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ABSTRACT

Deep neural networks often generalizes poorly when the distribution of test samples
varies from that of the training samples. Recently, some fully test-time adaptation
methods have been proposed to adapt the trained model with the unlabeled test
samples before prediction. Despite achieving remarkable results, these methods
only involve one trained model, which could only provide certain side information
for the test samples. In real-world scenarios, there could be multiple available
trained models that are beneficial to the test samples and these models are com-
plementary to each other. Consequently, to better utilize these trained models, in
this paper, we propose the problem of multi-source fully test-time adaptation to
adapt multiple trained models to the test samples. To achieve this, we introduce a
simple yet effective method utilizing a weighted aggregation scheme and introduce
two unsupervised losses. The former could adaptively assign a higher weight to
a more relevant model, while the latter could jointly adapt models with online
unlabeled samples. Extensive experiments on three image classification datasets
show that the proposed method achieves better results than baseline methods.

1 INTRODUCTION

Deep neural networks often suffer from severe performance degradation when applied to new
environments due to the distribution shift Pan & Yang (2010); Wang et al. (2021); Xin et al. (2023).
They are sensitive to the test samples with natural variations or corruptions, such as changing weather
conditions and sensor degradation noises Hendrycks & Dietterich (2019); Koh et al. (2021). Thus, it
is necessary to adapt the models to different data distributions.

Recently, several works have proposed to handle distribution shifts by online adapting the model at
test time, known as test-time adaptation (TTA). TENT Wang et al. (2021) adopts entropy minimization
loss Grandvalet & Bengio (2004) as the auxiliary loss to adapt the model. MEMO Zhang et al. (2021)
proposes to augment one sample multiple times and average the predictions to perform entropy
minimization. Besides, the following methods adopt normalization calibration Mirza et al. (2021);
Zhao et al. (2023) or pseudo-label-based strategy Jang & Chung (2023); Chen et al. (2022) to deal
with changing distribution. The former investigates the effects of different normalization methods at
the test time for distribution matching while the latter generates pseudo labels for model adaptation.

Generally, existing fully test-time adaptation methods focused on adapting one single trained model
to a new domain. While in real-world applications, there are often multiple source domains or source
models available. The single model usually provides certain side transfer information, which limits
their usage in real-world scenarios. On the contrary, a more practical and challenging scenario is that
a bag of trained models are available for the test samples. Each model could provide complementary
information to each other, thus it is more likely to achieve better adaptation performance than
adaptation with a single trained model Ahmed et al. (2021).

Based on the above analysis, in this paper, we propose a novel problem of multi-source fully test-time
adaptation (MS-FTTA) to adapt multiple trained models to test samples. Comparison with similar
problem settings is shown in Table 5 and the detailed analysis is shown in Appendix. We empirically
find that simply ensembling multiple trained models achieves limited improvements compared to the
non-adapted model(see Table 1). Thus, in such cases, adaptation is performed not only to incorporate
the combined prior knowledge from multiple models but also to prevent potential negative transfer.
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To achieve this, we propose a simple yet effective method named Multi-source fUlly Test-timE
adaptation (MUTE). Firstly, considering that different models contribute differently to the test
samples, we assign a weight to each model and adopt the weight aggregation strategy Hoffman
et al. (2018) to combine these methods. The weight is adaptively estimated from the perspective
of distribution shift, aiming to assign higher weights to the models with smaller distribution shifts
between training and test samples. Secondly, for model adaptation, considering that all the test
samples are unlabeled, we introduce two auxiliary unsupervised losses with the estimated model
weight, i.e., weighted-combined entropy loss and weighed-combined consistency loss. Both losses
are chosen as they have a strong correlation to classification loss and previous work Liu & et al.
(2021) has proved that a closer auxiliary task could yield better accuracy on the main task. Then, all
models are jointly adapted together with adaptive weight estimation.

To sum up, the contribution of this work could be summarized as follows, i) New problem: We
propose the problem of multi-source fully test-time adaptation (MS-FTTA) where multiple trained
models are available for adaptation, which could utilize complementary information within multiple
models to achieve better adaptation. ii) Novel method: We propose a novel method MUTE via
a weighted aggregation scheme and two novel unsupervised losses related to the main task. iii)
Extensive evaluation: Extensive experiments show that the proposed method consistently gets better
results than baseline methods. For example, MUTE achieves an improvement of 4.2%, 1.8%, and
2.6% on the Digit-five, Office-Home, and Office31 datasets, respectively.

