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Abstract

The integration of large language models
(LLMs) into clinical medicine represents a ma-
jor advancement in natural language processing
(NLP). We introduce BioMistral-Clinical 7B, a
clinical LLM built on BioMistral-7B (Labrak
et al., 2024), designed to support contin-
ual learning from unstructured clinical notes
for real-world tasks such as clinical deci-
sion support. Using the augmented-clinical
notes dataset, we apply prompt engineer-
ing to transform unstructured text into struc-
tured JSON capturing key clinical informa-
tion (symptoms, diagnoses, treatments, out-
comes). This enables efficient incremental
training via self-supervised continual learning
(SPeCiaL) (Caccia and Pineau, 2021). Evalu-
ation on MedQA (Jin et al., 2021) and MedM-
CQA (Pal et al., 2022) shows that BioMistral-
Clinical 7B improves accuracy on MedMCQA
by nearly 10 points (37.4% vs. 28.0%) over
the base model, while maintaining comparable
performance on MedQA (34.8% vs. 36.5%).
Building on this, we propose the BioMistral-
Clinical System, which integrates Retrieval-
Augmented Generation (RAG) (Lewis et al.,
2020) to enrich responses with relevant clin-
ical cases retrieved from a structured vector
database. The full system enhances clinical
reasoning by combining domain-specific adap-
tation with contextual retrieval.

1 Introduction

Medical Natural Language Processing (NLP) plays
a crucial role in improving clinical workflows and
supporting healthcare decision-making. From early
rule-based systems to modern machine learning
approaches, the field has evolved significantly to
better handle the complexity and variability of med-
ical data (Fieschi et al., 2003; Sutton et al., 2020).
(See Figure 1)

The emergence of Large Language Models
(LLMs), particularly since GPT-3 (Brown et al.,

2020b), has further transformed medical NLP
by enabling automation of clinical documenta-
tion, diagnostic support, and personalized care
(Thirunavukarasu et al., 2023). However, the grow-
ing size of these models raises concerns about com-
putational cost, deployment feasibility, and adapt-
ability to clinical-specific language.

To address the limitations of general LLMs in
clinical applications, which are namely limited do-
main adaptation and inability to incorporate ex-
ternal knowledge. We propose the BioMistral-
Clinical system, a lightweight framework based
on BioMistral-7B (Labrak et al., 2024). We
first obtain BioMistral-Clinical 7B through con-
tinual learning on structured JSON-formatted clin-
ical records (Caccia and Pineau, 2021), enhanc-
ing domain specificity and clinical reasoning.
To further improve context-aware response qual-
ity, we integrate retrieval-augmented generation
(RAG) (Lewis et al., 2020), enabling real-time ac-
cess to external medical knowledge.

This system offers a practical approach to de-
ploying LLMs in clinical environments, addressing
key barriers to real-world applicability and support-
ing real-time decision-making in healthcare.

2 Related Work

2.1 Traditional Rule-Based and Probabilistic
Methods for Medical Decision Support

Traditionally, the prediction of medical outcomes
relied on manual analysis and early rule-based Med-
ical Decision Support Systems (MDSS) (Fieschi
et al., 2003), which applied expert-defined if-then
rules. Although these systems were interpretable,
they lacked flexibility and were sensitive to data
quality. To improve diagnostic accuracy, proba-
bilistic models such as Bayesian networks were in-
troduced to capture uncertainty and encode expert
knowledge (Magrini et al., 2018). Before LLMs,
Clinical Decision Support Systems (CDSS) im-
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Figure 1: The development of NLP methods in the
medical field.

proved care quality and guideline adherence (Sut-
ton et al., 2020), but adoption was limited by usabil-
ity issues, highlighting the need for more intuitive
tools like medical LL.Ms.

2.2 Development of Medical LLMs

Since the launch of GPT-3 (Brown et al., 2020b),
general-purpose LLMs have been applied to clini-
cal domains. Despite their strong language genera-
tion capabilities, their lack of domain-specific train-
ing raises safety concerns in clinical settings (Ko-
rngiebel and Mooney, 2021). These risks highlight
the need for models developed specifically for the
medical domain.

