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Abstract—Off-road autonomous navigation demands accurate
estimation of terrain-dependent parameters, particularly tire-
ground friction, which directly impacts control performance
and safety. Traditional methods for friction estimation—whether
proprioceptive, vision-based, or hybrid—struggle to adapt to
abrupt terrain transitions and lack generalization to previously
unseen environments. This paper introduces Physics-Constrained
and Vision-Informed Friction Estimation (PC-VFE), a framework
that combines semantic visual understanding through the use of
foundation models with physics-based dynamics modeling to esti-
mate friction in real time. PC-VFE first identifies terrain contexts
using a vision-language model and unsupervised clustering, then
estimates context-specific friction parameters via a constrained
optimization process. Our approach requires no prior knowledge
of terrain types, adapts in a zero-shot manner, and enables rapid
re-identification of known surfaces.

I. INTRODUCTION

Robust state estimation and control remain central chal-
lenges in autonomous mobile robotics, particularly under
uncertain and dynamic operating conditions. Classical ap-
proaches in structured environments, such as urban driving
or warehouse navigation, benefit from high-definition maps,
semantic priors, and relatively consistent surface conditions
[1], [2], [3], [4]. However, these assumptions break down
in off-road contexts, where terrain geometry and physical
properties vary rapidly, and exteroceptive sensing is often
ambiguous or degraded [5], [6], [7].

Off-road autonomous navigation introduces a distinct set
of challenges stemming from the heterogeneity of terrain
surfaces, unstructured environmental features, and the absence
of prior knowledge [8], [9], [10]. Effective motion planning
and control in such settings depend critically on accurate
estimation of terrain-dependent dynamics parameters, particu-
larly the tire-ground friction coefficient, which directly impacts
vehicle stability, path tracking, and safety [11], [12], [13].
Existing model-based control strategies rely on accurate vehi-
cle dynamics models parameterized by friction and cornering
stiffness terms [14], [15], and their performance degrades
significantly in the presence of incorrect or outdated parameter
estimates.

Prior approaches to friction estimation span a wide spec-
trum—from purely proprioceptive techniques [16] to purely
vision-based learning systems [17]. In wheeled robots, propri-
oceptive estimation methods such as slip detection or contact-
based estimation carry inherent safety risks with late detections
[18], unlike their use in legged systems where controlled con-
tact is feasible [19]. Vision-based friction estimation methods
often treat terrain type as a proxy for friction and assume

Fig. 1: Autonomous vehicles driving off-road may encounter
different terrains, shown here as T1, . . . , T3.

friction is invariant across a class (e.g., all ”grass” is assigned
a fixed coefficient), restriction the problem to a finite class of
labels [20], [21]. Additionally, end-to-end learning approaches
train on fixed condition in simulation or labels available in the
dataset, thus requiring retraining to adapt to changes in the
environment [22], [23].

To the best of our knowledge, there does not exist a
framework that can simultaneously (i) detect and adapt to
abrupt transitions in terrain conditions similar to what is shown
in Section I, (ii) re-identify terrain contexts without requiring
extensive look ahead or buffer windows, and (iii) infer friction
parameters in a zero-shot or few-shot fashion for unseen terrain
classes. Importantly, off-road systems must operate in settings
where the number and identity of terrain types is unknown
a-priori and cannot rely on exhaustive prior data collection.

This paper introduces Physics-Constrained and Vision-
Informed Friction Estimation (PC-VFE), a framework for
accurate and adaptive friction estimation in off-road envi-
ronments. By combining physics-based modeling with vision
foundation models, PC-VFE addresses challenges such as
terrain variability and unseen conditions. The approach is di-
vided into two main components: terrain context identification
and context-specific friction parameter estimation. It leverages
semantic and low-level visual information to dynamically
cluster terrain contexts and adapt to new terrains without
prior knowledge. A physics-constrained optimization process
ensures compatibility with vehicle dynamics, enabling real-
time adaptation to changing and unseen terrain conditions.

