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Abstract

A recent goal in the theory of deep learning is to identify how neural networks
can escape the “lazy training,” or Neural Tangent Kernel (NTK) regime, where
the network is coupled with its first order Taylor expansion at initialization. While
the NTK is minimax optimal for learning dense polynomials [25], it cannot learn
features, and hence has poor sample complexity for learning many classes of
functions including sparse polynomials. Recent works have thus aimed to identify
settings where gradient based algorithms provably generalize better than the NTK.
One such example is the “QuadNTK” approach of Bai and Lee [7], which analyzes
the second-order term in the Taylor expansion. Bai and Lee [7] show that the
second-order term can learn sparse polynomials efficiently; however, it sacrifices
the ability to learn general dense polynomials.

In this paper, we analyze how gradient descent on a two-layer neural network can
escape the NTK regime by utilizing a spectral characterization of the NTK [39] and
building on the QuadNTK approach. We first expand upon the spectral analysis
to identify “good” directions in parameter space in which we can move without
harming generalization. Next, we show that a wide two-layer neural network can
jointly use the NTK and QuadNTK to fit target functions consisting of a dense
low-degree term and a sparse high-degree term – something neither the NTK nor
the QuadNTK can do on their own. Finally, we construct a regularizer which
encourages the parameter vector to move in the “good" directions, and show that
gradient descent on the regularized loss will converge to a global minimizer, which
also has low test error. This yields an end to end convergence and generalization
guarantee with provable sample complexity improvement over both the NTK and
QuadNTK on their own.

1 Introduction

In recent years, deep learning has acheived a number of practical successes, in domains spanning
computer vision, natural language processing, reinforcement learning, and the sciences. Despite
these impressive empirical results, the theory underlying deep learning is far from complete. In fact,
the dual questions of optimization – the mechanism by which neural networks trained with gradient
descent are able to interpolate training data despite the nonconvexity of the loss landscape – and
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generalization – why these solutions found by gradient descent require relatively few samples to
generalize – are still not well understood.

One successful approach for understanding optimization has been the Neural Tangent Kernel (NTK)
theory [41, 29, 15, 20]. The NTK approach couples the gradient descent dynamics of a wide
neural network under a specific initialization to the gradient descent dynamics of a particular kernel
regression problem, with a random, initialization dependent kernel. In the limit of infinite width, this
kernel converges almost surely to a deterministic kernel, also referred to as the NTK, and properties
of this kernel and its corresponding Reproducing Kernel Hilbert Space can be studied.

However, recent work has shown that the NTK theory fails to explain the generalization capabilities
of neural networks. While the equivalence between neural networks in the NTK regime and kernel
methods implies that such models perform no better than kernels, in practice, neural networks have
been shown to outperform kernel methods on a number of tasks [5, 33]. Theoretically, a recent
line of work [25, 39, 38] has provided a precise statistical analysis of the generalization properties
of rotationally invariant kernels on the unit sphere, which includes the NTK. [25] proves a sample
complexity lower bound for such kernels, showing that dk samples are needed to learn any degree k

polynomial in d dimensions. As a result, the NTK is no better than a polynomial kernel, and cannot
adapt to low-dimensional structure.

The limitations of the NTK can be further understood from the linearization perspective. Consider a
two-layer neural network f(x;W) with input x, width m, first layer weights initialized as W0 2

Rd⇥m, second layer weights a 2 Rm, activation function �, and displacement from initialization
W 2 Rd⇥m:

f(x;W) =
1

p
m

mX

r=1

ar�(w
T
0,rx+w

T
r x). (1)

For simplicity we assume the second layer weights are held fixed, and so W are the trainable
parameters. The NTK theory states that when W has small norm, the gradient descent dynamics
can be well approximated by replacing the model with its first-order Taylor expansion about the
initialization:

f(x;W) ⇡ f(x;0) +
1

p
m

mX

r=1

ar�
0(wT

0,rx)x
T
wr = f(x;0) + vec(W)T'(x). (2)

Here, {wr}r2[m] and {w0,r}r2[m] are the columns of W and W0 respectively, '(x) :=
vec(rWf(x;W)|W=0) is a random feature vector with norm independent of m, and

fL(x;W) := vec(W)T'(x) (3)
is hereafter referred to as the linear term. Ignoring d dependence, there exists a global minimizer with
kWkF ' 1 and kwrk2 ' m

�1/2, and thus due to local convexity gradient descent will stay in this
small norm ball around the initialization while interpolating the training data. This small movement
of each individual neuron gives rise to the name lazy training for networks in the NTK regime [15].
The equivalence to kernel methods and the poor generalization of neural networks in NTK regime,
along with their failure to describe the dynamics of neural networks in practice, motivate our goal
to understand how neural networks can escape the NTK regime. We concretely ask the following
question:

Q: How can we encourage each neuron to move � m
�1/2, thus escaping the NTK regime?

