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Abstract

Diffusion models have become prevalent in gener-
ative modeling due to their ability to sample from
complex distributions. To improve the quality of
generated samples and their compliance with user
requirements, two commonly used methods are:
(i) Alignment, which involves fine-tuning a dif-
fusion model to align it with a reward; and (ii)
Composition, which combines several pre-trained
diffusion models together, each emphasizing a
desirable attribute in the generated outputs. How-
ever, trade-offs often arise when optimizing for
multiple rewards or combining multiple models,
as they can often represent competing properties.
Existing methods cannot guarantee that the re-
sulting model faithfully generates samples with
all the desired properties. To address this gap,
we propose a constrained optimization framework
that unifies alignment and composition of diffu-
sion models by enforcing that the aligned model
satisfies reward constraints and/or remains close
to each pre-trained model. We provide a theoret-
ical characterization of the solutions to the con-
strained alignment and composition problems and
develop a Lagrangian-based primal-dual training
algorithm to approximate these solutions. Empiri-
cally, we demonstrate our proposed approach in
image generation, applying it to alignment and
composition, and show that our aligned or com-
posed model satisfies constraints effectively.

1. Introduction

Diffusion models have emerged as the tool of choice for
generative models in a variety of settings (Saharia et al.,
2022; Blattmann et al., 2023; Wang et al., 2025; Chi et al.,

"University of Pennsylvania, PA, USA. Correspondence
to: Shervin Khalafi <shervink@seas.upenn.edu>, Igna-
cio Hounie <ihounie@seas.upenn.edu>, Dongsheng Ding
<dongshed @seas.upenn.edu>.

ICML 2025 Workshop on Models of Human Feedback for Al Align-
ment. Copyright 2025 by the author(s).

2023), image generation being most prominent among them
(Rombach et al., 2022). Users of these diffusion models
would like to adapt them to their specific preferences, but
this aspiration is hindered by the often enormous cost and
complexity of their training (Ulhaq & Akhtar, 2022; Yan
et al., 2024). For this reason, alignment and composition
of what, in this context, become pretrained models, has
become popular (Liu et al., 2024; 2022).

Regardless of whether the goal is alignment or composition,
we want to balance what are most likely conflicting require-
ments. In alignment tasks, we want to stay close to the
pretrained model while deviating sufficiently so as to effect
some rewards of interest (Fan et al., 2023; Domingo-Enrich
et al., 2025). In composition tasks we are given several pre-
trained models and our goal is to sample from their union or
intersection (Du et al., 2024; Biggs et al., 2024). The stan-
dard approach to balance these requirements involves the
use of weighted averages. This can be a linear combination
of score functions in composition problems (Du et al., 2024;
Biggs et al., 2024) or may involve a loss given by a linear
combination of a Kullback-Leibler (KL) divergence and a
reward (Fan et al., 2023) in the case of alignment.

In this work we propose a unified view of alignment and
composition via the lens of constrained learning (Chamon
& Ribeiro, 2021; Chamon et al., 2022). As their names in-
dicate, constrained alignment and constrained composition
problems balance conflicting requirements using constraints
instead of weights. Learning with constraints and learning
with weights are related problems — indeed, we will train
constrained diffusion models in their Lagrangian forms. Yet,
they are also fundamentally different. In the constrained
formulation, the hyperparameter tuning spaces are more
interpretable (see Section 3), and in some cases-such as
the constrained composition formulation-hyperparameter
tuning can even be avoided entirely (see Section 4). These
advantages are particularly evident in constrained problems,
as discussed in Sections 3 and 4. We next outline our key
contributions in alignment and composition.

Alignment. For alignment, we formulate a reverse KL
divergence-constrained optimization problem that mini-
mizes the reverse KL divergence to a pre-trained model,
subject to expected reward constraints. The threshold for
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Figure 1. Product composition (AND): (left) Three Gaussian distributions being composed. (middle) Composition using equal weights
and (right) with constraints. The constrained model samples from the intersection of the three models.

each reward constraint can be user-specified or automati-
cally selected using a heuristic approach (see Section 5).
In Section 3 we show that the solution of this alignment
problem is the pretrained model distribution scaled by an
exponential function of a weighted sum of reward functions.
To solve this problem with diffusion models, we establish
strong duality, and employ a Lagrangian dual-based ap-
proach to develop a primal-dual training algorithm.

