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Abstract

Many applications of causal inference require using treatment effects estimated on a study
population to then make decisions for a separate target population that lacks treatment and
outcome data. We consider the challenging setting where there are important covariates that
are observed in the target population but are missing from the original study. Our goal is to
estimate the tightest possible bounds on heterogeneous treatment effects conditioned on such
newly observed covariates. We introduce a novel partial identification strategy based on ideas
from ecological inference; the main idea is that estimates of conditional treatment effects
for the full covariate set must marginalize correctly when restricted to only the covariates
observed in both populations. Furthermore, we introduce a bias-corrected estimator for
these bounds and prove that it enjoys fast convergence rates and statistical guarantees (e.g.,
asymptotic normality). Experimental results on both real and synthetic data demonstrate
that our framework can produce bounds that are much tighter than would otherwise be
possible.

1 Introduction

Many applications of causal inference require using treatment effects estimated on a study population to then
make decisions for a separate target population that lacks treatment and outcome data. As a motivating
example, consider a health system that wishes to deploy a new intervention in its population while making
use of existing study data that was used to estimate heterogeneous treatment effects. The health system
will almost certainly have access to features that were not measured in the original study, due to differences
in institutional settings. For example, if the initial study was an RCT (Randomized Control Trial), it may
have failed to measure practically important covariates such as social determinants of health (Kahan et al.|
2014 [Huang et al., 2024). Since the intervention has not previously been used by the health system, no
outcome data linked to these new covariates is available. However, treatment decisions would ideally reflect
whether the intervention is likely to be beneficial to a patient conditional on all information available, not just
covariates that happened to be in the original study. This paper studies the question: how precisely can we
identify treatment effects conditional on such new covariates? If precise estimates are available, the decision
maker can proceed confidently with deployment. Conversely, if considerable uncertainty remains about an



important subgroup, a decision maker may exercise more caution or invest more resources in monitoring or
additional data collection.

Formally, we aim to derive bounds on conditional average treatment effects (CATEs) when novel covariates
are observed in the target population. We refer to the CATE conditional on both the common and new
covariates as the fully conditional CATE and the CATE conditional on only the common covariates (which is
what can be estimated from the original study) as the restricted CATE. Intuitively, what makes informative
bounds possible is that the fully conditional CATE must be consistent with the restricted CATE when
marginalized to only the common covariates. This idea is reminiscent of the ecological inference literature,
which focuses on inferring a joint distribution from its marginals. Ecological inference has long been used
in the quantitative social sciences, e.g. for election analysis (Glynn & Wakefield, 2010} King et al., |2004).
However, almost no previous work uses ideas from ecological inference in causal settings. We provide a partial
identification strategy new to causal inference by connecting ideas from ecological inference to causality. The
resulting bounds on treatment effects use the joint distribution of the common and new covariates to link the
fully conditional and restricted CATEs.

We make the following contributions. First, we formally provide provable bounds on conditional treatment
effects by leveraging ideas from ecological inference. These bounds contain novel nuisance functions that
must be estimated. Our second contribution is a bias-corrected estimator that exhibits favorable statistical
properties such as allowing for the use of non-parametric and/or slow converging machine learning models
to estimate these nuisance functions without sacrificing fast Op(ﬁ) rates convergence. We also prove that
our estimator is asymptotically normal, facilitating the construction of confidence intervals. Finally, we
demonstrate these properties empirically through the use of simulation and application to data from a real
RCT.

Additional related work: There is a great deal of work that focuses on combining experimental and
observational data to estimate treatment effects. This paper does not focus on the distinction between
experimental and observational data: our setup is agnostic as to whether the study population is experimental
or observational as long as it satisfies standard identification assumptions. Our focus is on incorporating
covariates that are newly observed in the target population and not present in the study. One major line of
previous work attempts to use outcome data from both an RCT and observational study to jointly estimate
treatment effects (on common covariates). (Chen et al. 2021} Hatt et al.| [2022; [Demirel et al.l |2024; |Guo
et al., [2022; Schweisthal et al., [2024) Often, this involves fitting a model for the confounding bias present in
the observational study (Kallus et al., [2018; [Yang et al., [2020; Wu & Yang}, 2022). By contrast, we estimate
the CATE in the target population where no outcome data is available and new significant covariates are
present that were not present in the study population (we do not only study common covariates between
data sources). A second line of work focuses on the case where the observational study has no outcomes by
correcting for shift in the covariate distribution (Lesko et al. 2017 [Lee et al.l 2022). These methods deal
only with covariates found in common, and focus on average effects (as opposed to our focus on conditional
effects).

Recently, a few papers have tried to quantify the uncertainty from covariates missing in the RCT. |Colnet et al.
(2024)) focus on quantifying how an estimate of the ATE might be biased when a covariate is missing in one
or both populations. In contrast, our focus is on bounding conditional treatment effects. They also require
distributional assumptions (e.g., Gaussianity) on the missing covariate, as opposed to our nonparametric
approach. Similarly, [Nguyen et al.|(2016) propose a sensitivity analysis framework for estimation of the ATE
in a target population when a treatment effect mediator is unobserved in the target population (as opposed to
our focus on covariates unobserved in the study population). |[Andrews & Oster| (2019)) propose a framework
to assess the external validity of RCTs when a missing covariate induces selection bias into the trial.

Several works make strong assumptions that allow for point identification when covariates are missing.
Pearl (2012)) studies noisy measurements W that causally depend on latent covariates Z, enabling point
identification by assuming W contains no additional necessary information beyond Z. In contrast, we consider
novel covariates unique to the target domain that cannot be reconstructed from study data, thus precluding
point identification and requiring bounds. Similarly, Bareinboim & Pearl| (2014]) achieves point identification
by assuming access to a transportability graph that models causal links between all variables across domains



Table 1: Notation and Definitions (Not Exhaustive)

Symbol Definition

V Common covariates observed in both study and target populations.

w Additional (discrete) covariates observed only in the target population.
T € {0,1} Treatment assignment indicator in the study population.

Y Observed outcome in the study population.

Yyt yo Potential outcomes under treatment (1) and control (0).

E €{0,1} Population indicator: E =1 for study, F = 0 for target.

Z Observed data tuple {V, E, W(1 — E), E(T,Y)}.

X Shorthand for the full covariate vector (V, W).

p(v) EY |V=v,T=t E=1],t€{0,1}.

v(v,w) PW=w|V=uv, E=0).

Te(x), Tu(x) Un-truncated lower/upper bound on CATE numerator: (p1 — po = (b—a))/v.
Ye(v,w), Yu(v,w) Truncated lower/upper bounds on E[Y!—Y? | v,w, E = 1] (Thm. .
m(X; ) model class for Parametric projection of the bounds.

Ié] Parameters of the chosen model class for m(+; 3).

h( Analyst-chosen weight function in the projection.

g( (0m/0B) h(X) in the moment conditions.

T Joint propensity P(T' =¢, E=1|V =wv), ¢t € {0,1}.

Selection probability P(E =0 |V = v).

Indicator 1{7m(X) + b —a > 0} (or analogously for upper).
Known bounds on Y: Y € [a,b] = Y!—Y? € [a—b,b—ad]
Sensitivity parameter: |E[Y'—Y? |V, W] -E[Y'-Y" | V]| < 4.
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— an assumption we do not make. Berrevoets et al.| (2023]) enables point identification by making an overlap
assumption where all covariates and sets of covariates have observed outcome values with non-zero probability.
In our setting however, we have certain covariates in our target population that we never have outcome
data for. To our knowledge, our paper is the first work to ever non-parametrically estimate bounds on the
CATE in this setting, where the target population has no observed data and has covariates not observed in
the study population, without making the kind of strong assumptions that allow point-identification while
compromising real-world applicability.