In response, specialized LLMs such as
GatorTron (Yang et al, 2022) and PMC-
LLaMA (Wu et al., 2024) were introduced.
GatorTron, trained on over 90 billion words (in-
cluding 82 billion de-identified clinical tokens), sig-
nificantly improved performance on clinical NLP
tasks. PMC-LLaMA incorporated biomedical text-
books and literature, outperforming ChatGPT on
QA benchmarks. Later models like MEDITRON-
70B (Chen et al., 2023) and OpenBioLLM-
70B (Ankit Pal, 2024) further scaled parameters
to achieve state-of-the-art performance. However,
scaling introduces challenges: high computational
cost, limited deployability, and diminishing returns.
As an example, MEDITRON-70B improved only
5-8% over its 13B version despite a 4x increase
in training expense (Hoffmann et al., 2022; Chen
et al., 2023).

2.3 Current Research Directions: Lightweight
Clinical LLM

Recent research has shifted toward the development
of lightweight yet capable medical LLMs to reduce
computational demands and improve deployabil-
ity. BioMistral-7B (Labrak et al., 2024) achieved

85% of OpenBioLLM-70B performance with only
1/10th of the parameters, supporting applications
on edge devices. This highlights a trend toward
efficiency and task-specific adaptability over pure
scale, enabling broader clinical adoption without
compromising reliability. However, BioMistral-7B
was trained primarily in general biomedical cor-
pora, which limits its grasp of real-world clinical
language.

Building on this trend, our work integrates
lightweight domain adaptation, self-supervised
continual learning, and retrieval augmentation into
a unified clinical language modeling framework.

3 Methodology

Current large language models (LLMs) often strug-
gle to adapt to clinical-specific contexts and can-
not dynamically incorporate up-to-date external
knowledge. To address this gap, we propose the
BioMistral-Clinical System, which combines self-
supervised continual learning on structured clinical
notes with RAG to enhance clinical reasoning and
response specificity (Figure 2). Our approach lever-
ages prompt engineering to structure unannotated
clinical data into JSON format, enabling domain-
adaptive pretraining via the SPeCialL framework.
We further construct a clinical knowledge base to
support real-time document retrieval during infer-
ence. Technically, we contribute a lightweight yet
domain-specialized model based on BioMistral-7B,
a training pipeline that supports continual learning,
and a hybrid system that integrates retrieval and
generation for improved clinical question answer-
ing.

3.1 Datasets

This study utilizes the Augmented Clinical Notes
dataset curated by Hugging Face (2024)!. The
dataset comprises approximately 30,000 triplets
of clinical notes sourced from a combination of
real-world and synthetic data.

This dataset was originally developed to train
MediNote-7B? and MediNote-13B?3, a pair of fine-
tuned clinical note generators from the MediTron
(Chen et al., 2023) family of LLMs. In this
study, we use this dataset to train and construct
the BioMistral-Clinical System’s knowledge base.

'Available at: https://huggingface.co/datasets/
AGBonnet/augmented-clinical-notes

2https: //huggingface.co/AGBonnet/medinote-7b

3https://huggingface.co/AGBonnet/medinote-13b
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Figure 2: Overview of the BioMistral-Clinical System. Unstructured clinical notes are transformed into structured
JSON using prompt engineering. These structured records are used to incrementally train the base model (BioMistral)
via Self-Supervised Training for Continual Learning (SPeCiaL) , producing BioMistral-Clinical. The same data
is embedded to construct a clinical knowledge base. At inference time, user queries retrieve the top-3 relevant
documents via Maximum Inner Product Search (MIPS). These documents, together with the query, are passed to the

BioMistral-Clinical model to generate the final answer.

The average note length is approximately 3,000
words (SD = 1,473), with the full range extend-
ing from 746 to more than 31,000 words. Each
record contains diverse clinical components, such
as symptoms, diagnoses, treatment, and patient
outcomes. The complexity and extent of these nar-
ratives make the dataset highly suitable for building
clinical-specific models.

Example Case Summary

A 67-year-old patient with metastatic renal cell
carcinoma presented with shortness of breath,
pleuritic chest pain, and left scapular discomfort.
Imaging revealed a gastropleural fistula, multiple
metastases, and atelectasis. Treatment involved
gastrostomy and chest tubes, endoscopic suturing,
and laparoscopic fistula repair. The patient re-
covered successfully and was discharged to reha-
bilitation, with complete tube removal after four
months and no complications during follow-up.

Summarized by ChatGPT

This example shows that this dataset is able to
reflect complex clinical cases and diverse treatment
trajectories. However, the notes lack structure be-
cause they are narrative texts filled with redundant
or irrelevant information. It is inefficient to use
such records directly for training, especially for
lightweight models.