We highlight three key aspects of PC-VFE:
1) It achieves faster response times to terrain transitions

compared to buffer-based methods,
2) It adapts effectively to an unknown and expanding set

of unseen terrain conditions, and
3) It improves control performance, demonstrated by higher

average speeds and fewer catastrophic failures.
PC-VFE showcases the benefits of integrating vision-driven
context identification with physics-based parameter estimation
for robust and adaptive friction estimation in off-road environ-
ments.



Fig. 2: Overview of the proposed PC-VFE approach.

II. BACKGROUND

This section will cover the background on related work in
off-road and on-road friction estimation, and terrain under-
standing. Previous approaches can be broadly classified into
three categories [24], [25]: (1) machine learning-based meth-
ods, (2) dynamics-based methods, and (3) hybrid approaches
that combine both. We will also discuss the limitations of these
approaches in the context of off-road environments.

A. Machine Learning Based Approaches

Machine learning based approaches to friction estimation
have been widely studied in the literature. These methods
typically rely on supervised learning techniques, where a
model is trained on labeled data to predict friction coefficients
based on various features extracted from sensor data. Ribeiro
et al. use time-delayed neural networks to generate estimates
[26]. Other approaches use camera information paired with
a dataset of friction estimates to generate friction estimates
[27], [28]. Guo et al. run two parallel estimation techniques,
one based on images and the other using a filtering approach,
to generate estimates [29]. [30] rely on end-to-end learning of
three models to combine image data with IMU data to control
their vehicle. This approach relies on training the model on
human demonstrations on a specific track, which works in
practice but does not guarantee the model’s ability to adapt to
new environments. For use in legged robotics, recent work
predicts the friction and stiffness of the terrain using data
collected in simulation [31]. While this can handle changing
terrain, its predictions are not guaranteed to be physically
accurate or to generate control responses that make sense for
the surface.

B. Dynamics Based Approaches

Dynamics-based approaches to friction estimation use state
information collected from the robot combined with a vehicle
model to identify surface friction [32]. Some approaches
use filtering or observer approaches to identify friction [33],
[34], [35], while others use gradient descent methods [36].

These methods provide a method for estimating friction using
onboard sensors, in or near real time [25]. They often struggle
with non-linear parameter estimation outside specific ranges
[37], and do not address the problem of terrain switching.

C. Hybrid Approaches

Hybrid approaches to friction estimation combine the
strengths of both machine learning and dynamics-based meth-
ods. [38] use Bayesian neural networks to learn a probabilistic
estimate of the friction parameters of an autonomous vehicle,
but rely on a fixed set of classes to differentiate between, which
limits the number of terrain contexts that can be identified.
[39] train a Gaussian process to learn the friction curve of
the vehicle, but are limited to slow changing friction changes
due to exponential forgetting. Some approaches have used
Physics-Informed Neural Networks (PINNs) to perform state
and parameter estimation in manipulators [40], [41]. These
approaches are fast and can run in real-time, but do not take
into account changing terrain, or the physical correctness of
the predictions. These disadvantages stem from the same key
factor: that they are trained offline on historically collected
data, but do not ensure that estimates found are consistent
with data collected online.

While prior work has addressed various aspects of friction
estimation, these methods do not jointly estimate terrain-
specific friction in real time or adapt to previously unseen
terrain contexts. We now formalize this joint estimation prob-
lem.

III. PROBLEM FORMULATION

We address the problem of simultaneously estimating the
friction parameters for an off-road vehicle’s dynamics model
and identifying the terrain context in which the vehicle op-
erates. We assume vehicle dynamics are described by the
discrete-time nonlinear model in Equation (1) where x(t) is
the vehicle state, u(t) is the control input, and θ(t) represents
the friction parameters at time t.

x(t+ 1) = f(x(t), u(t); θ(t)) (1)