2 Problem Setup

We examine the situation where we are attempting to transport estimates of heterogeneous treatment effects
between two populations. In the first population, which we refer to as the study population, we observe
covariates V, treatment assignments T € {0, 1}, and outcomes Y. Each individual has potential outcomes Y
and Y that would be realized if they were (respectively, were not) treated. We assume that Y1, Y € [a, ]
with probability 1 for some constants a and b, i.e., the outcomes are bounded between known values. We
observe YT corresponding to the treatment assignment. In this population, we impose standard identifying
assumptions (most prominently, no unobserved confounding) that allow estimation of the conditional average
treatment effect (CATE) E[Y'! — Y°|V] of the study population which we refer to as the restricted CATE.
This study population could represent a randomized experiment or an unconfounded observational setting.
This assumption is formalized as T' 1L Y | V given the context of the study population.

In the second population, which we refer to as the target population, we do not observe the treatment or
outcome variables. Instead, we observe just the covariates, which consist of both V' and a new set of covariates
W which were not observed in the study. We assume that W consists only of discrete covariates (although V
may be either discrete or continuous). This holds naturally in many settings of practical interest (e.g., social
determinants of health are very often discrete variables (Sarkar) |2014))). Furthermore, this assumption is not
overly restrictive it can otherwise be ensured via discretization of continuous values (e.g., many clinical risk
scales are already discretized into a fixed set of levels). (Ustun & Rudinl [2019) This assumption is technically



required so the probability of a specific realization of W is well-defined. We use an indicator variable F
to indicate whether the subject is in the study population (F = 1) or the target population (E = 0). Our
observed data consists of samples

VW E=0

Z:{MEWﬂ—ELMﬂY”:{VTY:EI

Our goal is to estimate E[Y* — Y|V, W], or the CATE conditioned on both V and W. We refer to this
quantity as the fully conditional CATE. We are going to use the standard assumptions of consistency (Y=Y
whenever T' = t), positivity (P(T = ¢|V = v, W = w) > 0 for all combinations of v,w). We also assume
that () P(W =w |V =0v,E=1)=P(W =w |V =v,E=0),and 2) E(Y!-Y? | VW,E=1) =
E(Y! —Y? | V,W,E = 0). These two assumptions could be restated as (1) the covariates missing in the
study population have the same conditional distribution as those in the target population, and (2) the fully
conditional CATE (E[Y! — Y? | V,W]) is the same in the study and target population. Many notations and
symbols are summarized in Table

Furthermore, it is true that the treatment effects given V' are unconfounded based on data from the study
population. However, unconfoundedness given V simply means that V gives sufficient information to
understand treatment choices in the study population. It does not mean that V' contains all variables that
impact treatment effects for specific individuals. As such, while we can successfully estimate the CATE
conditional just on V | different subgroups within a stratum of V may still have heterogeneous treatment
responses. In our model, W represents important additional covariates that create smaller subgroups within
strata of V. We wish to bound the treatment effects for these smaller subgroups as they can better allow us
to tailor treatments to individuals at a more personalized level.

3 Methodology

In order to estimate treatment effect bounds in the presence of covariates observed only in the target
population, our approach proceeds in three key stages. First, we invoke an ecological-inference argument
to derive sharp, nonparametric bounds on the fully conditional CATE E[Y! — Y? | V, W] by leveraging the
fact that these effects must aggregate to the known restricted CATE given V alone. Next, recognizing that
these bounds depend on several unknown nuisance functions (e.g. outcome regressions, propensity scores,
and the conditional distribution of W), we develop a bias-corrected estimator based on influence-function
adjustments: by carefully correcting the usual plug-in estimator, we attain fast O(n~'/2) convergence rates
even when the nuisances are learned flexibly at slower, nonparametric rates. Finally, to further tailor our
inferences to settings where one believes the additional covariates W have quantifiable limited impact (by
domain knowledge), we introduce a simple sensitivity-analysis model that restricts the deviation between the
restricted CATE (using only V') and fully-conditional CATE (using V, W) by a user-specified parameter ¢,
yielding strictly tighter bounds when plausible. These steps are summarized in Figure |[II We now describe
each of these steps in turn.

3.1 Partial identification bounds

Our goal is to provide as much information as possible about the fully conditional CATE (i.e., conditional
on both V and W) when outcome data is linked only to V. Clearly, in this setting it is not possible to
exactly identify the fully conditional CATE. However, we can use ideas from ecological inference to partially
identify it. Specifically, if we average the fully conditional CATE over values of W, we must obtain the CATE
conditioned only on V', which is identified. Formally, a long line of work in ecological inference (Jiang et al.,
2019; [Plescia & De Sio, |2017; [Manskil 2016]) uses marginal consistency conditions of the following form, for a
single outcome Y:

E(Y |v) =Y E(Y | v,w)p(w | v). (1)

For the sake of brevity, we use capital letters (eg V, W) to represent random variables and lowercase versions
(e.g. v,w) to represent specific values of these letters (such that V =0, W = w). If p(w | v) is known or can



Study Population
Limited covariates with
treatments/outcomes
(V,T,Y)
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Ecological Inference
Derive bounds on
fully-conditional CATE

E[Y(1)-Y(0) | V,W], Sec

Y
Bias-corrected Estimation
Use influence function to
estimate bounds, Sec [3:3]

Y
Sensitivity Model

Limit how much unseen covariates W

can change our effect estimate, Sec [3.4]

Figure 1: Roadmap for bounding and estimating the fully-conditional CATE

be estimated, we can then rearrange this expression to obtain bounds on E(Y | v,w). We apply a similar
strategy in the context of the CATE (using also the causal assumptions that link it to the observable data)
and obtain the following provable bounds on the fully conditional CATE:

Theorem 1. Assuming the conditions in Section|d and that Y is a real-valued outcome bounded in [a,b]
Ye(v,w) <EY!' =YY |v,w, E =1) < v,(v,w)

such that

) —pol) —(b—a)(l-v)

(V) = po(v) = (e = b)(1 —v)

}
ol

where (V) =EY |V =0, T =t,E=1),v(v,w) =PW =w |V =v,E =0)

o~

Yalv, w) = min{

This bound utilizes the worst-case scenario that if Y € [a,b], then Y1 — Y? € [a — b,b — a]. Note that these
bounds (our estimand of interest) are a function of V and W. We introduce a framework that estimates
the projection of these functions onto a parameterized model class m chosen by the analyst. Different use
cases may call for different parameterizations. E.g., an analyst may prefer a linear model for simplicity and
ease of interpretation, or use a more intricate nonlinear model such as a neural network if they wish for
greater flexibility to capture the underlying function. Regardless of the choice, we assume that the model is
parameterized by some [ of fixed dimension with respect to n. Note that we do not assume that the model
m is correctly specified; i.e. we estimate the projection of v onto a model class instead of setting v equal to
some model.

For simplicity of notation, we will use X interchangeably with the joint tuple (V,W). We attempt to find
the best approximation of v¢(z) and +,(z) in the form of a model m. We use 7 to represent the bound of
interest, which could be either v¢(z) or v, (x) as desired. We seek model parameters § which minimize the



mean squared error between m and 7:

p=ergminE [(X){7(X) = m(X;6)}?]