3.2 Model Selection: BioMistral-7B

In this study, the BioMistral-7B (Labrak et al.,
2024) model was selected as the base model due

to its demonstrated efficacy in processing complex
biomedical and clinical texts. The model is built
on Mistral 7B Instruct v0.1* and was designed to
efficiently incorporate instructions and fine-tune
across a range of tasks. It has been extensively pre-
trained on the PubMed Central corpus (Jin et al.,
2019), providing it with a strong foundation in the
medical literature, which aligns well with the goals
of this research in the medical field.

One of the key reasons for selecting BioMistral-
7B is its lightweight architecture. In contrast to
the growing trend toward large-scale LLMs, there
is increasing interest in developing more efficient,
lightweight models that can deliver similar perfor-
mance benefits without requiring excessive compu-
tational power (Tian et al., 2024). With only 1/10th
the parameters of OpenBioLLLM - 70B, it can reach
85% of its accuracy (Labrak et al., 2024). This
lightweight design makes it an ideal candidate for
further refinement and specialized clinical appli-
cations, especially when hardware resources are
limited.

Although BioMistral-7B excels in its general
medical knowledge, evidenced by its strong perfor-
mance on 10 established English medical question-
answering tasks (Labrak et al., 2024), there re-
mains room for improvement, particularly in terms
of its adaptability to real-world clinical settings.

4https: //huggingface.co/mistralai/
Mistral-7B-v@.1
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Figure 3: Text length distribution after PE.

3.3 Prompt Engineering

After selecting the dataset and base model, the next
key step is to build high-quality training data for
incremental learning. This study aims to transform
unstructured clinical notes into a structured format
to enhance granularity and relational clarity.

To address this, we propose using prompt engi-
neering (PE) with general-purpose LLMs to con-
vert notes into a standardized JSON format. This
structured representation captures essential ele-
ments, such as the main complaint, history, find-
ings, diagnosis, treatment, and outcome, organized
into clear subfields. As shown in Zhou et al. (2023),
general models such as GPT-3.5 and GPT-4 are
increasingly being used to generate training data,
especially when manual labeling is costly.

We conducted initial experiments where we used
Zero-Shot and Few-Shot Prompting (Brown et al.,
2020a). Although Few-Shot prompting improved
format consistency, we found that it often failed
to capture fine-grained details across clinical sub-
fields. To improve consistency, we adopted Chain-
of-Thought (CoT) prompting (Wei et al., 2022),
which guides the model to reason through subtasks
step by step. The CoT template includes role defi-
nition, field explanations, rules, and multiple input-
output examples (see Figure A in the appendix).
GPT-3.5 Turbo was selected for large-scale annota-
tion to balance performance and cost.

Annotating 30K notes with GPT-3.5 Turbo con-
sumed 100 million tokens and took 40 hours.
The structured output averaged 1,300 tokens, sig-
nificantly shorter than the original input length of
approximately 3,000 tokens. This reduction also
led to a decrease in variability, with the standard de-
viation dropping from 1,473 to 477. Figures 3 show
the length distribution after transformation. In ad-
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Figure 4: Token counts distribution after tokeniza-
tion.

dition, an example of the JSON output is shown in
the appendix E.

3.4 Incremental Learning

3.4.1 Data Preparation and Tokenization

Structured JSON data from Section 3.3 distilled
through prompt engineering captures key patient in-
formation such as medical history, diagnoses, treat-
ments, and results. We set a maximum input length
of 1,024 tokens, covering 99.67% of all entries (see
Figure 4).

Tokenization was performed using the origi-
nal BioMistral-7B tokenizer to ensure vocabulary
alignment. The data set was split 80/20 into train-
ing and validation sets, the latter being used to
monitor generalization and prevent overfitting.

3.4.2 SPeCiaL: Self-Supervised Training for
Continual Learning

We adopt the continual self-supervised learning
framework proposed by Caccia and Pineau (2021),
where a pretrained LLM is incrementally updated
via autoregressive learning on new domain-specific
data. This strategy enables knowledge integration
without catastrophic forgetting, avoiding the need
for full retraining.

Self-supervised learning predicts future tokens
from the past context using causal masking, and un-
labeled data to refine model representations. This
is especially beneficial in clinical domains where
labeled data is scarce.

