

Final training runs Finally, we fully trained our series of models, ranging from 20 million to 7
billion active parameters, with detailed information provided in Table 2. As we saw during devel-
opment, the majority of the cost incurred came from training our 7B models, which we trained to
2, 3, and 4 trillion tokens. We also see that the 1B dense model required about as much energy per
trillion tokens as the MoE model with 1B active parameters, though the MoE model was slightly
less efficient, most likely due to the extra compute required for routing tokens. In summary, we find
that our training runs led to 140 tCO2eq emitted and 627 kL of water consumed.

8
https://www.azcentral.com/story/opinion/op-ed/joannaallhands/2024/06/12/

tsmc-arizona-water-use-recycling/74059522007/
9
https://www.semiconductor-digest.com/water-supply-challenges-for-the-semiconductor-industry/

10
https://anysilicon.com/die-per-wafer-formula-free-calculators/
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Table 2: We list the estimated power usage, carbon emissions, and water consumption from training
our dense transformers, ranging from 20 million to 7 billion parameters, trained on 1.7 to 4 trillion
tokens, and a mixture-of-experts model with 1 billion active and 7 billion total parameters, trained
to 5 trillion tokens. We find that the environmental impact is quite high, even for our relatively small
models. Training our series of models emitted equivalent carbon to over 27 years of electricity use
by the average household in the U.S., and consumed equivalent water to the average person in the
U.S. for 5 and a half years.

Power
Usage

(MWh)

Carbon
Emissions
(tCO2eq)

Equiv. to...
(energy usage,
1 home, U.S.)

Water
Consumption

(kL)

Equiv. to...
(water usage,

1 person, U.S.)

BLOOM-176B 520 30 4 years - -
Llama 2 7B 81 31 6 yrs, 1 mo - -
Llama 3 8B - 420 83 years - -
Llama 3.2 1B - 107 14 years - -
OLMo 7B 149 0* - - -
OLMo 7B 114 70 13 yrs, 10 mo - -

LM-20M-1.7T 0.8 0.3 3 weeks 1 4 days
LM-60M-1.7T 1.2 0.4 1 month 2 6 days
LM-150M-1.7T 2.4 1 2 mo, 1 wk 4 13 days
LM-300M-1.7T 5 2 5 months 7 22 days
LM-700M-1.7T 8 3 7 months 12 38 days
LM-1B-3T 30 10 2 years 45 5 months
LM-7B-2T 67 22 4 yrs, 4 mo 100 11 months
LM-7B-3T 95 32 6 yrs, 4 mo 141 1 yr, 3 mo
LM-7B-4T 157 52 10 yrs, 4 mo 234 2 yr, 1 mo
LM-MoE-5T 54 18 3 yrs, 7 mo 81 9 months

Total (Ours) 421 140 27 yrs, 7 mo 627 5 yr, 6 mo

Putting it in perspective In total, our series of models led to at least 270 tCO2eq emitted. Using
the U.S. Environmental Protection Agency’s Greenhouse Gas Equivalencies Calculator11, this is
equivalent to 3.6 tanker trucks’ worth of gasoline burned, emissions from the average yearly energy
use for 35.2 homes in the U.S., or the amount of carbon sequestered by 315 acres of U.S. forests in
one year. We additionally estimate we consumed at least 1,137 kL of water, which is equivalent to
about 10 years of water consumption by the average person in the U.S.12.

Other Costs In this work we strive to provide a thorough accounting of the total cost of developing
our models. However, there remain a number of sources of emissions and water consumption that
are difficult, if not impossible to comprehensively measure without access to proprietary information
across a range of industries, such as transportation and end of life hardware disposal. While the
costs we report above represent a large portion of the total development process, more transparency
is needed to understand the full impact of model training.

4.2 SIMULATING DEPLOYMENT & INFERENCE

We report simulated inference costs; that is, we explore the question of what our models’ impact
might be if they were put into production. In contrast to §4.1, where we reported the actual im-
pact from our actions, this section reports partial estimates of Scope 3 carbon emissions and water
consumption: the impact from the downstream actions of others using our models. We include
comparisons with recent instruction-tuned models as well.