We demonstrate the differences between constrained and
weighted alignment in numerical experiments in Section 5.1.
The constrained approach easily scales to fine-tuning with
multiple rewards, while avoiding the need for extensive hy-
perparameter search to find suitable weights. Moreover,
specifying reward thresholds is more intuitive than selecting
weights for each regularizer. Furthermore, without con-
straints, it is easy to overfit to one or multiple of the rewards
and completely diverge from the pretrained model. In con-
trast, our method finds the closest model to the pretrained
one that satisfies the reward constraints (see Figure 4).

Composition. For composition, we propose using KL diver-
gence constraints to ensure the closeness to each individual
model. It is important to distinguish composition with re-
verse KL and forward KL constraints. As previously shown
in (Khalafi et al., 2024), using forward KL constraints results
in the composed model sampling from a weighted mixture
of the individual distributions. In the main paper we focus
on composition with reverse KL constraints, while we dis-
cuss forward KL constraints in Appendix D. In Section 4,
we characterize the solution of the constrained optimization
problem with reverse KL divergence constraints as a tilted
product of the individual distributions. To solve this prob-
lem with diffusion models, we similarly establish strong
duality and develop a primal-dual training algorithm.

We demonstrate properties of constrained composition of
models in numerical experiments in Section 5.2. We observe

that if the composition weights are not chosen properly, it
can lead to the composed model being biased towards some
of the individual models while ignoring others. Constrained
composition helps to avoid this by finding optimal weights
that ensure closeness to each individual distribution. When
composing multiple text-to-image models each finetuned
on a different reward function, using constraints leads to
optimal weights that result in the composed model having
better performance on all of the rewards compared to just
composing them with equal weights.

2. Composition and Alignment of Diffusion
Models in Distribution Space

Reward alignment: Given a pretrained model ¢ and a set
of m rewards {r;(x)}7", that can be evaluated on a sample
x, we consider the reverse KL divergence Dk (p| q) =
[ p(z)log(p(z)/q(x))dz that measures the difference be-
tween a distribution p and the pretrained model g. Addition-
ally, for each reward r;, we define a constant b; standing
for requirement for reward ;. We formulate a constrained
alignment problem that minimizes a reverse KL divergence
subject to m constraints,

p* = argmin Dgy (p|| q) (UR-A)
P

subject to E,p, [rz(x)} >b;fori=1,...,m.

As per (UR-A), the constrained alignment problem is solved
by the distribution p* that is closest to the pretrained one ¢ as
measured by the reverse KL divergence Dy (p || ¢) among
those whose expected rewards E,, ., ,[r; ()] accumulate to
at least b;. By ‘pretrained model’ we refer to a sampling pro-
cess that produces samples, not the underlying distribution.
Let the primal value Py ; := Dxr(p* || q)-

Product composition (AND): Given a set of m pretrained
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Figure 2. Mixture composition (OR): (left) Two of Gaussian mixtures being composed. One has two modes and the other has only a single
mode. (middle) Composition using equal weights and (right) with constraints.

models {g;}/"_,, we formulate a constrained composition
problem that solves a reverse KL-constrained optimization
problem,

(p*,u*) = argmin u (UR-C)
Py
subject to DKL(P | qi) <wfori=1,...,m.

In (UR-C), the decision variable w is an upper bound on m
KL divergences between a distribution p and m pretrained
models {g; } ;. Partial minimization over u allows us to
search for a distribution p that minimizes a common up-
per bound. Thus, the optimal solution p* minimizes the
maximum KL divergence among m terms, each computed
between p and a pretrained model. The epigraph formula-
tion (UR-C) is useful in practice, as the constraint threshold
u is updated dynamically during training. Let the primal
value be Piyp := u*. See Figure 1 for an illustration. The
unconstrained model composed with equal weights is biased
towards the distributions that are closer to each other.

