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Abstract001

The integration of large language models002
(LLMs) into clinical medicine represents a ma-003
jor advancement in natural language processing004
(NLP). We introduce BioMistral-Clinical 7B, a005
clinical LLM built on BioMistral-7B (Labrak006
et al., 2024), designed to support contin-007
ual learning from unstructured clinical notes008
for real-world tasks such as clinical deci-009
sion support. Using the augmented-clinical010
notes dataset, we apply prompt engineer-011
ing to transform unstructured text into struc-012
tured JSON capturing key clinical informa-013
tion (symptoms, diagnoses, treatments, out-014
comes). This enables efficient incremental015
training via self-supervised continual learning016
(SPeCiaL) (Caccia and Pineau, 2021). Evalu-017
ation on MedQA (Jin et al., 2021) and MedM-018
CQA (Pal et al., 2022) shows that BioMistral-019
Clinical 7B improves accuracy on MedMCQA020
by nearly 10 points (37.4% vs. 28.0%) over021
the base model, while maintaining comparable022
performance on MedQA (34.8% vs. 36.5%).023
Building on this, we propose the BioMistral-024
Clinical System, which integrates Retrieval-025
Augmented Generation (RAG) (Lewis et al.,026
2020) to enrich responses with relevant clin-027
ical cases retrieved from a structured vector028
database. The full system enhances clinical029
reasoning by combining domain-specific adap-030
tation with contextual retrieval.031

1 Introduction032

Medical Natural Language Processing (NLP) plays033

a crucial role in improving clinical workflows and034

supporting healthcare decision-making. From early035

rule-based systems to modern machine learning036

approaches, the field has evolved significantly to037

better handle the complexity and variability of med-038

ical data (Fieschi et al., 2003; Sutton et al., 2020).039

(See Figure 1)040

The emergence of Large Language Models041

(LLMs), particularly since GPT-3 (Brown et al.,042

2020b), has further transformed medical NLP 043

by enabling automation of clinical documenta- 044

tion, diagnostic support, and personalized care 045

(Thirunavukarasu et al., 2023). However, the grow- 046

ing size of these models raises concerns about com- 047

putational cost, deployment feasibility, and adapt- 048

ability to clinical-specific language. 049

To address the limitations of general LLMs in 050

clinical applications, which are namely limited do- 051

main adaptation and inability to incorporate ex- 052

ternal knowledge. We propose the BioMistral- 053

Clinical system, a lightweight framework based 054

on BioMistral-7B (Labrak et al., 2024). We 055

first obtain BioMistral-Clinical 7B through con- 056

tinual learning on structured JSON-formatted clin- 057

ical records (Caccia and Pineau, 2021), enhanc- 058

ing domain specificity and clinical reasoning. 059

To further improve context-aware response qual- 060

ity, we integrate retrieval-augmented generation 061

(RAG) (Lewis et al., 2020), enabling real-time ac- 062

cess to external medical knowledge. 063

This system offers a practical approach to de- 064

ploying LLMs in clinical environments, addressing 065

key barriers to real-world applicability and support- 066

ing real-time decision-making in healthcare. 067

2 Related Work 068

2.1 Traditional Rule-Based and Probabilistic 069

Methods for Medical Decision Support 070

Traditionally, the prediction of medical outcomes 071

relied on manual analysis and early rule-based Med- 072

ical Decision Support Systems (MDSS) (Fieschi 073

et al., 2003), which applied expert-defined if-then 074

rules. Although these systems were interpretable, 075

they lacked flexibility and were sensitive to data 076

quality. To improve diagnostic accuracy, proba- 077

bilistic models such as Bayesian networks were in- 078

troduced to capture uncertainty and encode expert 079

knowledge (Magrini et al., 2018). Before LLMs, 080

Clinical Decision Support Systems (CDSS) im- 081
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Figure 1: The development of NLP methods in the
medical field.

