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Abstract
With reference to a stratified case–control (CC) procedure based on a binary
variable of primary interest, we derive the expression of the distortion induced
by the sampling design on the parameters of the logistic model of a secondary
variable. This is particularly relevant when performing mediation analysis (pos-
sibly in a causal framework) with stratified case–control (SCC) data in settings
where both the outcome and the mediator are binary. Despite being designed
for parametric identification, our strategy is general and can be used also in a
nonparametric context. With reference to parametric estimation, we derive the
maximum likelihood (ML) estimator and the M-estimator of the joint outcome–
mediator parameter vector. We then conduct a simulation study focusing on the
main causal mediation quantities (i.e., natural effects) and comparing M- and
ML estimation to existing methods, based on weighting. As an illustrative exam-
ple, we reanalyze a German CC data set in order to investigate whether the effect
of reduced immunocompetency on listeriosis onset is mediated by the intake of
gastric acid suppressors.
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1 INTRODUCTION

Retrospective sampling schemes are commonpractice in studieswhen either the outcome of interest is rare or some covari-
ates are difficult to measure. In this context, it is too expensive or too lengthy to random sample the whole population.
Instead, more efficiently, random samples are extracted from a partition of the population according to the outcome and
possibly other stratifying factors. When the outcome is binary, this procedure is known as (stratified) case–control (CC)
sampling design.
Though the implications of the retrospective sampling are widely understood when the only interest is the relationship

between the covariates and the outcome (Breslow, 1996), less is known when the relationship between some of the covari-
ates is also the object of inference. Typically, this situation arises in mediation analysis, where the aim is to decompose,
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in a counterfactual framework, the total effect (TE) of a treatment/exposure (henceforth, exposure) on the outcome
into a direct and an indirect effect, the second one due to a mediator. A mediator is a variable that is a response of the
exposure and in turn influences the outcome (Pearl, 2001; VanderWeele, 2015). With reference to parametric settings, two
equations are of interest, the first linking the response to the exposure and the mediator, the second linking the mediator
to the exposure. If the probability of a unit to be in the sample depends on the outcome (and possibly some other stratifying
factors), the relationship between the exposure and the mediator can be distorted and standard mediation methods fail.
To address this problem, VanderWeele and Vansteelandt (2010) propose to estimate the mediator equation on the sub-

sample of controls. Under the rare outcome assumption, this can be approximately considered a random sample from
the whole population (VanderWeele & Tchetgen Tchetgen, 2016). To embed information from cases, a unified likeli-
hood approach has also been introduced, again assuming the outcome is rare in the population (Satten et al., 2022).
Another strategy beyond the rare outcome assumption (alsomentioned in VanderWeele & Vansteelandt 2010), is based on
weighting, a proposal originally contained in some papers by Manski and coauthors (Manski & Lerman, 1977; Manski &
McFadden, 1981) in the context of choice-based samples, which are the analogous of stratified case–control (SCC) samples
within the econometric literature (see also van der Laan, 2008). Typically, this strategy requires the outcome prevalence
(possibly within strata) to be known.
With reference to a binarymediator and a binary outcome, bothmodeled via logistic regression, we here propose a para-

metric approach tomediation analysis when the sampling scheme depends on the outcome, and possibly other stratifying
covariates. We exploit knowledge provided by directed acyclic graphs (DAGs, Lauritzen 1996), where an additional binary
node is representing the sampling scheme. In this regard, we are in line with Didelez, Kreiner et al. (2010). We build on
the existing literature on parametric mediation analysis for a binary mediator and a binary outcome (Doretti et al., 2022;
Stanghellini & Doretti, 2019) to derive the explicit expression of the distortion induced by the SCC sampling design on
the mediator logistic equation, in line with recent results on the distortion induced by the sampling scheme on the linear
regression parameters (Kartsonaki & Cox, 2023). We then embed this expression into two estimating procedures based on
maximum likelihood (ML) and M-estimation. Our strategy can be easily adapted to achieve nonparametric identification
and, in turn, to perform nonparametric estimation.
As the result is general and does not hinge on the rare outcome assumption, there are a number of additional situa-

tions where this approach can be of interest. The first one concerns informative missingness in logistic regression. It turns
out that our work extends the derivations in Wang et al. (2017) to the continuous exposure context, also proposing two
likelihood-based estimating procedures that can be easily implemented with standard statistical software. Another situa-
tion of interest arises in CC studies with secondary or additional outcomes (Richardson et al., 2007), which is particularly
common in genetic epidemiology, where information on a secondary phenotype is also of interest (Wang & Shete, 2011).
Similarly, it can be of use to correct for selection bias, provided that units can be seen as randomly sampled according to
some outcome-related binary partition of the population. More generally, properly recovering the distortion induced on
associations by conditioning on a collider node is fundamental for many other purposes. In this sense, this work extends
to a parametric framework the results on odds ratios of Nguyen et al. (2019).
The remainder of the paper is organized as follows. In Section 2.1, we recall themain concepts of causalmediationwithin

the counterfactual framework, including the notions of natural (in)direct effect as well as the assumptions needed to
identify such effects from observable data, both in a nonparametric and a parametric framework. The impact of outcome-
dependent sampling is formalized in Section 2.2. In Section 3 (and the related Appendix), our adjusting identification
strategy is first presented within the parametric framework, and then extended to the nonparametric one. The specifics
of the two parametric estimation methods considered (M-estimation and ML) are described in Section 4. In Section 5, we
apply the proposed methodology to data coming from a German CC study on listeriosis. Our aim is to decompose, in a
counterfactual framework, the effect of reduced immunocompetency (RI) on listeriosis into a direct and an indirect effect,
with the latter due to gastric acid suppressor (GAS) intake. Section 6 reports evidence from a simulation study conducted
to compare M- and ML estimators to weighting estimators, while some concluding remarks are given in Section 7.

2 BACKGROUND

2.1 Causal mediation analysis

Let 𝐴 denote a generic exposure, while 𝑀 and 𝑌 represent the binary mediator and the binary outcome, respectively.
Also, let 𝐶 be a set of observed covariates. To deal with causal mediation, we rely on the counterfactual framework and
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denote by𝑌(𝑎) and𝑀(𝑎) the random variables representing the outcome and the mediator under an intervention setting,
possibly contrary to the facts, 𝐴 to the level 𝑎. Also, we let 𝑌(𝑎,𝑚) represent the outcome when 𝐴 and 𝑀 are set to 𝑎
and 𝑚, respectively. This notation allows to introduce nested counterfactuals. In detail, 𝑌(𝑎,𝑀(𝑎)) denotes the random
outcomeunder an intervention setting𝐴 to 𝑎 and leaving𝑀 to the (random) value it would naturally attain under the same
exposure level 𝑎. Because of this interpretation, the equality 𝑌(𝑎) = 𝑌(𝑎,𝑀(𝑎)) is assumed to hold true, being typically
referred to as composition assumption. On the other hand,𝑌(𝑎,𝑀(𝑎⋆)) denotes the outcome under an intervention setting
𝐴 = 𝑎 but leaving𝑀 to the value it would naturally attain after setting the exposure to another level, that is, 𝑎⋆.
Inmost cases, the casual TEon the outcomeof shifting the level of𝐴 from𝑎⋆ to𝑎 (conditional on𝐶 = 𝑐) is defined on the

difference scale as 𝐸(𝑌(𝑎) − 𝑌(𝑎⋆) ∣ 𝐶 = 𝑐), and an additive decomposition is introduced where TE equals (invoking the
composition assumption) the sum of two components: the natural direct effect (NDE) 𝐸(𝑌(𝑎,𝑀(𝑎⋆)) − 𝑌(𝑎⋆,𝑀(𝑎⋆)) ∣
𝐶 = 𝑐) and the natural indirect effect (NIE)𝐸(𝑌(𝑎,𝑀(𝑎)) − 𝑌(𝑎,𝑀(𝑎⋆)) ∣ 𝐶 = 𝑐) (Pearl 2001; see alsoRobins&Greenland
1992). When the outcome is binary, effects on other scales are also considered. Specifically, VanderWeele and coauthors
introduce the notions of odds-ratio NDE

ORNDE𝑎,𝑎⋆∣𝑐 =
𝑃(𝑌(𝑎,𝑀(𝑎⋆)) = 1 ∣ 𝐶 = 𝑐)∕𝑃(𝑌(𝑎,𝑀(𝑎⋆)) = 0 ∣ 𝐶 = 𝑐)

𝑃(𝑌(𝑎⋆,𝑀(𝑎⋆)) = 1 ∣ 𝐶 = 𝑐)∕𝑃(𝑌(𝑎⋆,𝑀(𝑎⋆)) = 0 ∣ 𝐶 = 𝑐)
(1)

and NIE

ORNIE𝑎,𝑎⋆∣𝑐 =
𝑃(𝑌(𝑎,𝑀(𝑎)) = 1 ∣ 𝐶 = 𝑐)∕𝑃(𝑌(𝑎,𝑀(𝑎)) = 0 ∣ 𝐶 = 𝑐)

𝑃(𝑌(𝑎,𝑀(𝑎⋆)) = 1 ∣ 𝐶 = 𝑐)∕𝑃(𝑌(𝑎,𝑀(𝑎⋆)) = 0 ∣ 𝐶 = 𝑐)
(2)

(Valeri &VanderWeele, 2013; VanderWeele&Vansteelandt, 2010).Multiplication of the above effects returns (again, under
composition) the odds-ratio TE

ORTE𝑎,𝑎⋆∣𝑐 =
𝑃(𝑌(𝑎) = 1 ∣ 𝐶 = 𝑐)∕𝑃(𝑌(𝑎) = 0 ∣ 𝐶 = 𝑐)

𝑃(𝑌(𝑎⋆) = 1 ∣ 𝐶 = 𝑐)∕𝑃(𝑌(𝑎⋆) = 0 ∣ 𝐶 = 𝑐)
.