Our approach uses BioMistral-7B, a 32-layer,
7.2B parameter decoder-only transformer. To re-
tain basic biomedical knowledge while adapting to
clinical notes, we freeze the bottom 20 layers of
the model while fine-tuning the top 12 layers for
efficient continuous adaptation (see Figure 5 for
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Figure 5: The SPeCiaL training pipeline used in BioMistral. Unstructured clinical notes are first converted into
structured JSON via prompt engineering. The inputs are then tokenized using the BioMistral tokenizer and fed into
a 32-layer decoder-only transformer. To preserve core biomedical knowledge while adapting to clinical-specific
data, the bottom 20 layers are frozen and only the top 12 layers are fine-tuned, resulting in approximately 2 billion

trainable parameters.

architecture).

3.5 Training Strategy

Training was conducted for 5 epochs using an au-
toregressive objective on our structured clinical
inputs. Each batch contained 16 samples, fully
utilizing an NVIDIA A800 80G GPU. We used
Hugging Face Transformers to load the base model
and tokenizer with default settings. The total train-
ing time was 37 hours.

Training loss steadily decreased, indicating suc-
cessful learning. Validation loss initially dropped
but began rising after 11,000 steps, signaling over-
fitting. We thus selected the 10,000-step checkpoint
as the final model based on optimal validation per-
formance.

The resulting model, BioMistral-Clinical 7B,
inherits the general biomedical knowledge of
BioMistral-7B while being specialized for struc-
tured clinical narratives. All metrics were tracked
via Weights & Biases (wandb), as shown in Fig-
ures 10 and 11 in the appendix. All reported results
are based on a single training run without multiple
seed averaging.

3.6 Supervised Fine-Tuning

To adapt the model for multiple-choice clinical
question-answering tasks, we perform supervised
fine-tuning (SFT) using the low-rank adaptation
method (LoRA) (Hu et al., 2022), which enables
parameter-efficient learning by injecting trainable
low-rank matrices into pretrained weights while
keeping the original model frozen.

SURL removed for anonymity.
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Figure 6: The LoRA structure setting for BioMistral-
Clinical

3.6.1 Low-Rank Adaptation

We configure LoRA with rank » = 8 and scaling
factor @ = 16, introducing approximately 20M
trainable parameters, about 0.5% of the full model
(which for BioMistral-Clinical 7B would require
updating a matrix W € R4096x4096) gpecifically,
each weight update is represented by two matrices:

A e R™ B e R withd = 4096, = 8

These amount to a total of 2 x 4096 x 8 = 65,536
parameters per injection point (see Figure 6). This
structure maintains adaptation capacity while sig-
nificantly reducing computational overhead, en-
abling efficient fine-tuning for downstream tasks.

3.6.2 Training Specifications

SFT is conducted on multiple-choice datasets for
evaluation. Given the structure of MedQA (Jin
et al., 2021) and MedMCQA (Pal et al., 2022) (see
Section 4.1.2 for details), a maximum sequence



length of 256 tokens was selected to cover the en-
tire question-answer pairs. Training is performed
over 5 epochs using batch sizes suitable for single-
GPU setups. On an NVIDIA A800 80G GPU, train-
ing completes in approximately 7 hours, compared
to 17 hours on an A10 24G. We save four LoRA-
adapted checkpoints for evaluation. This parameter-
efficient tuning approach facilitates rapid special-
ization with minimal resource demands.

3.7 Retrieval-Augmented Generation

To address limitations in fixed-knowledge language
models and improve response specificity, we inte-
grate a Retrieval-Augmented Generation (RAG)
framework (Lewis et al., 2020) into the BioMistral-
Clinical system. In our use case, RAG enables
the model to dynamically retrieve relevant clinical
cases from a structured corpus at inference time,
providing real-time contextual grounding for each
query.

As shown in Figure 2, we first construct a clinical
knowledge base by embedding structured notes us-
ing the lightweight jinaai/jina-embeddings-v3
model (Sturua et al., 2024). Each document z is
encoded into a dense vector d(z) € RY24 forming
the retrieval index.

Algorithm 1 Retrieve Top-3 Relevant Cases
Input: Clinical query ¢; embedding model FE;
knowledge base K = {(z;,¢;)}Y,
Output: Top-3 retrieved case texts
{Zi1 y igs Zi:;}

Compute query embedding: e, < E(q)

foreach (z;,¢;) in K do
Compute  similarity

L Similarity(eq, €;)

Z =

score: S; —

Select top-3 indices: i1,1i2,i3 < argsort({s;})[:
3]
return {z1, 29, 23}

When a new query x is submitted, this is also
embedded using the same embedding model to get
a query vector ¢(z) € R'924 with the same dimen-
sions. The system then performs a Maximum Inner
Product Search (MIPS) between ¢(z) and the doc-
ument vectors d(z) to retrieve the most appropriate
clinical entries. Next, the top K = 3 documents
are retrieved. The algorithm for retrieving relevant
top-3 cases is shown in the pseudocode 1.