And does this allow us to break the NTK sample complexity lower bounds?

1.1 Motivation

Escaping the NTK Regime. To answer this, we invoke the statistical characterization of the NTK
developed in [25, 39, 38] to understand the mechansism by which it overfits to the training data. For
d
k
⌧ n ⌧ d

k+1, consider a dataset of n training samples (xi, yi), where the xi are sampled i.i.d
from S

d�1(
p
d) (the d-dimensional sphere of radius

p
d) and yi = f

⇤(x) for an unknown function
f
⇤. Montanari and Zhong [39] decompose the SVD of the empirical feature matrix � 2 Rn⇥md into

the block matrix form

� =

2

4
'(x1)T

· · ·

'(xn)T

3

5 = [U1 U2]


⇤̃1 0
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� 
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V
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�
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where U1, ⇤̃1,V1 are the top r singular values/vectors and U2, ⇤̃2,V2 are the bottom n� r. Here,
r = O(dk) is chosen specifically so that V1 is the “high-variance" subspace which can express
polynomials of degree  k and generalizes well [9], while V2 is used to interpolate the training data
while not affecting generalization.

[25, 39] show that the NTK will learn the projection of f⇤ onto degree k polynomials. Furthermore,
[9, 26] show that gradient descent will first move in the subspace spanned by V1 to learn this
projection, then move in the V2 directions to interpolate the training data, while not affecting the test
predictions. This first stage is still desirable for our goal – if the network can fit and generalize from
part of the signal using the NTK, then it should, and previous work [27] has shown that for general
networks gradient descent will learn the optimal degree-1 polynomial in the early stages of training.
The V2 directions, however, are “bad" directions the parameters should avoid moving in, as they are
only used for the NTK to overfit. Instead, W should move in the null space of �, where kWkF

can be ⌦(1) while keeping the evaluation of fL(·;W) on the training data bounded by O(1). This
heuristic argument yields our first criterion for escaping the NTK regime.

Goal #1: Move minimally in the V2 directions.

Generalizing to Test Data. While the previous criterion prevents the network from overfitting with
the NTK, we must also prevent a movement of kWkF � 1 from causing the test predictions to
explode. Since k'(x)k2 = ⇥m(1), it is a priori possible for fL(x;W) = vec(W)T'(x) to be � 1
on the population, which would necessarily cause a large test loss.

To identify a set of good directions, define the feature covariance matrix ⌃ 2 Rmd⇥md by

⌃ = E
x⇠Sd�1(

p
d)

⇥
'(x)'(x)T

⇤
. (5)

Our first technical contribution is a characterization of the eigendecomposition of ⌃. Let the top r

eigenvectors of ⌃ be Q1, the next s eigenvectors be Q2, and the bottom md�r�s eigenvectors be Q3,
where ⇤1,⇤2,⇤3 are the corresponding diagonal matrices of eigenvalues, and r = ⇥(dk), s = d

⇥(k).
We use the results of [39, 38] to show that ⌃ has an eigenvalue gap in that �min(⇤1) � �max(⇤2)
and �min(⇤2) � �max(⇤3), and furthermore that Q1 can fit arbitrary degree  k polynomials.
This partitioning of the eigenvectors tells us that Q1 are informative, large eigenvalue directions
which help the NTK to learn a low degree signal, Q2 are the medium directions which will cause
the test predictions to grow too large if W moves too far from initialization, and Q3 are the “good"
directions which W is free to move a distance of � 1 in. This yields the following criterion for
generalizing well:

Goal #2: Move in the Q3 directions, but minimally in the Q2 directions.
One challenge is that we cannot distinguish the Q2 directions from the Q3 directions with d

k samples.
Nevertheless, the existence of an eigenvalue gap will allow us to constrain movement in Q2.