Clearly, such a decomposition becomes again additive on the log odds-ratio scale.
Regardless of the chosen scale, a number of assumptions are required in order to obtain observed-data expressions

for NDEs and NIEs, that is, to identify these quantities from observed data. In detail, a sufficient set of assumptions
includes consistency, positivity as well as more context-specific assumptions concerning confounding. In words, consis-
tency postulates that counterfactual variables are equal to observable variables whenever conditioning on the appropriate
levels of the exposure and of the mediator occurs. Formally, for every level 𝑎 we have that, given 𝐴 = 𝑎, 𝑀(𝑎) = 𝑀,
and 𝑌(𝑎) = 𝑌. Moreover, for every pair (𝑎,𝑚) we have 𝑌(𝑎,𝑚) = 𝑌 whenever 𝐴 = 𝑎 and 𝑀 = 𝑚 (VanderWeele, 2009;
VanderWeele & Vansteelandt, 2009). Positivity assumes that, for every (𝑎,𝑚, 𝑐) configuration, 𝑃(𝐴 = 𝑎 ∣ 𝐶 = 𝑐) and
𝑃(𝑀 = 𝑚 ∣ 𝐴 = 𝑎, 𝐶 = 𝑐) are strictly greater than 0 (Imai et al., 2010). Clearly, for continuous 𝐴 the former probability is
replaced by the corresponding density function. As for confounding, it is assumed that, conditional on covariates, no resid-
ual confounding exists for the relationship between (i) the exposure and the outcome, (ii) the mediator and the outcome,
and (iii) the exposure and themediator. In the language of conditional independence (Dawid, 1979), these assumptions can
be formalized as (i) 𝑌(𝑎,𝑚) ⟂⟂ 𝐴 ∣ 𝐶, (ii) 𝑌(𝑎,𝑚) ⟂⟂ 𝑀 ∣ 𝐴 = 𝑎, 𝐶, and (iii) 𝑀(𝑎) ⟂⟂ 𝐴 ∣ 𝐶. The assumption completing
the sufficient set is the so-called (iv) cross-world independence assumption 𝑌(𝑎,𝑚) ⟂⟂ 𝑀(𝑎⋆) ∣ 𝐶, which entails a condi-
tional independence between counterfactual variables referring to two different “worlds,” that is, interventional settings
where 𝐴 is fixed to 𝑎 and 𝑎⋆.
In an experimental context, (i) and (iii) could be enforced by randomizing 𝐴, possibly within the levels of 𝐶 (Tch-

etgen Tchetgen, 2013). However, randomization of the treatment would not automatically remove confounding for the
mediator–outcome relationship. In general, a sufficiently rich set of covariates 𝐶 should be collected for (i)–(iii) to hold.
As for the cross-world independence assumption (iv), the simultaneous involvement of two different interventional set-
tings implies that no randomized experiment can be designed to enforce it (Tchetgen Tchetgen & VanderWeele, 2014),
a fact complicating interpretation in observational studies, too. Notice that, without additional assumptions, a recanting
witness (that is, a mediator-outcome confounder that is also affected by the exposure; see Avin et al. 2005) will contradict
assumption (iv), even when all variables are measured (Andrews and Didelez, 2021). When relying on (iv), investigators
need to be very cautious, as these are common structures.
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Under the above assumptions, natural direct and indirect effects can be nonparametrically identified from observed
data. In particular, an observed-data expression for 𝑃(𝑌(𝑎,𝑀(𝑎⋆)) = 𝑦) can be obtained, for 𝑦 ∈ {0, 1} and for every (𝑎, 𝑎⋆)
pair, with Pearl’s mediation formula (Pearl, 2001, 2010) as

𝑃(𝑌(𝑎,𝑀(𝑎⋆)) = 𝑦 ∣ 𝑐) =
∑
𝑚

𝑃(𝑌 = 𝑦 ∣ 𝑎,𝑚, 𝑐)𝑃(𝑀 = 𝑚 ∣ 𝑎⋆, 𝑐), (3)

where 𝑃(⋅ ∣ 𝑘) is a shorthand for 𝑃(⋅ ∣ 𝐾 = 𝑘) used when ambiguities do not occur. This results enables nonparametric
identification of the effects in (1) and (2) and, in turn, of the corresponding TE.
In a parametric context, logistic regression models are often postulated for both the outcome and the mediator. In

particular, we let

logit{𝑃(𝑌 = 1 ∣ 𝑎, 𝑐,𝑚)} = 𝒙⊤𝑦 𝜷 (4)

and

logit{𝑃(𝑀 = 1 ∣ 𝑎, 𝑐)} = 𝒙⊤𝑚𝜹, (5)

where 𝜷 and 𝜹 are coefficient vectors, while 𝒙𝑦 and 𝒙𝑚 contain the values of the explanatory variables (including the con-
stant term). Such a general formulation allows for the presence, in both models, of first- and higher-order (e.g., quadratic)
effects as well as of interaction terms. In this setting, starting from (3) parametric expressions for the effects in (1) and (2)
have been derived. Specifically, we here refer to the approach in Doretti et al. (2022), that extend previous work of Valeri
and VanderWeele (2013) to settings where the exposure (and the mediator) interact with the covariates (also outside the
rare outcome case). The resulting formulas are reported in Section 1 of the Supplementary material.

2.2 Outcome-dependent sampling

As is well-known, in the presence of outcome-dependent sampling some data distributions are artificially altered, thereby
introducing somedegree of distortion. Like in other related approaches (see, e.g., Didelez, Kreiner et al. 2010), we formalize
this fact by introducing a selection indicator variable,𝑊, such that data are available just on the selected units, that is,
those with𝑊 = 1. A straightforward extension, that is not here considered, is when data can be seen as a random sample
extracted from the population with𝑊 = 1.
The binary variable 𝑊 is influenced by 𝑌 via a known probabilistic mechanism, that can be either marginal or con-

ditional on the strata formed by a set of categorical background covariates. These covariates, denoted by 𝐵, might affect
𝐴,𝑀, and 𝑌 as well, possibly acting as confounders. When 𝐵 is empty, this scheme corresponds to the unconditional CC
design. Otherwise, the SCC design arises. We also indicate by 𝑍 an additional set of covariates (of any nature) that do not
influence the selection mechanism𝑊, but that, together with 𝐵, might be needed to address confounding. Thus, we have
𝐶 = (𝐵, 𝑍). The overall framework is represented in the two DAGs in Figure 1, where the𝑊 node is squared in order to
pinpoint its nature of selection node.
In what follows, we account for the presence of 𝐵 and thus refer to the SCC setting, with the CC being a special case

thereof. In order to ease the exposition, without loss of generality we think of 𝐵 and 𝑍 as of singleton variables, with
𝐵 taking values in {1, … ,𝑁B} to represent the 𝑁B different strata formed by background variables. Thus, the 𝒙𝑦 and 𝒙𝑚
vectors in (4) and (5) contain, together with the values of other explanatory variables, stratum-specific indicator variables
𝕀{𝐵 = 𝑏} for 𝑏 = 2,… ,𝑁B (the usual corner-point parameterization taking the first stratum as reference is adopted).
The impact of SCC sampling can be expressed in the language of conditional independence by stating that 𝑌 and𝑀 are

not conditionally independent of𝑊 given the respective parent node sets, with the obvious consequence that

logit{𝑃(𝑌 = 1 ∣ 𝑎, 𝑏, 𝑧,𝑚,𝑊 = 1)} ≠ 𝒙⊤𝑦 𝜷

logit{𝑃(𝑀 = 1 ∣ 𝑎, 𝑏, 𝑧,𝑊 = 1)} ≠ 𝒙⊤𝑚𝜹,
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DORETTI et al. 5 of 22

F IGURE 1 Mediation scheme for the (𝐴,𝑀,𝑌) triplet with covariates in a (a) stratified and (b) unconditional case–control sampling
setting. Only categorical variables 𝐵 affect𝑊, whereas both 𝐵 and 𝑍 may act as confounders by influencing (some of) the variables in
(𝐴,𝑀,𝑌).

which shows that the models postulated in the right-hand sides of (4) and (5) are not identified in the subpopulation of
selected units, and that adjusting approaches are needed. However, by inspection of the DAG it is possible to see that

𝑀 ⟂⟂ 𝑊 ∣ (𝐴, 𝐵, 𝑍, 𝑌) (6)

and therefore 𝑌 can be seen as a selection bias breaking variable, a term introduced elsewhere in the literature (Geneletti
et al., 2009). This property, together with the explicit expressions of the distortion induced by the sampling design on the
parameters of (4) and (5), forms the basis of our proposal. Notice that the minimum conditioning set for independence of
𝑀 and𝑊 to hold is (𝐵, 𝑌). However, since we are interested in the mediating role of𝑀 on the pathway from 𝐴 to 𝑌, all
variables in the conditioning set of (6) are relevant.

3 IDENTIFICATION

In order to identify the coefficients of model (4) from SCC data, it is well-known that simple coefficient adjustments
involving the conditional population prevalences 𝜋𝑏 = 𝑃(𝑌 = 1 ∣ 𝐵 = 𝑏) suffice (Breslow et al., 1988; Fears & Brown, 1986;
Prentice & Pyke, 1979). In detail, the model expression holding in the subpopulation of selected units is given by

logit{𝑃(𝑌 = 1 ∣ 𝑎, 𝑏, 𝑧,𝑚,𝑊 = 1)} = 𝒙⊤𝑦 𝜷
⋆, (7)

where 𝜷⋆ is equal to 𝜷 except for modifications concerning the intercept (𝛽INT) and the coefficient subvector 𝜷B =
(𝛽2, … , 𝛽𝑁B)

⊤ related to the 𝑁B − 1 stratum indicator variables. Specifically, letting 𝑝𝑏 = 𝑃(𝑌 = 1 ∣ 𝑊 = 1, 𝐵 = 𝑏) be the
proportion of cases in the SCC sample for stratum 𝑏, the replacing elements in 𝜷⋆ are

𝛽⋆INT = 𝛽INT + log(𝑘1)

𝜷⋆B = 𝜷B + log(𝒌−1),
(8)

where 𝒌−1 = 𝑘−11 ⋅ (𝑘2, … , 𝑘𝑁B)
⊤ and, for 𝑏 ∈ {1, … ,𝑁B},

𝑘𝑏 =
𝑃(𝑊 = 1 ∣ 𝑌 = 1, 𝐵 = 𝑏)

𝑃(𝑊 = 1 ∣ 𝑌 = 0, 𝐵 = 𝑏)

=
𝑃(𝑌 = 1 ∣ 𝑊 = 1, 𝐵 = 𝑏)

𝑃(𝑌 = 0 ∣ 𝑊 = 1, 𝐵 = 𝑏)
⋅
𝑃(𝑌 = 0 ∣ 𝐵 = 𝑏)

𝑃(𝑌 = 1 ∣ 𝐵 = 𝑏)
=

𝑝𝑏
1 − 𝑝𝑏

⋅
1 − 𝜋𝑏
𝜋𝑏

 15214036, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202300089 by U
niversita D

i Perugia, W
iley O

nline L
ibrary on [29/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 22 DORETTI et al.

(see Appendix A for details). Each of the correction terms above is known whenever 𝜋𝑏 is. Indeed, 𝑝𝑏∕(1 − 𝑝𝑏) is the
stratum-specific CC ratio, which is fixed by design.We here assume 𝜋𝑏 (𝑏 = 1,… ,𝑁B) to be known from external auxiliary
information sources.
We turnnow to themodel for𝑃(𝑀 = 1 ∣ 𝑎, 𝑏, 𝑧, 𝑦,𝑊 = 1). From (6),we know that𝑃(𝑀 = 1 ∣ 𝑎, 𝑏, 𝑧, 𝑦,𝑊 = 1) = 𝑃(𝑀 =

1 ∣ 𝑎, 𝑏, 𝑧, 𝑦). After some derivations, see Appendix A, it is possible to see that

logit{𝑃(𝑀 = 1 ∣ 𝑎, 𝑏, 𝑧, 𝑦)} = 𝒙⊤𝑚𝜹 + 𝑜(𝑦, 𝒙𝑦; 𝜷), (9)

where

𝑜(𝑦, 𝒙𝑦; 𝜷) = log
𝑃(𝑌 = 𝑦 ∣ 𝑎, 𝑏, 𝑧,𝑀 = 1)

𝑃(𝑌 = 𝑦 ∣ 𝑎, 𝑏, 𝑧,𝑀 = 0)
(10)

is a correction term depending on 𝑦 and the coefficient vector 𝜷. The parametric expression of it is (A3) of Appendix A.
Asmentioned in the Introduction, the proposed identification strategy can be implemented also in a nonparametric set-

ting (Pearl, 2001, 2010), thereby enabling causalmediation via the nonparametric formula in (3). The key idea is formalized
in the second part of Appendix A and relies on the postulated conditional independence structure, without invoking any
functional form.