proved care quality and guideline adherence (Sut-082

ton et al., 2020), but adoption was limited by usabil-083

ity issues, highlighting the need for more intuitive084

tools like medical LLMs.085

2.2 Development of Medical LLMs086

Since the launch of GPT-3 (Brown et al., 2020b),087

general-purpose LLMs have been applied to clini-088

cal domains. Despite their strong language genera-089

tion capabilities, their lack of domain-specific train-090

ing raises safety concerns in clinical settings (Ko-091

rngiebel and Mooney, 2021). These risks highlight092

the need for models developed specifically for the093

medical domain.094

In response, specialized LLMs such as095

GatorTron (Yang et al., 2022) and PMC-096

LLaMA (Wu et al., 2024) were introduced.097

GatorTron, trained on over 90 billion words (in-098

cluding 82 billion de-identified clinical tokens), sig-099

nificantly improved performance on clinical NLP100

tasks. PMC-LLaMA incorporated biomedical text-101

books and literature, outperforming ChatGPT on102

QA benchmarks. Later models like MEDITRON-103

70B (Chen et al., 2023) and OpenBioLLM-104

70B (Ankit Pal, 2024) further scaled parameters105

to achieve state-of-the-art performance. However,106

scaling introduces challenges: high computational107

cost, limited deployability, and diminishing returns.108

As an example, MEDITRON-70B improved only109

5–8% over its 13B version despite a 4× increase110

in training expense (Hoffmann et al., 2022; Chen111

et al., 2023).112

2.3 Current Research Directions: Lightweight113

Clinical LLM114

Recent research has shifted toward the development115

of lightweight yet capable medical LLMs to reduce116

computational demands and improve deployabil-117

ity. BioMistral-7B (Labrak et al., 2024) achieved118

85% of OpenBioLLM-70B performance with only 119

1/10th of the parameters, supporting applications 120

on edge devices. This highlights a trend toward 121

efficiency and task-specific adaptability over pure 122

scale, enabling broader clinical adoption without 123

compromising reliability. However, BioMistral-7B 124

was trained primarily in general biomedical cor- 125

pora, which limits its grasp of real-world clinical 126

language. 127

Building on this trend, our work integrates 128

lightweight domain adaptation, self-supervised 129

continual learning, and retrieval augmentation into 130

a unified clinical language modeling framework. 131

3 Methodology 132

Current large language models (LLMs) often strug- 133

gle to adapt to clinical-specific contexts and can- 134

not dynamically incorporate up-to-date external 135

knowledge. To address this gap, we propose the 136

BioMistral-Clinical System, which combines self- 137

supervised continual learning on structured clinical 138

notes with RAG to enhance clinical reasoning and 139

response specificity (Figure 2). Our approach lever- 140

ages prompt engineering to structure unannotated 141

clinical data into JSON format, enabling domain- 142

adaptive pretraining via the SPeCiaL framework. 143

We further construct a clinical knowledge base to 144

support real-time document retrieval during infer- 145

ence. Technically, we contribute a lightweight yet 146

domain-specialized model based on BioMistral-7B, 147

a training pipeline that supports continual learning, 148

and a hybrid system that integrates retrieval and 149

generation for improved clinical question answer- 150

ing. 151

3.1 Datasets 152

This study utilizes the Augmented Clinical Notes 153

dataset curated by Hugging Face (2024)1. The 154

dataset comprises approximately 30,000 triplets 155

of clinical notes sourced from a combination of 156

real-world and synthetic data. 157

This dataset was originally developed to train 158

MediNote-7B2 and MediNote-13B3, a pair of fine- 159

tuned clinical note generators from the MediTron 160

(Chen et al., 2023) family of LLMs. In this 161

study, we use this dataset to train and construct 162

the BioMistral-Clinical System’s knowledge base. 163

1Available at: https://huggingface.co/datasets/
AGBonnet/augmented-clinical-notes

2https://huggingface.co/AGBonnet/medinote-7b
3https://huggingface.co/AGBonnet/medinote-13b
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Figure 2: Overview of the BioMistral-Clinical System. Unstructured clinical notes are transformed into structured
JSON using prompt engineering. These structured records are used to incrementally train the base model (BioMistral)
via Self-Supervised Training for Continual Learning (SPeCiaL) , producing BioMistral-Clinical. The same data
is embedded to construct a clinical knowledge base. At inference time, user queries retrieve the top-3 relevant
documents via Maximum Inner Product Search (MIPS). These documents, together with the query, are passed to the
BioMistral-Clinical model to generate the final answer.

The average note length is approximately 3,000164

words (SD = 1,473), with the full range extend-165

ing from 746 to more than 31,000 words. Each166

record contains diverse clinical components, such167

as symptoms, diagnoses, treatment, and patient168

outcomes. The complexity and extent of these nar-169

ratives make the dataset highly suitable for building170

clinical-specific models.171

Example Case Summary172

A 67-year-old patient with metastatic renal cell173
carcinoma presented with shortness of breath,174
pleuritic chest pain, and left scapular discomfort.175
Imaging revealed a gastropleural fistula, multiple176
metastases, and atelectasis. Treatment involved177
gastrostomy and chest tubes, endoscopic suturing,178
and laparoscopic fistula repair. The patient re-179
covered successfully and was discharged to reha-180
bilitation, with complete tube removal after four181
months and no complications during follow-up.182