2 RELATED WORK

2.1 FULLY TEST-TIME ADAPTATION

TENT Wang et al. (2021) proposes to adapt the models by minimizing the entropy of model pre-
dictions, which is independent of the source data given the model parameters. Also with entropy
minimization, MEMO Zhang et al. (2021) augments a sample multiple times and then minimizes the
entropy of average predictions for better robustnes. To deal with distribution shift, following methods
adopt batch normalization calibrationMirza et al. (2021); Zhao et al. (2023); Burns & Steinhardt
(2021); Zhao et al. (2023), which investigates the effects of different normalization layers under
the test-time adaptation setting, or pseudo-label based strategyJang & Chung (2023); Han et al.
(2023), where pseudo labels are generated at test time for model updates. Following works explore
test-time training under different scenarios, such as sample-efficient adaptation Niu & rt al. (2022),
and continue challenging environment Wang et al. (2022); Gong et al. (2022); Gan et al. (2023).

2.2 SOURCE-FREE DOMAIN ADAPTATION

In this setting, a trained source model, instead of the source samples, is given to the target domain
and the goal is to adapt the trained model to the target domain while keep source privacy. SFDA
methods consist of pseudo-label-based strategy and a generative strategy. The former firstly generates
the pseudo-labels for target samples, and then adapts the model with pseudo-labels by classification
loss in a self-training mannerLiang et al. (2020); Yi et al. (2023); Du et al. (2023). The latter aims to
generate more training samples by generative adversarial nets with either source-like samples Du
et al. (2023); Li et al. (2020) or target-like samples Kurmi et al. (2021). Considering that multi-source
domains could be available, multi-source source-free domain adaptation is proposed Ahmed et al.
(2021); Li et al. (2023) with a weight-aggregation scheme and carefully designed unsupervised loss.

3 PROBLEM DEFINITION

In this paper, we address the problem of multi-source fully test-time adaptation. We are given a bag
of pre-trained models {Fm}Mm=1, where the mth model Fm : X → RK is a base model trained on
mth labeled source training dataset Dm = {xm

i , ymi }
Nm
i=1 and ymi ∈ {1, ...,K}. Each source dataset

is sampled from different distribution, namely P1(x, y), P2(x, y), ..., PM (x, y). During the inference
time, due to possible distribution shift, many test samples whose distribution (denoted as Q(x, y)) is
different from the source ones may arrive, i.e., P1(x, y) ̸= P2(x, y) ̸=, ..., ̸= PM (x, y) ̸= Q(x, y).
We aim to boost the performance during inference by doing model adaptation only on test samples.
Specially, we focus on online settings, where a batch of samples sampled from Q(x), denoted as
B = {xi}ni=1, arrived in each time. One needs to adapt the models with these unlabeled samples and
then make predictions on these samples before the next batch of samples arrives.

4 METHOD

4.1 ESTIMATION OF THE MODEL WEIGHTS
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Figure 1: The model structure of the pro-
posed method.

The overall framework is shown in Figure 1. Denote
{αm}Mm=1 as the weight of each trained model, and it is
obvious that αm ≥ 0 and

∑M
m=1 αm = 1. Previous work

Ben-David et al. (2009); Zhang et al. (2019) has shown
that if the distribution shift across domains is small, the
model learned in one domain could generalize well to sam-
ples of new domains. Based on this insight, we propose to
estimate the model weight from the perspective of distri-
bution shifts where the smaller distribution shift between
the training and the test samples, the higher weight the
models get. Thus, the crucial problems are the choice of
distance function and the calculation of distribution shifts.
In this work, we adopt the first-order and the second-order
measurement, namely the mean and covariance as the distance function, as they are simple yet
effective Long et al. (2015); Sun et al. (2016); Liu & et al. (2021).

To measure distribution shift, following previous work Liu & et al. (2021), we assume that during
the training of available models, not only source models are saved, but also some extra infor-
mation, e.g., the mean {µm}Mm=1 and the covariance matrix {Σm}Mm=1 of the training samples
are also saved. To be specific, once training completes, one offline feature summarization step
is performed to characterize the distribution of feature vectors of the training samples. For mth

source model, the mean is calculated by µm =
∑|Dm|

i=1 zmi and covariance matrix is calculated
by Σm = 1

|Dm| (Z
T
mZm − (ITZm)T (ITZm)), where zmi is the feature vectors in the mth training

domain and Zm = {zm1 , ..., zm|Dm|}.

