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Abstract

Vision language models (VLMs) have shown im-
pressive capabilities across a variety of tasks,
from logical reasoning to visual understanding.
This opens the door to richer interaction with
the world, for example robotic control. How-
ever, VLMs produce only textual outputs, while
robotic control and other spatial tasks require
outputting continuous coordinates, actions, or
trajectories. How can we enable VLMs to han-
dle such settings without fine-tuning on task-
specific data? In this paper, we propose a novel
visual prompting approach for VLMs that we
call Prompting with Iterative Visual Optimiza-
tion (PIVOT), which casts tasks as iterative vi-
sual question answering. In each iteration, the
image is annotated with a visual representation
of proposals that the VLM can refer to (e.g., can-
didate robot actions, localizations, or trajecto-
ries). The VLM then selects the best ones for
the task. These proposals are iteratively refined,
allowing the VLM to eventually zero in on the
best available answer. We investigate PIVOT
on real-world robotic navigation, real-world ma-
nipulation from images, instruction following in
simulation, and additional spatial inference tasks
such as localization. We find, perhaps surpris-
ingly, that our approach enables zero-shot con-
trol of robotic systems without any robot training
data, navigation in a variety of environments, and
other capabilities. Although current performance
is far from perfect, our work highlights potentials
and limitations of this new regime and shows a
promising approach for Internet-Scale VLMs in
robotic and spatial reasoning domains. Website
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and HuggingFace demo.

Task: What actions should the robot take to pick up the DNA chew toy?

Iteration 0: 
Arrows [7, 13, 18]

Iteration 1: 
Arrows [16]

Task: What numbers overlay the “L kid”?
Iteration 0: Markers [1, 0, 14, 17]

Iteration 4: Markers [0, 3, 5]

Iteration 0: 
Markers: [10, 1, 14, 17]

Iteration 4: 
Markers: [5]

Iteration 0: 
Markers: [12, 13, 14]

Iteration 3: 
Markers: [2]

Task: What actions should the robot take to go to wooden bench without 
hitting the obstacle?

Figure 1: Prompting with Iterative Visual Optimization (PIVOT)
casts spatial reasoning tasks, such as robotic control, as a VQA
problem. This is done by first annotating an image with a visual
representation of robot actions or 3D coordinates, then querying
a VLM to select the most promising annotated actions seen in the
image. The best action is iteratively refined by fitting a distribu-
tion to the selected actions and requerying the VLM. This pro-
cedure enables us to solve complex tasks that require outputting
grounded continuous coordinates or robot actions utilizing a VLM
without any domain-specific training.

1. Introduction
Large language models (LLMs) have shown themselves
capable of solving a broad range of practical problems,
from code generation to question answering and even log-
ical deduction (Brown et al., 2020; Austin et al., 2021;
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Wei et al., 2022). The extension of LLMs to multi-
modal inputs, resulting in powerful vision-language mod-
els (VLMs), enables models that handle much richer visual
modalities (Gemini et al., 2023; OpenAI, 2023; Alayrac
et al., 2022; Chen et al., 2023c), which makes it feasible
to interact not only with natural language but directly with
the physical world. However, most VLMs still only out-
put textual answers, seemingly limiting such interactions to
high-level question answering. Many real-world problems
are inherently spatial: controlling the trajectory of a robotic
arm, selecting a waypoint for a mobile robot, choosing how
to rearrange objects on a table, or even localizing keypoints
in an image. Can VLMs be adapted to solve these kinds of
embodied, physical, and spatial problems? And can they
do so zero shot, without additional in-domain training data?
In this work, we propose an iterative prompting method to
make this possible and study the limits and potentials for
zero-shot robotic control and spatial inference with VLMs.

Our proposed method is based on a simple insight: al-
though VLMs struggle to produce precise spatial outputs
directly, they can readily select among a discrete set of
coarse choices, and this in turn can be used to refine this
set to provide more precise choices at the next iteration. At
each iteration of our iterative procedure, we annotate the
image with candidate proposals (i.e., numbered keypoints
as in Yang et al. (2023b)) drawn from a proposal distribu-
tion, and ask the VLM to rank the degree to which they
perform the desired task. We then refine this proposal dis-
tribution, generate new candidate proposals that are clus-
tered around better regions of the output space, and repeat
this procedure. With this optimization approach, the entire
loop can be viewed as an iterative optimization similar to
the cross-entropy method (De Boer et al., 2005), with each
step being framed as a visual question compatible with cur-
rent VLMs without any additional training. In Figure 1 and
throughout this work, we use robot control as a running
example, wherein candidates are numbered arrows.

Equipped with our method for extracting spatial outputs
from VLMs, we study the limits and potentials of zero-shot
VLM inference in a range of domains: robotic navigation,
grasping and rearranging objects, language instructions in
a simulated robotic benchmark, and non-robot spatial in-
ference through keypoint localization. It is important to
note that in all of these domains, we use state-of-the-art vi-
sion language models, namely GPT-4 (OpenAI, 2023) and
Gemini (Google, 2023), without any modification or fine-
tuning. Our aim is not necessarily to develop the best pos-
sible robotic control or keypoint localization technique, but
to study the limits and potentials of such models. We ex-
pect that future improvements to VLMs will lead to further
quantitative gains on the actual tasks. The zero-shot per-
formance of VLMs in these settings is far from perfect,
but the ability to control robots in zero shot without any

robotic data, complex prompt design, code generation, or
other specialized tools provides a very flexible and general
way to obtain highly generalizable systems.

Our main contribution is thus an approach for visual
prompting and iterative optimization with VLMs, applica-
tions to low-level robotic control and other spatial tasks,
and an empirical analysis of potentials and limitations of
VLMs for such zero-shot spatial inference. We apply
our approach to a variety of robotic systems and general
visually-grounded visual question and answer tasks, and
evaluate the kinds of situations where this approach suc-
ceeds and fails. While our current results are naturally
specific to current state-of-the-art VLMs, we find that per-
formance improves with larger, more performant VLMs.
Thus, as VLM capabilities continue to improve with time,
we expect our proposed approach to improve in turn.

2. Related Work
Visual annotations with VLMs. With the increasing ca-
pabilities of VLMs, there has been growing interest in un-
derstanding their abilities to understand visual annotations
(Yang et al., 2023c; Shtedritski et al., 2023; Yan et al.,
2023; Zheng et al., 2024), improving such capabilities (Cai
et al., 2023; Xu et al., 2023), as well as leveraging them
for perception or decision-making tasks (Gu et al., 2023;
Yang et al., 2023b; Wen et al., 2023; Koh et al., 2024; Liu
et al., 2023b). Shtedritski et al. (2023) identify that VLMs
like CLIP (Radford et al., 2021) can recognize certain vi-
sual annotations. Yang et al. (2023c) perform a more com-
prehensive analysis on the GPT-4 model and demonstrate
its ability to understand complex visual annotations. Yang
et al. (2023b) demonstrates how such a model can solve
visual reasoning tasks by annotating the input image with
object masks and numbers. Several works too have applied
visual prompting methods to web navigation tasks (Koh
et al., 2024; Yan et al., 2023; Zheng et al., 2024), obtaining
impressive-zero shot performance. Our work builds upon
these works: instead of taking proposals as given or gen-
erating the proposals with a separate perception systems,
PIVOT generates proposals randomly, but then adapt the
distribution through iterative refinement. As a result, we
can obtain relatively precise outputs through multiple iter-
ations, and do not require any separate perception system
or any other model at all besides the VLM itself.