Summarized by ChatGPT183

This example shows that this dataset is able to184

reflect complex clinical cases and diverse treatment185

trajectories. However, the notes lack structure be-186

cause they are narrative texts filled with redundant187

or irrelevant information. It is inefficient to use188

such records directly for training, especially for189

lightweight models.190

3.2 Model Selection: BioMistral-7B191

In this study, the BioMistral-7B (Labrak et al.,192

2024) model was selected as the base model due193

to its demonstrated efficacy in processing complex 194

biomedical and clinical texts. The model is built 195

on Mistral 7B Instruct v0.14 and was designed to 196

efficiently incorporate instructions and fine-tune 197

across a range of tasks. It has been extensively pre- 198

trained on the PubMed Central corpus (Jin et al., 199

2019), providing it with a strong foundation in the 200

medical literature, which aligns well with the goals 201

of this research in the medical field. 202

One of the key reasons for selecting BioMistral- 203

7B is its lightweight architecture. In contrast to 204

the growing trend toward large-scale LLMs, there 205

is increasing interest in developing more efficient, 206

lightweight models that can deliver similar perfor- 207

mance benefits without requiring excessive compu- 208

tational power (Tian et al., 2024). With only 1/10th 209

the parameters of OpenBioLLM - 70B, it can reach 210

85% of its accuracy (Labrak et al., 2024). This 211

lightweight design makes it an ideal candidate for 212

further refinement and specialized clinical appli- 213

cations, especially when hardware resources are 214

limited. 215

Although BioMistral-7B excels in its general 216

medical knowledge, evidenced by its strong perfor- 217

mance on 10 established English medical question- 218

answering tasks (Labrak et al., 2024), there re- 219

mains room for improvement, particularly in terms 220

of its adaptability to real-world clinical settings. 221

4https://huggingface.co/mistralai/
Mistral-7B-v0.1
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Figure 3: Text length distribution after PE. Figure 4: Token counts distribution after tokeniza-
tion.