Specifically, we will consider the single-track dynamic bicycle
model described in [42], where px, py, ψ are the pose of the
vehicle in world coordinates, δ is the steering angle of the
front wheels, v is the velocity, and β is the side-slip angle.
θ in this case is the set [Cs,f , Cs,r, µ] denoting the cornering
stiffness of the front and rear tires and the tire-road friction
coefficient respectively. A common approach to solving this
problem is to optimize a single friction parameter set across
all observed data:

min
θ

T∑
t=0

L(x(t), u(t), x(t+ 1); θ) (2)

where the cost function L measures the error between the
predicted and actual states. For example, the cost function
could be the squared error:

L(x(t), u(t), x(t+ 1); θ) = ∥f(x(t), u(t); θ)− x(t+ 1)∥22
However, this assumes friction parameters are homogeneous
across terrain contexts, which does not hold for off-road envi-
ronments due to terrain variability (e.g., differences between
hard-packed dirt, loose gravel, and mud).

Thus, we propose a joint optimization problem that simul-
taneously estimates friction parameters θk for each terrain
context, predicts the current terrain context c(t), and simul-
taneously identifies the number of terrain contexts K:

min
{θk}K

k=1,{ĉ(t)}
T
t=1,K

T∑
t=1

∥f(x(t), u(t); θĉ(t))− x(t+ 1)∥22

+ λPPcontext. (3)

Pcontext is a tuneable cost that penalizes the number of contexts
identified K, promoting meaningful terrain clusters, with λP
some tuneable multiplier on Pcontext.

This formulation poses several challenges: the terrain con-
text c(t) is not directly observable, the number of terrain
contexts K is unknown a priori, and friction parameters must
be estimated reliably with limited data per context. We address
these challenges by integrating visual semantic information
with clustering techniques to infer terrain contexts effectively,
detailed in the following sections.

IV. PROPOSED APPROACH (PC-VFE)

Our approach, PC-VFE addresses the problem in Equa-
tion (3) by decomposing the friction estimation problem into
two sub-components: (1) Terrain context Identification and (2)
Context-Specific Friction Parameter Estimation. The Terrain
Context Identification task is that of identifying the context
ĉ(t), given state information and an image. The Context-
Specific Parameter Identification task uses the identified con-
text along with the state information to produce a set of
dynamics-specific parameters for use in a controller.

A. Terrain Context Identification

This subproblem is that of identifying the terrain context
ĉ(t) given our observation of the vehicle state x(t) and image
input i(t). The image sensor faces directly downwards in order

to ensure that the image at time t is representative of the
current state of the vehicle. This identification task is often
ambiguous because of the variation in observed images in
the same terrain. An example of this is intermittent patches
of dead grass on a lawn. While we wish to capture terrain
context which is specific, we must balance this with the
need for enough data per terrain context to find the friction
parameters we seek to identify. In order to complete this task,
we extract semantic and low-level information from the image,
and compose a condensed information vector z(t). We perform
unsupervised clustering on z(t) to obtain ĉ(t).

Information Extraction: When humans complete this task,
we use semantic interpretations of the terrain we see, and clas-
sify terrain with similar semantic interpretations together. This
has motivated the family of approaches to friction parameter
estimation in Section II-A. While classification of terrain might
be sufficient for vehicles which operate in known terrain, or
a known set of terrains, it often does not perform well when
vehicles operate in unknown terrain.

Our approach mimics the human extraction of semantic
information through the use of a Vision Foundation Model
(VFM), specifically a Vision-Language Model (VLM), which
is trained on internet scale data to relate the semantic meaning
of a set of captions Q to an image. The VLM accomplishes
this task by projecting the image i using the captions Q
into a related latent space. The VLM produces a semantic
information vector VLM(i(t), Q) = zs ∈ R|Q| which contains
the normalized similarity of the image to each of the captions
in the set Q. Each element in the vector represents the softmax
of the similarity between the image and an individual caption,
therefore the semantic information vector has interpretable
components rather than being purely latent. In this paper,
we use CLIP [43] as our VLM. The caption set we use
contains terms like “grass”,“gravel”, and “snow” prefixed by
“This image contains”. A full caption would read “This image
contains grass”. The complete set of captions is presented in
Appendix A.