This formulation is weighted by an analyst-chosen function h which allows a degree of choice on what
observations to place emphasis on (for example, we could choose to emphasize certain covariate regions of
interest). Differentiating then gives us the moment condition M ()

g | 9m(X:B),

0= 5

(X (X) =m(X;5)}| = M(P)

Our goal becomes to find the /3 such that M (B) = 0. To keep notation concise, define

) — () ~ (b —a)(1 - v)

TE(LE)

so that vy¢(xz) = max{r(x),a — b}, and similarly for 7,(z). Letting g(X) = %g;mh(X), this moment
condition is equivalent to

My(Be) = Elg(X){(re(X) +b—a) » Ume(X) +b—a>0)+a—-b—m(X;5)}] =0 (2)
My (Bu) = Elg(X){(ru(X) +a—=b) * 1(ru(X) +a —b<0)+b—a—m(X;5)}] =0 3)

3.2 Estimation

If 7 were known, we could simply solve the resulting least-squares problem. However, 7 in fact depends on a
number of nuisance functions that are not known and must be estimated from the data: fi1(V), fio(V'), and
P(W =w |V = v, E=0). A naive plug-in strategy would be to estimate each of the nuisance functions and
then plug the estimates into the moment condition.

However, the quality of the resulting solution will depend sharply on how well the nuisances are estimated. In
general we will not obtain consistent estimates for even the projection onto the parametric model class unless
the nuisances are estimated consistently. As the nuisances are unlikely to lie exactly in any specific parametric
class, consistent estimation will require the use of nonparametric methods that converge only slowly (slower
than O(n*%)). Conversely, if the true values of the nuisance functions were known, S could be estimated
at the (faster) root-n parametric rate (Vaart} 2000). We draw on techniques from the semiparametric
statistics/double ML literature to propose a Bias-Corrected estimator that attains the parametric rate for 8
even when the nuisance functions are estimated at slower nonparametric rates.

3.3 Bias-Corrected Estimator

In this section, we will focus on the derivation of a Bias-Corrected estimator for v¢(x); v, (z) follows a similar
form, shown in the Appendix. Full proofs of all claims can be found in the Appendix. The starting point is
to derive an influence function for our estimand of interest. Intuitively, influence functions approximate how
errors in nuisance function estimation impact the quantity of interest, in this case v. A common strategy
in semiparametric statistics is to use the influence function for the target quantity to provide a first-order
correction for the bias introduced by nuisance estimation. This dampens the sensitivity of the estimator
to errors in the nuisances and will allow us to derive fast convergence rates for 5 even when the nuisances
converge more slowly.

Unfortunately, influence functions typically only exist for quantities that are pathwise differentiable. The
expression for v, contains a non-differentiable max, which shows up as an indicator function in the moment
Mo(Be) (2). That is, the moment condition is discontinuous on the margin 7(x) +b—a = 0 to 7¢(z)+b—a < 0.
We employ a margin condition strategy used by |[Kennedy et al.| (2019), who analyzed a nondifferentiable
instrumental variable model, and others (Kpotufe et al., [2022; Vigogna et al.l |2022)). Specifically, we can
hope for fast estimation rates when the classification problem of estimating the indicator for a given X is not



too hard, in the sense that not too much probability mass is concentrated near the boundary. Specifically, we
assume that

Assumption (Margin Condition): P(|r(z) +b—a| < ) < C¢* (4)

for some constant C and some a > 0. Similar assumptions are often imposed in the context of classification
problems (Audibert & Tsybakov} [2007). We have o = 0 with no further assumptions, and o = 1 holds if 7(z)
has a bounded density. A bounded density is a relatively weak assumption, so a > 1 is likely to hold in many
cases of interest. Under this margin condition, we employ a two-part strategy. First, we derive an influence
function for the moment condition under the assumption that the true value of the indicator function is
known, rendering the expression differentiable in the estimated nuisances. Second, our final estimator replaces
the indicator function with a plug-in estimate; the margin condition entails that this step introduces relatively
small bias compared to if the true indicator were known. Specifically, we prove that

E[re1(7¢(X) + b — a) — e1(7¢(X) + b — a)] < C||7(X) — 7o(X)|| 55

When « > 1, this term now depends only on squared errors in the estimation of 7 and will be negligible
asymptotically so long as 7y converges at a o(n_%) rate. The proof for this is contained in the appendix. For
simplicity of notation, we call the indicator f(X) such that f(X) = 1(v(z) + b — a > 0). Next, we turn to
deriving the influence function for v under the assumption that the indicator f is known (where our eventual
estimator will use the analysis above to justify replacing f with its plugin estimate). Given this strategy, we
derive the influence function ¢(X, 3,7n) (full derivation in Appendix) to obtain:

Lemma 1. (X, ,n) is given by (assuming conditions from Section [3):

5 ] 00 O =m0 = 0t
(XI00) = T e} = Xm0 = X |1 ] (5 mxn)(vi))

w w

+ X{n(X) f(X) + (b —a) f(X) +a—b—m(X, )}
where (V) =p(T =t,E =1|V), po(V) = p(E = 0]V)

Note that m and p appear as new nuisance functions that help compensate for errors in the original plug-in
estimate. From this influence function, we can construct our bias-corrected estimator. The key idea is to find
[ that solves an estimating equation implied by the influence function:

A such that P,{p(X,3,7)} =0

where P, is an empirical average. Formally, in order to construct the estimator, we employ a sample
splitting procedure detailed in Algorithm [T} This follows the strategy, common in semiparametric inference
Kennedy et al.| (2023)), of splitting the dataset into two independent halves. The first is used to estimate
the nuisance functions (including the indicator f). Then, we fix the nuisances and construct (X, 3,7)
for the points in the second half, which are used to estimate [ via the above moment condition. The
computational approach to solving the moment condition will depend on the model family chosen. For linear
models m (v, w, 8) = BT v+ BT w, we give a closed-form solution in the appendix that can be computed as a
standard OLS problem. For more general differentiable model classes, one strategy would be to minimize
P {o(X, 3,7)?} using gradient-based methods.

We now turn to analyzing the convergence properties of the bias-corrected estimator, with the goal of showing
that B — [ at a fast rate even when the nuisances are estimated slowly. We start by examining the bias R,,
of our influence function. Let ny be the true values of the nuisance functions while 7 is our estimate. The
bias R,, quantifies the difference between the expected influence function at 79 and 7 and plays a key role in
controlling the convergence rate of B . Formally, we decompose the bias as:

Theorem 2. Let R, = P{p(X;8,7) —o(X;8,m0)}. Assuming that all nuisance functions and their estimates
are bounded below by a constant larger than 0 and that all probabilities are bounded above by 1,
Ry S 16 = pllallo = vll2 + 10 = v[3 + |71 = mill2lin — pua 2
+ 170 — moll2ll20 — pollz + llea — Aall202 — vil2 + 20 — poll2/7 — vl



Roughly, our estimated 3 will converge quickly if R,, = o]p(ﬁ) (a statement formalized below). For this to

occur, all of the products above must be O]p(ﬁ). It is a sufficient but not a necessary condition that p, 0, 7,

and fi converge to their true functions at Op(n_%) rates for R, to be olp(ﬁ). Note that n™% is substantially
slower than the parametric root-n rate, and is satisfied by even many nonparametric methods. It becomes
clear from the bias structure that o = P(W =w|V = v, E = 0) would need to be correctly specified for B to
be a consistent estimator of 5. This is due to the nature of the ecological inference setting where  is the only
thing linking the target population to the study. Thus, our estimator is not doubly robust in the sense that
no other nuisance can compensate for errors in 7. However, the error is still second-order as it involves only
squared errors for v. Additionally, there is a mixed-bias property with respect to all of the other nuisances,
where each nuisance can converge at a slower rate individually if others converge faster (e.g., p can converge
more slowly if 7 and v converge faster). Therefore, our estimator exhibits robustness to misspecification in

A

all nuisances except v. Putting these pieces together, we obtain a convergence guarantee for 3:

Theorem 3. If R, = O]p(ﬁ) and assuming the conditions in Section@ and that the margin condition
holds for a > 1:

1
NG

where M = W and V is the variance of o(X; B,m0)

||B—B||2:Op( ) and \/E(BA—B)%N(O7M_1VM_1))

Theorem [3] follows from Theorem [2] combined with a standard analysis of M-estimators under misspecification
(c.f. Theorem 5.2.1 of [Vaart| (2000) and Lemma 3 of Kennedy et al.| (2023])). Asymptotic normality is valuable
as it allows for the construction of confidence intervals, e.g. with the usual sandwich estimator (or potentially
easier in practice, the bootstrap).