3.3 Prompt Engineering222

After selecting the dataset and base model, the next223

key step is to build high-quality training data for224

incremental learning. This study aims to transform225

unstructured clinical notes into a structured format226

to enhance granularity and relational clarity.227

To address this, we propose using prompt engi-228

neering (PE) with general-purpose LLMs to con-229

vert notes into a standardized JSON format. This230

structured representation captures essential ele-231

ments, such as the main complaint, history, find-232

ings, diagnosis, treatment, and outcome, organized233

into clear subfields. As shown in Zhou et al. (2023),234

general models such as GPT-3.5 and GPT-4 are235

increasingly being used to generate training data,236

especially when manual labeling is costly.237

We conducted initial experiments where we used238

Zero-Shot and Few-Shot Prompting (Brown et al.,239

2020a). Although Few-Shot prompting improved240

format consistency, we found that it often failed241

to capture fine-grained details across clinical sub-242

fields. To improve consistency, we adopted Chain-243

of-Thought (CoT) prompting (Wei et al., 2022),244

which guides the model to reason through subtasks245

step by step. The CoT template includes role defi-246

nition, field explanations, rules, and multiple input-247

output examples (see Figure A in the appendix).248

GPT-3.5 Turbo was selected for large-scale annota-249

tion to balance performance and cost.250

Annotating 30K notes with GPT-3.5 Turbo con-251

sumed 100 million tokens and took 40 hours.252

The structured output averaged 1,300 tokens, sig-253

nificantly shorter than the original input length of254

approximately 3,000 tokens. This reduction also255

led to a decrease in variability, with the standard de-256

viation dropping from 1,473 to 477. Figures 3 show257

the length distribution after transformation. In ad-258

dition, an example of the JSON output is shown in 259

the appendix E. 260

3.4 Incremental Learning 261

3.4.1 Data Preparation and Tokenization 262

Structured JSON data from Section 3.3 distilled 263

through prompt engineering captures key patient in- 264

formation such as medical history, diagnoses, treat- 265

ments, and results. We set a maximum input length 266

of 1,024 tokens, covering 99.67% of all entries (see 267

Figure 4). 268

Tokenization was performed using the origi- 269

nal BioMistral-7B tokenizer to ensure vocabulary 270

alignment. The data set was split 80/20 into train- 271

ing and validation sets, the latter being used to 272

monitor generalization and prevent overfitting. 273

3.4.2 SPeCiaL: Self-Supervised Training for 274

Continual Learning 275

We adopt the continual self-supervised learning 276

framework proposed by Caccia and Pineau (2021), 277

where a pretrained LLM is incrementally updated 278

via autoregressive learning on new domain-specific 279

data. This strategy enables knowledge integration 280

without catastrophic forgetting, avoiding the need 281

for full retraining. 282

Self-supervised learning predicts future tokens 283

from the past context using causal masking, and un- 284

labeled data to refine model representations. This 285

is especially beneficial in clinical domains where 286

labeled data is scarce. 287

Our approach uses BioMistral-7B, a 32-layer, 288

7.2B parameter decoder-only transformer. To re- 289

tain basic biomedical knowledge while adapting to 290

clinical notes, we freeze the bottom 20 layers of 291

the model while fine-tuning the top 12 layers for 292

efficient continuous adaptation (see Figure 5 for 293
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Figure 5: The SPeCiaL training pipeline used in BioMistral. Unstructured clinical notes are first converted into
structured JSON via prompt engineering. The inputs are then tokenized using the BioMistral tokenizer and fed into
a 32-layer decoder-only transformer. To preserve core biomedical knowledge while adapting to clinical-specific
data, the bottom 20 layers are frozen and only the top 12 layers are fine-tuned, resulting in approximately 2 billion
trainable parameters.

architecture).294

3.5 Training Strategy295

Training was conducted for 5 epochs using an au-296

toregressive objective on our structured clinical297

inputs. Each batch contained 16 samples, fully298

utilizing an NVIDIA A800 80G GPU. We used299

Hugging Face Transformers to load the base model300

and tokenizer with default settings. The total train-301

ing time was 37 hours.302

Training loss steadily decreased, indicating suc-303

cessful learning. Validation loss initially dropped304

but began rising after 11,000 steps, signaling over-305

fitting. We thus selected the 10,000-step checkpoint306

as the final model based on optimal validation per-307

formance.308

The resulting model, BioMistral-Clinical 7B5,309

inherits the general biomedical knowledge of310

BioMistral-7B while being specialized for struc-311

tured clinical narratives. All metrics were tracked312

via Weights & Biases (wandb), as shown in Fig-313

ures 10 and 11 in the appendix. All reported results314

are based on a single training run without multiple315

seed averaging.316

3.6 Supervised Fine-Tuning317

To adapt the model for multiple-choice clinical318

question-answering tasks, we perform supervised319

fine-tuning (SFT) using the low-rank adaptation320

method (LoRA) (Hu et al., 2022), which enables321

parameter-efficient learning by injecting trainable322

low-rank matrices into pretrained weights while323

keeping the original model frozen.324

5URL removed for anonymity.

Figure 6: The LoRA structure setting for BioMistral-
Clinical

3.6.1 Low-Rank Adaptation 325

We configure LoRA with rank r = 8 and scaling 326

factor α = 16, introducing approximately 20M 327

trainable parameters, about 0.5% of the full model 328

(which for BioMistral-Clinical 7B would require 329

updating a matrix W ∈ R4096×4096). Specifically, 330

each weight update is represented by two matrices: 331

A ∈ Rr×d, B ∈ Rd×r,with d = 4096, r = 8 332

These amount to a total of 2× 4096× 8 = 65,536 333

parameters per injection point (see Figure 6). This 334

structure maintains adaptation capacity while sig- 335

nificantly reducing computational overhead, en- 336

abling efficient fine-tuning for downstream tasks. 337

3.6.2 Training Specifications 338

SFT is conducted on multiple-choice datasets for 339

evaluation. Given the structure of MedQA (Jin 340

et al., 2021) and MedMCQA (Pal et al., 2022) (see 341

Section 4.1.2 for details), a maximum sequence 342
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length of 256 tokens was selected to cover the en-343

tire question-answer pairs. Training is performed344

over 5 epochs using batch sizes suitable for single-345

GPU setups. On an NVIDIA A800 80G GPU, train-346

ing completes in approximately 7 hours, compared347

to 17 hours on an A10 24G. We save four LoRA-348

adapted checkpoints for evaluation. This parameter-349

efficient tuning approach facilitates rapid special-350

ization with minimal resource demands.351

3.7 Retrieval-Augmented Generation352

To address limitations in fixed-knowledge language353

models and improve response specificity, we inte-354

grate a Retrieval-Augmented Generation (RAG)355

framework (Lewis et al., 2020) into the BioMistral-356

Clinical system. In our use case, RAG enables357

the model to dynamically retrieve relevant clinical358

cases from a structured corpus at inference time,359

providing real-time contextual grounding for each360

query.361

As shown in Figure 2, we first construct a clinical362

knowledge base by embedding structured notes us-363

ing the lightweight jinaai/jina-embeddings-v3364

model (Sturua et al., 2024). Each document z is365

encoded into a dense vector d(z) ∈ R1024, forming366

the retrieval index.367

Algorithm 1 Retrieve Top-3 Relevant Cases
Input: Clinical query q; embedding model E;