Prompt optimization. The emergence of few-shot in con-
text learning within LLMs (Brown et al., 2020) has lead to
many breakthroughs in prompting. Naturally prompt op-
timization has emerged as a promising approach, whether
with gradients (Li & Liang, 2021; Lester et al., 2021) or
without gradients, e.g., with human engineering (Kojima
et al., 2022) or through automatic optimization in language
space (Zhou et al., 2022). These automatic approaches are
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most related to our work and have shown that language-
model feedback (Pryzant et al., 2023), answer scores (Zhou
et al., 2022; Yang et al., 2023a; Xu et al., 2022), and en-
vironment feedback (Wang et al., 2023a) can significantly
improve the outputs of LLMs and VLMs. A major differ-
ence between these prior methods and ours is that our it-
erative prompting uses refinement of the visual input, by
changing the visual annotations across refinement steps.
We optimize prompts “online” for a specific query rather
than offline to identify a fixed prompt, and show that our
iterative procedure leads to more precise spatial outputs.

Foundation models for robot reasoning and control. In
recent years, foundation models have shown impressive re-
sults in robotics from high-level reasoning to low-level con-
trol (Firoozi et al., 2023; Hu et al., 2023). Many early
works investigated robotic reasoning and planning regimes
where LLMs and language outputs are well suited (Huang
et al., 2022a; Zeng et al., 2022; Ahn et al., 2022; Huang
et al., 2022b; Liu et al., 2023e; Raman et al., 2022; Sil-
ver et al., 2023; Liu et al., 2023a; Lin et al., 2023; Wang
et al., 2023c; Chen et al., 2024; Zhou et al., 2023; Chen
et al., 2023b; Dorbala et al., 2022). To apply foundation
models to control tasks, several promising approaches have
emerged. One line of work has shown that foundation-
model-selected subgoals are an effective abstraction to feed
into policies for navigation (Dorbala et al., 2022; Shah
et al., 2023b; Chen et al., 2023a; Huang et al., 2023a; Shah
et al., 2023a; Gadre et al., 2023) and manipulation (Cui
et al., 2022; Shridhar et al., 2022). Another abstraction that
has been shown to be effective for control is LLM gener-
ated rewards, which can yield policies optimized via re-
inforcement learning or planning-based methods (Huang
et al., 2023b; Yu et al., 2023; Ma et al., 2023). Oth-
ers have investigated code writing LLMs to directly write
code that can be executed via control and perceptive prim-
itives (Liang et al., 2023; Singh et al., 2023; Wu et al.,
2023). On simple domains, even few-shot prompting lan-
guage models has been shown to be capable of control (Liu
et al., 2023c; Mirchandani et al., 2023; Wang et al., 2023b),
while finetuned foundation models have yielded signifi-
cantly more capable VLM-based controllers (Brohan et al.,
2023; Shridhar et al., 2022; Jiang et al., 2022; Reed et al.,
2022; Gao et al., 2023; Padalkar et al., 2023). Unlike these
works, we show how VLMs can be applied zero-shot to
low-level control of multiple real robot platforms.

3. Prompting with Iterative Visual
Optimization

The type of tasks this work considers have to be solved by
producing a value a ∈ A from a set A given a task de-
scription in natural language ` ∈ L and an image observa-
tion I ∈ RH×W×3. This set A can, for example, include

continuous coordinates, 3D spatial locations, robot control
actions, or trajectories. When A is the set of robot actions,
this amounts to finding a policy π(·|`, I) that emits an ac-
tion a ∈ A. The majority of our experiments focus on
finding a control policy for robot actions. Therefore, in the
following, we present our method of PIVOT with this use-
case in mind. However, PIVOT is a general algorithm to
generate (continuous) outputs from a VLM.

3.1. Grounding VLMs to Robot Actions through Image
Annotations

We propose framing the problem of creating a policy π as
a Visual Question Answering (VQA) problem. The class
of VLMs we use in this work take as input an image I and
a textual prefix wp from which they generate a distribution
PVLM(·|wp, I) of textual completions. Utilizing this inter-
face to derive a policy raises the challenge of how an action
from a (continuous) spaceA can be represented as a textual
completion.

The core idea of this work is to lift low-level actions into the
visual language of a VLM, i.e., a combination of images
and text, such that it is closer to the training distribution of
general vision-language tasks. To achieve this, we propose
the visual prompt mapping(

Î , w1:M

)
= Ω(I, a1:M ) (1)

that transforms an image observation I and set of candi-
date actions a1:M , aj ∈ A into an annotated image Î and
their corresponding textual labels w1:M where wj refers to
the annotation representing aj in the image space. For ex-
ample, as visualized in Fig. 1, utilizing the camera matri-
ces, we can project a 3D location into the image space, and
draw a visual marker at this projected location. Labeling
this marker with a textual reference, e.g., a number, conse-
quently enables the VLM to not only be queried in its nat-
ural input space, namely images and text, but also to refer
to spatial concepts in its natural output space by producing
text that references the marker labels. In Section 4.4 we
investigate different choices of the mapping (1) and ablate
its influence on performance.

3.2. Prompting with Iterative Visual Optimization

Representing (continuous) robot actions and spatial con-
cepts in image space with their associated textual labels al-
lows us to query the VLM PVLM to judge if an action would
be promising in solving the task. Therefore, we can view
obtaining a policy π as solving the optimization problem

max
a∈A,w

PVLM
(
w
∣∣ Î , `) s.t.

(
Î , w

)
= Ω(I, a). (2)

Intuitively, we aim to find an action a for which the VLM
would choose the corresponding label w after applying the
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(d) Fit Distribution
Fit a selected action distribution A(i+1)

PIVOT
Prompting with 
Visual Iterative 
Optimization

Which arrows should the 
robot follow to pick up the red 
block?

(a) Sample Actions
Sample candidate actions from action space A(i)

(b) Annotate Image
Project candidate actions into image and label

(c) Query VLM
Query VLM via VQA for best actions

1

5

2
3

4

6

Arrow: [2, 7]

7

Which arrows should the 
robot follow to park between 
the green and blue blocks?

Arrow: [3, 5]

5

6

2
1

7

4
3

(e) Iterate and Execute
(0) (1) (2) execute

Which arrows should the robot follow to pick up the blue microfiber cloth?