Algorithm 1: Algorithm for Constructing Bias-Corrected Estimator

1: Given input samples D, split uniformly at random into D; and Dy
2: Use D; to estimate nuisance functions: 7¢(X), fi1(X), fio(X), #1(X), #o(X), po(X), (X)
3: Use the estimated nuisances estimates to construct the estimated indicator: f(X) = 1(7(x) +b—a > 0)

using the first part of the data. Let 7} be the set of all nuisance estimates, including now f (X).

4: Find B that solves the following estimating equation on Ds: ﬁ > xep, PX, B, 7)) = 0 where p(X, B, 7)
is constructed using 7) following the expression in Theorem

5: Qutput 8

3.4 Bounds in a sensitivity model

In some cases, we may be willing to impose additional assumptions limiting the deviation between the
restricted and fully conditional CATEs. This may be justified based either on domain knowledge, or taken
in the spirit of a sensitivity analysis where the analyst varies a parameter controlling the strength of such
assumptions to see how much variation across levels of W their conclusions are robust to. In this section, we
propose such a sensitivity analysis model to formalize the case where W is believed to have a limited impact
on treatment effects, after conditioning on V. Specifically, our sensitivity model imposes the assumption that

EY'—Y° | V=0o,W=w,E=1)-EY'-Y°|V=0vE=1)]<¢ (5)

or that the fully conditional effects cannot differ from partly conditional effects by more than 0. § here is a user-
chosen parameter, that may be varied to test the robustness of estimates to an increasingly strong effect of W.
At § = 0, the fully conditional CATE is equal to the restricted CATE, and at § = b—a, we recover our previous
bounds (that use only the boundedness of the outcome to [a,b]). At any intermediate level of §, we obtain
partial identification bounds that are of a similar form to those in Theorem 1| (but stronger), simply replacing
the terms (a—b) or (b—a) by E(Y1 =Y |V = v, E = 1)+§. We estimate these bounds using the same strategy
as for the original model, plugging in the identified quantity E(Y! —Y? |V = v, E = 1) = u1(v) — po(v)
using data from the study population.



4 Experiments

Setup: We start our experimentation with experiments on simulated data so that the ground-truth CATEs
are known, and afterwards give an application on data from a real RCT. Full details of the simulation are
given in Appendix. The process samples 10,000 observations of 3 continuous covariates for V' and 3 discrete
(binary) covariates for W. W is simulated as P(W; = 1) = logit(al V) for a coefficient vector a;, where the
choice of a allows us to control the degree of dependence between V and W. E and T are generated similarly
as functions of V', producing covariate shift between the populations and nonuniform assignment to treatment
across levels of V' within the study population. Finally, the CATE is a specified function of both V' and W
and we sample observed outcomes from the study population matching the CATE.

Baselines: To our knowledge, ours is the first paper to present an algorithm to identify and estimate CATE
bounds for covariates unobserved in the original study. We compare to three baselines. First, we compare the
performance of our bias-correct estimator to the plug-in estimator discussed in Section [3.2] which uses the
same nuisance function estimates as our model but estimates 8 directly by plugging these estimates into the
moment condition, without the influence function-based correction. Second, we compare the informativeness
of our bounds to those which use all of our assumptions except the key ecological inference component in
Equation |1} to test whether using this information results in tighter identification (more details on this
below). Third, we compare the frequency with which our bounds cover the true treatment effects for specific
subgroups of (V, W) with the coverage of confidence intervals for the restricted CATE (which is measured on
V and not W).

Benchmarking: In order to set the sensitivity parameter §, we can use benchmarking methods similar to
other sensitivity models in causal inference. (Byun et al.l |2024; [Hosman et al.l |2010; McClean et al., 2024).
For a specific instance, the analyst holds out n variables from V to form a “simulated" set of additional
covariates W’ mimicking W where V' represents the original V' excluding W’. They then use the difference
E[Y! — YO V'] —E[Y' —Y°|V',W']| as a proxy for |[E[Y! —YO°|V] —E[Y! — Y|V, W]| in order to set 4. This
procedure is performed on all subsets of n variables in V' and results are averaged. As in sensitivity analyses
for unmeasured confounding, this provides an interpretation (based on domain knowledge) that the analysis
is robust to variables “at least as important" as W'.

Simulation: Figure demonstrates the difference in estimation error between the plug in and bias
corrected estimators across 200 random seeds where we inject varying amounts of error into estimates of
outcome and propensity models. We find that the bias-corrected model produces more accurate estimates
of the bounds (known in simulation) than the plug-in by large margins in the vast majority of situations,
especially when there is a high amount of error in the outcome regression. The plug-in model performs
better only when there is little error in outcome regression modeling and high error in propensity modeling.
Intuitively, we might expect ecological bounds to be tighter when the V' is more informative about W. To
test this, we vary the distribution of v and plot its entropy against the width of our bias-corrected bounds.
We observe that as the entropy decreases, the average bound size also decreases (Figure . This shows
that when the known covariates in the study population become more predictive of the new covariates in the
target population, our bounds are tighter.

In Figure [3a] we apply the sensitivity model discussed in section [3.4} The left plot shows the average value of
the bounds as a function of the sensitivity parameter §. As expected, the CATE is point-identified at 6 = 0,
with progressively greater uncertainty as 0 grows. For reference, we also plot bounds (in black) which use
only the sensitivity assumption in Equation [5] By itself, this assumption implies bounds of width 24 for the
CATE. The bounds output by our method are substantially stronger (less than half of the width), indicating
that our ecological inference framework which uses the joint covariate distribution provides substantially
more informative inferences than would otherwise be possible. The right figure shows the rate at which our
bounds cover the true CATE as a function of §. As expected, if 0 is close to its true value (known in the
simulation), we observe close to nominal coverage levels. Additionally, Figure [3b|shows that the 95% CI of
the restricted CATE (measured on V and not W) baseline only correctly covers 43.7 percent of the true
treatment effects, while at both the true and estimated values of our sensitivity parameter ¢ (3 comes from
Benchmarking distribution in Figure estimated and true ¢ are very close - within 10% of each other),
roughly 98 percent of the true treatment effects are covered by our method. We can also observe that at
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Figure 2: (a) Difference in estimation error between the plug in and bias corrected estimators under varying
errors in outcome and propensity modeling. Red is higher loss for the plug-in. All errors are measured in
mean absolute deviation. (b) Average worst-case bound width as a function of the entropy of v where the
range of outcomes is 40. (c,d) Benchmarking distribution for (¢): Simulation Data, (d) RCT Data. Final
B represents the mean of each distribution and is within ~ 10% of both true 6. We consider all potential
subsets of V' and W’ that can be made from V given the number of variables in W’ (3 in Simulation and 1 in
RCT). Full range of possible ¢ for x-axis is (0,16).