The Quadratic NTK. Once we have moved � 1 from the initialization, we can no longer couple
to the network’s linearization. The network is still, however, in a local regime, and we instead
can couple the training dynamics to the second-order Taylor expansion of our model, where the
second-order term is denoted the Quadratic-NTK [7] fQ(x;W):

f(x;W) ⇡ f(x;0) + vec(W)T'(x) +
1

2
p
m

mX

r=1

�
00(wT

0,rx)(x
T
wr)

2 (6)

= f(x;0) + fL(x;W) + fQ(x;W). (7)

Bai and Lee [7] showed that fQ(x;W) can effectively learn low-rank polynomials with better sample
complexity than the NTK. In particular, they show that dk samples are needed to fit a target function
of the form f

⇤(x) = (�T
x)k+1, an improvement over the dk+1 samples needed by the NTK. In doing

so, however, the QuadNTK sacrifices its ability to learn general dense polynomials; furthermore, Bai
and Lee [7] require a randomization trick to artificially delete the fL term. A later followup work [8]
showed that in a number of standard experimental settings, the second-order Taylor expansion of
the network better tracks the true gradient descent dynamics and acheives lower test loss than the
network’s linearization (i.e NTK) does. However, there is no existing result which shows that both
the linear term and the quadratic term can provably learn a component of the signal.
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Based on the preceeding motivation, we thus aim to show that we can jointly utilize both the NTK
and the QuadNTK to learn a larger class of functions than either the NTK or QuadNTK can learn on
their own.

1.2 Our Contributions

With the previous intuition in hand, we outline the main contributions of our work. We first prove
a technical result on the eigendecomposition of ⌃, and show that the eigenvectors can indeed be
partitioned into 3 categories corresponding to large (degree  k), medium ("bad") and small ("good")
eigenvalues. We then construct a regularizer, depending only on the covariate distribution and
initialization, that enforces goals 1 and 2 by preventing the parameters from moving in either of the
bad sets of directions (V2 and Q2). Furthermore, we show how to jointly use the NTK and QuadNTK
to fit a target signal f⇤ consisting of an arbitrary degree  k component and sparse degree k + 1
component. The key technical challenge is to construct a solution with large enough movement so that
the QuadNTK can fit the high degree term and hence improve generalization, while simultaneously
preventing this large movement from interfering with the NTK training predictions (Goal 1) or greatly
increasing test loss (Goal 2). Our main result, Theorem 1, is that gradient descent on a polynomially
wide two-layer neural network converges to an approximate global minimizer of the regularized loss
function, which generalizes well to the test distribution. As a result, we show d

k samples are needed
to learn f

⇤ up to vanishingly small test loss. This ultimately gives us the “best of both worlds”, as we
leverage both the linear and quadratic term to learn the target f⇤ with sample complexity better than
either the NTK or QuadNTK alone. Overall, our work identifies which directions weights can move
further from initialization in and provably generalize better than the NTK.

The outline of our paper is as follows. In Section 2 we formally define the problem setup. In Section 3
we define our regularizers, and present Theorem 1. Section 4 is an outline of the proof of Theorem 1,
which we split into four components – expressing f

⇤ with the linear-plus-quad model, showing
the optimization landscape has favorable geometry, a gradient descent convergence result, and a
generalization bound. We conclude with experiments supporting our main theorem and demonstrating
the relevance of the low-degree plus sparse task to standard neural networks.

1.3 Related Work

The NTK approach [41, 29, 15, 32, 20], which couples a neural network to its linearization at
initialization, has been utilized to show global convergence of gradient descent on neural networks [19,
35, 47, 4]. The equivalence to kernel methods has also been used to prove generalization bounds,
based on generalization bounds for kernels [6, 11, 3]. However, neural networks have been shown to
perform far better than their NTK in practice [5, 33]. Further, [25] shows that kernels cannot adapt to
low-dimensional structure, and proves a sample complexity lower bound of dk samples needed to
learn a degree k polynomial in d dimensions. A number of recent works [44, 18, 46, 1, 23, 2, 24, 16,
45, 36, 14, 37] have thus aimed to provide examples of learning problems where a neural network
trained with a gradient-based algorithm has a provable sample complexity improvement over any
kernel method.