(0) (1) (2) (3) execute

Figure 2: Prompting with Iterative Visual Optimization produces a robot control policy by iteratively (a) sampling actions from an
action distribution A(i), (b) projecting them into the image space and annotating each sample, (c) querying a VLM for the best actions,
and (d) fitting a distribution to the selected actions to formA(i+1). (e) After a set number of iterations, a selected best action is executed.

mapping Ω. In order to solve (2), we propose an itera-
tive algorithm, which we refer to as Prompting with Itera-
tive Visual Optimization. In each iteration i the algorithm
first samples a set of candidate actions a(i)1:M from a dis-
tribution PA(i) (Figure 2 (a)). These candidate actions are
then mapped onto the image I . For example, in the case
where actions correspond to 3D translations of the robot
base or end effector, we map these actions to 3D locations
in the world coordinate frame and then project these points
onto the image using standard back-projection techniques
(ie. through the pinhole camera model). We annotate the
image with these projections, yielding an annotated image
Î(i) and the associated action labels w(i)

1:M (Figure 2 (b)).
We then query the VLM on a multiple choice-style ques-
tion on the labels w(i)

1:M to choose which of the candidate
actions are most promising (Figure 2 (c)). This leads to set
of best actions to which we fit a new distribution PA(i+1)

(Figure 2 (d)). The process is repeated until convergence
or a maximum number of steps N is reached. Algorithm 1
and Figure 2 visualize this process.

3.3. Robust PIVOT with Parallel Calls

VLMs can make mistakes, causing PIVOT to select ac-
tions in sub-optimal regions. To improve the robustness
of PIVOT, we use a parallel call strategy, where we first
execute E parallel PIVOT instances and obtain E candi-

date actions. We then aggregate the selected candidates to
identify the final action output. To aggregate the candidate
actions from different PIVOT instances, we compare two
approaches: 1) we fit a new action distribution from the E
action candidates and return the fitted action distribution,
2) we query the VLM again to select the single best action
from the E actions. We find that by adopting parallel calls
we can effectively improve the robustness of PIVOT and
mitigate local minima in the optimization process.

Algorithm 1 Prompting with Iterative Visual Optimization

1: Given: image I , instruction `, action space A, max
iterations N , number of samples M

2: Initialize: A(0) = A, i = 0
3: while i < N do
4: Sample actions a1:M from PA(i)

5: Project actions into image space and textual labels(
Î , w1:M

)
= Ω(I, a1:M )

6: Query VLM PVLM
(
w

∣∣ Î , `) to determine the most
promising actions

7: Fit distribution PA(i+1) to best actions
8: Increment iterations i← i+ 1
9: end while

10: Return: an action from the VLM best actions
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Before 
Optimization

After 
Optimization

Step 1 Step 2 Step 3 Step 4

(a) Navigation: “Help me find a place to sit and write”

(b) Manipulation: “Pick up the coke can”

(c) RefCOCO spatial reasoning

Figure 3: (a) An example rollout on a real-world navigation task.
We use three parallel calls to generate samples. (b) An example
rollout on a real-world manipulation task, where actions selected
by PIVOT with 3 iterations are directly executed at every step.
PIVOT improves the robustness and precision of robot actions,
enabling corrective behavior such as in Step 2. (c) An example
rollout on RefCOCO questions.

3.4. PIVOT Implementation

Our approach can be used to query the VLM for any type of
answer as long as multiple answers can be simultaneously
visualized on the image. As visualized in Figure 1, for the
visual prompting mapping Ω, we represent actions as ar-
rows emanating from the robot or the center of the image if
the embodiment is not visible. For 3D problems, the colors
of the arrows and size of the labels indicate forward and
backwards movement. We label these actions with a num-
ber label circled at the end of the arrow. Unless otherwise
noted, the VLM used herein was GPT-4V (OpenAI, 2023).
For creating the text prompt wp, we prompt the VLM to
use chain of thought to reason through the problem and
then summarize the top few labels. The distributions PA
in Algorithm 1 are approximated as isotropic Gaussians.

4. Experiments
We investigate the capabilities and limitations of PIVOT
for visuomotor robotic control and visually grounded (e.g.,
spatial) VQA. Our primary examples involve action selec-
tion for control because (a) it requires fine-grained visual
grounding, (b) actions can be difficult to express in lan-
guage, and (c) it is often bottlenecked by visual general-
ization, which benefits from the knowledge stored within
pre-trained VLMs. We aim to understand both the strength
and weaknesses of our approach, and believe that (i) iden-
tifying these limitations and (ii) understanding how they
may be alleviated via scaling and by improving the un-
derlying foundation models are main contributions of this
work. Specifically, we seek to answer the questions:

1. How does PIVOT perform on robotic control tasks?
2. How does PIVOT perform on object reference tasks?
3. What is the influence of the different components of

PIVOT (textual prompting, visual prompting, and iter-
ative optimization) on performance?

4. What are the limitations of PIVOT with current VLMs?
5. How does PIVOT scale with VLM performance?

4.1. Robotics Experimental Setup

We evaluate PIVOT across the following robot embodi-
ments, which are visualized in Figure 4 and described in
detail in Appendix A:

• Mobile manipulator with a head-mounted camera for
both navigation (2D action space, Figure 4 (a) and
manipulation tasks (4D end-effector relative Cartesian
(x, y, z) and binary gripper action space, Figure 4 (b).
• Franka arm with a wrist-mounted camera and a 4D ac-

tion space (end-effector relative Cartesian (x, y, z) and
gripper). Results shown in Appendix F.
• RAVENS (Zeng et al., 2021) simulator, with an over-

head camera and a pick and place pixel action space.
Results shown in Appendix E.

place

(d)(a)

(e)

(c)(b)

pick

Figure 4: We evaluate PIVOT on several robot embodiments
including: a mobile manipulator for (a) navigation and (b) ma-
nipulation, (c) single Franka arm manipulation, and (d) tabletop
pick-and-place (Zeng et al., 2021).
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Table 1: Navigation success rate on the mobile manipulator in Figure 4 (a). We observe that iterations and parallel calls improve
performance.

No Iteration 3 Iterations No Iteration 3 Iterations
Task No Parallel No Parallel 3 Parallel 3 Parallel

Go to orange table with tissue box 25% 50% 75% 75%
Go to wooden bench without hitting obstacle 25% 50% 75% 50%

Go to the darker room 25% 50% 75% 100%
Help me find a place to sit and write 75% 50% 100% 75%

Table 2: Manipulation results on the mobile manipulator shown in Figure 4 (b), where “Reach” indicates the rate at which the robot
successfully reached the relevant object, “Steps” indicates the number of steps, and “Grasp” indicates the rate at which the robot
successfully grasped the relevant object (when applicable for the task). We observe that while all approaches are able to achieve some
non-zero success, iteration and parallel calls improve performance and efficiency of the policy.