While the VLM can be used to effectively extract the
semantic meaning of the vector, some low-level information is
valuable to identify our terrain context. We denote the function
that extracts this information as LL(i), which produces a low-
level information vector zl ∈ Rn. The size of the vector
is dependent on the specific information extracted. In our
implementation, we calculate the average RGB values of the
image, resulting in a vector zl with size n = 3.

The fully assembled information vector is the composition
of the semantic and low-level information. The information
vector at a specific time z(t) is the weighted concatenation
of the individual information vectors weighted by a parameter
λc in order to compensate for scaling issues in the next step.
The scaling factor λc is selected empirically, and is 0.25 in
all presented experiments.

The final information extraction process which maps images
i(t) from image-space I to the space of information vectors



Z ∈ R|Q|+n is presented in Equation (4).

z(t) = concat (VLM(i(t), Q), λcLL(i(t))) (4)

Clustering: Given a set of information vectors {z(t), t ∈
[0, 1, . . . , T ]}, we seek to generate a set of predicted contexts
ĉ(t). We use a clustering algorithm which does not require
apriori specification of the number of clusters in order to
support an indefinite number of terrain contexts. This allows
our robot to autonomously navigate in and adapt to previously
unseen terrains. Clustering algorithms that support this be-
havior include DBSCAN [44], OPTICS [45], and HDBSCAN
[46]. In our implementation, we use HDBSCAN, evaluating
the clustering algorithm at 0.1Hz, clustering all information
vectors provided up until the time of execution.

We implement a context persistence mechanism on top of
HDBSCAN to maintain consistent cluster centroids over time,
a property typically not guaranteed by offline clustering algo-
rithms. The proposed method, detailed in Algorithm 1, uses
cluster centroids in consecutive runs to preserve continuity in
ĉ(t). We denote the number of clusters at time t by Kt, and
the centroid of cluster k at time t by mk(t).

B. Context Specific Friction Parameter Estimation

Given a dynamics function x(t + 1) = f(x(t), u(t); θ),
we seek to find θ that best fits the data collected. Given
that the vehicle autonomously navigates different terrains,
each with a unique context ID ĉ(t) identified in section
Section IV-A, we split our data into k different datasets
Dk. Each Dk consists of the tuple {Xk,Uk,Pk}, where Xk

is the set of states [xk(t), xk(t+ 1), . . . , xk(t+H − 1)], Uk
is the set of control inputs applied to the system at those
states [uk(t), uk(t+ 1), . . . , uk(t+H − 1)], and Pk is the
set of future states [xk(t+ 1), xk(t+ 2), . . . , xk(t+H)] that
we wish our dynamics model to accurately predict using the
estimated friction parameters for that cluster θ̂k.

For each identified terrain context k, we estimate the friction
parameters θk by solving the following problem:

min
θ̂k

∑
t∈Ik

∥(x̂\ψ)(t)− (x\ψ)(t)∥22

+

∣∣∣∣∣∣tan−1

 sin
(
ψ̂(t)− ψ(t)

)
cos

(
ψ̂(t)− ψ(t)

)
∣∣∣∣∣∣ (5a)

subject to: x̂(t) = x(t) (5b)

x̂(t+ 1) = f(x̂(t), u(t); θ̂k) (5c)

Ik =

{
t

∣∣∣∣∣ ∧
t∈Ik

(ĉ(t) = k) ∧ (ϕ(x(t)))

}
(5d)

where x\ψ denotes the state vector without the heading ψ.
ψ is left out of the L2 error as ψ is a 2π-periodic variable,
and takes values in the interval [0, 2π). Instead, the loss∣∣∣tan−1

(
sin(x−y)
cos(x−y)

)∣∣∣ is used to handle this periodicity.
Ik denotes the union of time intervals where the vehicle

remains within the same terrain context k. This constraint
ensures that we only use data from stable terrain segments for

parameter estimation, avoiding transition regions that could
contaminate our estimates. Some dynamics functions have
numeric instability in some portions of the state space. We
use the the filter ϕ(x(t)) 7→ {0, 1} to exclude these regions.
In our case this filter is described as follows:

ϕ(x(t)) := {v ≥ 1m/s}. (6)

This problem is non-convex, and we solve it by back-
propagating the loss on the predictions through the dynamics.
For each dataset Dk, we set our initial condition as per
Equation (5b), and then integrate the state with the control
inputs Uk using the dynamics Equation (5c). These dynamics
are parameterized by our current estimates of the friction
parameters θ̂k. Assuming that the dynamics are differentiable
as in our case, we can then calculate the gradient on the loss
with respect to θ̂k to update θ̂k using gradient descent. We
use Adam optimizer [47] to update our estimate of θk, with a
learning rate of 0.0.1 and a batch size of 1024.

V. CONCLUSION

We have presented Physics-Constrained and Vision-
Informed Friction Estimation (PC-VFE), a framework that
integrates physics-based modeling with vision-driven semantic
information to address the challenges of friction estimation in
off-road environments. By decomposing the friction estimation
task into two interlinked subproblems — terrain context iden-
tification and context-specific friction parameter estimation —
PC-VFE effectively captures the dynamic and heterogeneous
nature of off-road terrain.

Our preliminary experimental evaluations, conducted in
simulation reinforce the potential of this approach. Specif-
ically, PC-VFE demonstrates quick response time to abrupt
terrain transitions and adapts to an unknown and potentially
expanding set of terrain conditions.

These results underscore the potential of PC-VFE to bridge
the gap between visual perception and physics-based mod-
eling, paving the way for more resilient and adaptive au-
tonomous navigation systems. Future work will explore further
refinements to the estimation process, additional sensor inte-
gration, and hardware experiments.
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APPENDIX

A. CLIP Prompts
[“asphalt”, “concrete”, “brick”, “cobblestone”, “tile”, “hard-

wood”, “grass”, “dirt”, “gravel”, “sand”, “mulch”, “leaves”,
“snow”, “ice”, “metal”, “sidewalk”, “plastic”, “ceramic”,
“granite”, “slate”, “pavement”, “crosswalk”, “train track”,
“boardwalk”, “astroturf”, “wood chips”, “paver stones”, “car-
pet”, “linoleum”, “speckled”, “striped”, “wood”, “mud” ]

B. Cluster Persistence Algorithm

Algorithm 1 Centroid-Based Context Persistence

Require: Previous cluster centroids {mj(t−1)}Kt−1

j=1 with IDs
{ĉ(t−1)

j }, current cluster centroids {mk(t)}Kt

k=1, threshold ϵ
Ensure: Consistent cluster IDs for current centroids

for each previous centroid mj(t− 1) do
Find the closest new centroid:

k∗ ← argmin
k
∥mj(t− 1)−mk(t)∥2

if ∥mj(t− 1)−mk∗(t)∥2 < ϵ then
Assign: ĉ(t)k∗ ← ĉ

(t−1)
j

end if
end for
for each new centroid mk(t) without an assigned ID do

Assign a new cluster ID to mk(t)
end for

C. Results

Our experiment was designed to prove the concept that our
method can identify an unknown and expanding set of terrains
in an unseen environment, and identify and re-identify terrain
contexts quickly.

Our future experiments will evaluate these claims and that
PC-VFE enables faster, safer control in unknown environments
through comparisons to baseline parameter estimators. We will
compare PC-VFE to a buffer-based method akin to a UKF, a
lookup method with friction values derived from a table, and
a Kinematic Model Predictive Controller (KMPC). All con-
trollers which will take friction into account use a Nonlinear
Model Predictive Controller (NMPC). The controllers will all
use the Single Track Dynamic Model, defined in Althoff et.
al.[42]. Our approach will provide friction estimates to the
NMPC, as shown in Figure 3.

We evaluate our approach in simulation experiments, con-
ducted in a multi-body physics simulator. Real-world exper-
iments will be conducted using a 1/5th scale autonomous
vehicle platform.