4 PARAMETRIC ESTIMATION

Starting from the identification result in (7), inference on 𝜷⋆ can be conducted from SCCdata in a standardML framework
(Anderson, 1972; Prentice & Pyke, 1979). In parallel to this coefficient adjusting approach, weighting methods have also
been proposed within the econometric literature dealing with choice-based samples (Manski & Lerman, 1977; Manski &
McFadden, 1981), which can essentially be thought of as the analogous of SCC samples (Breslow, 1996). These methods
consist in fitting the population model (4) to the SCC sample, assigning cases and controls in each stratum 𝑏 a weight
equal to 𝜋𝑏∕𝑝𝑏 and (1 − 𝜋𝑏)∕(1 − 𝑝𝑏), respectively. The weighting estimators are consistent but less efficient than the
ones obtained with parameter corrections if the regression model is correctly specified (King & Zeng, 2001). On the other
hand, the parameter correction method might be less robust than weighting in the case of model misspecification (Xie &
Manski, 1989).
Importantly, the weighting approach was also extended to model variables different from the original outcome (some-

times termed secondary or additional outcomes, Richardson et al. 2007); see, for example, the more general work by van
der Laan (2008). Such an extension is of particular relevance in a mediation framework, where the population parameters
of the mediator model also need to be recovered from SCC data in order to achieve effect decomposition (VanderWeele &
Vansteelandt, 2010). In our setting, this would correspond to fitting the population model (5) to the SCC sample with the
same weighting scheme as above.
Here, we introduce an alternative framework where estimation of the 𝜹 vector from SCC data exploits the identification

result in (9). Since 𝜷 is also involved in that equation, our framework is designed for estimating the combined parameter
vector 𝜽 = (𝜷⊤, 𝜹⊤)⊤ altogether. This also fits with themediation setting, where typically both 𝜷 and 𝜹 have to be estimated
at the same time. Two estimation strategies are discussed: in Section 4.1 we present an M-estimation approach, while in
Section 4.2 the above-mentioned ML framework is extended to our bivariate context.

4.1 M-estimation

In a formal M-estimation setting (Huber, 1964), the M-estimator 𝜽M = (𝜷⊤M, 𝜹
⊤
M)

⊤ is the vector satisfying

𝝍(𝜽M) =

(
𝒔𝑦(𝜽M)

𝒔𝑚(𝜽M)

)
= 𝟎2𝑑𝜃 ,

where 𝑑𝜃 is the dimension of 𝜽 and 𝒔𝑦(⋅) and 𝒔𝑚(⋅) are the observed score functions associated to the models in (7) and (9),
respectively (see Appendix B for their expressions). In practice, a two-step procedure is required. First, the 𝜷M estimate is
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DORETTI et al. 7 of 22

obtained by fittingmodel (7) and implementing the corrections for 𝛽INT and 𝜷B. Then, 𝜹M is computed by fittingmodel (9),
where 𝑜(𝑦, 𝒙𝑦; 𝜷M) is included as an offset term. Notice that 𝜹M is called a partialM-estimator (Stefanski & Boos, 2002),
since it requires the 𝜷M estimate of the first step to be plugged-in in place of the unknown 𝜷 vector (Randles, 1982). In this
case, knowledge of the adjusting terms log(𝑘1) and log(𝒌−1) is essential, since the estimated offset 𝑜(𝑦, 𝒙𝑦; 𝜷M) contains
𝛽INT and 𝜷B, rather than 𝛽⋆INT and 𝜷

⋆
B , in its expression.

The variance–covariance matrix of the 𝜽M estimator is given by

𝑉(𝜽M) =
1

𝑛
𝐴(𝑌𝑖, 𝜽)

−1𝐵(𝑌𝑖, 𝜽){𝐴(𝑌𝑖, 𝜽)
−1}⊤,

where

𝐴(𝑌𝑖, 𝜽) = 𝐸

{
𝜕𝚿𝑖(𝜽)

𝜕𝜽⊤

}
𝐵(𝑌𝑖, 𝜽) = 𝐸

{
𝚿𝑖(𝜽)𝚿

⊤
𝑖
(𝜽)

}

and𝚿𝑖(𝜽) is the score random vector of a generic unit 𝑖. The finite-sample estimate of 𝑉(𝜽M) can be computed as

�̂�(𝜽M) =
1

𝑛
𝐴(𝒚, 𝜽M)

−1𝐵(𝒚, 𝜽M)
{
𝐴(𝒚, 𝜽M)

−1
}⊤
, (11)

where 𝐴(𝒚, 𝜽) and 𝐵(𝒚, 𝜽) are the sample equivalent of 𝐴(𝑌𝑖, 𝜽) and 𝐵(𝑌𝑖, 𝜽) (Stefanski & Boos, 2002). Their expressions
are also reported in Appendix B.

4.2 ML estimation

Since we are dealing with an SCC sample, the likelihood of the observed data corresponds to the conditional density of
the (𝑀,𝐴, 𝑍) random vector given (𝑌, 𝐵) and 𝑊 = 1. As not only the 𝜷 parameters of (4) are the object of inference,
but also the 𝜹 parameters of (5), ML theory developed by Prentice and Pyke (1979) should be extended. With reference
to discrete choice models, Imbens (1992) provides more general results that can be applied to this context. Specifically,
given 𝑛 independent sample units indexed by 𝑖 = 1, … , 𝑛, it follows from Imbens (1992) that ML estimation of 𝜽 can be
performed by maximizing

𝐿(𝜽) =

𝑛∏
𝑖=1

𝑃(𝑌𝑖 = 𝑦𝑖,𝑀𝑖 = 𝑚𝑖 ∣ 𝑎𝑖, 𝑧𝑖, 𝑏𝑖,𝑊𝑖 = 1). (12)

An additional factorization of (12) leads to

𝐿(𝜽) =

𝑛∏
𝑖=1

𝑃(𝑌𝑖 = 𝑦𝑖 ∣ 𝑎𝑖, 𝑧𝑖, 𝑏𝑖,𝑊𝑖 = 1)𝑃(𝑀𝑖 = 𝑚𝑖 ∣ 𝑎𝑖, 𝑧𝑖, 𝑏𝑖, 𝑦𝑖,𝑊𝑖 = 1),

so that the corresponding log-likelihood 𝓁(𝜽) = log 𝐿(𝜽) is equal to

𝓁(𝜽) =

𝑛∑
𝑖=1

𝓁𝑖(𝜽) =

𝑛∑
𝑖=1

𝑦𝑖 log 𝑝𝑦⋆
(𝑚)

,𝑖 + (1 − 𝑦𝑖) log
{
1 − 𝑝𝑦⋆

(𝑚)
,𝑖

}
+𝑚𝑖 log 𝑝𝑚𝑦,𝑖 + (1 − 𝑚𝑖) log

{
1 − 𝑝𝑚𝑦,𝑖

}
,

(13)

where 𝑝𝑦⋆
(𝑚)

,𝑖 and 𝑝𝑚𝑦,𝑖 are shorthands for the two probabilities 𝑃(𝑌𝑖 = 1 ∣ 𝑎𝑖, 𝑧𝑖, 𝑏𝑖,𝑊𝑖 = 1) and 𝑃(𝑀𝑖 = 1 ∣

𝑎𝑖, 𝑧𝑖, 𝑏𝑖, 𝑦𝑖,𝑊𝑖 = 1), respectively. While the latter is related to the parameter vector 𝜽 via (9), the former involves
marginalization over the binary mediator𝑀. The corresponding model on the logistic scale can be written as

logit{𝑃(𝑌 = 1 ∣ 𝑎, 𝑧, 𝑏,𝑊 = 1)} = logit{𝑃(𝑌 = 1 ∣ 𝑎, 𝑧, 𝑏,𝑀 = 0,𝑊 = 1)} + 𝑔(𝒙𝑦, 𝒙𝑚; 𝜷, 𝜹), (14)
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8 of 22 DORETTI et al.

where the first term is (7) evaluated at𝑀 = 0 while

𝑔(𝒙𝑦, 𝒙𝑚; 𝜷, 𝜹) = log
𝑃(𝑀 = 0 ∣ 𝑌 = 0, 𝑎, 𝑧, 𝑏,𝑊 = 1)

𝑃(𝑀 = 0 ∣ 𝑌 = 1, 𝑎, 𝑧, 𝑏,𝑊 = 1)

is a correction term which depends on 𝒙𝑦 , 𝒙𝑚 as well as on both parameter vectors. See Appendix C for the parametric
expression of (14).
Within this framework, theML estimate of 𝜽, 𝜽ML, can be obtained bymaximizing the log-likelihood in (13) via the usual

iterativemethods. Since thesemethods are likely to suffer from localmaxima problems, it is advisable to set several starting
points fluctuating around a sensible deterministic choice (see Section 5.2 for an account of the approach undertakenwithin
our specific application). To further enhance the performance of optimization algorithms, it is typically useful to provide
the expression of the log-likelihood gradient 𝒔(𝜽) = 𝜕𝓁(𝜽)∕𝜕𝜽, which is reported in Appendix D.
In linewith standard theory, the estimated variance–covariancematrix of 𝜽ML is given by {−𝐻(𝜽ML)}−1, where𝐻(𝜽ML) =

{𝜕𝒔(𝜽)∕𝜕𝜽⊤}𝜽=𝜽ML is the Hessian matrix computed at 𝜽ML. Alternatively, sandwich estimation (Royall, 1986; White, 1980)
can be performed via

ĉov(𝜽ML) = {−𝐻(𝜽ML)}
−1𝑸(𝜽ML){−𝐻(𝜽ML)}

−1,

where 𝑸(𝜽ML) =
{∑𝑛

𝑖=1
𝒔𝑖(𝜽)𝒔𝑖(𝜽)

⊤
}
𝜽=𝜽ML

and 𝒔𝑖(𝜽) is the individual contribution of the 𝑖th unit to 𝒔(𝜽).