both the true and estimated values of §, the bounds are very informative as the CI of the mean lower bound
of the treatment effect (7;(v,w)) exceeds 0. More specifically, we have that ~;(v,w) ~€ (1.1,1.6) at ¢.
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Real World Data: Finally, we illustrate our method by estimating conditional treatment effects for a
real-life RCT that measured the effect of a throat treatment (gargling with a licorice solution) prior to
thoracic surgery on post-operative swallowing pain (Ruetzler et al.| 2013]). We split the dataset into a “study’
and "target" population by holding out one of the covariates in the study population to form W. All of
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the variables in V' are standard measurements such as pain index, while the variable we separated for W
represents an indicator as to whether the patient experienced coughing after the ventilation tube was removed
from their airway. Although this indicator is considered by many physicians to be a valuable metric (and
would be visible to physicians working with the target population), it is frequently not recorded (Duan et al.,
2021)) and hence might not be available in a study dataset. Further details about variables and the setting of
the RCT can be found in the Appendix. Figure [3dshows the average width of bounds we obtain as a function
of §, and we once again observe that the ecological framework provides substantially improved identifying
power compared to naive bounds that only use the sensitivity assumption itself.

We again see very informative bounds in Figure In particular, the CI of the mean upper bound of the
treatment effect lies entirely below 0 (v, (v, w) ~€ (—2.4, —3.0)) at § where § comes from the Benchmarking
process shown in Figure indicating a provable reduction in postoperative throat pain due to the treatment.
At the estimated value of ¢, our bounds have almost exactly the desired 95% coverage level (Figure .
By contrast, the bounds output by a DR estimator for the restricted CATE have only 50% coverage. This
indicates that the held-out covariate has a significant impact on treatment effects, such that the expected
effect for many patients moves outside the original CI after seeing the new covariate. Our bounds properly
account for this uncertainty while remaining informative about effects. Similarly to the simulated data, even
if we select a value of ¢ that matches the average width of CIs for the restricted CATE, our bounds have 25%
better coverage. This shows how leveraging the joint covariate distribution allows us to provide strictly more
informative uncertainty quantification about treatment effects than otherwise would be possible.

5 Discussion

In this paper, we give the first formal presentation of an identification and estimation strategy for the CATE
when generalizing to a target population that has covariates not observed in an earlier study. We develop
a bias-corrected estimator that retains fast Op(ﬁ) convergence rates even when nuisances are estimated
nonparametrically, and is asymptotically normal under standard conditions. We also introduce a sensitivity
model to bound impact of the new covariates on treatment effects. Empirically, we find that our method is
often able to substantially reduce uncertainty about heterogeneous treatment effects, even in this challenging
setting where no outcome data directly linked to the new covariates is observed. We caution that, like all
causal inference methods, our framework requires domain expertise to assess the plausibility of assumptions,
e.g. that W and V follow a consistent joint distribution between the populations. However, when used
appropriately, our framework gives users one way to assess the generalizability of effect estimates to newly
identified subpopulations before committing to a treatment assignment policy, helping to avert unintended
negative consequences.
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A Appendix

In this appendix we provide full derivations of the bounds, moment conditions, and influence-function-based
expansions used in the main text. We also add explanatory commentary to make the main algebraic steps
more explicit.

Throughout, we keep the same notation as in the main body. In particular, we use:

o E[] to denote expectations.
o () to denote probabilities.

o FE € {0,1} exclusively as the indicator of the study/target population (not as an expectation operator).

A.1 Fully Conditional Bounds

We begin by deriving bounds on the conditional mean E(Y | W = w, V = v) when we only know that Y lies
in a bounded interval and we observe the distribution of (Y, W, V).

Assume that Y € [a, b] with probability one. We first apply the law of total expectation by conditioning on

the event {W = w} vs. {W # w}:

Y| V=0)—EY |WH#wV=0)PW#w|V=0)
P(W=w|V =v)

E

EY|W=wV=v)= (

The expression above is an identity that simply rewrites E(Y | V =) in terms of E(Y | W = w,V = v) and
E(Y | W # w,V = v), and then solves for E(Y | W = w,V = v).

Because Y € [a,b] almost surely, we know that E(Y | W # w,V = v) must lie in [a,b]. Minimizing and
maximizing the right-hand side over all such values yields the sharp interval:

B B EY|V=v)—bPW#w|V=0)
E(Y|W—w,V—U)E{maX{ POV —w |V =0 ,a},

We now apply the same idea to the conditional average treatment effect Y! — Y0 instead of Y. Under
the assumptions laid out in the Problem Setup (in particular, that treatment is randomized within the
experimental sample), we can write:

EY'-Y° | V=0,W=wE=1)
CEY' Y V=0, E=1)-EY'-Y° | W#w,V=0,E=1)PW #w|V =0v,E=0)
N PW=w|V =v,E=0)
CEY | V=0, T=1L,E=1)-EY |V=0vT=0,E=1)—a(w)P(W#uw|V =uv,E=0)
B PW=w|V =v,E=0)

The first equality above again uses the law of iterated expectations, now applied to Y — Y? across the
partition {W = w} vs. {W # w}. The second equality uses randomization of T" in the experiment to replace
E(Y?|V = v, E = 1) by the observed regression E(Y |V =v,T =t,E = 1), and defines

aw,w) =EY Y | W #£w,V=v,E=1).
In this representation the only unknown quantity at (v, w) is the conditional effect

Y, w) :=EY Y |V =0, W =w,E=1).

If all that is known is that Y € [a,b], then (by monotonicity) we have Y — Y° € [a — b,b — a] almost
surely. This implies that the nuisance term a (v, w) is only known to lie in [a — b, b — a] pointwise in (v, w).
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Plugging the extremal values of a(v,w) into the identity above, and combining this with the bounds for
E(Y | W =w,V =), yields sharp bounds

Yo, w) SEY' =Y | V=0,W=wE=1) < y,(v,w),

where

1 (v) = po(v) = (b= aP(W £ 1w |V = v, F =) (aw}

P(W=uw|V=0v,E=0) ’

(V) = pov) — (a =)W £ w |V = v, E=0) (b—a)}
P(W=w|V=v,E=0) ’ ’

yelv,w) = max{

Yu (v, W) = min{
and where we have defined the experimental outcome regressions

pr(v) =EY |V =0vT=1tE=1).

A.2 Moment Condition

We next make explicit how the projection moment condition M (3) looks when we plug in the truncated lower
and upper bound functions. The idea is simply that we regress a (possibly truncated) bound function onto a
working model m (v, w; 8) using instruments g(z).

For the lower bound, recall that we define v¢(v, w) = max{r;(x),a—b}, where = (v, w). Then the population
moment condition is

M(B) = Elg(z)(v(v, w) — m(v, w; §))]
= Elg(z)(max{re(z),a — b} — m(v,w; B))].
We can rewrite the maximum explicitly in terms of indicator functions:
M(B) = Elg(e){m(z) * 1(re(2) = (a = b)) + (a = b) * Ure(2) < (a =) = m(v,w; 5)}]
= Elg(@){(me(2) +b—a) * Ume(2) + b —a > 0) +a—b—m(v,w; 5)}].

The last line is just a reparameterization of the indicator in terms of 7¢(z) + b — a, which will be convenient
when we apply the margin condition.