During adaptation, we calculate the statistical information of test samples in an online manner such
that the distribution shift could be online measured. Taking the mth model as an example, at tth
batch, the test samples are firstly fed to this trained model, then the corresponding mean µt

m and
covariance matrix Σt

m of test samples could also be calculated. As we are under the online scenario,
the mean and covariance matrix calculated in different batches may vary greatly. To overcome this
challenge, we maintain a global mean µ̂m and covariance matrix Σ̂m for each model and we update
the global mean and covariance matrix via an EMA scheme. At tth batch, they are updated by,

µ̂m = λµ̂m + (1− λ)µt
m, Σ̂m = λΣ̂m + (1− λ)Σt

m (1)

where λ is the update parameter. Then, the distribution shifts across domains could be estimated as,

dm = ||µ̂m − µm||2 + ||Σ̂m − Σm||2 (2)
As the model weight considered to be inversely proportional to the distribution shifts Ben-David et al.
(2009), then the weight of each model is estimated by normalizing the estimated distribution shifts
and keeping the sum to be 1 as αm = exp−dm∑M

i=1 exp−di
.

4.2 ADAPTATION OBJECTIVES

4.2.1 WEIGHTED-COMBINED ENTROPY LOSS

Even though the test samples are fully unlabeled, previous methods have shown that unsupervised
loss could effectively boost the adaptation performance. Entropy minimization Grandvalet & Bengio
(2004) is the widely used strategy, which stems from the cluster assumption van Engelen & Hoos
(2019) in semi-supervised learning. Such an objective could push the samples away from the decision
boundary, thus it could help the model learn discriminative features for the test samples. However,
existing FTTA methods pay equal importance to each model and does not consider the model’s
relevance to the test samples. Thus, we propose weighted-combined entropy loss.

Specially, given a test sample xi, we make predictions by Fm(xi) = fm(gm(xi)) for mth model.
We combine the predictions of trained models by a weighted aggregation scheme via {αm}Mm=1. And
we get the weighted prediction by p(xi) =

∑M
m=1 αmFm(xi).

Lastly, denote p(xi)k as the k-th dimension of p(xi), the weighted entropy loss is represented as,

Lent(xi) = −Exi∼B

[∑K

k=1
p(xi)k log p(xi)k

]
(3)
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Source Method MT,UP,SVN,SYN
→MM

MM,UP,SVN,SYN
→MT

MM,MT,SVN,SYN
→ UP

MM,MT,UP,SYN
→ SVN

MM,MT,UP,SVN
→ SYN Avg.

Multiple(w)

DAN 63.7 96.3 94.2 62.5 85.4 80.4
DANN 71.3 97.6 92.3 63.5 85.3 82.0
MCD 72.5 96.2 95.3 78.9 87.5 86.1
CORAL 62.5 97.2 93.4 64.4 82.7 80.1
ADDA 71.6 97.9 92.8 75.5 86.5 84.8
M3SDA-β 72.8 98.4 96.1 81.3 89.6 87.6

Single(w/o)

Source-best 62.6 99.5 88.9 77.8 91.8 84.1
Source-worst 34.1 69.3 62.1 12.0 20.1 39.5
MEMO-best 63.6 99.3 94.4 79.4 91.7 85.7
MEMO-worst 46.4 71.5 77.8 12.0 31.5 47.8
TENT-best 64.1 99.5 96.1 80.6 91.9 86.4
TENT-worst 47.1 79.0 80.1 16.3 36.2 51.7

Multiple(w/o)

Source-only-Ens 67.0 95.5 92.9 70.7 76.6 80.5
MEMO-Ens 67.0 97.7 92.3 73.2 79.2 81.9
TENT-Ens 68.2 98.9 92.9 78.0 80.5 83.7
MUTE 73.4 99.5 96.0 79.2 91.6 87.9

Table 1: The results on digit recognition.
4.2.2 WEIGHTED-COMBINED CONSISTENCY LOSS

For a well-performed model, we hope it has such a property that the model would produce consistent
predictions with its past model which stores the already learned knowledge. To achieve this goal,
following previous method Tarvainen & Valpola (2017), we maintain a weight-average teacher model
for each trained model and constrain the weighted-combined predictions of the teacher models to be
consistent with that of the student models.