5 CASE STUDY

5.1 The listeriosis data set

To illustrate the proposed approach, we reconsider the data set analyzed by Preußel et al. (2015), where risk factors related
to listeriosis in Germany are investigated. Listeriosis is an infection primarily contracted through the intake of food
contaminated with Listeria monocytogenes bacteria. It mainly affects older adults, individuals with weakened immune
systems, and pregnant women (Goulet et al., 2012). Consequences might be quite severe, ranging from the development
of life-threatening conditions for the fetus—in the case of pregnancy—to severe illness or death in the other cases.
The study by Preußel et al. (2015) focusses on sporadic nonpregnancy-associated listeriosis. Many food-related risk

factors, like consumption of cold cooked sausages and presliced cheese, are considered in combination with personal
characteristics as well as other risk factors such as RI or the intake of GASs. The latter act as effect modifiers and can also
be thought of as risk factors themselves when focus goes beyond food-related factors (Bavishi &Dupont, 2011; Goulet et al.,
2012; Ho et al., 1986; Mook et al., 2013). In this application, we build upon this framework and extend it to a mediation
setting in order to investigate whether—and to what extent—the additional vulnerability to listeriosis due to RI goes
through the intake of GASs, which are commonly prescribed drugs for patients with RI (Ahrens et al., 2012; Preußel et al.,
2015). In line with the original approach of Preußel et al. (2015), the exposure (RI) is coded as a categorical variable with
three mutually exclusive levels: 0 = none, 1 = RI due to immunocompromising diseases without immunosuppressive
therapies (e.g., diabetes, autoimmune disorder), and 2 = RI due to immunosuppressive therapies (e.g., chemotherapy,
radiation therapy). The mediator (GAS intake) is binary (0 = no, 1 = yes). RI and GAS intake are considered present if
occurring within 3 months from listeriosis onset (cases) or interview (controls).
As reported by Preußel et al. (2015), 732 sporadic (i.e., not due to an outbreak) nonpregnancy-associated listeriosis

cases were ascertained in the time span from March 15, 2012 to December 31, 2013 (21.5 months) among the residents
of German Federal states aged 40 or more (40+), with the exception of Bremen, which accounts for around 0.8% of the
German population. Given that the 40+ German population on December 31, 2012 was 46,597,036,1 the yearly incidence
(accounting for the exclusion of Bremen) is given by (12∕21.5) ⋅ {732∕(46, 597, 036 ⋅ 0.992)} = 8.84 × 10−6. The overall
listeriosis prevalence can be reconstructed from such an incidence assuming that 7 days is the average length of infection.
The obtained prevalence rate is (7∕365) ⋅ 8.84 × 10−6 = 1.70 × 10−7.

1 See Table 12411-0005 of the Federal Statistical Office of Germany database. The table can be accessed from this link, following the path corresponding
to its number sequence.
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F IGURE 2 Directed acyclic graphs (DAGs)
representing the (a) initially postulated and (b) final
scheme when investigating the association between
reduced immunocompetency (RI) and listeriosis
through gastric acid suppressor (GAS).

In the study of Preußel et al. (2015), 1982 controls were enrolled along with cases from the population of subjects with no
history of listeriosis which are accessible by telephone in Germany. Specifically, in order to obtain an SCC data set controls
were sampled to get an equal number of individuals in the three age classes (ACs) 40–65, 66–75, and 76+ years, according
to the age distribution of cases in the 2004–2011 years. However, only 109 of the 732 originally ascertained cases entered the
study, and only 99 remained in the data set after preliminary data cleansing/missing data removal. The age distribution of
the 109 cases entering the study (38.53% 40–65 years, 35.78% 66–75 years, and 25.69% 76+ years) differs from the uniform
distribution of controls, and so does the distribution of the 99 cases in the final data set (39.40% 40–65 years, 36.36% 66–75
years, and 24.24% 76+ years). Because of these discrepancies, treating the data set as if it was gathered from an SCC design
might not be entirely correct. Also, in an unconditional CC design the age distribution of the controls should be close to
the age distribution of the 40+ population (65.94% 40–65 years, 18.83% 66–75 years, and 15.23% 76+ years on December 31,
2012), differing by sampling error only. As expected, this is not the case for the data set at hand, either.
We obviate the above-mentioned issues by randomly selecting a fixed number of controls (eight times the number

of cases) in a way such that the age distribution of the German 40+ population is matched, thereby generating an
unconditional CC sample. This sample, combined with the obtained prevalence rate, allows to implement the identifi-
cation and estimation approach described in Sections 3 and 4. The resulting adjusting correction term for the intercept is
log(𝑘1) = 13.511. In what follows, estimation results from this CC sample are discussed, whereas in the Supplementary
material (Section 2) estimates from an SCC sample (based on stratification on ACs) are reported.

5.2 Results

The causal structure underlying the listeriosis data set is studied in Preußel et al. (2015), where evidence from the
epidemiological literature is reported in justification of every postulated relationship between variables. Specifically,
after marginalization over food-related factors, age, educational level, and gender are identified as exposure–outcome,
mediator–outcome, and exposure–mediator confounders. In principle, this setting does not contradict assumption (iv),
too. However, such an assumption may still be violated (see Section 2.1), so particular caution is needed since results will
depend on its validity.
In accordance with the above data-generating process, we initially include age, educational level, and gender in both

the outcome and mediator model (Figure 2a). However, subsequent analyses lead to keeping only age (coded with the
three classes introduced above) in the outcome model, and no covariates in the mediator model (see Figure 2b). With this
regard, it is worth to underline that model selection is conducted separately for the two models, within an M-estimation
framework. In detail, selection procedures for the mediator model are implemented conditionally on the estimated off-
set term, 𝑜(𝑦, 𝒙𝑦0 ; 𝜷M), resulting from the selected outcome model. Even at intermediate steps of the selection process,
inference is based on the estimated variance–covariance matrix (11) rather than on the naive standard errors returned by
statistical software.
Table 1 reports results for two pairs of logistic models fitted with M-estimation, ML, and weighting. Standard errors

are obtained with a sandwich approach not only for M- and ML estimation (see Section 4), but also for weighting. ML
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10 of 22 DORETTI et al.

TABLE 1 Estimates (est.), standard errors (s.e.), and p-values (𝑝) of logistic models for the outcome and the mediator without (top) and
with (bottom) interactions between reduced immunocompetency (RI) and age class (AC) in the outcome model. AC = 1 is 40–65 years
(baseline), AC = 2 is 66–75 years, and AC = 3 is 76+ years.

M-estimation ML Weighting
est. s.e. 𝒑 est. s.e. 𝒑 est. s.e 𝒑

Outcomemodel
Intercept −16.963 0.228 0.000 −16.951 0.224 0.000 −17.113 0.245 0.000
RI = 1 1.318 0.287 0.000 1.309 0.287 0.000 1.416 0.296 0.000
RI = 2 2.209 0.278 0.000 2.199 0.279 0.000 2.177 0.280 0.000
AC = 2 1.016 0.263 0.000 1.018 0.261 0.000 0.973 0.283 0.001
AC = 3 0.747 0.305 0.014 0.729 0.307 0.018 0.725 0.311 0.020
GAS = 1 0.974 0.307 0.002 0.976 0.318 0.002 1.161 0.384 0.002
Mediator model
Intercept −3.279 0.219 0.000 −3.280 0.218 0.000 −3.159 0.208 0.000
RI = 1 0.870 0.333 0.009 0.869 0.335 0.009 0.529 0.421 0.209
RI = 2 0.855 0.344 0.013 0.854 0.351 0.015 0.594 0.472 0.208
Outcomemodel
Intercept −17.088 0.296 0.000 −17.103 0.298 0.000 −17.250 0.299 0.000
RI = 1 0.872 0.564 0.122 0.899 0.555 0.105 0.798 0.566 0.159
RI = 2 2.697 0.393 0.000 2.728 0.391 0.000 2.668 0.398 0.000
AC = 2 0.902 0.477 0.059 0.959 0.469 0.041 0.853 0.478 0.074
AC = 3 1.417 0.465 0.002 1.440 0.459 0.002 1.382 0.465 0.003
RI = 1,AC = 2 1.228 0.752 0.102 1.136 0.738 0.124 1.484 0.794 0.061
RI = 2,AC = 2 −0.575 0.656 0.381 −0.653 0.644 0.311 −0.574 0.669 0.391
RI = 1,AC = 3 −0.301 0.780 0.700 −0.330 0.776 0.670 −0.111 0.812 0.891
RI = 2,AC = 3 −1.432 0.674 0.034 −1.514 0.677 0.025 −1.255 0.703 0.074
GAS = 1 0.973 0.309 0.002 0.976 0.318 0.002 1.267 0.412 0.002
Mediator model
Intercept −3.279 0.219 0.000 −3.280 0.218 0.000 −3.159 0.208 0.000
RI = 1 0.870 0.330 0.008 0.869 0.335 0.009 0.529 0.421 0.209
RI = 2 0.856 0.347 0.014 0.854 0.351 0.015 0.594 0.472 0.208

Abbreviations: GAS, gastric acid suppressor; ML, maximum likelihood.

estimation is performed through direct maximization of the log-likelihood function by means of the maxLik function in
R (Henningsen & Toomet, 2011). Multiple starting values (10) are obtained by perturbing the 𝜽M vector obtained from the
M-estimates with a random normal deviation with null mean and standard deviation equal to 0.5. All attempts converge
to the same solution. However, unstable solutions might occur when starting values are determined totally at random.
In the first pair of models (top part of Table 1), the outcome equation does not contain interaction effects between AC

and RI, whereas in the second pair (bottom part of the table) it does. Conversely, the mediator equation always includes
RI effects only, meaning that its selection strategy is not influenced by whether or not interactions are included in the
outcome model (parameter estimates are in practice not sensitive to this change, too). The choice between the outcome
model with and without interactions is not straightforward. Indeed, only the coefficient for RI = 2,AC = 3 is significant.
However, an overall ANOVA test comparing them (within the M-estimation framework) provides evidence in favor of the
extended one (𝜒2 deviance statistics equal to 10.787 with 4 degrees of freedom, 𝑝-value 0.029). Evidence is mixed also with
regard to the Akaike and Bayesian Information Criteria, with the former favoring the interaction model (522.67 vs. 525.46
for the no interactionmodel), and the latter favoring the no interactionmodel (554.21 vs. 570.59 for the interactionmodel).
For this reason, both pairs are kept for reference. In order to ease interpretation, the outcome regression coefficients of
AC and RI are also linearly combined to obtain contrasts, on the log odds-ratio scale, between any pair of levels. These
are reported, together with their standard errors, in Table 2, both for the no interaction (top part) and interaction (bottom
part) setting. Clearly, in the latter case the estimated contrasts of each factor are conditional on the level of the other.
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DORETTI et al. 11 of 22

TABLE 2 Estimated log odds-ratio contrasts (with standard errors and p-values) between any pair of levels for outcome effects of age
class (AC) and reduced immunocompetency (RI), both for the no interaction (top) and interaction (bottom) model. Stars denote contrasts
related to regression coefficients, already in Table 1.