These top-3 documents {zi, 29,23} are then
concatenated with the original query into a uni-

fied prompt, which is passed into the BioMistral-
Clinical model. This setup enhances answer speci-
ficity and consistency without the need for model
retraining, making it suitable for real-world clinical
applications.

4 Evaluation

We present a comprehensive evaluation of our pro-
posed approach. The evaluation is structured as
an ablation study to assess the impact of retrieval
augmentation. First, we evaluate the base model,
BioMistral-Clinical 7B, after incremental clinical
knowledge integration. Then, we assess the full
BioMistral-Clinical System, which extends the base
model with a RAG mechanism for real-time con-
textual retrieval.

4.1 Evaluation of BioMistral-Clinical 7B

To get a comprehensive view of the behavior of our
model, we evaluate BioMistral-Clinical 7B in two
dimensions: (1) qualitative case comparisons sim-
ulating real-world clinical scenarios (see Section
4.1.1), and (2) quantitative evaluation using public
multiple choice medical benchmarks (see Section
4.1.2).

4.1.1 Clinical Scenario Comparison

To qualitatively assess clinical reasoning abil-
ity, we selected a representative clinical scenario
query. Below, we compare the responses generated
by the original BioMistral-7B and our proposed
BioMiistral-Clinical 7B.

Example Query: How fto treat severe obe-

sity?

BioMistral-7B:

Severe obesity can be treated using a com-
bination of diet, exercise, and sometimes
medication. It is important for patients to
work with healthcare professionals to de-
velop a personalized plan.

BioMistral-Clinical 7B:

Severe obesity treatment typically involves
a comprehensive approach, including di-
etary changes, increased physical activ-
ity, behavioral therapy, and in some cases,
weight-loss medications or surgery. A mul-
tidisciplinary team often provides the best
outcomes.
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Figure 7: Comparison of answer length distribution between BioMistral-7B and BioMistral-Clinical 7B across 100

clinical queries. Left: histogram; Right: box plot.

As illustrated above, while both models outline
general treatment strategies, BioMistral-7B pro-
vides only broad recommendations. In contrast,
BioMistral-Clinical 7B generates a more structured
and specific response, suggesting different types
of interventions and team-based care. A more de-
tailed clinical example is provided in Appendix C
for further illustration.

To complement our qualitative findings, we gen-
erated a synthetic dataset of 100 basic clinical ques-
tions using GPT-4 (Achiam et al., 2023). The
questions were created by prompting the model
with: "Please generate 100 common clinical ques-
tions." These queries reflect general diagnostic and
treatment scenarios commonly encountered in clin-
ical practice. We used this dataset to evaluate
and compare the responses of BioMistral-7B and
BioMistral-Clinical 7B. Examples of these queries
and their corresponding retrieval outputs are pro-
vided in Appendix D.

We used answer length (in characters) as a
proxy for response richness. As shown in Fig-
ure 7, BioMistral-Clinical 7B produced signif-
icantly longer responses (mean: 933.69) than
BioMistral-7B (mean: 493.46). This suggests
enhanced informativeness following clinical fine-
tuning.

4.1.2 Quantitative Analysis

To complement qualitative assessments, we quanti-
tatively benchmarked both models using two pub-
licly available medical multiple-choice datasets:
MedQA (Jin et al., 2021) and MedMCQA (Pal
etal., 2022).

MedQA The MedQA dataset contains 12,723
multiple-choice questions in English. We randomly
selected 10% of the data (1,273 questions) as a
test set to evaluate both models. BioMistral-7B
achieved an accuracy of 36.5%, while BioMistral-
Clinical 7B achieved 34.8%. This minor perfor-
mance drop suggests a trade-off between clinical
specialization and general-domain medical reason-
ing, though the difference is marginal. An example
of a test question is provided in Appendix B.1.

MedMCQA-Surgery The MedMCQA dataset
contains 194,000 multiple-choice questions span-
ning various medical domains. For this study, we
extracted the surgery-related subset—MedMCQA-
Surgery—which includes 16,862 questions. A sam-
ple of 1,000 questions was used for evaluation.
BioMiistral-Clinical 7B significantly outperformed
the base model (37.4% vs. 28.0%), indicating
that continued training on clinical data improves
domain-specific reasoning in surgical contexts. An
example of an evaluation question is provided in
Appendix B.2.