For the upper bound, we truncate at b — a instead of a — b. Let v, (v, w) = min{r,(z),b — a}. Then
M(B) = Elg(z)(v(v, w) — m(v,w; §))]

[9(x)(min{r,(z),b — a} — m(v,w; B))]
[g(@){(tu(z) +a—=0b) * 1(Tu(z) + a —b < 0)+ b—a—m(v,w; 5)}.

E
E

Thus, for both lower and upper bounds, the moment condition has the same form: a weighted residual of a
truncated function of 74(x) or 7,(z) against the working model m(v, w; 3).

A.3 Use of Margin Condition

We now record the basic inequality that underlies the use of the margin condition. This inequality controls
the error incurred when we replace the unknown sign of 7(z) by the sign of an estimator 7(x) inside indicator
functions.

Consider the difference
E[r1(74+b—a) — 71(tr + b—a)] = E[r1(F) — 71(7)].
We can bound the absolute value of this difference using the triangle inequality:

E[r1(7) — 71(7)] < E[|7[- [1(7) — 1(7)]].
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The indicator difference is only nonzero where 7 and 7 have different signs; this in turn implies that |7| < |7 —7]
on that event. Using this observation, we obtain

Efllr|-[1(7) =1(n)[] < /I? —7[1(|7] < |7 = 7])dP(2)

< [1# =it < |7 - 7P (o)
< supl = 7] P(lr] < 17 = 7l)
<clff - rllie.

The third line follows from the fact just mentioned: if 7 and 7 are of opposite signs, then |7| < |7 — 7|. The
last inequality is exactly where the margin condition is invoked; it controls the probability mass near zero
and yields a (1 + «)-order bound in the sup-norm error.

A.4 Influence Function Derivation

We now derive the influence function used in the main text. The strategy is to start from basic, well-known
influence functions and then apply the usual “influence function calculus” (e.g., product and quotient rules)
to obtain the influence function of the more complicated functional of interest.

Basic facts. We first collect several standard influence functions and identities that we will use as building
blocks; see Section 3.4.3 of [Kennedy| (2023)) for more background and proofs:

p(a)  pW=w|V=0)
p(V=0v,T=1,F=1) p(T'=1,E=1|V=0v)’
TF(p(r)) = {L(X = ) — p(z)}.

Here IF(-) denotes the influence function of the corresponding functional, and p(-) is the density/mass
function of X.

Derivation. We now apply these basic components to our particular ratio functional. For clarity, we
introduce explicit notation for the numerator and denominator of the scalar quantity 7(x).

We say that mum is the numerator of 7,
T (@) = 1(0) — o) — (b — Q)B(W # w | V = v, E = 0),
and that Tqen is the denominator of 7,
Tden(z) =P(W =w |V =v, E =0),

so that 7(z) = Tnum (@) /7den(z). We use “num/den” here to avoid the subscript n being confused with a
sample size.

As mentioned in the paper, we also define the indicator
f@)=1(re(z)+b—a>0).

Using the quotient rule for influence functions, we obtain

IF(r(z)) = 1F<T“‘”“(x))

Tden (ZZ?)
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_ IF(Tnum(x)) _ Tnum( ) T
B Tden () Tden (T ) IF( den( ))

We now spell out the influence functions of the numerator and denominator in terms of the nuisance functions
involved:

ET1(V =) E(1—T)*1(V =)
1P (un(e)) = =y =) - DA oo
O = =000 =) =g =w |V =0, E=O))
IF(ran(@) = V=0 E =0 o pw —w |V =0, B =0)).

P(V =v,E=0)

Here ET1(V = v) is the indicator of the event {E = 1,7 =1,V = v}, and the expressions follow from the
standard influence functions of conditional means and conditional probabilities as in the “facts” section above.

We now consider the functional

> 9@ {r(x)f(z) - q(@)}p(x),
where we call the known portion ¢(z) such that

q(z) = =((b = a) f(z) + a = b —m(z; ).

Applying the product and chain rules for influence functions to this functional yields

17| ¥ a(a) (@)1 (o) = oo}

= | S (@I @) 1@)10(@) + @) (@) ) q(z)}fF(p@)))]

- X

= | (gt { L Cm ) TOTF Gl 0 0)) 4+ g) (X)) - 003 |-

Tden (ZE) Tden (53)

-z

For convenience, we decompose this influence function into three pieces:

o (x:8) = 3 ()| T ),

Tden (x)

x

ea(X:8) = = 3 glay { Tl )

= Tdcn(x)
p3(X; ) = g(@){7(2)f(x) — q(x)}.

Then the overall influence function is

0(X;8) = p1(X; B) + p2(X; 8) + p3(X; B).

We now simplify 1 and ¢o by substituting the concrete forms of IF(mum(z)) and IF(7gen(z)), and using
the assumptions on p(W | V) (e.g., that it is common across F). After straightforward algebra, we obtain:

ET 1
(pl(X’ﬂ):p(T:17E:1|V)Y #1 ngw (w|V) m
E(1-T) 1
_p(Tzo,Ezl\V)Y fo(V Zng Jplw [ V)« Tden(V,w)
(b—a)(1-E) p(W V)
M{Q(WW)f(V,W)*W
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Sttt 9+ B
(T = 1,EET: Ty ) Xw:g(V, w) f(V,w)
(T = (511; . 7y () * D gV w) f(Vow)
W{g(v’ w)Fv.w) - Z (Vow) f(V,w)p(w | V>}.

To go from the first expression for ; to the second, we use that 7gen(V, W) = p(W | V) (by construction)
and that, under our assumptions, p(W | V') does not depend on E.

Similarly, for ¢ we obtain
1-F
pE=0[V)

=Y 9(V,w) f(V,w)p(w | V) *

7(X)
Tden(X)
HV,w)p(W = w | V,E = o>}
'fden(va w)

oa(X; ) = - {g<v, W) F(V, W)W | V) #

1-F

_ _M:O'V){g(v, W) F(V, W)3(X)

—Zng )7 (V, w)p(W :w|V,E:O)}.

Putting these pieces together, we have

P(X;8) = p1(X; ) + 02(X; B) + ¢3(X; B),
and the result stated in the paper follows upon specifying the choice g(z) =[v', w
Writing ¢(X; ) explicitly, we obtain
ET .
sr=tE=1 Y M) ij (V,w) f(V,w)
E(1-T) .
p(T=0,E=1]|V) (Y = fio(V)) = zw:g(v, w) f(V,w)

(b—a)1-EF)
e s - S oV ot "}

1-E
PE=0[V)

o(X;B) = )(Y*

{g<v, W) F(V. )7 (X)
—Zng )7 (V, w)p(W =wv,E=0)}
+ g(X){T(X)F(X) + (b= a) f(X) +a—b—m(X, B)}.

The influence function for the upper bound 7, (z) has an identical structure, with the truncation endpoints
swapped. Specifically,

ET
o(X;8) = o(T —1E—1\V) Zng
BE(1-T)
“pm=0 =1 A Ve
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(- a1~ B)
BBV IS = SV e V)

1-F

_ ;3(E=0|V){g(v’ W) £(V, W)#(X)

- Y Ve V) Ve)plo¥ = w | V=0
+ g(O{T(X)F(X) + (a— B)J(X) +a —b—m(X, B)},

where, for the upper bound, we use f(X) = 1(m,(x)+a—b < 0) and flip a — b and b — a wherever they occur.

A.4.1 Bias Derivation

We now turn to the bias calculation underlying the second-order remainder term. In this subsection we
keep the algebra as originally written, and insert commentary describing the main steps and tools (iterated
expectation, algebraic rearrangement, and grouping of terms into products of nuisance estimation errors).