M-estimation ML Weighting
est. s.e. 𝒑 est. s.e. 𝒑 est. s.e 𝒑

Outcomemodel without interactions
Age Class (AC)

2 vs. 1⋆ 1.016 0.263 0.000 1.018 0.261 0.000 0.973 0.283 0.001
3 vs. 1⋆ 0.747 0.305 0.014 0.729 0.307 0.018 0.725 0.311 0.020
3 vs. 2 −0.268 0.322 0.405 −0.289 0.326 0.377 −0.249 0.331 0.452

RI
1 vs. 0⋆ 1.318 0.287 0.000 1.309 0.287 0.000 1.416 0.296 0.000
2 vs. 0⋆ 2.209 0.278 0.000 2.199 0.279 0.000 2.177 0.280 0.000
2 vs. 1 0.891 0.286 0.002 0.890 0.287 0.002 0.761 0.301 0.012
Outcomemodel with interactions

AC = 2 versus AC = 1
RI = 0⋆ 0.902 0.477 0.059 0.959 0.469 0.041 0.853 0.478 0.074
RI = 1 2.131 0.576 0.000 2.095 0.569 0.000 2.337 0.609 0.000
RI = 2 0.327 0.450 0.467 0.307 0.441 0.486 0.280 0.470 0.551

AC = 3 versus AC = 1
RI = 0⋆ 1.417 0.465 0.002 1.440 0.459 0.002 1.382 0.465 0.003
RI = 1 1.117 0.624 0.074 1.110 0.626 0.076 1.271 0.655 0.053
RI = 2 −0.015 0.488 0.976 −0.073 0.498 0.883 0.127 0.519 0.807

AC = 3 versus AC = 2
RI = 0 0.515 0.520 0.322 0.481 0.509 0.345 0.528 0.517 0.307
RI = 1 −1.014 0.511 0.047 −0.985 0.533 0.065 −1.067 0.539 0.048
RI = 2 −0.342 0.550 0.534 −0.380 0.555 0.493 −0.153 0.587 0.794

RI = 1 versus RI = 0
AC = 1⋆ 0.872 0.564 0.122 0.899 0.555 0.105 0.798 0.566 0.159
AC = 2 2.101 0.492 0.000 2.035 0.491 0.000 2.282 0.521 0.000
AC = 3 0.572 0.537 0.287 0.569 0.543 0.295 0.687 0.562 0.222

RI = 2 versus RI = 0
AC = 1⋆ 2.697 0.393 0.000 2.728 0.391 0.000 2.668 0.398 0.000
AC = 2 2.122 0.523 0.000 2.076 0.513 0.000 2.094 0.530 0.000
AC = 3 1.265 0.546 0.021 1.214 0.551 0.028 1.413 0.570 0.013

RI = 2 versus RI = 1
AC = 1 1.825 0.545 0.001 1.829 0.537 0.001 1.870 0.547 0.001
AC = 2 0.021 0.485 0.965 0.041 0.485 0.933 −0.188 0.523 0.719
AC = 3 0.693 0.573 0.227 0.646 0.592 0.275 0.726 0.602 0.228

Abbreviation: ML, maximum likelihood.

Tables 1 and 2 show that ML and M-estimation provide very similar results for both model pairs. In particular, the
estimated coefficient for the effect of GAS intake on listeriosis development is always positive (very close to 0.97, 𝑝-
value 0.002). This confirms that GAS intake remains positively associated with listeriosis, even when controlling for
RI (Preußel et al., 2015). Similar conclusions can be drawn for RI effects due to both diseases (RI = 1) and therapies
(RI = 2) on GAS intake, with all coefficients being around 0.86 (𝑝-values lower than 0.02). In light of these results,
we can conclude that there is no evidence of a difference between diseases and therapies with respect to their effect on
GAS intake.
With regard to effects of age on the outcome, the interaction model shows an increasing pattern for the no RI (RI = 0)

group, although the shift from the 40–65 to the 66–75 AC is barely significant for M-estimation (𝑝-value 0.059), and that
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12 of 22 DORETTI et al.

from the 66–75 to the 76+ class is not significant (𝑝-values greater than 0.30). ForRI= 1, a rather relevant positive difference
is estimated for the contrast involving the second and the first ACs. Conversely, the estimated difference between the third
and the first class is smaller (and barely significant, 𝑝-values around 0.07). As a consequence, the risk for listeriosis in the
second class is higher than that of the third one, with the difference being significant to some extent (𝑝-value 0.047 for M-
estimation and 0.065 forML). For the RI= 2 group, no significant differences amongACs are present. In the no interaction
model, a unique pattern is estimated for all RI groups which is similar to the one described for the RI = 1 group in the
model with interactions, although with reduced magnitudes and no significance for the contrast between the third and
second AC (𝑝-values greater than 0.35).
As for RI effects on the outcome, in the no interaction model we notice a significantly increased vulnerability to lis-

teriosis when moving from RI = 0 to both RI = 1 and RI = 2 (𝑝-values lower than 0.001). The difference between the
latter levels is significant, too, with immunosuppressive therapies further enhancing the risk for listeriosis with respect
to immunocompromising diseases (𝑝-values 0.002). Effect magnitudes are in line with the findings in the original study
(see Preußel et al., 2015). In the model with interactions, such a pattern of effect directions is preserved within each AC,
though with different magnitudes and significance levels. Overall, we can conclude that: (i) only therapies have a signif-
icant effect in the 40–65 class, (ii) differences between therapies and diseases are essentially null in the 66–75 class, and
(iii) RI effects considerably lessen in the 76+ class.
In terms of effect direction and statistical significance, results from the weighting approach are not extremely dissimilar

to those previously reported. However, some noteworthy discrepancies emerge which concern GAS intake effects in the
outcome model and RI effects in the mediator model. For the former, we observe a sensible increase in the coefficients
with respect to M- and ML estimation. Moreover, it is important to remark that these estimates are somewhat less robust
to model specification, with two rather distant values in the models with and without AC-RI interactions (1.267 and 1.161,
respectively). As for RI effects on GAS intake, the comparison with the other two approaches yields smaller coefficients,
with no significant differences between any pair of levels.

5.2.1 Causal mediation effects

Since consistency, composition and positivity are technical statements not strictly related to the application context, and
the plausibility of assumptions (i)–(iv) has already been discussed in Section 5.2, causal mediation analysis through nat-
ural effect decomposition can also be performed. As stated in Section 2.1, in general log odds-ratio NDEs and NIEs can
be parametrically estimated with the formulas reported in Section 1 of the Supplementary material. In particular, when
the outcome is rare conditionally on the levels of its explanatory variables and the mediator does not interact with the
exposure, it can be shown that the nonlinear component of the NDE estimator tends to vanish (see Equation 3 of the Sup-
plementarymaterial). Since this is the case in our applied context, it follows that estimated exposure effects in the outcome
model (i.e., RI effects in Table 2) are good approximations of log odds-ratio NDEs. In addition, as there are no mediator–
covariate interactions in the outcome model and no covariates in the mediator model, log odds-ratio NIEs depend very
little on the covariate patterns (with differences at the sixth digit), even in the setting with interactions (again, refer to
Supplementary material Section 1 for details).
With regard to M- and ML estimation, the NIEs related to the RI = 2 versus RI = 1 contrast are always very close to

0 and not significant. This is due to the almost null difference between the effects of these two exposure levels in the
mediator model (see the corresponding regression coefficients in Table 1). Conversely, when the reference level of RI is 0,
NIEs lie around 0.068, with Delta-method (Oehlert, 1992) standard errors close to 0.042 (𝑝-value 0.105). An exception is
represented by the RI = 2 versus RI = 0 contrast in the setting with interactions, where the NIE has the same magnitude
but the standard error is 0.037 (𝑝-value 0.066). As for weighting, the log odds-ratio NDE and NIE values are slightly
different, reflecting the fact that the estimated regression coefficients differ from those of the other approaches (see the
related discussion in Section 5.2). However, the interpretation of results is essentially the same. In Table 3, we report the
proportion of RI effect mediated by GAS intake (for the 1 vs. 0 and the 2 vs. 0 contrasts) on the log odds-ratio scale. This
proportion is small but nonnegligible, since it ranges from 2.4% to 10.9% across RI contrasts and ACs. Nevertheless, it is
worth to remark that the significance of estimated NIEs is weak, and that total causal effects are nonsignificant whenever
the corresponding NDEs also are.
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TABLE 3 Proportion of reduced immunocompetency (RI) effect mediated by gastric acid suppressor (GAS) intake.

M-estimation ML Weighting
RI contrast 1 vs. 0 2 vs. 0 1 vs. 0 2 vs. 0 1 vs. 0 2 vs. 0

Outcomemodel without interactions
AGE = All 0.050 0.030 0.050 0.030 0.035 0.027

Outcomemodel with interactions
AGE = 40–65 0.074 0.024 0.072 0.024 0.069 0.025
AGE = 66–75 0.032 0.031 0.033 0.032 0.025 0.032
AGE = 76+ 0.108 0.051 0.109 0.053 0.079 0.046

Abbreviation: ML, maximum likelihood.

6 SIMULATION STUDY

In this section, we present a simulation study conducted to investigate the finite-sample properties of the M- and ML
estimators introduced in Section 4. The performance of these estimators is compared to that of the weighting estimator,
implemented for both the outcome and mediator model. The target parameters are causal natural direct and indirect
effects, that can be computed as detailed in the previous sections. In Section 6.1, the structure of the study is described,
while results are reported in Section 6.2.

6.1 Design

The simulation study mimics the two models of the case study in Section 5 (i.e., with and without RI–AC interactions) by
using the same distribution of the covariates and taking population parameter values for (4) and (5) quite close to those
estimated from that data set. The only exception concerns the outcome model intercept, which is raised in order to get a
slightly higher expected prevalence. In this way, at least 100 cases for each simulated population are obtained.We generate
1000 populations of 3 million individuals. For each generated population, we extract both a CC and an SCC sample, the
latter involving stratification on ACs. In detail, we randomly select 100 or 50 cases, and for each case we randomly select
five or eight controls from its AC (SCC setting) or from the entire population of controls (CC setting). Notice that for each
repetition marginal as well as AC-specific population prevalences can be computed exactly.
For every combination of the above factors (number of cases, number of controls per case, and CC or SCC setting), four

scenarios are considered. In all scenarios, RI and AC are simulated randomly with 𝑃(RI = 0) = 0.73, 𝑃(RI = 1) = 0.16,
𝑃(RI = 2) = 0.11, 𝑃(AC = 1) = 0.66, 𝑃(AC = 2) = 0.19, 𝑃(AC = 3) = 0.15. Furthermore, the mediator (GAS intake) is
generated by 𝑀 ∼ Be(expit(𝒙⊤𝑚𝜹)), with 𝒙⊤𝑚 = (1, 𝕀{RI = 1}, 𝕀{RI = 2}) and 𝜹 = (−3.3, 0.8, 0.8)⊤. On the other hand, the
outcome (listeriosis onset) is generated in two different ways, by using different 𝒙𝑦 and 𝜷 to generate 𝑌 ∼ Be(expit(𝒙⊤𝑦 𝜷)).
In Scenarios 1 and 2 (corresponding to the no interaction model), 𝒙𝑦12 is as in the top part of Table 1 and 𝜷𝟏𝟐 =

(−8.5, 1.3, 2.2, 1.0, 0.7, 1.0)⊤. In Scenarios 3 and 4 (corresponding to the RI-AC interaction model), 𝒙𝑦34 is as in the bot-
tom part of Table 1 and 𝜷𝟑𝟒 = (−9, 0.9, 2.7, 0.9, 1.5, 1.2, −0.6, −0.5, −1.6, 1)⊤. In order to test the estimators’ performance
in the presence of model misspecification, in Scenarios 2 and 4 we have added a normally distributed variable with mean
0 and standard deviation 2 in the estimation of the outcome model; this variable was not there in the data-generating
process and therefore the logit link is no longer an appropriate link.
Since the conditions mentioned in Section 5.2.1 (no exposure–mediator and mediator–covariate interactions in the out-

come model, conditional outcome rareness) still hold in this simulation setting, the benchmark log odds-ratio NDEs are
very close to the conditional RI effects that can be reconstructed from the regression coefficients, while log odds-ratio
NIEs are almost invariant to AC patterns. Specifically, in Scenarios 1 and 2 all NDEs are very close to 1.3 (for RI = 1 vs. RI
= 0) and to 2.2 (for RI = 2 vs. RI = 0), whereas in Scenarios 3 and 4 the reference values for the three ACs are 0.9, 2.1, and
0.4 (for RI= 1 vs. RI= 0) and 2.7, 2.1, and 1.1 (for RI= 2 vs. RI= 0). Moreover, for all scenarios and contrasts log odds-ratio
NIEs are very close to 0.063. With this respect, it is worth to clarify that in Scenarios 2 and 4 estimated natural effects
are computed by setting the additional normal covariate in the outcome model to 0. However, this choice is essentially
irrelevant, since such a covariate does not interact either with RI or AC, so all effects depend very little on its level.
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6.2 Results