knowledge base K = {(zi, ei)}Ni=1

Output: Top-3 retrieved case texts Z =
{zi1 , zi2 , zi3}

Compute query embedding: eq ← E(q)
foreach (zi, ei) in K do

Compute similarity score: si ←
Similarity(eq, ei)

Select top-3 indices: i1, i2, i3 ← argsort({si})[:
3]

return {z1, z2, z3}

When a new query x is submitted, this is also368

embedded using the same embedding model to get369

a query vector q(x) ∈ R1024 with the same dimen-370

sions. The system then performs a Maximum Inner371

Product Search (MIPS) between q(x) and the doc-372

ument vectors d(z) to retrieve the most appropriate373

clinical entries. Next, the top K = 3 documents374

are retrieved. The algorithm for retrieving relevant375

top-3 cases is shown in the pseudocode 1.376

These top-3 documents {z1, z2, z3} are then377

concatenated with the original query into a uni-378

fied prompt, which is passed into the BioMistral- 379

Clinical model. This setup enhances answer speci- 380

ficity and consistency without the need for model 381

retraining, making it suitable for real-world clinical 382

applications. 383

4 Evaluation 384

We present a comprehensive evaluation of our pro- 385

posed approach. The evaluation is structured as 386

an ablation study to assess the impact of retrieval 387

augmentation. First, we evaluate the base model, 388

BioMistral-Clinical 7B, after incremental clinical 389

knowledge integration. Then, we assess the full 390

BioMistral-Clinical System, which extends the base 391

model with a RAG mechanism for real-time con- 392

textual retrieval. 393

4.1 Evaluation of BioMistral-Clinical 7B 394

To get a comprehensive view of the behavior of our 395

model, we evaluate BioMistral-Clinical 7B in two 396

dimensions: (1) qualitative case comparisons sim- 397

ulating real-world clinical scenarios (see Section 398

4.1.1), and (2) quantitative evaluation using public 399

multiple choice medical benchmarks (see Section 400

4.1.2). 401

4.1.1 Clinical Scenario Comparison 402

To qualitatively assess clinical reasoning abil- 403

ity, we selected a representative clinical scenario 404

query. Below, we compare the responses generated 405

by the original BioMistral-7B and our proposed 406

BioMistral-Clinical 7B. 407

Example Query: How to treat severe obe-
sity?

BioMistral-7B:
Severe obesity can be treated using a com-
bination of diet, exercise, and sometimes
medication. It is important for patients to
work with healthcare professionals to de-
velop a personalized plan.

BioMistral-Clinical 7B:
Severe obesity treatment typically involves
a comprehensive approach, including di-
etary changes, increased physical activ-
ity, behavioral therapy, and in some cases,
weight-loss medications or surgery. A mul-
tidisciplinary team often provides the best
outcomes.

408
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Figure 7: Comparison of answer length distribution between BioMistral-7B and BioMistral-Clinical 7B across 100
clinical queries. Left: histogram; Right: box plot.