In the steps below, we primarily use iterated expectation and algebraic manipulation. For notation purposes
we say POW | V) = 1— P(W | V). We will eventually convert some of the nuisance functions to the
notation used in the paper (e.g. v(V,w) = p(W =w | V,E =0) and po(V) =p(E = 0| V)), but for now we
leave them in their original form as it makes them easier to visualize and manipulate. For brevity we use
7, =p(T =x,E =1]V) in these proofs. It is also important to recall that Tqe, (V, W) = p(W | V), so we
can interchange these as we like.

Our general strategy is to write the bias as an expectation of the difference between the estimated and “true”
influence functions, and then algebraically rearrange this expression so that every term is either second order
or can be decomposed into a sum of a first-order and a second-order term. We focus first on rewriting each
candidate first-order term as a sum of a second-order term plus a remainder, and then handle any remaining
first-order pieces.

The bias is given by:
Ry =P{o(X;8,1) — o(X;8,m0)} = P{e(X;8,1)}.

We start by examining the contribution from ¢y:

E{g1 (X:6,7)} = E[(TzlEET:HmY i)+ oV, w)(V.u)
E(1-T)
_ﬁ(T_O,E:1|V)Y fo(v Zng w)
(b—a)(1-FE)

W{Q(X)f()() - Z (V,w) f(V,w)p(w | V)}]

:E[%(Nl( Zg (V,w)f(V,w)

@(Mo( Zg (V,w) f(V,w)

(b—a)p(E=0]|X)
pE=0]V)

(b—a)p(E=0]V) .
—SE=ovy IV (Vwiw V)],

w

9(X)f(X)

In the last equality, we have taken conditional expectations given V and used the definitions of 7, and the
various nuisance functions. We then expand each ratio, such as 71 /71, around 1 to separate first-order and
second-order parts.

20



Continuing this expansion, we write:

= B[ (V) — (V) » S otV Vo

”O;Oﬁoum )+ gVl (Vi V)
+ (1 *Zng
— (ko ))*iy(Vw

(b—a)p(E=0| X)z (b—a)p(E=0]V)

9V (X) = T D oV (Vw)plw | V).

w

PE=0]V)

The terms involving (7, — #;)(t: — fiz) are already second order. The remaining two terms involving
p(E =0/ ) are the most delicate and are handled next.

We now isolate and manipulate those latter terms:

(0—0) 3 By et )]

- 2= ) paptan | (V)

P(E=0]v)
—B[0-0) X B o) f@pte | o)p(o)
-0 B @ @it | o)
) p(w [W)p(E=0]2) (W =w|V.E=0p(E=0]v)
= [0 0) o) @) (G T - o e 1
p(E=0]v)

)p){—om——7—= — 1}x

w M sE=0r0 Y
{pW=w|V=0v,E=0)—p(W=w|V =v,E=0)}
+(b—a)Zg(:r:)f(x){p(W:w|V:v,E:O)—ﬁ(W:w|V:v,E:0)}]

p(E=0|V .
=E[<b—a>29<v,w)f<v,w>{w—1}{p<W=w|v,E=0>—p<W:wME:0>}]
a+E[( —aZng (Vow){(p(W =w | V,E=0)—p(W =w | V,E =0)}].
This algebra rearranges the terms so that we can clearly see (i) a second-order product of errors in p(E =0 | V)

and p(W =w | V, E = 0), and (ii) a leftover first-order term in p(W = w | V, E = 0). The leftover term will
later be paired with pieces from ¢ and @3 and turned into a second-order term as well.

Next, we handle the remaining first-order terms in ¢y together with the contributions from ¢9 and ¢3. For
bookkeeping, it is convenient to rewrite ¢ as

0= @1(X3B) + 9a(X:B) + g(X )(fjjf)f o)) = 00 (75 - a(0))
=¢2(X;/3)+9(X)(T"um ) (Tnum( )f—q(X)>
+a(:) + 900 (L2 - q<X>) o) (222G s~ 400))
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The first line collects everything; the second line groups together the pieces that will form second-order
products in Tqen and the pieces that involve Thnum — Tnum-

We first examine the contribution from the first group:

prt o 200 - 000)) - o 22 ) - o) )
~ B[~ i (90X (Xpt | 0) 5 )((X)+
S oV )V wpt | V) T (Tden(vf’ll)v’ E=0)
b 22250 = 000)) — o 222 5(3) - 40) )]
— 5[ G T
B 07 3 el (Vg | V) » ety o gp (o - T )

Taum ‘/aw ‘/aw E=0|V A
—E[ ?-d(en(v?{u() ){;I;EE:():V;_1}{p(W:w|V’E:0)_p<W:“’|VvE=0>}+

5 (Pt iy — w0 V. = 0) = o8 = | Vo = 0)) + gf (T = T ).

7/:den (Vv; w) ) Tden Tden

The first line in the last display is again second order (a product of errorsin p(E =0 | V) and p(W =w | V, E =
0)). The second line is made second-order by combining the factor (W =w | V,E =0)—p(W =w |V, E = 0)
with the difference in denominators, as we now show.

We examine this remaining part:

B[S (e ) (W — | V. = 0) =W = w | V.E = 0))

. 1 1
+ ngnum ( ~ - > ]
Tden Tden

= (ﬂmmq(V, w) f(V, w){%den(V’ ) = raen (Vo)) +gf%num(%1 1 >]

Faen (V) don Taen

= B[ 3 P s~ )+ g V0 SV 0050 | V) 5~ )
E[3 fumg (Vo) (7, m(ﬁ{mm w) = Taen(Vy )} + (Tden<1v w) Tden(lv, )

= E@ Frumg (Vo w) f(Vyw) (= ;ZZE& Z; m(lv, w) fden<1v, w) Tden<1v, )

—E[3 Armg(Vow)f (V. w) = - (Faen (Vs 0) = Taen (V1)) ).

7_den(‘/7 w)Tden(V7 w)

w

This shows that these terms contribute only a second-order remainder in the denominator estimation error.

We then turn to:

o1(X58) + 9(X) (“‘((fﬁ))f - q<X>) ~g(X) <((XX))f - q<X>),

and carry out a similar decomposition:

®1 +g(;““mf—Q(X)) —9<T““mf—q(X))

den Tden
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= B[~ NEd gVew
7T07;07T0( 0 *Zg(Vw

p(E=0]V .

‘*‘(b—a)zw:g(vaw)f(vvw){m —IHpW =w|V,E=0) - p(W =w |V, E=0)}
+ (1 (V Zg V,w)f
— (ko (V Zg (V,w)f

(b—a) Zg (V,w)f(V,w){p(W =w |V,E=0)—p(W =w | V,E =0)}

g(X) (T;Z?((j(())f B q(X)) N g(zif:((j(())f — q(X)>].

As before, the first three lines of the expectation are already second order. The remaining terms are combined
to yield products of (u: — fit), (p(W =w | V, E =0) — p(+)), and (7den — Tden), as shown in the algebra that
follows.