In Table 3, we display 1) power and energy costs, 2) carbon and water consumption, and 3) the
time to complete 100 requests. We additionally report “breakeven” points, that is the number of
inferences in each scenario required for inference costs to be equal or greater to training costs.

11
https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

12
https://www.epa.gov/watersense/statistics-and-facts
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Table 3: Measurements and estimates of resource costs from SGLang benchmarking on 2400
prompts from ShareGPT at varying request rates. Since the models were served on machines from
the same cluster that our models were trained on, we have the same PUE and WUE coefficients of 1.2
and 1.49 L / kWh respectively, and carbon intensity of 0.332 kg CO2e / kWh – note the difference in
units for energy consumption and carbon emissions, namely MWh → kWh, tons → grams CO2eq,
and kL → L. The measurements reported in this table account for the processes associated with
active inference, but not server startup time or overhead. Thus, these numbers can be considered as
strictly lower bounds on usage in similar settings. Also of note is the relatively small variability in
carbon emissions and water consumption across different model sizes in cases where batches are not
saturated, despite faster inference in smaller models in fully saturated batching scenarios – greater
peak efficiency does not guarantee efficient deployment, as resource consumption can be heavily
influenced by total uptime of a service.

Request
freq.

GPU
Power
Usage
(kWh)

Total
Process
Energy
(kWh)

Carbon
Emissions
(g CO2eq)

Water
consump.

(L)

Seconds
per 100 req.

# Inf. for
CO2 equiv.
w/ training

Llama 3.2 1B ∞ 0.003 0.007 2.3 0.010 1.02 110.5 bil
8 / sec 0.032 0.084 27.9 0.126 12.65 9.2 bil
1 / sec 0.154 0.662 219.8 0.986 100.59 1.2 bil

Llama 2 7B ∞ 0.020 0.036 12.0 0.053 4.20 6.2 bil
8 / sec 0.052 0.106 35.2 0.158 12.87 2.1 bil
1 / sec 0.331 0.855 283.9 1.274 100.64 262.1 mil

Llama 3 8B ∞ 0.011 0.021 7.0 0.032 2.44 144.6 bil
8 / sec 0.050 0.107 35.5 0.160 12.81 28.4 bil
1 / sec 0.330 0.856 284.2 1.276 100.64 3.6 bil

LM-1B-3T ∞ 0.004 0.009 3.0 0.013 1.26 8.0 bil
8 / sec 0.034 0.084 27.9 0.125 12.64 860.6 mil
1 / sec 0.165 0.676 224.4 1.008 100.58 106.9 mil

LM-7B-4T ∞ 0.019 0.033 11.0 0.049 4.10 11.4 bil
8 / sec 0.049 0.096 31.9 0.144 12.80 3.9 bil
1 / sec 0.321 0.818 271.6 1.219 100.60 459.5 mil

LM-1BA-7BT-5T ∞ 0.007 0.017 5.6 0.025 2.11 7.7 bil
8 / sec 0.037 0.097 32.2 0.144 12.82 1.3 bil
1 / sec 0.146 0.650 215.8 0.969 100.60 200.2 mil

Surprisingly, we find that for most models tested, the number of inferences required to outweigh
training costs is in the hundreds of millions to tens of billions, except for the most over-trained
models. As many of these models were created to be efficient in deployment-focused scenarios –
such as on edge devices, or in popular online products – it is important to consider inference costs
in addition to training costs. The largest model providers are producing up to hundreds of billions
of tokens per day13, highlighting that deployed models can quickly reach this tipping point.

4.3 POWER FLUCTUATIONS DURING TRAINING

One problem caused by training AI models at large scales is that the power demand starts and stops
suddenly (Dubey et al., 2024), which power grids can struggle to handle. When demand sharply
rises, generation sources that can be quickly started and stopped – generally powered by fossil fuels,
such as coal and natural gas – must be brought online quickly, increasing the marginal carbon inten-
sity of the grid and potentially negatively impacting other consumers in cases where demand rises
more quickly than generation can handle. When demand sharply drops, excess power is discarded–
by grounding the power or venting steam–until generation sources can spin down. Power grids
can generally manage some large variations (for example, when communities experience a sudden
power outage), but as we add more variability to the system, it becomes more difficult to maintain
this delicate balance, and infrastructure is not set up to handle frequent, large fluctuations.