As illustrated above, while both models outline409

general treatment strategies, BioMistral-7B pro-410

vides only broad recommendations. In contrast,411

BioMistral-Clinical 7B generates a more structured412

and specific response, suggesting different types413

of interventions and team-based care. A more de-414

tailed clinical example is provided in Appendix C415

for further illustration.416

To complement our qualitative findings, we gen-417

erated a synthetic dataset of 100 basic clinical ques-418

tions using GPT-4 (Achiam et al., 2023). The419

questions were created by prompting the model420

with: "Please generate 100 common clinical ques-421

tions." These queries reflect general diagnostic and422

treatment scenarios commonly encountered in clin-423

ical practice. We used this dataset to evaluate424

and compare the responses of BioMistral-7B and425

BioMistral-Clinical 7B. Examples of these queries426

and their corresponding retrieval outputs are pro-427

vided in Appendix D.428

We used answer length (in characters) as a429

proxy for response richness. As shown in Fig-430

ure 7, BioMistral-Clinical 7B produced signif-431

icantly longer responses (mean: 933.69) than432

BioMistral-7B (mean: 493.46). This suggests433

enhanced informativeness following clinical fine-434

tuning.435

4.1.2 Quantitative Analysis436

To complement qualitative assessments, we quanti-437

tatively benchmarked both models using two pub-438

licly available medical multiple-choice datasets:439

MedQA (Jin et al., 2021) and MedMCQA (Pal440

et al., 2022).441

MedQA The MedQA dataset contains 12,723 442

multiple-choice questions in English. We randomly 443

selected 10% of the data (1,273 questions) as a 444

test set to evaluate both models. BioMistral-7B 445

achieved an accuracy of 36.5%, while BioMistral- 446

Clinical 7B achieved 34.8%. This minor perfor- 447

mance drop suggests a trade-off between clinical 448

specialization and general-domain medical reason- 449

ing, though the difference is marginal. An example 450

of a test question is provided in Appendix B.1. 451

MedMCQA-Surgery The MedMCQA dataset 452

contains 194,000 multiple-choice questions span- 453

ning various medical domains. For this study, we 454

extracted the surgery-related subset—MedMCQA- 455

Surgery—which includes 16,862 questions. A sam- 456

ple of 1,000 questions was used for evaluation. 457

BioMistral-Clinical 7B significantly outperformed 458

the base model (37.4% vs. 28.0%), indicating 459

that continued training on clinical data improves 460

domain-specific reasoning in surgical contexts. An 461

example of an evaluation question is provided in 462

Appendix B.2. 463

Post-SFT Performance After SFT on the full 464

training sets, both models exhibited improved 465

accuracy. On MedQA, the performance gap 466

narrowed: BioMistral-7B reached 43.5%, while 467

BioMistral-Clinical 7B closely followed with 468

42.3%. In contrast, on the MedMCQA-Surgery 469

subset, BioMistral-Clinical 7B showed a more pro- 470

nounced gain, achieving 47.7% compared to 41.2% 471

for the base model. These results indicate that 472

SFT enhances both general and domain-specific 473

performance, with BioMistral-Clinical 7B benefit- 474
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Model MedQA MedMCQA MedQA-SFT MedMCQA-SFT
BioMistral-7B 36.5% 28.0% 43.5% 41.2%
BioMistral-Clinical 7B 34.8% 37.4% 42.3% 47.7%
Improvement (Clinical - Base) -1.7% +9.4% -1.2% +6.5%

Table 1: Performance comparison of BioMistral Clinical and original BioMistral models on public medical question
answering datasets. Results are presented as accuracy percentages.

ing more in specialized clinical reasoning.475

Summary Across multiple experimental setups,476

BioMistral-Clinical 7B demonstrates stronger clin-477

ical reasoning, improved task performance, and478

richer responses. These findings confirm that incre-479

mental learning of domain-specific data improves480

medical LLM capabilities without substantially481

compromising general domain knowledge.482

4.2 Evaluation of BioMistral-Clinical System483

4.2.1 Retrieval Accuracy Evaluation484

To evaluate the quality of document retrieval485

in the BioMistral-Clinical System, we first ana-486

lyzed whether the top-3 documents retrieved for487

each query are clinically relevant and contextu-488

ally aligned with the user question. The retrieval489

module uses the jinaai / Jina-embeddings-v3490

model, a lightweight and efficient embedding491

model optimized for semantic search tasks. The492

embeddings were used to construct a vector-based493

clinical knowledge base, now publicly available6.494

We evaluated the clinical relevance of diagnoses495

retrieved for 100 queries ( from section 4.1.1) us-496

ing manual inspection. Results showed that the497

top-3 retrieved cases had high semantic and clini-498

cal alignment with query intent, indicating the re-499

trieval module’s effectiveness. Detailed examples500

are provided in Table D in the Appendix.501

4.2.2 Qualitative Evaluation with RAG502

System503

We qualitatively evaluated the generation stage of504

the BioMistral-Clinical System, combining top-3505

retrieved cases with clinical queries into context-506

rich prompts (Wei et al., 2022). Manual assessment507

indicated that the RAG-augmented system consis-508

tently outperformed the baseline BioMistral-7B,509

particularly for complex conditions lacking suffi-510

cient pre-trained knowledge.511

The following example illustrates the practical512

impact of RAG augmentation when addressing a513

complex neurological disorder:514

6URL removed for anonymity.

Query: How to manage multiple sclerosis?

BioMistral-7B (No RAG):

There is no cure for multiple scle-
rosis (MS). Treatment includes
medications, lifestyle changes,
and rehabilitation.