After carrying out these rearrangements (which we keep as in the original derivation), we ultimately obtain

the final bias expression:

E[Z ﬂ‘“”igi({?{f)‘/ ) {gg — 8 : g; — 1AW =w | V,E=0)—p(W = w | V,E = 0)}+
> g (Vo) (Vo) m(mm W) = Taen(V,w))*+
m;lm (ua(V Zg (V,w)f
0;0”0( *Zg (V, w)
SO SLARH Ml}{mwmv,Emmwmv,Eon
LSOO (V) - m(vn(%denl(X) -—)
1 1

=X V) ~ oV )y~ 7))
A 1 1
—(b=a)g(X)f(X)PW |V,E=0)—p(W |V,E = O))(%den(X) - Tden(X))]

Equivalently, regrouping some terms, we can write

B[Y o(V.u)s ba+T(Vw)){m1}{]§(WwV,EO)p(Ww|V,EO)}

2

+ Z Tnumd ‘/7 ’LU)f(V U)) (%den(‘/a ’IU) - Tden(va w)) +

w

o (V) = (V) 5 3 gV, ) £V, w)

ST (V) — (V) S g(Viw) (V.

o

Faen(V, w)?
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+9(X) FX){(a (V) — ﬂl(V))(%dcnl(X) - Tdcn1<x> )}
)}
1 1

1 3 1
Tden (X) Tden(X)
=~ (0= a)g(X)FO@W | V. E = 0) = p(W [ V. E = 0) (5 = )]

— 9(X)f(X){ (ko (V) = o (V))(

Bounding the Bias. Finally, we bound the magnitude of the bias using the Cauchy—Schwarz inequality.
The point of the following display is to make explicit that each term is a product (or square) of nuisance
estimation errors:

E[Y g(V,w) f(V,w)(b—a+#(V,w))

=) = Dl GOV = w [ V.E = 0) = p(¥ = | V.E = 0)} s
# 3 Famg VoV, sl G (Vo) = Taen (V0 3

H ;flugnmm—a1<v>>ug*zg<v,w>f<v,w>

1Pl oY) = oVl = 3 gV (Vi)
+ (X)) 6(V) = VDl G5 — 7=l

)]
7A-den()() Tden(X) :

— (0= a)g(X)f(X)[pW |V, E = 0) = p(W | V, E = 0)|]2]|(

—9(X)F (X)) (o (V) = o (V))l2(

1 1
'f_dcn(X) a 7_dcn(AXv))HQ} '

Setting v(V,w) =p(W =w | V,E =0) and po(V) = p(E = 0| V), it becomes clear that the bias is second
order and bounded by products of Lo-norms of nuisance estimation errors.

Thus our theorem, where we write the second-order remainder as

Slo—=rpllallo = vl + 12— vl3 + |71 — mll2llfa — pall2 (7)
+ [|%0 — moll2lfto — moll2 + |1 — fxll2ll? — vil2 + [0 — poll2/lZ — vl2, (8)

makes explicit that R, is of second order in the nuisance errors, as claimed in the main text.

A.5 Simulation Setup Details

We follow the following procedure to create our synthetic dataset for simulation:

We start by sampling n = 10,000 observations of 6 covariates V. Three of these covariates are continuous
and three are discrete.

1. Covariates Generation

V continuous ~ N(H = ]-7 0'2 = 052)
Vdgiscrete ~ Bernoulli(p = 0.5)
V= [Vcontinuousa Vdiscrete}
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2. Generating Discrete Variables W
W, = [Wiy, Wiz, Wis]

where each W;; is generated using a logistic function:

W;; ~ Bernoulli (¢ (V; - 55))

Here, o(r) = ;2= is the logistic function, and 3; are random coefficients:
’ 1+e ’ J

B ~ Uniform(—1,1)

3. Generating F and T We generate the binary variable E based on the covariates V:

6
E; ~ Bernoulli (a <Z Vik - 7Ek>)
k=1

where ygi ~ Uniform(—1,1) are random coefficients and o(x) = H% is the logistic function.

Similarly, we generate the binary variable 7"

6
A; ~ Bernoulli (o (Z Vik - 7,4;@>>
k=1

where 45 ~ Uniform(—1, 1) are random coefficients.

4. True Conditional Treatment Effect: To generate the true conditional treatment effect for each observation,
we compute S4 as a linear combination of V and W:

6 3
5Ai=ZVik'OZVk+ZWij'Ole
k=1 =1

where ay, ~ Uniform(0,1.5) and aw; ~ Uniform(0, 1.5) are random coefficients.
5. Outcome Variable Y: The outcome variable Y is computed as:

3 6
Yz’:5Az"A¢+ZWij'5Wj+ZVik'ﬁVk+éi

j=1 k=1

where Sy ; ~ Uniform(1,3) and Sy ~ Uniform(1,3) are random effect sizes, and ¢; ~ N'(0,1) is a random
noise component.

The simulations do not require heavy compute or anything beyond a personal machine. 1 iteration of the
simulation may take 1-2 minutes to run on a personal laptop.

A.6 Application: Licorice Gargle

This dataset is from a study conducted by (Ruetzler et al., 2013) which tested the hypothesis that gargling
with licorice solution immediately before induction of anesthesia prevents sore throat and postextubation
coughing in patients intubated with double-lumen tubes. In this study, a total of 236 adult patients who
were scheduled for elective thoracic surgery that required the use of a double-lumen endotracheal tube were
recruited. The dataset includes information on various patient characteristics such as gender, physical status,
body mass index (BMI), age, Mallampati score (a measure of airway visibility), smoking status, preoperative
pain, and the size of the surgery. The intervention received by each patient is also recorded. The outcomes
of interest, which include the presence of cough, sore throat, and pain during swallowing, were assessed at
different time points. The dataset has been thoroughly cleaned and is complete, with only two patients
missing outcome data. We manually remove these two patients from consideration. Therefore, finally, number
of subjects N = 234. No outliers or other data issues were identified in the dataset.
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Patients were randomly allocated to one of two groups: the first group received 0.5 grams of licorice, while
the second group received 5 grams of sugar, which was chosen to match the sweetness of the licorice solution.
The patients’ condition was assessed at multiple time points. At each assessment, the severity of sore throat
was measured using an 11-point Likert scale, where 0 indicated no pain and 10 represented the worst possible
pain. The presence and severity of cough were also evaluated at these time points. Additionally, pain during
swallowing was assessed using the same 11-point Likert scale 30 minutes after the patients’ arrival in the
PACU (post-anethesia care unit). For the purpose of this study, sore throat was considered present when the
patient reported a score greater than 0 on the visual analog scale.

For our experiment, we consider the following variables as W (present only in the target population data):

e "extubation_cough": This binary variable represents the presence or absence of coughing right after
the removal of the endotracheal tube (extubation).

We consider the following variables as V (present in both study and target population data):

o "preOp_ calcBMI": This variable represents the calculated Body Mass Index (BMI) of the patients
before the surgery (preoperative).

e "preOp_age": This variable represents the age of the patients before the surgery.

e "preOp_pain": This variable represents the presence or severity of pain experienced by the patients
before the surgery on an 11 point Likert scale from 0 to 10.

e "preOp_mallampati": This variable represents the Mallampati score of the patients before the
surgery. The Mallampati score is a measure of airway visibility and is used to predict the difficulty
of intubation.

o 'preOp_asa": This variable represents the American Society of Anesthesiologists (ASA) physical
status classification of the patients before the surgery. The ASA physical status is a measure of the
patient’s overall health and is used to assess the risk of anesthesia and surgery.

e "preOp_smoking": This binary variable represents the smoking status of the patients before the
surgery.

We use "pacud0min_swallowPain", the pain in swallowing after 30 minutes, a measurement on a Likert scale
from 0 to 10, as the outcome variable Y. Logistic regression is used for model fitting.

26



	Introduction
	Problem Setup
	Methodology
	Partial identification bounds
	Estimation
	Bias-Corrected Estimator
	Bounds in a sensitivity model

	Experiments
	Discussion
	Appendix
	Fully Conditional Bounds
	Moment Condition
	Use of Margin Condition
	Influence Function Derivation
	Bias Derivation

	Simulation Setup Details
	Application: Licorice Gargle