One such approach has been to understand higher-order approximations of the training dynamics [7,
8, 12, 28]. Here, the network is no longer coupled to its linearization, but rather higher order terms
in the Taylor expansion. On the empirical side, [8] shows that these higher order Taylor expansions
better track the optimization dynamics and can obtain lower test loss. Theoretically, [7, 12] prove
that the second-order term, the QuadNTK, can be used to obtain sample complexity improvements.
However, the QuadNTK has poor sample complexity for learning dense polynomials, and [7, 12]
do not consider training on the original network, but rather only the second-order term after the
linear term has been deleted. This paper, on the other hand, provides an end-to-end convergence
and generalization result for training on the full two-layer neural network. We leverage the NTK to
efficiently learn polynomials with both a dense and sparse component, and are thus the first work
showing that both the linear and quadratic term can learn part of the signal.

The technical results in our paper rely on the statistical characterization of the NTK developed
in the series of works [25, 39, 38]. Furthermore, our optimization results rely on a line of work
showing that quadratically parameterized models have nice landscape properties such as all second-
order saddle points are global minima [21, 22, 41, 18]; the fact that gradient descent avoids saddle
points [21, 34, 30, 31] can then be used to show convergence.
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2 Preliminaries

2.1 Problem Setup

Our problem setup is the standard supervised learning setting. Our dataset Dn = {(xi, yi)}i2[n], has
n samples, where (xi, yi) 2 X ⇥Y are sampled i.i.d from a distribution µ on X ⇥Y . µ is defined so
that (x, y) ⇠ µ satisfies x ⇠ Unif(Sd�1(

p
d)), the uniform distribution on the d-dimensional sphere

of radius
p
d, and y = f

⇤(x) for some deterministic, unknown function f
⇤ : Sd�1(

p
d) ! R.

We assume that dk ⌧ n ⌧ d
k+1 for some integer k, and that the target f⇤ has the following

low-degree plus sparse structure:

Assumption 1 (Low-degree plus sparse signal). Let f⇤(x) = fk(x) + fsp(x), where

• fk(x) is an arbitrary degree  k polynomial with Ex⇠µ[fk(x)2] = 1. (Low Degree)

• fsp(x) =
PR

i=1 ↵i(�T
i x)

k+1 where |↵i|  1, k�ik2 = 1. (Sparse)

We aim to fit f
⇤ with f(x;W), a two-layer neural network as defined in (1). Here, W =

[w1, . . . ,wr] 2 Rd⇥m is the first layer weight’s distance from initialization and is the train-
able parameter. W0 = [w0,1, . . . ,w0,r] denotes the first layer weight at initialization, and and
a = [a1, . . . , am]T 2 Rm is the second layer weight, which is held fixed throughout training.

We consider the following symmetric initialization of a,W0, which ensures that f(·;0) = 0 identi-
cally.

a1 = · · · = am/2 = 1 am/2+1 = · · · = am = �1 (8)

{w0,r}rm/2 ⇠i.i.d S
(d�1)(1) w0,m/2+r = w0,r (9)

� 2 C
2(R) is our nonlinear activation function. We make the following assumption on �:

Assumption 2. The activation � satisfies k�k1, k�
0
k1, k�

00
k1 < 1.

We also require �
0
,�

00 to satisfy Assumption 3, a particular technical condition on their harmonic
expansions. These two assumptions are satisfied by commonly used activations, such as the sigmoid
with generic shift b: �(z) = 1

1+exp(b�z) .

We assume the loss function ` : R⇥ R ! R�0 satisfies `(y, z)  1, `(y, y) = 0, `(y, z) convex in
z, and k

@
@z `k1, k

@2

@z2 `k1, k
@3

@z3 `k1  1. The empirical loss L̂ and population loss L are defined
as

L̂(W) = En [`(y, f(x;W))] L(W) = Eµ [`(y, f(x;W))] , (10)

where for a function g(x, y), En[g(x, y)] :=
1
n

Pn
i=1 g(xi, yi) denotes the empirical expectation,

while Eµ[g(x, y)] denotes the population expectation over (x, y) ⇠ µ.

Notation. For f 2 L
2(Sd(

p
d), µ), define kfkL2 := kfkL2(Sd(

p
d),µ) =

�
Ex⇠µ[(f(x))2]

�1/2.
We use big O notation to ignore absolute constants that do not depend on n, d,m, as well as polyno-
mial dependencies on the rank R. We write ad . bd if ad = O(bd), ad ⌧ bd if limd!1 ad/bd = 0.
We also use Õ notation to ignore terms that depend logarithmically on d. We also treat k = O(1).
Finally, all our results hold for d > C, where C is a universal constant. For a matrix A, we let kAkF

be its Frobenius norm, kAk = kAkop be the operator norm, and kAk2,p := (
P

i kaik
p
2)

1/p be the
2, p norm.