During adaptation, for each trained model Fm, we regard it as a student model and maintain a
teacher model Tm for training. The teacher model is initialized to be the same as the student model
and at tth batch its parameters are updated by exponential moving average on that of the student
model:θTm,t = ωθTm,t−1 + (1 − ω)θm,t, where θTm,t is the parameters of mth teacher model at tth

batch, and θm,t is the parameters of mth student model. At tth batch, the weight-combined prediction
of teacher models is: pT (xi) =

∑M
m=1 αmTm(xi). Then, we force the predictions of student models

to be consistent with that of teacher models by:

Lcon(xi) = Exi∼BLce(ŷ(xi), p(xi)) (4)

where Lce(·, ·) is cross-entropy loss and ŷ(xi) = argmax pT (xi) is pseudo-label by teacher models.

4.3 OPTIMIZATION

To sum up, given a batch of unlabeled samples B = {xi}ni=1, the total training losses are,

min
θ1,...,θm

Exi∼BL(xi) = Lent(xi) + βLcon(xi) (5)

where β is the trade-off parameter. In each step, we first update the statistics information and model
weight on a batch of data. Then, all learnable parameters are updated by the gradient of the total
losses∇L(xi), during the backward pass. Finally, the updated models and model weights are used
for the prediction for the current batch. For online adaptation, no termination is necessary, and
iteration continues as long as there is test data. At inference, the combination of student models is
used to make predictions and the evaluation is performed online.

5 EXPERIMENTS

Datasets Existing TTA methods concentrate on a single-source scenario. For these methods, some
classical datasets such as CIFAR-10, CIFAR-100, CIFAR-10-C, and CIFAR100-C are used for
evaluation Wang et al. (2021). Typical adaptation tasks are CIFAR-10→CIFAR-10-C and CIFAR-
100→CIFAR-100-C. However, these datasets could not be used for evaluation in our work as there are
only two domains. Thus, we are inspired by multi-source domain adaptation (MSDA) methods Peng
et al. (2019), and adopt the widely used datasets in MSDA methods, e.g. Office-Home, and Digit-Five.
Baselines We compare our method with a wide range of baselines. The first one is the source-only
method, where no adaptation is performed and the trained models are directly applied to the test
samples. We also compare against the source-best and the source-worst method. The second one
is the single-source test-time adaptation methods, including TENT Wang et al. (2021), and MEMO
Zhang et al. (2021). As these methods only utilize one source domain for adaptation, We compare
against the best adapted model and the worst one, denoted as TENT-best, TENT-worst, MEMO-
best, and MEMO-worst. We also compare against a multi-source extension of these methods via
ensembling with equal weight. We name these methods as MEMO-Ens, and TENT-Ens. We also
extend the source-only method with the same strategy, denoted as source-only-Ens. Lastly, we
compare MUTE against multi-source domain adaptation methods, including M3SDA-β Peng et al.
(2019), DAN Long et al. (2015), DANN Ganin et al. (2016), MCD Saito et al. (2018), CORAL Sun
et al. (2016), ADDA Tzeng et al. (2017), and DCTN Xu et al. (2018). Note that the MSDA methods
need to access source data during adaptation.
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Office-31 Office-Home

MUTE-Ens 86.8 66.5
MUTE 88.2 67.5

Table 3: Ablation of model weights.

Lent Lcon Office-31 Office-Home

84.9 64.8
! 86.5 65.6
! ! 88.2 67.5

Table 4: Ablation of losses.