In Figure 2, we show a snapshot of our model’s GPU power consumption during pre-training. We
find that power consumption is not consistent – instead, power is consistent while the model is train-

13
https://x.com/sama/status/1756089361609981993
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ing, but drops quickly while saving checkpoints. Though our models are relatively small, and we
have since improved checkpointing performance, other model developers have experienced similar
issues caused by checkpointing and synchronization between nodes (Dubey et al., 2024).

5 DISCUSSION

5.1 MORE TRANSPARENCY IS (STILL) NEEDED

Figure 2: Average GPU power for a single node
for the first 300 logging steps during LM-7B-4T
training. The first spike is the beginning of train-
ing, and each drop happens when a model check-
point is saved. When actively training, the aver-
age GPU power is over 600W, over 85% of an
H100’s maximum power draw of 700W, and dur-
ing checkpointing, power usage drops to just over
100W, or about 15% maximum.

While many model developers–including some
of the largest for profit entities operating in
this space–make best efforts to report at least
part of the cost of building their AI systems
(Dubey et al., 2024; Team et al., 2024), more
transparency is still needed throughout the de-
velopment pipeline. Proposed legislation, such
as the Artificial Intelligence Environmental Im-
pacts Act14 in the United States, would start
the process for defining voluntary environmen-
tal impact reporting standards for model devel-
opers, but until such standards are created and
accepted in the community, improved trans-
parency can only come through voluntary ef-
forts by companies and research organizations.
Policy action is needed to ensure there is pub-
lic visibility into environmental impacts across
the entire supply chain, from hardware manu-
facturing, data center construction, and energy
production, all the way through to model de-
ployment and inference.

Embodied emissions are still an enigma
Though a vital piece of all model development
pipelines, the environmental impact of manu-
facturing the GPUs used to train models is essentially unknown. In previous work, Luccioni et al.
(2023) highlighted the fact that researchers focused on AI’s environmental impact are forced to use
unreliable estimates of the cost of manufacturing state of the art computational hardware, and the
situation is no better now, nearly two years later. Many companies that manufacture other pieces of
data center hardware disclose estimates of the lifetime environmental impact,15 and until GPU man-
ufacturers release similar information–on a voluntary or compulsory basis–this will not improve.

Development costs are substantial, and unreported As reported in Section 4.1, we present de-
tailed information on the cost of developing our training pipeline, in contrast with previous work.
We found that development costs–associated with failed runs, hyperparameter searches, testing ar-
chitecture changes, and more–are responsible for a substantial portion of the total environmental
impact of creating our systems, highlighting a need for more transparency from model developers.
This is especially important in light of AutoML tools, where many models may be automatically
trained while searching for a solution, and scaling law experiments, where many smaller models are
trained to predict the performance of larger models, and then discarded (Li et al., 2024).

Water costs are real, and under-explored While under-explored in previous work, AI’s growing
water consumption is beginning to receive more and more attention16 (Li et al., 2023), though not
as much as it may deserve. As shown in Section 4.1, even training a series of comparatively small
models uses an enormous amount of water, the amount of which is also drastically impacted by both
the cooling systems used in data centers as well as the power generation methods used. Without

14
https://www.markey.senate.gov/imo/media/doc/artificial_intelligence_environmental_impacts_

act_of_2024_-_020124pdf.pdf
15
https://www.hpe.com/psnow/doc/a50005151enw

16
https://www.washingtonpost.com/technology/2024/09/18/energy-ai-use-electricity-water-data-centers/
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more transparency from developers on when, where, and how they a;re training their models, it will
continue to be difficult to quantify the scale of the issue, stymieing efforts to address it.

5.2 SMALL CHOICES DURING TRAINING CAN HAVE LARGE IMPACTS

While many issues relating to transparency require action from corporations and large research
groups, choices made during training have a large effect downstream.