2.2 Linear and Quadratic Expansion

For W small, f(·;W) can be approximated by its second order Taylor expansion about W0:

f(x;W) ⇡
1

p
m

mX

r=1

ar�
0(wT

0,rx)x
T
wr +

1

2
ar�

00(wT
0,rx)(x

T
wr)

2
. (11)
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We define fL(x;W), fQ(x;W) to be the linear and quadratic terms of the network:

fL(x;W) =
1

p
m

mX

r=1

ar�
0(wT

0,rx)x
T
wr, fQ(x;W) =

1
p
m

mX

r=1

1

2
ar�

00(wT
0,rx)(x

T
wr)

2

(12)

3 Main Theorem

Define the NTK featurization map ' : Sd�1(
p
d) ! Rmd as

' := vec(rWf(x;W)|W=0). (13)

and the feature covariance matrix ⌃ 2 Rmd⇥md as
⌃ := Ex⇠µ

⇥
'(x)'(x)T

⇤
. (14)

Note that ⌃ depends only on the network at initialization and the input distribution, and not on the
target function f

⇤. In practice, ⌃ can be approximated to arbitrary precision by using a large dataset
of unlabeled data, or by computing the harmonic expansion of �0, as detailed in Appendix A.

Let ⌃ admit the eigendecomposition ⌃ =
Pmd

i=1 �i(⌃)viv
T
i , where the �i(⌃) are nonnegative and

nonincreasing. For r 2 [md], we let ⇧r be the projection operator onto span(v1, . . . ,vr), and let
⇧>r = Imd �⇧r. Furthermore, define

⌃r :=
rX

i=1

�i(⌃)viv
T
i , ⌃>r = ⌃�⌃�r. (15)

We define our regularizers as follows

R1(W; r) := vec(W)T⌃>rvec(W) (16)

R2(W; r) := vec(W)T⌃rvec(W) (17)

R3(W; r) := En

⇥
(fL(x;⇧>rW))2

⇤
(18)

R4(W) := kWk
8
2,4. (19)

Intuitively, R3 constrains movement in the V2 directions to enforce Goal #1, R1 constrains movement
in the Q2 directions to enforce Goal #2, and R2,R4 are weight-decay like terms necessary for
generalization. Although R1 does not know the directions Q2, the eigenvalue gap between Q2 and
Q3 ensures that whenever R1 is small, movement in Q2 must be small as well.

Given regularization parameters � = (�1,�2,�3,�4), define the regularized loss L�(W) as

L�(W) = L̂(W) + �1R1(W; r) + �2R2(W; r) + �3R3(W; r) + �4R4(W). (20)

Finally, we train our model trained via perturbed gradient descent [31] with learning rate ⌘ and noise
level �2. That is, if Wt denotes the weights at time step t, the update is given by

W
t+1 = W

t
� ⌘

�
rWL�(W

t) +⌅t

�
, (21)

where ⌅t 2 Rd⇥m are i.i.d random matrices with each entry i.i.d N ( �2

md ).

Given these definitions, we now present our main theorem:

Theorem 1. Let " > 0 be a target test accuracy, the number of samples be n & d
k
· poly(R) ·

max("�2
, log d), and the width be m = poly(n, d,R, "

�1). Let the sequence of iterates {Wt
}t�0

follow the update in (21) with initialization W
0 = 0. Then, there exists a choice of parameters

(�1,�2,�3,�4, r,�
2
, ⌘) such that with high probability over W0,Dn, and {⌅t}t�0, there exists a

T = poly(m) such that the predictor Ŵ := W
T satisfies L(Ŵ)  ".

Remark 1. Theorem 1 tells us n = ⇥̃(dk) samples are needed to learn the low-degree plus sparse
function f

⇤. This is an improvement over the sample complexity needed to learn f
⇤ via the NTK,

which is ⌦(dk+1) samples as f⇤ is a degree (k + 1)-polynomial [25, 39]. This also improves over
the upper bound for the sample complexity of the quadratic NTK given in [7], in which ⌦(K2

d
k)

samples are needed to learn a rank K polynomial of degree k + 1. This is polynomially worse than
our bound since the dense, low-degree term fk can have rank � d.
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4 Proof Sketch

The proof of Theorem 1 follows similar high-level steps to [7]. We first construct a W
⇤
2 Rd⇥m

which fits f⇤ and is small on the regularizers. Next, we show that the optimization landscape of the
regularized loss has a favorable geometry, and as a result that gradient descent converges to a global
minimum. We conclude with a generalization bound to show that global minima have low test loss.
Throughout the proof sketch, we emphasize how the regularizers encourage us to escape the NTK
regime, and discuss the challenges posed by the existence of the fL term in the dynamics.