Results The results on Digital dataset are shown in Table 1. Firstly, the test performance of
different trained models varies greatly. For example, on the SVHN dataset as the test samples,
the source-best model outperforms the source-worst model by 65.8%, which verifies that different
models contribute differently to the test samples. Secondly, among single-source test-time adaptation
baselines, MEMO-best and TENT-best achieve better results than source-best by 1.6% and 2.8%
respectively, which shows that adapting the models with unlabeled samples could effectively boost
the test performance. Thirdly, for multi-source test-time adaptation methods, Combing single-source
test-time adaptation methods via uniform ensembling (MEMO-Ens, TENT-Ens) underperforms the
corresponding best-performed source. The proposed method could avoid this by weighted aggregation
and jointly training and outperforms MEMO-Ens and TENT-Ens by 6.0% and 1.2%, respectively.
And the average increase across all digit tasks over MEMO-Ens and TENT-Ens is 6.0% and 4.2%,
respectively. Besides, MUTE also achieves competitive results at par with the best-adapted source
and even achieves better in MNIST-M dataset. Fourthly, MUTE outperforms some multi-source
unsupervised domain adaptation methods that not only access the source samples but perform offline
training, e.g., MUTE outperforms M3SDA-β by 0.3%.

The results on Office-Home dataset is shown in Table 2. Similar results with digits datasets are also
observed. The proposed method achieves the best results and the increase over MEMO-Ens and
TENT-Ens are 2.2% and 1.8%. The lower performance increase than that of the digital dataset could
be attributed to the relatively small performance gap between the best and worst unadapted sources.

Source Method Ar,Cl,Pr
→ Rw

Ar,Cl,Rw
→ Pr

Ar,Pr,Rw
→ Cl

Cl,Pr,Rw
→ Ar Avg.

Single

Source-best 72.7 75.6 46.7 65.0 65.0
Source-worst 64.7 62.4 40.0 51.7 54.7
MEMO-best 73.7 75.8 47.5 65.2 65.6
MEMO-worst 62.8 62.6 42.2 52.1 54.9
TENT-best 74.6 76.3 51.0 65.7 66.9
TENT-worst 61.5 63.6 45.4 53.7 56.1

Multiple

Source-only-Ens 75.9 72.1 47.0 64.2 64.8
MEMO-Ens 75.7 72.4 48.5 64.4 65.3
TENT-ens 75.3 72.8 50.0 64.8 65.7
MUTE 77.8 75.1 51.3 65.7 67.5

Table 2: Results on Office-Home.

5.1 INSIGHT ANALYSIS

Ablation study of model weights To show the effectiveness of the weighted aggregation scheme
and the weight estimation strategy, we design a variant of MUTE, denoted as MUTE-Ens, where each
trained model is assigned the same weight and trained with two introduced losses. The comparison
results on the Office-31 and Office-Home datasets are shown in Table 3. Without a weighted scheme,
the performance dropped by 1.4% and 1.0% on the Office-31 and Office-Home datasets, respectively.
The degeneration reveals that combing the models with proper weight could benefit the test samples
and the estimation strategy could effectively reveal the relevance of each model.

Ablation study of losses During adaptation, two introduced unsupervised losses are used. To
evaluate the importance of each loss, we compare our method with variants trained by different
combinations of losses. The results of the Office-31 and Office-Home datasets are shown in Table
4. The first line represents the results of source-only-Ens. After adding weighted entropy loss,
the performance is increased by 1.6% and 0.8% on digit and Office-Home, respectively. And the
combination of all losses achieves the best results. As the adopted losses are very related to the main
classification task, thus they could effectively adapt the model with only unlabeled samples.

6 CONCLUSION

In this work, we propose the problem of multi-source fully test-time adaptation (MS-FTTA), where
many trained models are adapted to the test samples. Moreover, to solve this problem, a weighted
aggregation scheme is adopted to combine these source models with different weights and two
weighted unsupervised losses are proposed to jointly adapt the models. We conducted experiments
on three image datasets, and the results show the effectiveness of the proposed method. In the future,
we would extend to foundation models by parameter-efficient fine-tuning Xin et al. (2024).
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A RELATED WORK

Comparison with related problem settings is shown in Table 5 and the following are detailed analysis:s

• Compared with fine-tuning, MS-FTTA and other problem settings only need unlabeled
target samples to train or adapt the models, without the cost of labeling samples.

• Compared with conventional single-source or multi-source unsupervised domain adap-
tation and test-time training, MS-FTTA does not need to access the source samples or
modify the training process. Thus it protects data safety and privacy.

• Comparison with multi-source source-free domain adaptation (MS-SFDA): MS-SFDA
methods perform offline training, where target samples are given in advance and we could
train the network with multiple epcohs. On the contrary, MS-FTTA needs to perform online
adaptation, where the models need to update and predict immediately when a batch of test
samples arrives, which is more difficult than offline adaptation and prediction.