No Iterations 3 Iterations 3 Iterations
No Parallel No Parallel 3 Parallel

Task Reach Steps Grasp Reach Steps Grasp Reach Steps Grasp

Pick coke can 50% 4.5 0.0% 67% 3.0 33% 100% 3.0 67%
Bring the orange to the X 20% 4.0 - 80% 3.5 - 67% 3.5 -

Sort the apple 67% 3.5 - 100% 3.25 - 75% 3.0 -

4.2. Zero-shot Robotic Control in the Real World

Our first set of real robot experiments evaluate PIVOT’s
ability to perform zero-shot robotic control with mobile
manipulator navigation and manipulation, and Franka ma-
nipulation. These highlight the flexibility of PIVOT, as
these robots vary in terms of control settings (navigation
and manipulation), camera views (first and third person),
as well as action space dimensionalities. For example, Fig-
ure 3 illustrates several qualitative rollouts of PIVOT and
the action samples (projected onto the images) as it steps
through the iteration process. Note that after optimization,
selected actions are more precisely positioned on target ob-
jects and areas of interest (most relevant to the input lan-
guage instructions), without any model fine-tuning. For
goal-directed navigation tasks, we quantitatively evaluate
PIVOT by measuring the success rates of whether it en-
ables the mobile manipulator to reach its target destination
(provided as a language input to PIVOT). For manipulation,
we evaluate performance via three metrics (i) whether the
robot end-effector reaches the relevant object (reach), (ii)
efficiency via the number of action steps before successful
termination (steps), and (iii) the success rate at which the
robot grasps the relevant object (grasp – when applicable).

Results on both navigation and manipulation tasks (shown
in Tables 1 and 2) demonstrate that (i) PIVOT enables non-
zero task success for both domains, (ii) parallel calls im-
proves performance (in terms of success rates) and effi-
ciency (by reducing the average number of actions steps),
and (iii) increasing the number of PIVOT iterations also im-
proves performance. We present additional comparisons to
other zero-shot baselines in Appendix C. We also present
results on real Franka arm and a simulated RAVENS do-

main in Appendix F and E.
4.3. Zero-shot Visual Grounding

In addition to robotic control tasks, we also examine
PIVOT for reference localization tasks from RefCOCO (Yu
et al., 2016), which evaluates precise and robust visual
grounding. To this end, we evaluate GPT-4V with 3 rounds
of PIVOT on a random subset of 1000 examples from the
RefCOCO testA split. We find strong performance even in
the first iteration with modest improvement over further it-
erations. Prompts used are in Appendix H and results are
in Figure 5 and examples in Figure 3.

Figure 5: RefCOCO quantitative results. (Left) Normalized dis-
tance between the center of the ground truth bounding box and
the selected circle. (Right) Accuracy as measured by whether the
selected circle lies within the ground truth bounding box.

We provide an interactive demo on HuggingFace with a few
demonstrative images as well as the ability to upload new
images and questions; available here.

4.4. Offline Performance and Ablations

In this section, we examine each element of PIVOT (the
text prompt, visual prompt, and iterative optimization)
through an offline evaluation, allowing a thorough evalua-
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(a) (b)

Figure 6: Offline evaluation results for navigation task with L2
distance (lower is better). Ablation over (6a) iterations and paral-
lel calls and (6b) text-only baseline.

tion without requiring execution on real robots. To do this,
we use demonstration data as a reference and compute how
similar the action computed by PIVOT is to the ground-
truth expert action.

For the manipulation domain, we obtain the reference robot
action from the RT-X dataset (Padalkar et al., 2023) and
compute the cosine similarity of the two actions in the cam-
era frame as our metric. This metric measures how VLM
choice is “aligned” with human demonstrations. For ex-
ample, a 0.5 cosine similarity in 2D space correspond to
arccos(0.5) = 60◦. As our actions can be executed a max-
imum delta along the chosen Cartesian action direction, we
have found this metric more informative than others, e.g.,
mean squared error. For the navigation domain, we use
a human-labeled dataset from navigation logs and compute
the normalized L2 distance between the selected action and
the point of interest in camera frame as our metric. More
information on each offline dataset can be found in Ap-
pendix D and B.

Text prompts. To understand the effect of different text
prompts, we experiment with several design choices, with
numbers reported in Appendix D. We investigate the role of
zero-shot, few-shot, chain of thought, and direct prompt-
ing; we find that zero-shot chain of thought performs the
best, though few-shot direct prompting is close and more
token efficient. We also experiment over the ordering of
the image, preamble, and task; finding that preamble, fol-
lowed by image, followed by task performs best, though by
a small margin.

Visual prompts. Aspects of the style of visual prompts has
been examined in prior works (Yang et al., 2023b; Shtedrit-
ski et al., 2023), such as the color, size, shading, and shape.
Herein, we investigate aspects central to PIVOT– the num-
ber of samples and the importance of the visual prompt it-

self. An ablation over the number of samples is shown in
Figure 7 where we note an interesting trend: more samples
leads to better initial answers, but worse optimization. Intu-
itively, a large number of samples supports good coverage
for the initial answer, but with too many samples the region
of the image around the correct answer gets crowded and
causes significant issues with occlusions. For our tasks, we
found 10 samples to best trade off between distributional
coverage and maintaining sufficient visual clarity.

To understand the necessity of the visual prompt itself, we
compare to a language only baseline, where a VLM selects
from a subset of language actions that map to robotic ac-
tions. For the manipulation task, the VLM is given an im-
age and task and selects from move “right”, “‘left”, “up”,
and “down”. A similar navigation benchmark is described
in Appendix B. We see in Figure 7 and Figure 6 that PIVOT
outperforms text by a large margin. We note here that we
do not compare to learned approaches that require training
or finetuning as our focus is on zero-shot understanding.
We believe many such approaches would perform well in
distribution on these tasks, but would have limited general-
ization on out of distribution tasks.
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Figure 7: Offline evaluation results for manipulation tasks with
cosine similarity (higher is better).
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Figure 8: Scaling results of first iteration visual prompting performance across Gemini model (Google, 2023) sizes show that PIVOT
scales well with improved VLMs. Left and center plots are manipulation (pick up objects, move one object next to another), right plot is
navigation.

Iterative optimization. To understand the effect of the it-
erative optimization process, we ablate over the number of
iterations and parallel calls. In Figures 5, 6, and 7, we find
that increasing iterations improves performance, increas-
ing parallel calls improves performance, and crucially do-
ing both together performs the best. This echos the findings
in the online evaluations above.

4.5. Scaling

We observe that PIVOT scales across varying sizes of
VLMs on the mobile manipulator offline evaluation (re-
sults measured in terms of cosine similarity and L2 error
between PIVOT and demonstration data ground truth in
Figure 8). In particular, we compare PIVOT using four
sizes of the Gemini family of models (Google, 2023) which
we labeled a to d, with progressively more parameters.
We find that performance increases monotonically across
each model size. Although there are still significant limita-
tions and capabilities gaps, we see this scaling as a promis-
ing sign that PIVOT can leverage next-generation foun-
dation models with increasing model size and capabilities
(Google, 2023).

4.6. Improving capabilities by finetuning VLMs

We also show that it is possible to further enhance the ca-
pabilities of VLMs through fine tuning. To provide con-
crete examples of these, we performed a fine tuning experi-
ment on one of the problem domains (manipulation). In the
finetuning experiment, the VLM is given an image overlaid
with arrows and needs to predict the top 3 arrows that rep-
resent the best actions.