Table 4 summarizes the performance metrics of the three estimators of log odds-ratio NDEs and NIEs for the CC setting
with eight controls per case. Analogous tables for the CC setting with five controls per case and for the SCC setting (with
both five and eight controls per case) are reported in Section 3 of the Supplementary material (Tables 2–4). In all these
tables, effects refer to the RI = 2 versus RI = 0 contrast.
For a few repetitions, when using 50 cases, the maximization was unstable, resulting in nonconvergence of the regres-

sion models. This was more common for M-estimation and weighting, however for these repetitions the ML estimates
were also nearly singular and therefore rendered very unstable estimates. To make comparisons between estimators fair,
we removed the repetitions (between 0 and 5 depending on sample size and scenario) for which one or more method was
not able to estimate both the regression parameters and the standard errors of the regression parameters (see Table 5 in
the Supplementary material for the exact number of removed repetitions).
In all configurations, the NIE is very small compared to the NDE, therefore the behavior of the TE (not shown) is quite

close to that of the NDE. There are no dramatic differences between the estimators of the NDE: ML and M-estimation
always outperform weighting in Scenarios 1 and 2 (though with different intensities), whereas in Scenarios 3 and 4 there
is a less univocal pattern (see results across the four tables). For these estimators, empirical coverage is always close to the
nominal level, even in the presence of bias.
The ML and M-estimators of NIEs are often similar and show, for each configuration, lower bias and root mean square

error compared to the weighting estimator, especially when the number of cases is lower. Regardless of the estimation
method, slight systematic undercoverage occurs, suggesting that 95% confidence intervals should be interpreted with cau-
tion. This is unsurprising since NIEs are nonlinear functions of the regression parameters, and therefore their estimates
are more prone to deviate from the normal distribution in finite samples. Conversely, NDEs suffer considerably less from
this issue. This is due to the absence of exposure–mediator interactions and to the conditional rareness of the outcome,
thanks to which the nonlinear component of estimated NDEs tends to be negligible (see Section 5.2.1).

7 DISCUSSION

Weconsider SCCdesigns defined on a certain variable (primary outcome) andwe address the problemofmodeling another
binary variable (secondary outcome) from the resulting data set. In detail, we assume that a logistic regression model for
the secondary outcome holds in the target population, and we recover the parameters of such a model via a simple offset
adjustment; see Sections 3 and 4. Like in other frameworks, knowledge of the (conditional) prevalence(s) of the primary
outcome in the population is required.
Our analytical solution allows one to perform parametric causal mediation analysis from SCC data in settings where

both the outcome and the mediator are binary. However, the identification strategy can be exploited also in a nonpara-
metric framework.With reference to parametric estimation, we have shown in Section 4 how the derived offset correction
leads toM- andMLestimation of the joint (i.e., outcome andmediator)model parameter vector, provided that the intercept
and/or the coefficients of background variables in the outcome model are suitably adjusted. These estimation methods
are opposed to weighting, where such adjustments are not needed. It is worth to mention that the general ML framework
by Imbens (1992) can also account for the setting (not considered here) where the primary outcome prevalences in the
population have to be estimated along with other parameters. However, in that case the procedure described in Section 4.2
would need modifications in order to return suitable ML estimates and standard errors.
Our simulation study, which targets log odds-ratio NDEs and NIEs, shows that M- and ML estimation typically

outperform weighting (though with exceptions), even in the presence of model misspecification. In particular, better per-
formances are observed for NIEs, a finding suggesting that the efficiency gains of these two estimation methods extend to
secondary outcome models.
The proposed approach is exemplified via the analysis of data gathered within a German study on listeriosis conducted

by Preußel et al. (2015). Specifically, we take a novel perspective and focus on evaluating whether the effect of RI on liste-
riosis development is mediated by the intake of GASs. We try to answer this question also in causal terms by decomposing
the total causal effect of RI on listeriosis into theNDE and theNIE, thoughwe acknowledge that such a terminologymight
be somewhat questionable from a strict causal mediation standpoint. This is because RI and GAS intake do not indeed
cause listeriosis; the ingestion of food contaminated with L. monocytogenes bacteria (predominantly) or other unknown
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DORETTI et al. 15 of 22

TABLE 4 Root mean square error (RMSE), Bias, and Empirical coverage of 95% confidence intervals for estimates of log odds-ratio
natural direct effects (NDEs) and natural indirect effects (NIEs) (RI = 2 vs. RI = 0 contrast, case–control (CC) setting with eight controls per
case). Confidence intervals are constructed assuming normal distribution (which is not always appropriate, see comments in text) and
standard errors are computed with sandwich estimators. For Scenarios 1 and 2, we report result for age class (AC) = 3, with those for other
ACs being almost identical. The weighting estimator is abbreviated to W, and 𝑛 stands for the number of cases.

RMSE Bias Empirical coverage
Effect 𝒏 AC M-est ML W M-est ML W M-est ML W
Scenario 1: No interaction, correct model
Direct 50 3 0.40 0.40 0.43 0.03 0.03 0.06 0.95 0.95 0.95

100 0.26 0.26 0.27 0.03 0.03 0.04 0.96 0.96 0.96
Indirect 50 0.06 0.06 0.09 −0.01 0.00 −0.01 0.91 0.91 0.92

100 0.04 0.04 0.05 −0.01 −0.01 −0.01 0.91 0.90 0.93
Scenario 2: No interaction, misspecified model
Direct 50 3 0.39 0.39 0.42 0.07 0.07 0.11 0.96 0.96 0.95

100 0.26 0.26 0.27 0.03 0.03 0.04 0.96 0.96 0.96
Indirect 50 0.06 0.06 0.10 −0.01 −0.01 −0.02 0.91 0.90 0.91

100 0.04 0.04 0.05 0.00 −0.01 −0.01 0.91 0.91 0.93
Scenario 3: Interaction, correct model
Direct 50 1 0.58 0.58 0.60 0.07 0.07 0.07 0.97 0.97 0.97

2 2.02 2.01 1.93 0.24 0.24 0.27 0.95 0.97 0.96
3 3.14 3.11 2.99 −0.41 −0.40 −0.35 0.94 0.97 0.94

100 1 0.39 0.39 0.40 0.02 0.01 0.01 0.97 0.96 0.96
2 0.61 0.61 0.62 0.06 0.07 0.08 0.95 0.95 0.95
3 0.85 0.85 0.85 −0.04 −0.03 −0.03 0.96 0.96 0.96

Indirect 50 1 0.06 0.06 0.12 −0.01 −0.01 −0.01 0.91 0.90 0.92
2 0.06 0.06 0.12 −0.01 −0.01 −0.01 0.91 0.90 0.92
3 0.06 0.06 0.12 −0.01 −0.01 −0.01 0.91 0.90 0.92

100 1 0.04 0.04 0.05 −0.01 −0.01 −0.01 0.93 0.93 0.94
2 0.04 0.04 0.05 −0.01 −0.01 −0.01 0.93 0.93 0.94
3 0.04 0.04 0.05 −0.01 −0.01 −0.01 0.93 0.93 0.94

Scenario 4: Interaction, misspecified model
Direct 50 1 0.84 0.84 0.83 0.08 0.07 0.08 0.96 0.96 0.96

2 1.46 1.48 1.43 0.13 0.13 0.17 0.97 0.97 0.96
3 3.18 3.13 2.97 −0.47 −0.44 −0.40 0.93 0.96 0.93

100 1 0.39 0.39 0.40 0.02 0.01 0.01 0.97 0.96 0.96
2 0.61 0.61 0.62 0.06 0.07 0.08 0.95 0.95 0.95
3 0.85 0.85 0.85 −0.04 −0.03 −0.03 0.96 0.96 0.96

Indirect 50 1 0.06 0.06 0.12 −0.01 −0.01 −0.01 0.93 0.92 0.94
2 0.06 0.06 0.11 −0.01 −0.01 −0.01 0.93 0.92 0.94
3 0.06 0.06 0.12 −0.01 −0.01 −0.01 0.93 0.92 0.94

100 1 0.04 0.04 0.05 −0.01 −0.01 −0.01 0.93 0.93 0.94
2 0.04 0.04 0.05 −0.01 −0.01 −0.01 0.93 0.93 0.94
3 0.04 0.04 0.05 −0.01 −0.01 −0.01 0.93 0.93 0.94

Abbreviation: ML, maximum likelihood.
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vehicles (to a lesser extent) do. Nevertheless, since infectionmeans are not of primary interest, the disentanglement of the
RI effect on listeriosis in causal terms appears sensible, due to the clear additional vulnerability to listeriosis for people
with RI as well as for people taking GASs, and to the fact that GAS intake is a direct consequence of RI. Results show that
the NIE of RI is almost negligible.
It is important to stress that any conclusion from the reported analyses has to be drawn cautiously, for several reasons.

First, as mentioned in Section 5.1 only 99 of 732 patients potentially eligible as cases formed the final data set due to
participation refusal, decease, inability to answer/be contacted, and other unknown sources ofmissingness. Although this
fact is taken into account by generating proper (S)CC samples via random selection of controls, it is important to remark
that like in many telephone surveys controls were found to systematically differ from the target population with respect
to socioeconomic status. While socioeconomic status is essentially accounted for via the (initial) inclusion of educational
level as its proxy (Preußel et al., 2015), we cannot exclude that some degree of noninformative missingness (Molenberghs
et al., 2014) might affect the results.
Furthermore, though as discussed in Section 5.2 the typical assumptions of causal mediation analysis (i)–(iv) seem to

be tenable in our application, it is worth to mention that a number of approaches exist which deal with possible viola-
tions. As for unobserved confounding (i)–(iii), which is quite often due to some relevant unmeasured variables, sensitivity
analyses (Lindmark et al., 2018) as well as methods embedded in an instrumental variable framework (Didelez, Meng
et al., 2010; Mattei & Mealli, 2011) have been introduced which could be possibly adapted to the present setting. Also, the
cross-world independence assumption (iv) is typically difficult to interpret (see Section 2.1). With this regard, alternative
causal estimands identifiable without making the cross-world independence assumption (named interventional effects)
were proposed (VanderWeele et al., 2014; Vansteelandt & Daniel, 2017).
It is well-known that in SCC designs the number of strata can in principle increase until the limit situation of containing

a single case (sometimes termed exact matching). In these settings, traditional estimation might be problematic, with
conditional likelihood methods typically preferable (Breslow, 1996; Gail et al., 1981). In particular, links between causal
mediation on the hazard ratio scale for time-to-event outcomes and such a conditional likelihood framework have been
recently explored in a setting assuming events are rare (Kim et al., 2020). Extensions beyond this assumption, possibly
building on the analytic derivations proposed here, might be of interest. Further developments may involve models with
latent mediators, which have been recently considered in the literature, too (Albert et al., 2016).
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APPENDIX A: DETAILS OF PARAMETRIC AND NONPARAMETRIC IDENTIFICATION
By standard probability results it is possible to express the left-hand side of (7) as

log
𝑃(𝑌 = 1 ∣ 𝑎, 𝑏, 𝑧,𝑚,𝑊 = 1)

𝑃(𝑌 = 0 ∣ 𝑎, 𝑏, 𝑧,𝑚,𝑊 = 1)
= log

𝑃(𝑊 = 1 ∣ 𝑎, 𝑏, 𝑧,𝑚, 𝑌 = 1)𝑃(𝑌 = 1 ∣ 𝑎, 𝑏, 𝑧,𝑚)

𝑃(𝑊 = 1 ∣ 𝑎, 𝑏, 𝑧,𝑚, 𝑌 = 0)𝑃(𝑌 = 0 ∣ 𝑎, 𝑏, 𝑧,𝑚)

= logit{𝑃(𝑌 = 1 ∣ 𝑎, 𝑏, 𝑧,𝑚)} + log
𝑃(𝑊 = 1 ∣ 𝑌 = 1, 𝐵 = 𝑏)

𝑃(𝑊 = 1 ∣ 𝑌 = 0, 𝐵 = 𝑏)

= 𝒙⊤𝑦 𝜷 + log(𝑘𝑏).