Mixture composition (OR): A different composition
modality that also fits within our constrained framework
is the forward KL-constrained composition problem. We
obtain this formulation by replacing the reverse divergence
Dxi(p|l ¢;) in (UR-C) with the forward KL divergence
Dxu(qi || p),

(p*,u*) = argmin u
pu

(UF-C)
subject to DKL(Qi Hp) <wfori=1,...,m.

We note that mixture composition has been studied in a
related but slightly different constrained setting in (Kha-
lafi et al., 2024). It can be shown that the solution of the
constrained problem (UF-C) learns to sample from each
distribution proportional to its entropy. In Figure 2, we see

that the constrained model learns to sample more often from
the distribution with two modes that has a higher entropy
in contrast to the equally weighted composition that sam-
ples equally from both distributions leading to unbalanced
sampling from the modes. Since the algorithm design and
analysis for (UF-C) closely resemble those in (Khalafi et al.,
2024), mixture composition is not the focus of this work.
For completeness, we discuss and compare it with product
composition in Appendix D.

The reverse KL-based composition (UR-C) tends to sam-
ple at the intersection of the pretrained models {¢;}7" ;,
whereas the forward KL-based composition (UF-C) tends
to sample at the union of the pretrained models {¢;}7 ;.
Thus, product composition enforces a conjunction (logical
AND) across pretrained models, while mixture composition
corresponds to a disjunction (logical OR). We stress that
Problems (UR-A), (UR-C), and (UF-C) should be viewed as
canonical formulations; the methods proposed in this paper
can be readily adapted to solve their variants e.g. mixture
composition with reward constraints.

2.1. KL divergence for diffusion models

A generative diffusion model consists of forward and back-
ward processes. In the forward process, we add Gaussian
noise ¢; to a clean sample X, ~ pg over 1" time steps,

— at

Xt:

Qi
Q1

Xt,1+ 1-— etfort:1,-~-,T(l)

1

where ¢; ~ N(0,1) and {o;}7_, is a decreasing se-
quence of coefficients called the noise schedule. We de-
note the marginal density of X; at time ¢ as p;(-). Given
a d-dimensional score predictor function s(x,t): R? x
{1,---,T} — R%, we define a backward denoising dif-
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fusion implicit model (DDIM) process (Song et al., 2022),

Qi1

X1 = Xi + Bes(Xy,t) + o )

Qi

where ¢, ~ N(0,1), and {0?}1_ is the variance sched-
ule determining the level of randomness in the back-
ward process (e.g2., oy = 0 reduces to deterministic

trajectories), and f; := 1/‘)‘;—:1\/(1 —a)(l—ay) —

V(1 — ;1 — 0?)(1 — &) is determined by the variance
schedule o; and the noise schedule «;. Given a function
s, we denote the marginal density of X as p;(-; s) and the
joint distribution over the entire process as po.r(Zo.7; $)-

In the score-matching formulation (Song et al., 2021), a
denoising score-matching objective is minimized to obtain
a function s* that approximates the true score function of
the forward process, i.e., s*(x,t) ~ Vlogpi(x). Then,
the marginal densities of the backward process (2) match
those of the forward process (1), i.e., p¢(-; s*) = p(-) for
all t. Thus we can run the backward process to generate
samples zg ~ pg that resemble samples from the original
data distribution Ty ~ py.

We denote the KL divergence between two joint dis-
tributions p, ¢ over the entire backward process by
Dxy.(po.r(+) || go.7(+)), which is known as the path-wise
KL divergence (Fan et al., 2023; Han et al., 2024). This
path-wise KL divergence is often used in alignment to quan-
tify the gap between finetuned and pretrained models.