There are two notable observations about this experiment:
1) A small finetuned model outperforms the larger general
model (GPT-4V). 2) Despite training on the task of predict-
ing the top 3 arrows corresponding to actions, we also still
see improvement with iterative refinement, demonstrating
this feature of PIVOT is general.

Cosine Similarity Iter 1 Iter 2 Iter 3

GPT-4V 0.57 0.47 0.54
Finetuned Gemini* 0.53 0.59 0.65

Table 3: PIVOT manipulation results on fine-tuned Gemini
model vs GPT-4V model. The fine-tuned Gemini model achieves
higher cosine Similarity (higher the better).

4.7. Limitations

In this work, we evaluate PIVOT using state-of-the-art
VLMs and their zero-shot capabilities. We note that the
base models have not been trained on in-domain data for
robotic control or physical reasoning represented by visual
annotation distributions. While the exact failure modes
may be specific to particular underlying VLMs, we con-
tinue to observe trends which may reflect broad limitation
areas. We expect that future VLMs with improved gener-
alist visual reasoning capabilities will likewise improve in
their visual annotation and robotics reasoning capabilities,
and the general limitations of PIVOT on current state-of-
the-art VLMs may serve to highlight potential risks and
capabilities gaps, that point to interesting open areas for
future work.

3D understanding. While VLMs only take 2D images as
visual inputs, in principle the image annotations and trans-
formations applied via PIVOT can represent 3D queries as
well. Although we examined expressing depth values as
part of the annotations using colors and label sizes (and
described what they map to within a preamble prompt), we
have observed that none of the VLMs we tested are capable
of reliably choosing actions based on depth. Beyond this,
generalizing to higher dimensional spaces such as rotation
poses even additional challenges. We believe more com-
plex visuals (e.g. with shading to give the illusion of depth)
may address some of these challenges, but ultimately, the
lack of 3D training data in the underlying VLM remains the
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bottleneck. It is likely that training on either robot specific
data or with depth images may alleviate these challenges.

Interaction and fine-grained control. During closed-loop
visuomotor tasks (e.g., for first-person navigation tasks,
or manipulation task with hand-mounted cameras), images
can often be characterized by increasing amounts of oc-
clusion, where the objects of interest can become no longer
visible if the cameras are too close. This affects PIVOT and
the VLM’s capacity for decision-making e.g., determining
when to grasp, whether to lift an object, or approaching an
object from the correct side to push. This is visualized in
Figure 9, where errors over the trajectory are shown. These
errors are a result of both occlusions, resolution of the im-
age, but perhaps more crucially, a lack of training data from
similar interactions. In this case, training on embodied or
video data may be a remedy.
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Figure 9: PIVOT performance over “move near” trajectories,
which pick up an object and move them near another. Initially
performance is high, but decreases as the robot approaches the
grasp and lift (due to objects being obscured and the VLM not
understanding the subtlety of grasping). After the grasp, the per-
formance increases as it moves to the other object, but again de-
creases as it approaches.

Greedy behavior. Though we find iterative optimization
alleviates many simple errors, we also find that the under-
lying VLM often displays greedy, myopic behaviors for
multi-step decision-making tasks. For instance, given the
task “move the apple to the banana”, the VLM may recom-
mend immediately approaching the banana rather than the
apple first. We believe these mistakes may lessen with more
capable VLMs, or with more in-domain examples provided
either via fine-tuning or via few-shot prompting with e.g.,
a history of actions as input context to the VLM to guide
future generated actions.

Vision-language connection reasoning errors. We find
that though overall the thought process of the VLM is rea-
sonable, it stochastically connects the thought process to
the incorrect arrow. This issue appears to be a challenge
of autoregressive decoding, once the number is decoded,
the VLM must justify it, even if incorrect, and thus hallu-
cinates an otherwise reasonable thought process. Many of
these errors are remedied through the optimization process
of PIVOT, but we believe further improvements could be
made with tools from robust optimization.

5. Conclusion
PIVOT presents a promising step towards leveraging
VLMs for spatial reasoning zero-shot, and suggests new
opportunities to cast traditionally challenging problems
(e.g., low-level robotic control) as vision ones. PIVOT can
be used for tasks such as controlling a robot arm that re-
quire outputting spatially grounded continuous values with
a VLM zero shot. This is made possible by representing
spatial concepts in the image space and then iteratively re-
fining those by prompting a VLM. Built on iterative opti-
mization, PIVOT stands to benefit from other sampling ini-
tialization procedures, optimization algorithms, or search-
based strategies. Furthermore, we have identified several
limitations of current state-of-the-art models that limits
performance herein (e.g., 3D understanding and interac-
tion). Therefore, adding datasets representing these areas
presents an interesting avenue for future work; along with
directly finetuning task specific data. More importantly,
though, we expect the capabilities of VLMs to improve
over time, hence the zero-shot performance of PIVOT is
likely to improve as well, as we have investigated in our
scaling experiments. We believe that this work can be
seen as an attempt to unify internet-scale general vision-
language tasks with physical problems in the real world by
representing them in the same input space. While the ma-
jority of our experiments focus on robotics, the algorithm
can generally be applied to problems that require outputting
continuous values with a VLM.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning and Robotics. There are many poten-
tial societal consequences of our work, particularly those
related to embodying VLMs. As such, many of the biases
and inaccuracies of VLMs could be manifest in the physical
world and users should take care to prevent these. On top of
making use of best practices for physical robot safety, we
find the ability to express safety rules in natural language
via prompts a promising direction (Ahn et al., 2024).
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Appendix

A. Robotic Embodiments
Mobile Manipulator Navigation. Shown in Figure 4 (a),
we use a mobile manipulator platform for navigation tasks.
We use the image from a fixed head camera and annotate
the image with arrows originating from the bottom center
of the image to represent the 2D action space. After PIVOT
identifies the candidate action in the pixel space, we then
use the on-board depth camera from the robot to map it to a
3D target location and command the robot to move toward
the target (with a maximum distance of 1.0m). We evaluate
PIVOT on both a real robot and on an offline dataset. For
real robot evaluation, we designed four scenarios where the
robot is expected to reach a target location specified either
through an object of interest (e.g. find apple) or through an
indirect instruction (e.g. find a place to take a nap). For of-
fline evaluation, we created a dataset of 60 examples from
prior robot navigation data with labeled ground truth tar-
gets. More details on the task and dataset can be found in
Appendix Section B.

Mobile Manipulator Manipulation. Shown in Figure 4
(b), we use a mobile manipulator platform for manipula-
tion tasks. We use the image from a fixed head camera
and annotate the image with arrows originating from the
end-effector in camera frame, for which each arrow repre-
sents a 3D relative Cartesian end-effector position (x, y, z).
To handle the z-dimension height, we study two settings:
one where height is represented through color grading (a
red to blue spectrum) and one where the arm only uses
fixed-height actions. Gripper closing actions are not shown
as visual annotations but instead expressed through text
prompts. Note that although the end-effector has rotational
degrees of freedoms, we fix these due to the difficulty of
expressing them with visual prompting, as is discussed in
Section 4.7. We evaluate PIVOT on both real robot and an
offline dataset. For real robot evaluation, we study three
tabletop manipulation tasks which require combining se-
mantic and motion reasoning. Success criteria consists of
binary object reaching success, number of steps taken for
successful reaching trajectories, and grasping success when
applicable. For offline evaluation, we use demonstration
data from the RT-X mobile manipulator dataset (Padalkar
et al., 2023). We sample 10 episodes of pick demonstra-
tions for most of our offline evaluations, and 30 episodes
of move near demonstrations for our interaction Figure 9.
More details on the results can be found in Appendix Sec-
tion D.