4.1 Expressivity

We begin by showing that the fL and fQ terms can fit the low degree and sparse components,
respectively, of the signal. As in [25, 39], the derivations in this section rely on spherical harmonics;
an overview of the technical results used are presented in Appendix A.

The following lemma shows that fQ(x;W) can fit the sparse, high degree term in f
⇤.

Lemma 1 (QuadNTK can fit high degree component). Let m � d
2k. With high probability over the

initialization, there exists WQ such that

max
i2[n]

|fQ(xi;WQ)� fsp(xi)| .
d
k

p
m

and kWQk
4
2,4 . d

k�1 (22)

This generalizes the corresponding result in [7] to more activations. The proof of this lemma is
presented in Appendix B.1.2.

Next, we show that fL(x;W) can fit the low degree term. Here, we choose r = nk = ⇥(dk), where
nk is defined in Appendix A, to be the dimension of the subspace which can express degree  k

polynomials. We define Pk = ⇧r to be the projection on the top nk eigenvectors of ⌃.

Lemma 2 (NTK can fit low degree component). Let m � d
10k. With high probability, there exists

WL with vec(WL) 2 span(Pk) such that

En[(fL(x;WL)� fk(x))
2] . d

k

n
and kWLk

2
F . d

k�1 (23)

The proof of this Lemma is presented in Appendix B.2.4, and relies on key lemmas from [39] relating
the spherical harmonics of degree  k to the eigenstructure of the kernel. A key intermediate result is
Lemma 15, which characterizes the spectrum of the population covariance matrix ⌃. A similar result
for random features was shown in [38]. Unlike [38], we do not characterize all the eigenvalues of ⌃;
however, simply partitioning them into the three categories is sufficient for our purposes.

Finally, we use the WL,WQ to construct a W
⇤ which has small regularized loss. Recall the

definition of the regularizers, after setting r = nk:
R1(W) = R1(W;nk) = kfL(·;P>kW)k2L2 = Eµ

⇥
(fL(x;P>kW))2

⇤
(24)

R2(W) = R2(W;nk) = kfL(·;PkW)k2L2 = Eµ

⇥
(fL(x;PkW))2

⇤
(25)

R3(W) = R3(W;nk) = En

⇥
(fL(x;P>kW))2

⇤
(26)

R4(W) = kWk
8
2,4 (27)

Also, define the empirical loss of the quadratic model as:

L̂
Q(W) := En[`(y, fL(x;W) + fQ(x;W))] (28)

The following theorem is the central expressivity result:

Theorem 2. For "min > 0, let m & max(d3(k�1)
"
�4
min, d

10k), n & max(dk"�2
min, d

k log d). With
probability 1� 1/poly(d), there exists W⇤ such that

L̂
Q(W⇤)  "min (29)

and:
R1(W

⇤) . m
�

1
2 d

k�1
2 R2(W

⇤) . 1 R3(W
⇤) . m

�
1
2 d

k�1
2 R4(W

⇤) . d
2(k�1)

.

(30)
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The proof of this Theorem is presented in Appendix B.3, and again relies on the eigendecomposition
of ⌃. As outlined in the introduction, we show ⌃ = Q1⇤1Q

T
1 +Q2⇤2Q

T
2 +Q3⇤3Q

T
3 , where

⇤2 are the medium eigenvalues and ⇤3 are the small eigenvalues. Formally, ⇤2 contain ⇥(d�i+1)
with multiplicity ⇥(di), for integers i 2 [k + 1, 2k], and the entires of ⇤3 are equal to 1/m on
average. This tells us that the medium directions Q2 are undesirable, as any ⌦m(1) movement in
these directions will case fL(x;W) to grow large. On the other hand, movement in a “sufficiently
random” Q3 direction will minimally affect the population value of fL(x;W).