• Compared with fully test-time adaptation, multiple trained models are available in MS-
FTTA and more useful information could be used for the test samples by combing the
models. Besides, MS-FTTA does not assume to know which one is the best model.

Table 5: Comparison with different problem settings that adapt a trained model to a potentially shifted
test domain. ‘Online’ means that adaptation can predict a batch of incoming test samples immediately.
M is the number of domains/trained models.

Setting Source Data Number of Source Domains Target Data Training Loss Testing Loss Online

Fine-tuning 1 xt, yt L(xt, yt) –
Unsupervised domain adaptation xs, ys 1 xt L(xs, ys) + L(xs, xt) –
Multi-source domain adaptation xs, ys M xt L(xs, ys) + L(xs, xt) –
Test-time training xs, ys 1 xt L(xs, ys) + L(xs) L(xt) !
Multi-source source-free domain adaptation M xt L(xt) –
Fully test-time adaptation 1 xt L(xt) !

Multi-source fully test-time adaptation (ours) M xt L(xt) !

B EXPERIMENTS

Setup Our method is implemented by PyTorch with A100. For source training, we use DTN
Long et al. (2018) architecture for digits and ResNet-50 He et al. (2016) pre-trained on ImageNet
Deng et al. (2009) as the feature extractor for Office-31 and Office-Home datasets. The classifier
is made up of randomly initialized fully connected layers. During adaptation, we use SGD as the
optimizer, with a momentum of 0.9. The batch size and the learning rate are set to be 128,64,48 and
0.005,0.005,0.00025 for Digits, Office-31, and Office-Home. The update parameter λ in Equ. 2 is
chosen from {0.1, 0.2, 0.5} and set to be 0.1 for digits and Office-31 and 0.5 for Office-Home. The
trade-off parameter β in Equ. 5 is chosen from {0.5, 1.0, 2.0} and set to be 1.0 for all datasets. Note
that we focus on online settings, where the samples are adapted and evaluated in each batch. The
pseudo-code is shown in Algorithm 1

• Digits: Digital dataset contains five datasets of 10 categories: USPS contains 7,438 images.
MNIST is composed of 55,000 images, and MNIST-M Ganin & Lempitsky (2015) also
consists of 55,000 images. SVHN is composed of 73,257 images and SynthDigits Digits
Ganin & Lempitsky (2015) consists of 25,000 images. The images in USPS, MNIST, and
MNIST-M are gray while the images in SVHN and DIGITS are in color. We construct five
tasks on this dataset.

• Office-31 Saenko et al. (2010): Office-311 is a classical real-world dataset for domain
adaptation. It has 4110 images with 31 classes shared with three domains: Amazon (A),
Webcam (W), and DSLR (D). In this dataset, we contrust three adaptation tasks, i.e., A,D
→W, A,W→D and D,W→A.

• Office-Home Peng et al. (2019): Office-Home2 is a larger dataset, which consists of four
domains: Artistic (Ar), Clipart (Cl), Product (Pr), and Real-World (Rw), containing 15500
images with 65 classes. Four transfer tasks are constructed, i.e., Ar,Cl,Pr→Rw, ..., and
Cl,Pr,Rw→Ar.

1https://faculty.cc.gatech.edu/~judy/domainadapt/
2https://www.hemanthdv.org/officeHomeDataset.html
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Algorithm 1 MUTE.

Input: Online batch samples B; Trained source models {Fm}Mm=1; Source statistics {µm}Mm=1 and
{Σm}Mm=1.

Output: Online prediction results ŷ;
1: ▷ Calculate online batch data statistic
2: µt

m ←
∑|Bt|

i=1 z
m
i

3: Σt
m ← 1

|Bt| (Z
T
mZm − (ITZm)T (ITZm))

4: ▷ Estimate model weights
5: for m← 1 to M do
6: dm ← ||µm − µt

m||2 + ||Σm − Σt
m||2

7: end for
8: for m← 1 to M do
9: αm = exp−dm∑M

i=1 exp−di

10: end for
11: ▷ Model prediction
12: for xi in B do
13: for m← 1 to M do
14: p(xi) =

∑M
m=1 αmFm(xi) # student Model

15: pT (xi) =
∑M

m=1 αmTm(xi) # teacher Model
16: end for
17: end for
18: ▷ Update model and global statistics
19: {Fm}Mm=1 ← min

θ1,...,θm
Exi∼B(Lent(xi) + βLcon(xi))

20: µm = λµm + (1− λ)µt
m

21: Σm = λΣm + (1− λ)Σt
m

22: ▷ Inference
23: for xi in B do
24: for m← 1 to M do
25: p(xi) =

∑M
m=1 αmFm(xi) # student Model

26: ŷ = argmax p(xi)
27: end for
28: end for
29: Return Online prediction results ŷ.