Lemma 1 (Path-wise KL divergence). If two backward pro-
cesses po.7(+) and qo.7(+) have the same variance schedule
ot and noise schedule oy, then the reverse KL divergence
between them is given by

Dy (po:1 (-3 5p) | po:r (45 54))
a 1
= Z Eai~pe(isp) [22||3p(37t7t) — sq(@t, HIF]. 3)
Ot

t=1

See Appendix C.1 for proof. While the path-wise KL di-
vergence is a useful regularizer in alignment, when com-
posing multiple models, the point-wise KL divergence
Dx1.(po(+) || po(+)) is a more natural measure of the close-
ness between two models. This is because we mainly care
about the closeness of the final sampling distributions: po(-),
qdo(+), and not the underlying processes: po.7(+), go.7(+). In
this work, we use path-wise KL for alignment and point-
wise KL for composition. However, it is not obvious how
to compute the point-wise KL, as evaluating the marginal
densities is intractable. We next establish a similar formula
as (3) by restricting the score function class.

Lemma 2 (Point-wise KL divergence). Assume two score
functions sp(x,t) = Vdiogpi(x), sq(x,t) = Viegq(x),

where Dy, q. are two marginal densities induced by two
forward diffusion processes, with the same noise schedule,
starting from initial distributions py and qo, respectively.
Then, the point-wise KL divergence between two distribu-
tions of the samples generated by running DDIM with s,
and sq is given by

D (po(58p) 11 o (-5 54))

T
= Y BBy 5@, ) = sy DI +er @)
t=0

where Wy is a time-dependent constant and e is a discretiza-
tion error depending on number of diffusion time steps T.

See Appendix C.2 for the proof. The key intuition behind
Lemma 2 is that if two diffusion processes are close, and
their starting distributions are the same (e.g., A'(0,1) at
time ¢ = T'), then the end points (i.e., the distributions at
t = 0) must also be close. The sum on the right hand side
of (42) can be viewed as the difference of the processes over
time steps, up to a discretization error.

3. Aligning Pretrained Model with Multiple
Reward Constraints

To apply Problem (UR-A) to diffusion models, we first
employ Lagrangian duality to derive its solution in the
distribution space. Alignment with constraints is related
but fundamentally different from the standard approach of
minimizing a weighted average of the KL divergence and
rewards (Fan et al., 2023). They are related because the
Lagrangian for (UR-A) is precisely the weighted average,

Lau(p,A) == Dxi(plla) = AT (Exnplr(z)] =) (5)

where we use shorthands b := [by,...,b,]", 7 =
[71,...,7m ] ,and X := [A1,... A, " is the Lagrangian
multiplier or dual variable. Let the dual function be
Dari(N) := minimize, ¢ » Lari(p, A) and an optimal dual
variable be \* € argmax, s o DaLi(A). Denote Dy :=
Dari(M*). For A > 0, we define the reward weighted distri-

bution qr(\ﬁ ) as

1 T
W0 = gy ate T ©)

where Z()) := [ q(:c)eAT”(I)dx is a constant.

In the distribution space, Problem (UR-A) is a convex opti-
mization problem since the KL divergence is strongly con-
vex and the reward constraints are linear in p € P. Thus,
we apply strong duality in convex optimization (Boyd &
Vandenberghe, 2004) to characterize the solution to Prob-
lem (UR-A) in Theorem 1. Moreover, it is ready to for-
mulate the constrained alignment problem (UR-A) as an
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unconstrained problem by specializing the dual variables to
a solution to the dual problem.

Assumption 1 (Feasibility). There exist a model p such that
Eyp~plri(z)] > b foralli=1,...,n

Theorem 1 (Reward alignment). Let Assumption I hold.
Then, Problem (UR-A) is strongly dual, i.e., P{;; = Dy,
Moreover, Problem (UR-A) is equivalent to

minimize Dy, (p | ¢ )> @)
peP

where \* is the optimal dual variable, and the dual function
has the explicit form, Dar1(A\) = —log Zy, (\). Further-
more, the optimal solution of (UR-A) is given by

= q()". ®)

See Appendix C.3 for proof. Theorem 1 characterizes the
solution to the constrained alignment problem (UR-A), i.e.,
qr(\i *). This solution generalizes the reward-tilted distribu-
tion (Domingo-Enrich et al., 2025), which is the solution
of finetuning a model with an expected reward regularizer.
In Problem (UR-A), the optimal dual variable A* weights
each reward so that all the constraints are satisfied optimally,

while staying as close as possible to the pretrained model.