To prove Theorem 2, we will construct W⇤ to be of the form WL +WQ, where WL fits the low-
degree term and WQ fits the sparse term. The issue with this direct construction is that kWQkF � 1,
so a priori WQ can have a large effect on the linear term. We thus require fL(x;WQ) to be small,
both on the sample and over the population. The key insight is the following: since dim(V1) ⌧
dim(V2), any sufficiently random direction lies almost entirely in V2. If u is this random direction,
then En

⇥
(fL(x;u))2

⇤
is small. Similarly, the random direction u lies almost entirely in Q3. Since

the Q3 directions have eigenvalues 1/m on average, Eµ

⇥
(fL(x;u))2

⇤
⇡

1
mkuk

2
⌧ 1.

We thus consider a “sufficiently random” version of WQ so that WQ minimally affects fL. Specifi-
cally, we consider the weight SWQ, where S 2 Rm⇥m is a diagonal matrix of random signs. By
definition fQ(x;SWQ) = fQ(x;WQ), furthermore, we show SWQ is now sufficiently random in
that En

⇥
(fL(x;u))2

⇤
,Eµ

⇥
(fL(x;u))2

⇤
are both small. This allows us to prove that in expectation

over S, a solution of the form WL + SWQ acheives small regularized loss, which implies the
existence of such a desirable solution via the probabilistic method.

4.2 Landscape

Define first and second-order stationary points [31] as follows:

Definition 1. W is a ⌫-first-order stationary point of f if krf(W)k  ⌫.

Definition 2. W is a (⌫, �)-second-order stationary point (SOSP) of f if r2
f(W) ⌫ ��I.

The following lemma is our central landscape result:

Lemma 3. Let r = dk,�2 = "min, �3 = m
1
2 d

�
k�1
2 "min, �4 = d

�2(k�1)
"min. Assume m �

n
4
d

26(k+1)
3 "

�22/3
min , and ⌫  m

�
1
4 . Let W be a ⌫-first order stationary point, and let W⇤ be the

solution constructed in 2. Then,

ES

⇥
r

2
L�(W)[SW⇤

,SW
⇤]
⇤
� hrL�(W),W � 2W⇤

L +WLi+ 2L�(W)� 2L�(W
⇤) . "min.

(31)

As a corollary, we show that any (⌫, �)-SOSP of L�(W) has small loss.

Corollary 1. Set r,� as in Lemma 3. Let Ŵ be a (⌫, �)-second-order stationary point of L�(W),
with ⌫  m

�1/2
, �  m

�3/4. Then L�(Ŵ) . "min.

The proofs of these results are deferred to Appendix C.

4.3 Optimization

We next invoke the main theorem of [30, 31], which is that perturbed gradient descent will find a
(⌫, �)-SOSP in poly(1/⌫, 1/�) time. The challenge with applying these results directly is that L� is
no longer smooth or Hessian-Lipschitz due to the R4 regularizer. To circumvent this, we first prove
that the iterates in perturbed gradient descent are bounded in a Frobenius norm ball. Then, it suffices
to use the bound on smoothness and Hessian-Lipschitzness in this ball to prove convergence. Our
main optimization result, with proof in Appendix D, is the following:

Theorem 3. There exists a choice of learning rate ⌘ and perturbation radius � such that with
probability 1� 1/poly(d), perturbed gradient descent (c.f [31, Algorithm 1]) reaches a (⌫, �)-SOSP
within T = poly(m) timesteps.
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Figure 1: We train fL + fQ with varying �3. When �3 is small, the NTK overfits the high degree
signal and test error is large. When �3 is large, the QuadNTK can learn the high degree signal, and
test error is smaller. Results are averaged over 5 trials, with one standard deviation shown.

4.4 Generalization

Finally, we conclude by showing that any Ŵ with small L�(Ŵ) also has small test loss:

Theorem 4 (Main generalization theorem). Let r = dk,�1 = m
1
2 d

�
k�1
2 "min, �2 = "min, �3 =

m
1
2 d

�
k�1
2 "min, �4 = d

�2(k�1)
"min. Assume m & "

�4
mind

3(k�1). With probability 1 � 1/poly(d)
over the draw of D, any data dependent Ŵ with L�(Ŵ)  C"min has population loss

L(Ŵ) . "min +

r
dk

n
. (32)

The proof of this theorem is presented in Appendix E. The key is to use the small values of the
regularizers at Ŵ to bound the test loss. R2 and R4 are used to bound the Rademacher complexities
of the linear and quadratic terms respectively, while R1 and R3 control the influence of the high
degree component of the linear term on the population loss and empirical loss respectively.