(A1)

The second equality follows from 𝑊 ⟂⟂ (𝐴, 𝑍,𝑀) ∣ (𝑌, 𝐵), which holds true in the directed acyclic graph (DAG) in
Figure 1(a). Clearly, the compact form in the right-hand side of (7) can be used in place of the last term in the
above equation chain.
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The same approach allows to express the left-hand side of (9) as

log
𝑃(𝑀 = 1 ∣ 𝑎, 𝑏, 𝑧, 𝑦)

𝑃(𝑀 = 0 ∣ 𝑎, 𝑏, 𝑧, 𝑦)
= log

𝑃(𝑌 = 𝑦 ∣ 𝑎, 𝑏, 𝑧,𝑀 = 1)

𝑃(𝑌 = 𝑦 ∣ 𝑎, 𝑏, 𝑧,𝑀 = 0)
+ log

𝑃(𝑀 = 1 ∣ 𝑎, 𝑏, 𝑧)

𝑃(𝑀 = 0 ∣ 𝑎, 𝑏, 𝑧)

= log
𝑃(𝑌 = 𝑦 ∣ 𝑎, 𝑏, 𝑧,𝑀 = 1)

𝑃(𝑌 = 𝑦 ∣ 𝑎, 𝑏, 𝑧,𝑀 = 0)
+ log

𝑃(𝑀 = 1 ∣ 𝑎, 𝑏, 𝑧)

𝑃(𝑀 = 0 ∣ 𝑎, 𝑏, 𝑧)

= 𝑜(𝑦, 𝒙𝑦; 𝜷) + 𝒙
⊤
𝑚𝜹.

(A2)

To obtain the parametric expression of 𝑜(𝑦, 𝒙𝑦; 𝜷), the partition 𝒙𝑦 = (𝒙⊤𝑦0 , 𝒙
⊤
𝑦1
)⊤ is introduced, where 𝒙𝑦0 (𝒙𝑦1) denotes

the subvector of covariate values not involving (involving) 𝑀. The coefficient vector partition 𝜷 = (𝜷⊤
0
, 𝜷⊤
1
)⊤ is defined

accordingly. We assume ourmodel to be hierarchical, and therefore in themost general setting 𝒙𝑦1 = 𝑚 ⋅ 𝒙𝑦0 . However, in
many applications 𝜷1 and 𝒙𝑦1 are likely to be smaller dimensional than 𝜷0 and 𝒙𝑦0 , with some elements of the latter vectors
not having a counterpart in the former. In these cases, the additional vector 𝜷1 has to be defined by suitably expanding 𝜷1
with zeros, so that the sum of conformable vectors 𝜷+ = 𝜷0 + 𝜷1 can be computed. It then follows that

logit{𝑃(𝑌 = 1 ∣ 𝑎, 𝑏, 𝑧,𝑀 = 0)} = 𝒙⊤𝑦0𝜷0

logit{𝑃(𝑌 = 1 ∣ 𝑎, 𝑏, 𝑧,𝑀 = 1)} = 𝒙⊤𝑦0𝜷+.

Then,

𝑜(𝑦, 𝒙𝑦; 𝜷) = log
𝑃(𝑌 = 𝑦 ∣ 𝑎, 𝑏, 𝑧,𝑀 = 1)

𝑃(𝑌 = 𝑦 ∣ 𝑎, 𝑏, 𝑧,𝑀 = 0)
= log

exp{𝑦 ⋅ 𝒙⊤𝑦0𝜷+}

1 + exp{𝒙⊤𝑦0𝜷+}
− log

exp{𝑦 ⋅ 𝒙⊤𝑦0𝜷0}

1 + exp{𝒙⊤𝑦0𝜷0}

= 𝑦(𝒙⊤𝑦0𝜷+ − 𝒙
⊤
𝑦0
𝜷0) − log

1 + exp{𝒙⊤𝑦0𝜷+}

1 + exp{𝒙⊤𝑦0𝜷0}
.

(A3)

To achieve nonparametric identification of 𝑃(𝑌 = 𝑦 ∣ 𝑎, 𝑏, 𝑧,𝑚) and of 𝑃(𝑀 = 𝑚 ∣ 𝑎⋆, 𝑏, 𝑧), the following algorithm can
be implemented:

1. Consider the observable probabilities 𝑃(𝑌 = 1 ∣ 𝑎, 𝑏, 𝑧,𝑚,𝑊 = 1) and 𝑃(𝑌 = 1 ∣ 𝑎⋆, 𝑏, 𝑧,𝑊 = 1);
2. Take the odds transforms of the quantities in 1;
3. Use knowledge of 𝑘𝑏 to identify the odds transforms of 𝑃(𝑌 = 1 ∣ 𝑎, 𝑏, 𝑧,𝑚) and 𝑃(𝑌 = 1 ∣ 𝑎⋆, 𝑏, 𝑧) via

𝑃(𝑌 = 1 ∣ 𝑎, 𝑏, 𝑧,𝑚)

𝑃(𝑌 = 0 ∣ 𝑎, 𝑏, 𝑧,𝑚)
=
𝑃(𝑌 = 1 ∣ 𝑎, 𝑏, 𝑧,𝑚,𝑊 = 1)

𝑃(𝑌 = 0 ∣ 𝑎, 𝑏, 𝑧,𝑚,𝑊 = 1)
×
1

𝑘𝑏

and

𝑃(𝑌 = 1 ∣ 𝑎⋆, 𝑏, 𝑧)

𝑃(𝑌 = 0 ∣ 𝑎⋆, 𝑏, 𝑧)
=
𝑃(𝑌 = 1 ∣ 𝑎⋆, 𝑏, 𝑧,𝑊 = 1)

𝑃(𝑌 = 0 ∣ 𝑎⋆, 𝑏, 𝑧,𝑊 = 1)
×
1

𝑘𝑏

(see Equation A1 for reference);
4. Revert to the probability scale to identify 𝑃(𝑌 = 1 ∣ 𝑎, 𝑏, 𝑧,𝑚) and 𝑃(𝑌 = 1 ∣ 𝑎⋆, 𝑏, 𝑧);
5. For 𝑦,𝑚 ∈ {0, 1}, consider 𝑃(𝑀 = 𝑚 ∣ 𝑎⋆, 𝑏, 𝑧, 𝑦,𝑊 = 1) = 𝑃(𝑀 = 𝑚 ∣ 𝑎⋆, 𝑏, 𝑧, 𝑦);
6. Use the quantities in 4 and 5 to identify 𝑃(𝑀 = 1 ∣ 𝑎⋆, 𝑏, 𝑧) by using

𝑃(𝑀 = 𝑚 ∣ 𝑎⋆, 𝑏, 𝑧) =
∑
𝑦

𝑃(𝑀 = 𝑚 ∣ 𝑎⋆, 𝑏, 𝑧, 𝑦)𝑃(𝑌 = 𝑦 ∣ 𝑎⋆, 𝑏, 𝑧).

Importantly, the identities in point 3 hold true only in consequence of Bayes’ theorem paired with the conditional
independence statement 𝑊 ⟂⟂ (𝐴, 𝑍,𝑀) ∣ (𝑌, 𝐵), and they do not depend on any parametric model. Nonparametric
estimation of the above probabilities can be performed with sample relative frequencies or, in the case of continuous 𝐴
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and/or continuous or high-dimensional 𝑍, with any other suitable nonparametric method. Notice that this strategy can
also be adapted to address continuous mediators.

APPENDIX B: DETAILS OFM-ESTIMATION
In order to obtain the expressions of the observed score function vectors 𝒔𝑦(⋅) and 𝒔𝑚(⋅), it is worth to rely on matrix
notation. Specifically, we index sample units by 𝑖 = 1, … , 𝑛 and introduce the sample vectors𝒎 = (𝑚1,… ,𝑚𝑛)

⊤ and 𝒚 =
(𝑦1, … , 𝑦𝑛)

⊤, as well as the sample design matrices

𝑿𝑚 =
⎛⎜⎜⎝
𝒙⊤
𝑚,1

⋮

𝒙⊤𝑚,𝑛

⎞⎟⎟⎠ , 𝑿𝑦 =
(
𝑿𝑦0 𝑿𝑦1

)
=
⎛⎜⎜⎝
𝒙⊤𝑦0,1

𝒙⊤𝑦1,1
⋮ ⋮

𝒙⊤𝑦0,𝑛 𝒙⊤𝑦1,𝑛

⎞⎟⎟⎠ .
We also denote by 𝑑𝛿, 𝑑𝛽 , 𝑑𝛽0 , and 𝑑𝛽1 the number of columns of 𝑿𝑚, 𝑿𝑦 , 𝑿𝑦0 , and 𝑿𝑦1 , respectively.
Letting expit(⋅) = exp(⋅)∕{1 + exp(⋅)}, for a given value 𝜽 = (𝜷⊤, 𝜹⊤)⊤ we have

𝒔𝑦(𝜽) = 𝑿⊤
𝑦 (𝒚 − 𝒑𝑦⋆) 𝒑𝑦⋆ = expit(𝜼𝑦⋆) 𝜼𝑦⋆ = 𝑿𝑦𝜷

⋆

𝒔𝑚(𝜽) = 𝑿⊤
𝑚(𝒎 − 𝒑𝑚𝑦) 𝒑𝑚𝑦 = expit(𝜼𝑚𝑦) 𝜼𝑚𝑦 = 𝑿𝑚𝜹 + 𝒐,

where 𝜷⋆ is like in Section 3 and 𝒐 is a column vector collecting the offset terms 𝑜(𝑦𝑖, 𝒙𝑦0,𝑖 ; 𝜷) of every sample unit 𝑖 =
1, … , 𝑛. Notice that the vector 𝒑𝑚𝑦 = (𝑝𝑚𝑦,1, … , 𝑝𝑚𝑦,𝑛)

⊤ contains the 𝑝𝑚𝑦,𝑖 probabilities (𝑖 = 1, … , 𝑛) already introduced
in Section 4.2, while 𝒑𝑦⋆ = (𝑝𝑦⋆,1, … , 𝑝𝑦⋆,𝑛)

⊤ differs from 𝒑𝑦⋆
(𝑚)

= (𝑝𝑦⋆
(𝑚)

,1, … , 𝑝𝑦⋆
(𝑚)

,𝑛), which is the vector collecting the

𝑝𝑦⋆
(𝑚)

,𝑖 probabilities (also used in Section 4.2). A compact form for 𝝍(𝜽) = (𝒔𝑦(𝜽)
⊤, 𝒔𝑚(𝜽)

⊤)⊤ is given by

𝝍(𝜽) = 𝑿⊤
𝑗
𝒇,

where

𝑿𝑗 =

(
𝑿𝑦 𝟎𝑛×𝑑𝛿
𝟎𝑛×𝑑𝛽 𝑿𝑚

)
𝒇 =

(
𝒚 − 𝒑𝑦⋆

𝒎 − 𝒑𝑚𝑦

)
.