Franka. Shown in Figure 4 (c) we use the Franka for ma-
nipulation. We use the image from a wrist mounted camera
and annotate the image with arrows originating from the
center of the camera frame, for which each arrow repre-

sents a 3D relative Cartesian end-effector position (x, y, z,
where the z dimension is captured with a color spectrum
from red to blue). We examine both pick tasks and place
tasks, with 5 objects for each task. More details on the re-
sults can be found in Appendix Section F.

RAVENS (Zeng et al., 2021). Show in Figure 4 (d), we use
the RAVENS simulation domain for pick and place manip-
ulation. We use the image from an overhead camera and
annotate the image with pick and place locations, follow-
ing the action representation in Zeng et al. (2021). This
action space allows us to evaluate higher-level action rep-
resentations. More details on the results can be found in
Appendix Section E.

B. Mobile Manipulator Navigation Offline
Evaluation

B.1. Dataset

We create an offline dataset of 60 examples using images
collected from the on-robot camera sensor by walking the
robot in an indoor environment. For each example, we pro-
vide an instruction and a associated location in the image
space as the target. We categorize our tasks into three types:
1) in-view finding, where the robot is tasked to approach an
object within the line of sight, 2) semantic understanding,
where the instruction implicitly refers to an object in view
3) out-of-view finding, where the object of interest is not
visible from the current view with arrow annotations, but
can be seen in past images from different locations. Figure
10 shows examples of the three task categories.

Figure 10: Example tasks in the offline navigation dataset from
different task categories. Red dot denotes the ground truth target.
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B.2. Evaluation Results

Table 4 shows the detailed evaluation results of PIVOT on
the offline navigation dataset. We measure the accuracy of
the PIVOT output by its deviation from the target point in
image space normalized by the image width and break it
down into the three task categories. We report mean and
standard deviation for three runs over the entire dataset.

As seen in the table, by using the parallel call to robus-
tify the VLM output we see significant improvements over
running VLM only once (0 parallel) and running PIVOT
for multiple iterations also improves accuracy of the task.
However, increasing the parallel calls or the iteration num-
ber further did not achieve notably better performance.

Table 4: Navigation offline evaluation measured in L2 loss
(lower the better).

In-View Tasks

1 iter 2 iter 3 iter

0 parallel 0.21± 0.002 0.21± 0.007 0.19± 0.007
2 parallel 0.19± 0.004 0.2± 0.012 0.18± 0.005
3 parallel 0.19± 0.003 0.17± 0.007 0.17± 0.009

Semantic Tasks

1 iter 2 iter 3 iter

0 parallel 0.23± 0.012 0.2± 0.006 0.19± 0.025
2 parallel 0.26± 0.015 0.21± 0.02 0.2± 0.02
3 parallel 0.21± 0.01 0.19± 0.04 0.19± 0.01

Out-of-View Tasks

1 iter 2 iter 3 iter

0 parallel 0.44± 0.04 0.38± 0.015 0.39± 0.032
2 parallel 0.38± 0.001 0.39± 0.02 0.39± 0.02
3 parallel 0.37± 0.01 0.38± 0.026 0.39± 0.05

We compared our proposed approach, which reasons in
image-space with image annotations, with reasoning in text
without annotated images. In this text-based baseline, we
provide the same image and navigation query to the VLM,
but we ask the VLM to imagine that the image is split into
3 rows and 3 columns of equal-sized regions and output the
name of one of those regions (e.g. “top left”, ”bottom mid-
dle”). We then compute the distance between the center of
the selected region to the ground truth target point. Given
that we are not performing iterative optimization with this
text baseline, we compare its results against PIVOT with
just 1 iteration and 0 parallel. See results in Table 6. For
GPT-4V, the text baseline incurs higher mean and standard
deviation of errors across all tasks.

We performed additional experiments to compare our pro-
posed method to Grounding DINO (Liu et al., 2023d) for
the navigation task. We use the center of the bounding box
predicted by Grounding DINO as the model output. As

Table 5: Reasoning with Image Annotations vs. with Text for
Navigation offline evaluations measured in L2 loss (lower the bet-
ter).

Method In-View Semantic Out-of-View

Image 0.21± 0.002 0.23± 0.012 0.44± 0.04
Text 0.26± 0.15 0.35± 0.14 0.46± 0.31

shown in the table here measuring L2 similarity to ground
truth action, for tasks where the target object is in-view and
clearly indicated by the language instruction, a specialized
VLM like Grounding DINO can achieve higher accuracy
than PIVOT. However, when the instructions become vague
and more complex PIVOT is able to outperform Grounding
DINO. We also note that PIVOT can be applied to more
general tasks than a specialized VLM, and our experiments
go beyond object recognition and navigation to specific ob-
jects.

Table 6: Comparison to Grounding DINO

Method In-View Semantic Out-of-View

PIVOT (3 par, 3 iter) 0.17 0.19 0.39
Grounding DINO 0.12 0.24 0.43

C. Mobile Manipulator Manipulation Online
Evaluation

In addition to the quantitative evaluation trials for the real-
world manipulation experts described in Section 4.2, we
also showcase additional evaluation rollouts in Figure 11.
Qualitatively, we find that PIVOT is able to recover from
inaccuracies in action prediction, such as those which may
result from imperfect depth perception or action precision
challenges.

We also explored additional baselines to provide context
for PIVOT and its capabilities. We considered fitting base-
lines that, similarly to PIVOT, employ LLMs/VLMs in a
zero/few shot manner without requiring access to any ad-
ditional domain-specific robot data or gradient-based fine-
tuning. To that end we explored PromptBook (Arenas
et al., 2023), a method built on top of Code as Policies
(CaP) (Liang et al., 2023) with a more flexible interface
to prompt LLMs to produce policy code. CaP / Prompt-
Book generates code that invokes perception APIs for vi-
sual grounding and robot APIs to control the robot. For
perception APIs we used off-the-shelf object detectors that
yield bounding boxes for relevant objects in the scene and
for robot APIs we defined a primitive that moves the end
effector to any specified target pose in the workspace.