Smaller models are cheaper to train and use, but at what cost? Until recently, to achieve high
model performance, a large model was needed. Compute-optimal scaling laws for neural network
training (Hoffmann et al., 2022; Kaplan et al., 2020) imply that it is more efficient to put more data
into a larger model, because of diminishing returns from “over-training” a small model. This meant
that models were expensive to both train and deploy, limiting how widespread they could become,
and how financially feasible they were to be used in a variety of scenarios.

Recently, however, continuing to train models on more and more tokens beyond the “compute-
optimal” limit17 has been extremely successful in making “deployment-optimized” models that can
be substantially cheaper to perform inference with. This has led to an explosion in both training
cost for small models, and total inference compute cost, as API-based models become cheaper to
use1819 and small models are deployed on-device (Gunter et al., 2024; Abdin et al., 2024). This may
be an instance of Jevons’ Paradox (Jevons, 1865): when a resource’s efficiency increases, overall
consumption of that resource tends to increase, rather than decrease. In other words, as the financial
and environmental cost of training models decreases, the downstream impact may continue to grow.

This is especially clear in context of our results in Section 4.2, showing that though the raw num-
ber of inferences required to outweigh training is objectively quite large, smaller models are being
deployed in many new scenarios that will drastically increase their total usage. Many inference use
cases are also not able to be batched (e.g. generating text on a phone for immediate use), meaning
that deployers cannot schedule many of these requests to take advantage of cheaper and/or cleaner
energy, and instead must make use of immediately available power. Given that this trend will most
likely only accelerate, it is vital that we quickly improving transparency into the total cost of de-
ployment in all deployment scenarios.

Power fluctuations reveal inefficiencies at best, challenges to power grid control at worst
While it is known that the dramatic spike in power consumption at the beginning of training and the
subsequent drop at the end are problematic for power grid operators at large scales, little has been
discussed publicly about how power consumption changes throughout training. We found that our
models, using an optimized code base and publicly available tooling, sees rapid power fluctuations
throughout training caused by the commonplace practice of frequently saving model checkpoints.
This means that without careful engineering, one training run can cause thousands of rapid power
fluctuations, which poses an immediate challenge for large-scale LLM training in data centers, which
typically source energy directly from power providers. Generated power needs to go somewhere,
and rapid, large drops in consumption during training breaks common assumptions about data center
supply and demand, leading to significant control challenges in power systems. While some frame-
works have begun to implement workarounds to manage this issue,20 more awareness is needed on
the part of researchers and engineers as training runs scale to tens of thousands of GPUs21 or more,
as even some of the largest model developers encounter difficulties from regularly shifting power
demand throughout training (Dubey et al., 2024). We emphasize that addressing this will require
more comprehensive solutions such as parallelized checkpointing, improved demand response in
data centers running large AI workloads, and new, heterogeneous methods for distributed training
spanning software, hardware, and scheduling.

17e.g. scaling from 1 to 2 to 15T tokens for Llama 1, 2, and 3 (Touvron et al., 2023a;b; Dubey et al., 2024)
18
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

19
https://developers.googleblog.com/en/gemini-15-flash-updates-google-ai-studio-gemini-api/

20E.g. the new PYTORCH NO POWERPLANT BLOWUP environment variable in PyTorch.
21
https://time.com/7021709/elon-musk-xai-grok-memphis/
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A INFERENCE SIMULATION DETAILS

Additional details, currently omitted in order to preserve anonymity, will be shared upon publication.

A.1 LIMITATIONS

We present only a limited set of inference simulations following a number of simplistic assumptions.

Specifically, we simulate only settings where a deployed model is ingesting input tokens and gen-
erating output tokens following default parameters defined in SGLang (Zheng et al., 2024) – as
opposed to, for instance, evaluating only the likelihood of a given text.

Additionally, we note that practitioners frequently quantize LLMs before deploying them, and/or
deploy to and run inference on edge device, sometimes even without GPUs. We do not account for
these scenarios in our experiments.
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