Post-SFT Performance After SFT on the full
training sets, both models exhibited improved
accuracy. On MedQA, the performance gap
narrowed: BioMistral-7B reached 43.5%, while
BioMistral-Clinical 7B closely followed with
42.3%. In contrast, on the MedMCQA-Surgery
subset, BioMistral-Clinical 7B showed a more pro-
nounced gain, achieving 47.7% compared to 41.2%
for the base model. These results indicate that
SFT enhances both general and domain-specific
performance, with BioMistral-Clinical 7B benefit-



Model

MedQA MedMCQA MedQA-SFT MedMCQA-SFT

BioMistral-7B 36.5% 28.0% 43.5% 41.2%
BioMistral-Clinical 7B 34.8% 37.4% 42.3% 47.7%
Improvement (Clinical - Base)  -1.7% +9.4% -1.2% +6.5%

Table 1: Performance comparison of BioMistral Clinical and original BioMistral models on public medical question
answering datasets. Results are presented as accuracy percentages.

ing more in specialized clinical reasoning.

Summary Across multiple experimental setups,
BioMistral-Clinical 7B demonstrates stronger clin-
ical reasoning, improved task performance, and
richer responses. These findings confirm that incre-
mental learning of domain-specific data improves
medical LLM capabilities without substantially
compromising general domain knowledge.

4.2 Evaluation of BioMistral-Clinical System

4.2.1 Retrieval Accuracy Evaluation

To evaluate the quality of document retrieval
in the BioMistral-Clinical System, we first ana-
lyzed whether the top-3 documents retrieved for
each query are clinically relevant and contextu-
ally aligned with the user question. The retrieval
module uses the jinaai / Jina-embeddings-v3
model, a lightweight and efficient embedding
model optimized for semantic search tasks. The
embeddings were used to construct a vector-based
clinical knowledge base, now publicly available®.

We evaluated the clinical relevance of diagnoses
retrieved for 100 queries ( from section 4.1.1) us-
ing manual inspection. Results showed that the
top-3 retrieved cases had high semantic and clini-
cal alignment with query intent, indicating the re-
trieval module’s effectiveness. Detailed examples
are provided in Table D in the Appendix.

4.2.2 Qualitative Evaluation with RAG
System

We qualitatively evaluated the generation stage of
the BioMistral-Clinical System, combining top-3
retrieved cases with clinical queries into context-
rich prompts (Wei et al., 2022). Manual assessment
indicated that the RAG-augmented system consis-
tently outperformed the baseline BioMistral-7B,
particularly for complex conditions lacking suffi-
cient pre-trained knowledge.

The following example illustrates the practical
impact of RAG augmentation when addressing a
complex neurological disorder:

SURL removed for anonymity.

Query: How to manage multiple sclerosis?

BioMistral-7B (No RAG):

There is no cure for multiple scle-
rosis (MS). Treatment includes
medications, lifestyle changes,
and rehabilitation.

BioMistral-Clinical (RAG-Enhanced):

Multiple sclerosis (MS) is a
chronic autoimmune disorder
affecting the central nervous
system, causing symptoms such
as fatigue, vision problems, and
cognitive issues. There is no
cure that exists, the management
involves medications, physical
therapy, and supportive thera-
pies tailored to individual pa-
tient needs.

Evaluation also highlighted system dependence
on knowledge-base coverage. Queries enriched
with additional clinical details (symptoms, lab re-
sults) significantly improved retrieval and genera-
tion quality.

5 Conclusion

This paper presents the BioMistral-Clinical sys-
tem, a lightweight clinical language model that
combines incremental learning with RAG. We
show that prompt-based annotation can efficiently
structure unlabelled clinical notes, enabling self-
supervised learning. A compact embedding-based
knowledge base facilitates semantic retrieval and,
when integrated via RAG, enhances response qual-
ity by grounding outputs in real-world clinical
content. These results highlight the potential of
lightweight, structured, and retrieval-enhanced ap-
proaches to build practical clinical LLMs with min-
imal annotation and computational cost.



6 Limitations

Although this study uses continual training to de-
velop an improved model, BioMistral-Clinical 7B,
which achieves a nearly 10% gain on MedMCQA
compared to the base BioMistral-7B. In addition, it
incorporates RAG to form the BioMistral-Clinical
System, allowing dynamic access to external medi-
cal knowledge for more context-aware responses.
Despite these advancements, it is important to rec-
ognize several limitations that frame the scope and
generalizability of the findings.