Source Method A,D
→W

A,W
→ D

D,W
→ A Avg.

Single

Source-best 97.5 99.8 66.2 87.8
Source-worst 78.1 81.9 64.0 74.7
MEMO-best 97.5 99.3 66.4 87.7
MEMO-worst 78.9 82.7 61.8 74.5
TENT-best 97.9 100 66.0 88.0
TENT-worst 79.4 83.7 62.7 75.3

Multiple

Source-only-Ens 95.6 96.4 62.6 84.9
MEMO-Ens 95.9 96.7 62.8 85.1
TENT-Ens 96.0 96.7 64.0 85.6
MUTE 97.5 99.1 67.9 88.2

Table 6: The results on Office-31

C MORE RESULTS

Results on Office-31 Table 6 shows the results on Office-31 dataset. As can see, among the
single-source test-time adaptation method, the average performance of MEMO-best is slightly worse
than source-best, which implies the instability of this method. It is also noticed that on task A,W→D,
source-best achieves 99.8% and there is nearly no room for improvement. Although TENT-best
achieves the best results in two tasks, but it is difficult to determine which is the best performed
model in real-world scenario. On the contrary, our method achieves the best results on average and
outperforms MEMO-Ens and TENT-Ens by 3.1% and 2.6%. Our method also achieves competitive
results at par with the best-adapted model.
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Performance under different number of samples in a batch As we focus on online adaptation,
the number of samples in a batch (characterized by batch size) could also affect the adaptation
performance. To evaluate the proposed method, the results with different batch size on digital datasets
for different methods are shown in Figure 2a. We can see that the performance of all methods except
source-only-Ens varies with different batch size and our method always achieves the best results
under different numbers of samples.

Visualization of model weights To show the effectiveness of estimated model weights, the final
model weights and the accuracy of the unadapted model (source-only) on task Ar,Cl,Rw→ Rr are
drawn together in Figure 2b. As we can see, the model with better-updated model accuracy has a
higher weight eventually, which shows that the proposed strategy could effectively recognize the
relevant model. And this strategy may be a possible method to select models. Moreover, the change
of model weights during the adaptation is shown in Figure 2c. From the overall trend, the weight of
the relevant model is increased and the weight of the irrelevant model is decreased with the increase
of test samples.
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Figure 2: Insight analysis of the proposed method.

Analysis of adaptation modules In TENTWang et al. (2021), only the parameters of BN layers
are adapted. We argue that TENT has a strong assumption on the parameters and we instead adapt all
parameters. We compare both strategies and the results on the Office-31 and Office-Home datasets
are shown in Table 7. The results show that adapting all parameters achieves better than that of only
adapting BN layers as the former could offer a larger adaptation space and model capacitance.

Office-31 Office-Home

Only BN 86.9 66.3
All networks 88.2 67.5

Table 7: Analysis of adaptation modules.

Analysis of Computational Efficiency Table 8 shows the computational efficiency, we compare
the number of forward and backward passes. The pass number is calculated on Office-Home datasets
(15,588 samples and 3 given models). As we can see, Source-only-Ens requires the least pass
numbers and could be approximatively seen as a lower bound. The forward pass number of MUTE is
slightly more than TENT-Ens(both teacher and student are updated) but they have the same backward
pass number(only the student model is updated). Compared with MEMO-Ens, the computational
efficiency of MUTE is significantly improved.

#forward #backward

Source-only-Ens 15,588×3 0
MEMO-Ens 15,588×3×16 (Augmentation times) 15,588×3×16
TENT-ens 15,588×3 15,588×3
MUTE 15,588×3×2 (Teacher and Student) 15,588×3 (Only student)

Table 8: Analysis of computational efficiency on Office-Home datasets.
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