We evaluated PromptBook on the three manipulation tasks
from Table 2: Pick coke can: PromptBook was unable to
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Figure 11: Evaluating PIVOT on real world mobile manipulator tabletop manipulation scenarios which require a combination of
semantic reasoning and action understanding. Using 3 optimization iterations on the real world mobile manipulator, we see promising
successes for (a) “move the orange to complete the smiley face represented by fruits”, (b) “use the marker to trace a line down the blue
road”, and (c) “sort the object it is holding to the correct piece of paper”.

solve the task due perception failures, ie. there was a sys-
tematic error in estimating the bounding box for the coke
can. Using human selected bounding boxes we achieved a
success rate of 8/10 trials. For remaining tasks we opted
to use human selected bounding boxes and perform offline
evaluations to assess whether the generated code correctly
solves the task. Bring the orange to the X: just specifying
the task instruction “bring the orange to the X” failed to
yield meaningful behavior - the agent did not understand
that “X” refers to a marked spot on the table. Instead we
had to modify the instruction to provide additional context,
ie. “The robot is holding an orange. Place the orange on the
piece of paper with X written on it.” This still did not yield
the correct code as the agent opted to drop the robot from
10 cm above the X rather than gently placing the orange
on the table. Sort the apple: the scene involves a recycling
and compost bin and an apple which the robot must place
in the correct bin (ie compost bin). Unless we provide full
context about the scene (“The robot is holding an apple.
Place the apple into the appropriate bin, either recycling or
compost”) the agent is unable to correctly infer the task.

Our investigations highlight the lack of visual grounding
to parse all of the important visual context about the scene.
Incorporating open-world object detectors could help to ad-
dress these limitations, yet still can suffer from perception
errors that are unrecoverable.

D. Mobile Manipulator Manipulation Offline
Evaluation

Using the offline mobile manipulator dataset described in
Section A, we additionally ablate the text prompt herein.
In Figure 13 we consider the performance of zero-shot and
few-shot prompting as well as chain of thought (Wei et al.,
2022) and direct prompting. We find in general that neither
is a panacea, though zero-shot chain of thought performs
best, few-shot direct prompting performs similarly and is
significantly more token efficient. In Figure 14 we con-
sider the effect that the order of the prompt has on perfor-
mance. The distinct elements of the prompt are the pream-
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Figure 13: Ablation of few-shot vs. zero-shot and CoT vs. direct
performance on manipulation domain. The best performing com-
bination is zero-shot CoT. However, direct models can achieve
similar performance with much fewer output tokens thus more to-
ken efficient.

ble (which describes the high level goal), the task (which
describes the specific task the robot is attempting to per-
form), and the image. Examples of these prompts can be
seen in Appendix Section H. We find a small amount of
variation in performance between orders, with preamble,
image, and task resulting in the highest performance. We
hypothesize that this order most closely mirrors the training
mixture.

To illustrate the limitation of our method described in Fig-
ure 9 better, we visualize two episodes of the mobile ma-
nipulator manipulation offline eval in Figure 12. The figure
shows that at the beginning of the episode where it is clear
where to move, our method tend to generate accurate pre-
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Figure 14: Ablation of order of preamble, image, and task on
mobile manipulation domain. We found it is beneficial to put
the image closer to the end of the prompt, though the effect is
marginal. P, I, T means preamble, followed by image and task de-
scription, and I, P, T means image followed by preamble and task
description.

dictions while in the middle of the episode where there are
interactions, our method struggles to generate correct ac-
tions.

Figure 15: RAVENS evaluations. Each column shows a different task instance. Title: pick object followed by place object. Top
row: initial image with pick and place locations predicted by VLM indicated by white arrow. Middle row: result after executing
action. Bottom row: L2 distance between predicted and ground truth locations (averaged for both pick location and place location), over
iterations.
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Table 7: Manipulation results on the real-world Franka setting shown in Figure 4 (c), where “XY” and “YZ” indicate success rates
for reaching the relevant object XY and YZ proximities respectively and “Steps” indicates the number of steps taken if successful
finished the task. We observe that while all approaches are able to achieve some non-zero success, iteration and parallel calls improve
performance and efficiency of the policy.

No Iterations 3 Iterations 3 Iterations
No Parallel No Parallel 3 Parallel

Task XY YZ Steps XY YZ Steps XY YZ Steps

Place saltshaker on the blue plate 0% 0% - 0.5% 0% - 50% 50% 3.0
Place peppershaker on the pink plate 100% 100% 8.0 100% 100% 3.5 50% 50% 4.0

Grasp the pink cup 50% 50% 7.0 0% 50% - 0% 50% -
Grasp the pepper shaker 50% 50% 8.0 0% 50% - 0% 50% -

Grasp the blue cup 0% 50% - 0% 50% - 0% 50% -
Grasp the red ketchup bottle 0% 50% - 0% 0% - 100% 100% 6.0

Grasp the can 0% 0% - 0% 0% - 50% 50% 3.0

Average 25% 38% 7.8 28% 31% 3.5 34% 59% 4.4

Figure 12: Two episodes of mobile manipulator manipulation
offline evaluation. It shows our method can generate reasonable
actions following the arrow annotations.

E. RAVENS Online Simulation Evaluation
We create a suite of evaluation tasks in which the robot

must pick a specified fruit and place it in a specified bowl.
There are three fruits in the scene (banana, strawberry,
pear) and three bowls with different colors (blue, green,
yellow). Each task takes the form ”pick the {fruit} and
place it in the {color} bowl.” Given the task goal, we parse
the source object and the target object, and independently
prompt the VLM to get the pick and place locations cor-
responding to these two objects respectively. Refer to Ap-
pendix H for the prompt we use. In Figure 15 we report
evaluation over five random instances. Here we specifically
report the error with respect to ground truth pick and place
locations over each iteration of visual prompting. We see
that the error generally decreases in the first few iterations
and eventually converges. In most settings the chosen pick
and place locations are close to the desired objects, yet the
VLM often lacks the ability to precisely choose points that
allow it to execute the task successfully in one action.

F. Franka Online Evaluation
We evaluate PIVOT in a real world manipulation setting

using a Franka robot arm with a wrist-mounted camera and
a 4D relative Cartesian delta action space. We study 7

Task: Grasp the red ketchup bottle

Iteration 0: 
Arrows [5]

Iteration 1: 
Arrows [4]

Task: Place peppershaker on the pink plate

Iteration 0: 
Arrows [1]

Iteration 1: 
Arrows [1]

Figure 16: Rollouts on the Franka environment.

tabletop manipulation tasks involving grasping and placing
various objects, and analyze three version of PIVOT with
varying numbers of optimization iterations and number of
parallel PIVOT processes. Each task is evaluated for two
trials, for which we record intermediate reaching success
rates for reaching the correct XY and YZ proximities for
the target object (where in the camera frame the x-axis is
into and out of the page, the y-axis is left and right, and the
z axis is up and down), as well as the overall number of
timesteps taken for successful trials. As shown in Table 7,
we find that all instantiations of PIVOT are able to achieve
non-zero success, but increasing the number of optimiza-
tion iterations and number of parallel processes increases
performance and stability. Rollouts are shown in Figure 16.
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Table 8: Visual annotation arrow robustness of VLMs on a synthetic toy arrow dataset. For various colored arrows with different
thicknesses, different sized arrowheads, and different absolute directions, we evaluate the robustness of GPT-4V on correctly classifying
the absolute arrow direction.