D. Simulation Experiments

We evaluate the performance of our proposed PC-VFE
framework in a simulated off-road environment using the
Commonroad vehicle models [42]. A set of terrain textures
are used to simulate the downward facing camera required for
our method. The vehicle parameters we use correspond to a
Ford Escort. We use a slalom course with two straight sides
and two sides composed of s-curves as our reference trajectory,
which can be seen in Figure 4, alongside the textures used in
the simulation.

We compare the spatial accuracy of our approach with the
ground truth in Figure 4. This figure shows the capability
of PC-VFE to capture changes in terrain context that align
with changes in the environment. These results were collected
using only the data from a single lap, without any previous
knowledge of the environment. These zero-shot results show
the usefulness of VLMs in understanding unseen terrain.

Fig. 3: This figure shows the integration of the PC-VFE
method in a robotic control setting. PC-VFE provides model
parameter estimates to the controller, which are then used to
control the robot and produce states, which are used to refine
parameter and terrain context estimates.
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Fig. 4: The figure shows the discovered terrain contexts in the simulation experiments described in Appendix D. The yellow,
orange, light blue, and light purple correspond to patchy grass, dry soil, concrete, and brick respectively. The dots indicate
the position and cluster. Black is used to show noise clusters, where no terrain context is identified. The clusters above were
categorized in a single lap of the track, without any prior information about the environment. The textures used in the simulation
are shown on the right hand side.

Parameter Description Unit RoboRacer
l Wheelbase m 0.8

m Mass kg 15.32
Iz Moment of inertia kg · m2 0.643
lf Distance from CoG to front axle m 0.2735
lr Distance from CoG to rear axle m 0.2585

hcg Height of center of gravity m 0.1875
Csf Cornering stiffness of front wheels N/rad 2.0
Csr Cornering stiffness of rear wheels N/rad 2.0

TABLE I: Single Track Parameters for Experiment Vehicles.

The friction estimate is shown compared to the time elapsed
from the start of the experiment in Figure 5. The plot shows the
response of the friction estimate to changes in the underlying
terrain. While the predicted friction itself is preliminary, and
will be the focus of further research, the figure shows the speed
of PC-VFE in recognizing and adapting to changing terrain
quickly. From around 160 to 220 seconds we see PC-VFE
performing a reidentification of the first terrain it encountered.
In Figure 7, we can see this reidentification happens in less
than 2 seconds.

Our simulation experiments show that PC-VFE is able
to recognize and adapt to terrain quickly without apriori
knowledge. Future simulation experiments will analyze the
performance of friction-aware controllers when presented with
updated friction estimates.

E. Real-World Experiments

Real-world experiments will be conducted with the R5
Roboracer, whose parameters can be found in Table I. We
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Fig. 5: This plot shows the friction estimate as time elapses
from the start of the experiment. The ground truth friction is
shown in blue, and the PC-VFE Estimate is shown in orange.
The shading behind the plot shows changes in the detected
cluster. At 160 seconds elapsed, we can see an example of
PC-VFE’s ability to quickly detect terrain changes.

will conduct our experiments in a park with three different
terrains: sand, leaves, and gravel. This area is depicted from
an overhead perspective in Figure 6.

All controllers, localization, and our proposed approach will
be computed on-board the platform, using an NVIDIA Jetson
AGX Orin. Localization information will be captured by a
Fixposition RTK GNSS module, and an onboard VESC which
will provide odometry. Our image data will be captured by



Fig. 6: This area will be used to evaluate our method in the real
world experiments. The area contains gravel, leaf-covered soil,
and mud. Transitional zones contain brick pavers, or splotches
of different terrain.
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Fig. 7: This figure shows the response time of PC-VFE
when re-identifying terrain it has encountered before. This re-
identification happens in less than 2 seconds

a GoPro Hero 11 Black, which can achieve the fast shutter
speeds required to capture terrain images without blur. We are
currently testing the platform to ensure consistency and quality
of results.

These results will examine the effectiveness of PC-VFE in
real-world settings.

F. PC-VFE Response Time
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