First, although the study provides strong evi-
dence for the feasibility of self-supervised incre-
mental learning in structured clinical data, the un-
derlying dataset itself is inherently imperfect. The
JSON-formatted entries generated through PE used
in training are still based on a limited corpus of
clinical narratives. In particular, many of these
narratives were synthetically generated rather than
transcribed from actual patient-doctor interactions
(Hugging Face, 2024). As a result, they may lack
the linguistic diversity, contextual nuance, and clin-
ical irregularities found in real-world settings. This
constraint implies that certain specialties, rare con-
ditions, or edge cases may be underrepresented,
thereby limiting the breadth and balance of the
knowledge captured by the model.

Secondly, the clinical knowledge base con-
structed for the RAG module, although it was de-
signed systematically and empirically validated,
must recognize that the scope remains narrow. The
coverage of the knowledge base is still limited com-
pared to the diversity of real-world clinical practice.
The current findings validate the methodology for
transforming structured data via embedding and
retrieval, but do not yet reflect the behavior of the
system at scale.

Third, a minor trade-off in general-domain per-
formance was observed after incremental clini-
cal learning, as evidenced by a slight decrease in
MedQA accuracy (34.8% compared to 36.5% for
the base model). Although this does not detract
from the clinical improvements of the model, it
does highlight the importance of maintaining do-
main balance during specialization. We still lack
experimental proof of the same approach for other
domains, such as finance or education, and it is not
possible to draw generalizations.

Finally, due to the absence of publicly available
benchmark datasets that map detailed patient symp-
toms to case-level retrieval outcomes, the evalu-

ation of the RAG pipeline in this study relies in
part on qualitative analysis. Qualitative and man-
ual evaluations such as the ones conducted in this
study are often considered the gold standard for as-
sessing retrieval relevance. However, the absence
of standardized, large-scale benchmarks limits the
ability to perform consistent and reproducible quan-
titative comparisons. Therefore, the development
of such benchmarks remains an important direction
for future work in the field.

7 Ethical Considerations

In addition to the promise in clinical applications,
ethical issues must be thoughtfully addressed. First
and foremost, patient privacy and data protection
are critical. Since the system handles sensitive
clinical content, compliance with HIPAA (1996)
and GDPR (2016) standards is essential to prevent
misuse and maintain trust (Yadav et al., 2023).

Second, the system is designed as a clinical de-
cision support tool and cannot substitute profes-
sional medical judgment. Generative models ex-
hibit variability in their outputs in different runs and
inputs (Zhu et al., 2024), and it is the responsibility
of healthcare professionals to critically interpret
the suggestions of the model. Al-generated recom-
mendations should complement, not replace human
expertise. The responsible incorporation of such
systems necessitates transparency, protection fea-
tures, and ongoing emphasis on human oversight.

All datasets used in this study, including MedQA
and MedMCQA, are publicly released and licensed
for research use. In accordance with their original
terms, all derived artifacts, including structured
JSON output, the trained BioMistral-Clinical 7B
model, and the retrieval corpus, are used solely
for academic research purposes. These artifacts are
not intended for clinical deployment or commercial
use.

Lastly, we disclose that Al assistants (e.g., Chat-
GPT and Deepseek) were used to support writing
and code development. However, all scientific de-
sign decisions, data processing steps, and model
training were conducted solely by the authors.
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A The Chain-of-Thought prompt template.

As a professional clinical note’s organizer, my task is to take a set of clinical
notes and structure them into a JSON format. This format will help in
standardizing the patient data for better analysis and record-keeping. Below, |
will explain each field in the JSON structure and provide an example based on a
hypothetical clinical note.

JSON Field Explanation:
Exarr-{;.)le Input-Output:

Medical case data:
{message}

Output Json: /

Figure 8: The Chain-of-Thought prompt template.

B Example Question from Public QA Benchmark

B.1 Example Question from MedQA

Question: A 3-month-old baby died suddenly at night while asleep. His mother noticed that he had died
only after she awoke in the morning. No cause of death was determined based on the autopsy. Which of
the following precautions could have prevented the death of the baby?