BioMistral-Clinical (RAG-Enhanced):

Multiple sclerosis (MS) is a
chronic autoimmune disorder
affecting the central nervous
system, causing symptoms such
as fatigue, vision problems, and
cognitive issues. There is no
cure that exists, the management
involves medications, physical
therapy, and supportive thera-
pies tailored to individual pa-
tient needs.

515

Evaluation also highlighted system dependence 516

on knowledge-base coverage. Queries enriched 517

with additional clinical details (symptoms, lab re- 518

sults) significantly improved retrieval and genera- 519

tion quality. 520

5 Conclusion 521

This paper presents the BioMistral-Clinical sys- 522

tem, a lightweight clinical language model that 523

combines incremental learning with RAG. We 524

show that prompt-based annotation can efficiently 525

structure unlabelled clinical notes, enabling self- 526

supervised learning. A compact embedding-based 527

knowledge base facilitates semantic retrieval and, 528

when integrated via RAG, enhances response qual- 529

ity by grounding outputs in real-world clinical 530

content. These results highlight the potential of 531

lightweight, structured, and retrieval-enhanced ap- 532

proaches to build practical clinical LLMs with min- 533

imal annotation and computational cost. 534
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6 Limitations535

Although this study uses continual training to de-536

velop an improved model, BioMistral-Clinical 7B,537

which achieves a nearly 10% gain on MedMCQA538

compared to the base BioMistral-7B. In addition, it539

incorporates RAG to form the BioMistral-Clinical540

System, allowing dynamic access to external medi-541

cal knowledge for more context-aware responses.542

Despite these advancements, it is important to rec-543

ognize several limitations that frame the scope and544

generalizability of the findings.545

First, although the study provides strong evi-546

dence for the feasibility of self-supervised incre-547

mental learning in structured clinical data, the un-548

derlying dataset itself is inherently imperfect. The549

JSON-formatted entries generated through PE used550

in training are still based on a limited corpus of551

clinical narratives. In particular, many of these552

narratives were synthetically generated rather than553

transcribed from actual patient-doctor interactions554

(Hugging Face, 2024). As a result, they may lack555

the linguistic diversity, contextual nuance, and clin-556

ical irregularities found in real-world settings. This557

constraint implies that certain specialties, rare con-558

ditions, or edge cases may be underrepresented,559

thereby limiting the breadth and balance of the560

knowledge captured by the model.561

Secondly, the clinical knowledge base con-562

structed for the RAG module, although it was de-563

signed systematically and empirically validated,564

must recognize that the scope remains narrow. The565

coverage of the knowledge base is still limited com-566

pared to the diversity of real-world clinical practice.567

The current findings validate the methodology for568

transforming structured data via embedding and569

retrieval, but do not yet reflect the behavior of the570

system at scale.571

Third, a minor trade-off in general-domain per-572

formance was observed after incremental clini-573

cal learning, as evidenced by a slight decrease in574

MedQA accuracy (34.8% compared to 36.5% for575

the base model). Although this does not detract576

from the clinical improvements of the model, it577

does highlight the importance of maintaining do-578

main balance during specialization. We still lack579

experimental proof of the same approach for other580

domains, such as finance or education, and it is not581

possible to draw generalizations.582

Finally, due to the absence of publicly available583

benchmark datasets that map detailed patient symp-584

toms to case-level retrieval outcomes, the evalu-585

ation of the RAG pipeline in this study relies in 586

part on qualitative analysis. Qualitative and man- 587

ual evaluations such as the ones conducted in this 588

study are often considered the gold standard for as- 589

sessing retrieval relevance. However, the absence 590

of standardized, large-scale benchmarks limits the 591

ability to perform consistent and reproducible quan- 592

titative comparisons. Therefore, the development 593

of such benchmarks remains an important direction 594

for future work in the field. 595

7 Ethical Considerations 596

In addition to the promise in clinical applications, 597

ethical issues must be thoughtfully addressed. First 598

and foremost, patient privacy and data protection 599

are critical. Since the system handles sensitive 600

clinical content, compliance with HIPAA (1996) 601

and GDPR (2016) standards is essential to prevent 602

misuse and maintain trust (Yadav et al., 2023). 603

Second, the system is designed as a clinical de- 604

cision support tool and cannot substitute profes- 605

sional medical judgment. Generative models ex- 606

hibit variability in their outputs in different runs and 607

inputs (Zhu et al., 2024), and it is the responsibility 608

of healthcare professionals to critically interpret 609

the suggestions of the model. AI-generated recom- 610