The formula for the 𝐴(𝒚, 𝜽)matrix is

𝐴(𝒚, 𝜽) =
1

𝑛

(
𝑯𝑦𝛽 𝑯𝑦𝛿

𝑯𝑚𝛽 𝑯𝑚𝛿

)
,

where each generic submatrix is defined as𝑯𝑞𝛼 = 𝜕𝒔𝑞∕𝜕𝜶
⊤ and

𝑯𝑦𝛽 = −𝑿⊤
𝑦 diag{𝒑𝑦⋆ ⋅ (1 − 𝒑𝑦⋆)}𝑿𝑦 𝑯𝑦𝛿 = 𝟎𝑑𝛽×𝑑𝛿

𝑯𝑚𝛽 = −𝑿⊤
𝑚diag{𝒑𝑚𝑦 ⋅ (1 − 𝒑𝑚𝑦)}𝑫 𝑯𝑚𝛿 = −𝑿⊤

𝑚diag{𝒑𝑚𝑦 ⋅ (1 − 𝒑𝑚𝑦)}𝑿𝑚.

In the above, the 𝑫matrix is given by

𝑫 =
(
𝟎𝑛×𝑑𝛽0

�̄�𝑦0 ⋅ 𝒚
)
+
(
𝑿𝑦0 ⋅ 𝒗0 �̄�𝑦0 ⋅ 𝒗1

)
,

where �̄�𝑦0 is the matrix obtained by extracting the columns of 𝑿𝑦0 corresponding to the nonnull elements of 𝜷1 while 𝒗0
and 𝒗1 are two column vectors of length 𝑛, whose 𝑖th element is given by

𝑣0,𝑖 =
exp

(
𝒙⊤
𝑦0,𝑖
𝜷0
)
− exp

(
𝒙⊤
𝑦0,𝑖
𝜷+

){
1 + exp

(
𝒙⊤
𝑦0,𝑖
𝜷0
)}{

1 + exp
(
𝒙⊤
𝑦0,𝑖
𝜷+

)} 𝑣1,𝑖 = −
exp(𝒙⊤

𝑦0,𝑖
𝜷+)

1 + exp(𝒙⊤
𝑦0,𝑖
𝜷+)

.
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DORETTI et al. 21 of 22

Notice that in the formulas above ⋅ denotes element-wise product, be it between column vectors or between a matrix and
a column vector. In the latter case, the result is a conformable matrix where every column is element-wise multiplied by
the vector.
Finally, 𝐵(𝒚, 𝜽) is given by

𝐵(𝒚, 𝜽) =
1

𝑛

𝑛∑
𝑖=1

𝝍𝑖(𝜽)𝝍
⊤
𝑖
(𝜽),

with 𝝍𝑖(𝜽) being the contribution of unit 𝑖 to the observed score vector.

APPENDIX C: PARAMETRIC EXPRESSION OF (14)
The parametric expression of 𝑔(𝒙𝑦0 , 𝒙𝑚; 𝜷, 𝜹) can be derived from (A2) and (A3). After some simplifications, it follows that

𝑔(𝒙𝑦0 , 𝒙𝑚; 𝜷, 𝜹) = log
exp(𝒙⊤𝑦0𝜷1) exp(𝒙

⊤
𝑚𝜹){1 + exp(𝒙

⊤
𝑦0
𝜷0)} + {1 + exp(𝒙

⊤
𝑦0
𝜷+)}

exp(𝒙⊤𝑚𝜹){1 + exp(𝒙
⊤
𝑦 𝜷0)} + {1 + exp(𝒙

⊤
𝑦 𝜷+)}

, (C1)

where the elements in the right-hand side are defined as in Appendix A. We then have

logit{𝑃(𝑌 = 1 ∣ 𝑎, 𝑧, 𝑏,𝑊 = 1)} = 𝒙⊤𝑦0𝜷
⋆
0 + 𝑔(𝒙𝑦0 , 𝒙𝑚; 𝜷, 𝜹),

with 𝜷⋆
0
being the modification of 𝜷0 accounting for the correction for 𝛽INT and 𝜷B.

APPENDIX D: GRADIENT FUNCTION FORMAXIMUM LIKELIHOOD (ML) ESTIMATION
The log-likelihood gradient 𝒔(𝜽) can be conveniently expressed in matrix form. To this end, we maintain notation as in
the body of the paper and in previous appendices, and we introduce the matrices

𝑨𝑔 =
⎛⎜⎜⎝
𝑨𝑔𝑦0
𝑨𝑔𝑦1
𝑨𝑔𝑚

⎞⎟⎟⎠ 𝑩𝑔 =
⎛⎜⎜⎝
𝑩𝑔𝑦0
𝑩𝑔𝑦1
𝑩𝑔𝑚

⎞⎟⎟⎠ 𝑨𝑚 =
⎛⎜⎜⎝
𝑨𝑚𝑦0
𝑨𝑚𝑦1
𝑨𝑚𝑚

⎞⎟⎟⎠ 𝑩𝑚 =
⎛⎜⎜⎝
𝑩𝑚𝑦0
𝑩𝑚𝑦1
𝑩𝑚𝑚

⎞⎟⎟⎠ ,
where

𝑨𝑔𝑦0 = 𝟏𝑑𝛽0×𝑛
𝑩𝑔𝑦0 = 𝑮𝛽INT ⊗ 𝟏𝑑𝛽0

𝑨𝑚𝑦0 = 𝟎𝑑𝛽0×𝑛
𝑩𝑚𝑦0 = 𝒗⊤0 ⊗ 𝟏𝑑𝛽0

𝑨𝑔𝑦1 = 𝟎𝑑𝛽1×𝑛
𝑩𝑔𝑦1 = 𝑮𝛽𝑚 ⊗ 𝟏𝑑𝛽1

𝑨𝑚𝑦1 = 𝒚⊤ ⊗ 𝟏𝑑𝛽1
𝑩𝑚𝑦1 = 𝒗⊤1 ⊗ 𝟏𝑑𝛽1

𝑨𝑔𝑚 = 𝟎𝑑𝛿×𝑛 𝑩𝑔𝑚 = 𝑮𝛿INT ⊗ 𝟏𝑑𝛿 𝑨𝑚𝑚 = 𝟏𝑑𝛿×𝑛 𝑩𝑚𝑚 = 𝟎𝑑𝛿×𝑛.

In the above,⊗ denotes Kronecker product, while

𝑮𝛽INT =
(

𝜕

𝜕𝛽INT
𝑔(𝒙𝑦0,1, 𝒙𝑚,1; 𝜷, 𝜹) ⋯

𝜕

𝜕𝛽INT
𝑔(𝒙𝑦0,𝑛, 𝒙𝑚,𝑛; 𝜷, 𝜹)

)
𝑮𝛽𝑚 =

(
𝜕

𝜕𝛽𝑚
𝑔(𝒙𝑦0,1, 𝒙𝑚,1; 𝜷, 𝜹) ⋯

𝜕

𝜕𝛽𝑚
𝑔(𝒙𝑦0,𝑛, 𝒙𝑚,𝑛; 𝜷, 𝜹)

)
𝑮𝛿INT =

(
𝜕

𝜕𝛿INT
𝑔(𝒙𝑦0,1, 𝒙𝑚,1; 𝜷, 𝜹) ⋯

𝜕

𝜕𝛿INT
𝑔(𝒙𝑦0,𝑛, 𝒙𝑚,𝑛; 𝜷, 𝜹)

)
are three row vectors collecting the derivatives of the 𝑔(𝒙𝑦0,𝑖 , 𝒙𝑚,𝑖; 𝜷, 𝜹) terms (𝑖 = 1, … , 𝑛) with respect to 𝛽INT, 𝛽𝑚,
and 𝛿INT, where the latter two are the coefficient of 𝑀 in the outcome model and the intercept of the mediation
model, respectively. These derivatives can be computed by noticing that the argument of the logarithm can be written
as (𝑞1𝑞2𝑞3 + 𝑞4)∕(𝑞2𝑞3 + 𝑞4), with 𝑞1 = exp(𝒙⊤

𝑦0,𝑖
𝜷1), 𝑞2 = exp(𝒙⊤

𝑚,𝑖
𝜹), 𝑞3 = 1 + exp(𝒙⊤

𝑦0,𝑖
𝜷0), and 𝑞4 = 1 + exp(𝒙⊤

𝑦0,𝑖
𝜷+).
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22 of 22 DORETTI et al.

Consequently, we have

𝜕𝑔

𝜕𝛽INT
=
{𝑞1𝑞2(𝑞3 − 1) + 𝑞4 − 1}(𝑞2𝑞3 + 𝑞4) − (𝑞1𝑞2𝑞3 + 𝑞4){𝑞2(𝑞3 − 1) + 𝑞4 − 1}

exp(𝑔)(𝑞2𝑞3 + 𝑞4)2

𝜕𝑔

𝜕𝛽𝑚
=
(𝑞1𝑞2𝑞3 + 𝑞4 − 1)(𝑞2𝑞3 + 𝑞4) − (𝑞1𝑞2𝑞3 + 𝑞4)(𝑞4 − 1)

exp(𝑔)(𝑞2𝑞3 + 𝑞4)2

𝜕𝑔

𝜕𝛿INT
=
(𝑞1𝑞2𝑞3)(𝑞2𝑞3 + 𝑞4) − (𝑞1𝑞2𝑞3 + 𝑞4)(𝑞2𝑞3)

exp(𝑔)(𝑞2𝑞3 + 𝑞4)2
.

Finally, letting

𝑪 =
(
𝑿𝑦0 �̄�𝑦0 𝑿𝑚

)⊤
,

the log-likelihood gradient is given by

𝑠(𝜽) = {(𝑨𝑔 + 𝑩𝑔) ⋅ 𝑪}�̃� + {(𝑨𝑚 + 𝑩𝑚) ⋅ 𝑪}�̃�, (D1)

where �̃� = 𝒚 − 𝒑𝑦⋆
(𝑚)
, �̃� = 𝒎 − 𝒑𝑚𝑦 , and 𝒑𝑚𝑦 and 𝒑𝑦⋆

(𝑚)
are like in Appendix B.
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