Arrow Thickness Arrowhead Size Direction

Color 2 4 6 0.1 0.3 0.5 up+right down+right up+left down+left

red 96% 92% 96% 97% 94% 88% 100% 75% 75% 92%
orange 92% 88% 96% 100% 91% 84% 100% 100% 50% 83%
yellow 88% 88% 100% 100% 94% 84% 93% 100% 75% 67%
green 96% 92% 96% 100% 100% 88% 100% 92% 92% 83%
blue 92% 92% 88% 91% 91% 88% 100% 17% 100% 100%

purple 100% 96% 96% 97% 97% 97% 100% 92% 92% 92%

Table 9: Visual annotation arrow robustness of VLMs on an object-referential arrow dataset. For various colored arrows with different
thicknesses, different sized arrowheads, and different absolute directions, we evaluate the robustness of GPT-4V on correctly selecting
the arrow which refers to a specified object.

Arrow Thickness Arrowhead Size Target Object

Color 2 4 6 0.1 0.3 0.5 Easy Medium Hard Very Hard

red 42% 33% 33% 50% 33% 25% 44% 100% 0% 0%
orange 25% 25% 25% 25% 25% 25% 0% 100% 0% 0%
yellow 67% 58% 50% 83% 58% 33% 100% 33% 56% 44%
green 50% 58% 50% 83% 58% 33% 100% 33% 56% 44%
blue 42% 36% 33% 36% 50% 25% 100% 33% 22% 0%

purple 33% 50% 50% 58% 58% 17% 89% 22% 56% 11%

G. Visual Annotation Sensitivity
Inspired by prior works which find interesting biases and
limitations of modern VLMs on understanding visual an-
notations (Shtedritski et al., 2023; Yang et al., 2023b;c),
we analyze the ability of state-of-the-art VLMs to under-
stand various types of arrow annotations. We generate
two synthetic datasets: one toy dataset of various styles
of CV2 (Itseez, 2015) arrows overlaid on a white back-
ground, and a more realistic dataset of various styles of
object-referential arrows overlaid on a real-world robotics
scene. The datasets adjust parameters such as arrow color,
arrow thickness, and relative arrowhead size. In the first
dataset, we query VLMs to classify the direction of the
arrows, which studies the effect of styling on the ability
of VLMs to understand absolute arrow directions; exam-
ples are shown in Figure 17. In the second dataset, we
query VLMs to select the arrow which points at a speci-
fied object out of multiple objects, which studies the ef-
fect of styling on the ability of VLMs to understand rela-
tive and object-centric arrow directions. The second dataset
contains scenes with various objects, which we categorize
into “Easy” (plates, boxes, cubes), “Medium” (cups, bags,
mugs), “Hard” (hangers, toys), and “Very Hard” (brushes,
eccentric objects).

Figure 17: Examples of procedurally generated datasets
studying the robustness of VLMs for understanding visual
annotation arrow styles. (a) focuses on absolute direction
understanding of single arrows on blank backgrounds. (b)
focuses on object-relative arrow understanding in realistic
scenes.
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H. Prompts
H.1. RefCOCO prompt

Your goal is to find the OBJECT in this
scene. I have annotated the image with
numbered circles. Choose the 3 numbers
that have the most overlap with the
OBJECT. If there are no points with
overlap, then don’t choose any points.
You are a five-time world champion in this
game. Give a one sentence analysis of
why you chose those points. Provide your
answer at the end in a json file of this
format:
{"points": [] }

H.2. Navigation prompt

I am a wheeled robot that cannot go over
objects. This is the image I’m seeing
right now. I have annotated it with
numbered circles. Each number represent a
general direction I can follow. Now you
are a five-time world-champion navigation
agent and your task is to tell me which
circle I should pick for the task of:
{INSTRUCTION}? Choose {K} best candidate
numbers. Do NOT choose routes that
goes through objects. Skip analysis and
provide your answer at the end in a json
file of this form: {"points": [] }

H.3. RAVENS prompt

which number markers are closest to the
{OBJECT}? Reason and express the final
answer as ’final answer‘ followed by a
list of the closest marker numbers.

H.4. Manipulation online eval prompt

Direct

What number arrow should the robot follow
to task?

Rules: - You are looking at an image
of a robot in front of a desk trying to
arrange objects. The robot has an arm
and a gripper with yellow fingers. - The
arrows in the image represent actions the
robot can take. - Red arrows move the
arm farther away from the camera, blue
arrows move the arm closer towards the
camera. - Smaller circles are further
from the camera and thus move the arm
farther, larger circles are closer and
thus move the arm backwards. - The robot
can only grasp or move objects if the
robot gripper is close to the object and
the gripper fingers would stably enclose
the object - Your answer must end with a
list of candidate arrows which represent
the immediate next action to take ( 0.3
seconds). Do not consider future actions
between the immediate next step. - If
multiple arrows represent good immediate
actions to take, return all candidates
ranked from worst to best. - A general
rule of thumb is to return 1-4 candidates.
Instruction: Reason through the task
first and at the end summarize the correct
action choice(s) with the format, ‘‘Arrow:
[<number>, <number>, etc.].‘‘ Task: task

H.5. Manipulation offline eval prompt

Direct

Summary: The arrows are actions the
robot can take. Red means move the arm
forward (away from the camera), blue
means move the arm backwards (towards the
camera). Smaller circles are further from
the camera and thus move the arm forward,
larger circles are closer and thus move
the arm backwards. Do not output anything
else, direct answer ith the format, Arrow:
[<number>, <number>, etc.]. IMG, Task:
What are the best arrows for the robot
follow to pick white coat hanger?

CoT
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Summary: The arrows are actions the
robot can take. Reason through the task
first and at the end summarize the correct
action choice(s) with the format, Arrow:
[<number>, <number>, etc.]. Description:
The robot can only grasp or move objects
if the gripper is around the object and
closed on the object. Red means move the
arm forward (away from the camera), blue
means move the arm backwards (towards the
camera). Smaller circles are further from
the camera and thus move the arm forward,
larger circles are closer and thus move
the arm backwards. You must include this
summarization. IMG, Task: What are the
best arrows for the robot follow to pick
catnip toy?

Few-shot Direct

Summary: (same as above) IMG, Task:
Erase the writing on the whiteboard.
Arrow: [5, 10], IMG, Task: Pick up the
iced coffee can. Arrow: [1], IMG, Task:
Pick up the string cheese. Arrow: [8,
15, 3, 13], IMG, Task: pick white coat
hanger.

Few-shot CoT

Summary: (same as above) IMG, Task:
Erase the writing on the whiteboard. The
robot is holding an eraser, so it should
move it over the marker on the whiteboard.
The following arrows look promising:
5. This arrow moves the eraser over the
writing and away from the camera and thus
towards the whiteboard. 10. This arrow
too moves the eraser over the writing and
has an even smaller circle (and more red)
and thus more towards the whiteboard.
Arrow: [5, 10], IMG, Task: ... Arrow:
[5, 10], IMG, Task: ... Arrow: [8, 15,
3, 13], IMG, Task: pick oreo.
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