Options:

A. Placing the infant in a supine position on a firm mattress while sleeping
B. Routine postnatal electrocardiogram (ECG)

C. Keeping the infant covered and maintaining a high room temperature
D. Application of a device to maintain the sleeping position

E. Avoiding pacifier use during sleep

Correct Answer: A

B.2 Example Question from MedMCQA-Surgery

Question: Delayed union of fracture of a bone following a surgical treatment may be due to:

Options:

A. Infection
B. Inadequate circulation
C. Inadequate mobilization

D. All of the above
Correct Answer: D
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C Example: Refined Scenario — Patient-Specific Case

Detailed Question: This is a severely obese patient who has gained weight over the past year,
suspected to be related to his use of montelukast for seasonal allergies. His BMI is very high,

classed as obesity level 3. His lipid profile is normal, but his symptom checklist score is abnormal.
How would you develop a treatment plan to help him lose weight and improve his health?

BioMistral-7B:

The first step in developing a treatment plan for this patient is to discuss his weight gain with him.
It is important to let him know that his weight gain is a concern and that it is important to address
it. It is also important to let him know that his weight gain is not his fault and that there are many
things that can be done to help him lose weight.

BioMistral-Clinical 7B:

Based on the patient’s presentation, a multidisciplinary approach is necessary to address his
weight concerns. The treatment plan will involve lifestyle modifications, including a healthy diet
and regular exercise. The patient will be referred to a registered dietitian and a physical therapist
for further guidance. Additionally, he will be referred to a behavior therapist to address underlying
behavioral issues contributing to his weight problems. The patient will be closely monitored with
regular follow-up appointments to ensure the treatment is effective and to address any concerns.

D Retrieval Examples Table

Clinical Query Top-3 Retrieved Diagnoses

How to manage type 2 diabetes? Type 2 diabetes, Reactive Hypoglycemia, Type 2 diabetes

What’s the treatment for hypertension? Resistant hypertension, Renal artery stenosis, Renal artery steno-
sis

What are the treatments for asthma? Uncontrolled asthma, Allergic bronchopulmonary aspergillosis,
Severe asthma

How to manage high cholesterol? Hyperlipidemia, None, Thoracic aortic aneurysm with ARSA

How to treat a skin rash? Mycosis Fungoides, None, Fixed drug eruption (FDE)

How to manage arthritis pain? None, Rheumatoid Arthritis, Gouty arthritis with symptomatic
meniscal tears

How to deal with constipation? Functional Constipation, Severe constipation, Rectal stenosis

What are the treatments for bronchitis? Traction bronchiectasis, Chronic bronchiectasis, Bronchiectasis

How to manage eczema? Eczematous dermatitis, Mycosis Fungoides, Erythema nodosum
migrans

How to manage varicose veins? Symptomatic varices, Varicose Veins, Large gastric varix

Note: The value ‘None’ indicates that the diagnosis field was missing in the retrieved case note, not that the document itself was
irrelevant. Other sections of the same document (e.g., symptoms, treatment) may still be contextually aligned with the query.

Table 2: Sample results of diagnosis sections retrieved for 10 clinical questions. Each row shows the top-3 diagnoses
retrieved by the RAG system for the given query.
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E Example JSON Output

{
"PatientInformation": {
"ChiefComplaints": [
"Complaints of pain and swelling in the right back for several weeks",
"No significant health problems except a thoracic trauma one year prior"
,
"MedicalHistory": {
"PreviousInjury": "Thoracic trauma with a simple fracture of the 9th right rib"
1,
"DiagnosticFindings": [
{
"Test": "X-ray",
"Finding": "A shadow in the lower part of the right hemithorax"
}J
{
"Test": "CT-scan",
"Finding": "A tumor with heterogeneous density and destruction of the 9th rib"
}
]
¥,
"Diagnosis": {
"Disease": {
"Name": "Sclerosing xanthofibroma",
"Type": "Benign tumor",
"Location": "Thoracic wall"

}
T,
"TreatmentAndOutcome": {
"Treatment": {
"Type": "Surgical resection and plastic repair",
"Details": "Involving three ribs and reconstruction with polypropylene mesh"
},
"Postoperative Course": {
"Recovery": "Uneventful",
"DischargeStatus": "Good condition"
}J
"FollowUp": {
"Duration": "Two years",
"FunctionalStatus": "Patient returned to work one month after surgery"
}
b
}

Figure 9: Structured JSON output from the prompt-engineered dataset.

F Training and Validation loss over steps

train/loss

eval_loss
— biomistral-biomistral-7B-incremental-trained1.2

— biomistral-biomistral-7B-incremental-trained1.2
22 = 10008: 1.44434 biomistral-bi...al-trained1.2
Press CMD+C to copy this data

0.5

n/global_step

train/global_step

5k 10k 15k 20k 25k

Figure 10: Training loss over steps. Figure 11: Validation loss over steps.
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