5 Experiments

We conclude with experiments to support our main theorem. In Figure 1 we train the joint linear
and quadratic model fL(x;W) + fQ(x;W) via gradient descent on the square loss, with signal
f
⇤(x) = f1(x) + (�T

x)2 where f1(x) = x1 � 1. Our covariates are dimension d = 100, we have
n = d

1.5 = 1000 samples, and our network has width m = 10000.

We train our model with the regularizer R3(W) for varying values of �3. Rather than computing ⌃,
we use the top nk right singular vectors of � to estimate R3. We observe that for all �3 we reach near
zero training error. However, when �3 is zero or very small, the model struggles to learn the entire
signal, and test error plateaus near 0.6. In the leftmost pane, we plot the value of R3(W) over the
course of training. We observe that R3(W) grows large for small �3, which implies that the model
is using the “bad" directions in V2 to overfit to the training data. For large values of �3, however, R3

prevents W from moving in the “bad" directions to overfit the data. This is seen in the leftmost pane,
where the value of R3(W) is small. Instead, the parameter moves in the “good” Q3 directions, and
the Quad-NTK term kicks in to fit the remaining component of the signal while generalizing. This
leads to the consistently lower test loss (around 0.2) as shown in the rightmost pane.

On the regularizer R1. Our proof required the existence of R1 to prevent movement in the bad
Q2 directions. While R1 being small is necessary for generalization, in Figure 1 we observe that we
generalize well without explicitly regularizing R1. We hypothesize that the noise in the perturbed
gradient descent update may be implicitly regularizing R1. A heuristic justification is as follows.
Recall that any sufficiently random direction u lies mostly in Q3. Due to the rotational symmetry of
the perturbations, one might expect that the solutions PkŴ +P kŴS, over all choices of random
signs S, can be reached with roughly equal probability. Since this set of solutions is “sufficiently
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random,” in expectation over S it generalizes well, and thus gradient descent is likely to converge to a
solution which generalizes well. In Appendix G we conduct experiments with both R1 and R3 to
support the claim that explicit regularization of R1 is not needed to acheive low test error; however,
proving this claim is left for future work.

Figure 2: Neural networks optimally
learn the “dense quadratic plus sparse
cubic" task.

On the Low-Degree Plus Sparse Task. Theorem 1 shows
that two-layer neural networks trained via noisy gradient de-
scent with a specific regularizer can more efficiently learn
low-degree plus sparse target functions. In Figure 2 we show
empirically that neural networks with standard initialization
and trained via vanilla gradient descent efficiently learn a
“dense quadratic plus sparse cubic.” For varying values of
d, we train a two-layer neural network to convergence and
plot the smallest n such that the test loss was < 0.1. We ob-
serve this minimal n roughly scales with d

2, the optimal (in
d) sample complexity. This provides evidence that standard
networks trained with vanilla GD can effectively learn the
low-degree plus sparse task, and hence that this is a sensible
task to study and that our work presents a step towards un-
derstanding why standard neural networks perform better in
practice more generally. See Appendix G for more details.

On Second-Order Taylor Expansions of Standard Networks. Throughout this paper we studied
the quadratic Taylor expansion of a two-layer neural network. In Appendix G, we complement the
results of [8] and show that for a standard architecture and data distribution, the quadratic Taylor
expansion better approximates the optimization dynamics and acheives lower test loss than the
linearization (NTK) does.

6 Discussion

The goal of this work is to better understand how neural networks can escape the NTK regime. By
analyzing the eigendecomposition of the feature covariance matrix, we identified 3 sets of directions –
ones that can fit low degree signal, “bad” directions which either cause the NTK to overfit or the test
predictions to explode, and “good” directions in which the parameters can move a large distance. We
then constructed a regularizer which encourages movement in these good directions, and showed how
a network can jointly use the linear and quadratic terms in its Taylor expansion to fit a low-degree
plus sparse signal. Altogether, we provided an end-to-end convergence and generalization guarantee
with a provable sample complexity improvement over the NTK and QuadNTK.

As discussed above, one interesting direction of future work is to understand the role of R1. Other
directions of future work include understanding whether our analysis can be used to leverage higher-
order terms in the Taylor expansion, understanding the connection between the QuadNTK and feature
learning, and investigating whether increasing the depth of the network can allow the NTK and
QuadNTK to jointly learn a hierarchical representation [12].
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