mendations should complement, not replace human 611

expertise. The responsible incorporation of such 612

systems necessitates transparency, protection fea- 613

tures, and ongoing emphasis on human oversight. 614

All datasets used in this study, including MedQA 615

and MedMCQA, are publicly released and licensed 616

for research use. In accordance with their original 617

terms, all derived artifacts, including structured 618

JSON output, the trained BioMistral-Clinical 7B 619

model, and the retrieval corpus, are used solely 620

for academic research purposes. These artifacts are 621

not intended for clinical deployment or commercial 622

use. 623

Lastly, we disclose that AI assistants (e.g., Chat- 624

GPT and Deepseek) were used to support writing 625

and code development. However, all scientific de- 626

sign decisions, data processing steps, and model 627

training were conducted solely by the authors. 628
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A The Chain-of-Thought prompt template.773

Figure 8: The Chain-of-Thought prompt template.

B Example Question from Public QA Benchmark774

B.1 Example Question from MedQA775

Question: A 3-month-old baby died suddenly at night while asleep. His mother noticed that he had died776

only after she awoke in the morning. No cause of death was determined based on the autopsy. Which of777

the following precautions could have prevented the death of the baby?778

Options:779
A. Placing the infant in a supine position on a firm mattress while sleeping780

B. Routine postnatal electrocardiogram (ECG)781

C. Keeping the infant covered and maintaining a high room temperature782

D. Application of a device to maintain the sleeping position783

E. Avoiding pacifier use during sleep784

Correct Answer: A785

B.2 Example Question from MedMCQA-Surgery786

Question: Delayed union of fracture of a bone following a surgical treatment may be due to:787

Options:788
A. Infection789

B. Inadequate circulation790

C. Inadequate mobilization791

D. All of the above792

Correct Answer: D793
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C Example: Refined Scenario – Patient-Specific Case 794

Detailed Question: This is a severely obese patient who has gained weight over the past year,
suspected to be related to his use of montelukast for seasonal allergies. His BMI is very high,
classed as obesity level 3. His lipid profile is normal, but his symptom checklist score is abnormal.
How would you develop a treatment plan to help him lose weight and improve his health?

BioMistral-7B:
The first step in developing a treatment plan for this patient is to discuss his weight gain with him.
It is important to let him know that his weight gain is a concern and that it is important to address
it. It is also important to let him know that his weight gain is not his fault and that there are many
things that can be done to help him lose weight.

BioMistral-Clinical 7B:
Based on the patient’s presentation, a multidisciplinary approach is necessary to address his
weight concerns. The treatment plan will involve lifestyle modifications, including a healthy diet
and regular exercise. The patient will be referred to a registered dietitian and a physical therapist
for further guidance. Additionally, he will be referred to a behavior therapist to address underlying
behavioral issues contributing to his weight problems. The patient will be closely monitored with
regular follow-up appointments to ensure the treatment is effective and to address any concerns.

795

D Retrieval Examples Table 796

Clinical Query Top-3 Retrieved Diagnoses

How to manage type 2 diabetes? Type 2 diabetes, Reactive Hypoglycemia, Type 2 diabetes
What’s the treatment for hypertension? Resistant hypertension, Renal artery stenosis, Renal artery steno-

sis
What are the treatments for asthma? Uncontrolled asthma, Allergic bronchopulmonary aspergillosis,

Severe asthma
How to manage high cholesterol? Hyperlipidemia, None, Thoracic aortic aneurysm with ARSA
How to treat a skin rash? Mycosis Fungoides, None, Fixed drug eruption (FDE)
How to manage arthritis pain? None, Rheumatoid Arthritis, Gouty arthritis with symptomatic

meniscal tears
How to deal with constipation? Functional Constipation, Severe constipation, Rectal stenosis
What are the treatments for bronchitis? Traction bronchiectasis, Chronic bronchiectasis, Bronchiectasis
How to manage eczema? Eczematous dermatitis, Mycosis Fungoides, Erythema nodosum

migrans
How to manage varicose veins? Symptomatic varices, Varicose Veins, Large gastric varix

Note: The value ‘None’ indicates that the diagnosis field was missing in the retrieved case note, not that the document itself was
irrelevant. Other sections of the same document (e.g., symptoms, treatment) may still be contextually aligned with the query.

Table 2: Sample results of diagnosis sections retrieved for 10 clinical questions. Each row shows the top-3 diagnoses
retrieved by the RAG system for the given query.
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E Example JSON Output797

Figure 9: Structured JSON output from the prompt-engineered dataset.

F Training and Validation loss over steps798

Figure 10: Training loss over steps. Figure 11: Validation loss over steps.
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