3.1. Reward alignment of diffusion models

We now introduce diffusion models to Problem (UR-A) by
representing p and g as two diffusion models po.7(+; sp) and
qo:7(; 4), respectively. The path-wise KL divergence has
been widely used in diffusion model alignment to capture
the difference between two diffusion models (see (Fan et al.,
2023)). Hence, we can instantiate Problem (UR-A) in the
function space below,

minimize Dxv(po:r (- sp) | qo:r (v 5q) )

Sp €
subject to  Epg ~po(3s,) [ri(:zco)] > b (SR-A)
fori=1,...,m.

We define a Lagrangian for Problem (SR-A) as
EALI(sp, A) = Lau(po.r(-;sp), A). Similarly, we intro-
duce the primal and dual values P5; and D%, . Although
Problem (SR-A) is a non-convex optimization problem, the
strong duality still holds.

Theorem 2 (Strong duality). Let Assumption 1 hold for
some s € S. Then, Problem (SR-A) is strongly dual, i.e.,
Piy = DXy

See the proof of Theorem 2 in Appendix C.4. Motivated by
strong duality, we present a dual-based method for solving
Problem (SR-A) in which we alternate between minimizing
the Lagrangian via gradient descent steps and maximizing
the dual function via dual sub-gradient ascent steps below.

Primal minimization: At iteration n, we obtain a new
model s("*1) via a Lagrangian maximization,

st ¢ argmin EALI(SP, )\(")). 9)
seS
Dual maximization: Then, we use the model s(*+1) to

estimate the constraint violation E, [r(z¢)] — b, denoted as
r(s(”“)) — b, and perform a dual sub-gradient ascent step,

N+ _ {,\w o (T(Smn) ,b)L. (10)

4. Constrained Composition of Multiple
Pretrained Models

To apply Problem (UR-C) to diffusion models, we employ
Lagrangian duality to derive its solution in the distribution
space P. Let the Lagrangian for Problem (UR-C) be

Lano(p,u, A) = u+ Y N (Dx(pllq’) —u), (11)

i=1

and the associated dual function Danp (), which is always
concave, is defined as

DAND()\) =

max
ueR, peP

LAND(pvuv)\)' (12)
Let a solution to Problem (UR-A) be (p*, u*), and let the op-
timal value of the objective function be Py, = u*. Let an
optimal dual variable pair be \* € argmax, > o Danp(A),
and the optimal value of the dual function be Dy =

Danp(N*).
(M)

For A > 0, we define the tilted product distribution g,y as
a product of m tilted distributions q,

11« Oy

) .
danp () = ZAND

= J T2 1 (a(
Assumption 2 (Fea51b111ty). There exist a model p such that
Dxi(pllgi) <uforalli=1,...,n

where Zanp( z)) A dx is a constant.

Note that Assumption 2 only requires that the supports of
the distributions ¢* have non-empty intersection.

Theorem 3 (Product composition). Let Assumption 2 hold.
Then, Problem (UR-C) is strongly dual, i.e., P{xp = Dinp-
Moreover, Problem (UR-C) is equivalent to

minimize D (p || qAND)) (14)
peP

where X\* is the optimal dual variable, and the dual function
has the explicit form, D(\) = —log Zanp (\). Further-
more, the optimal solution of (14) is given by

P = dan- (15)
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We defer the proof of Theorem 3 to Appendix C.5. The dis-

tribution ¢ AND o< [T (¢°() e allows sampling from a
weighted product of m distributions, where the parameters
{Xi/1T A} | weight the importance of each distribution.
The geometric mean (Biggs et al., 2024) is a special case
when all \; are equal.

Remark 1. Theorem 3 connects our proposed constrained
optimization problem (UR-C) to the well-known problem of
sampling from a product of multiple distributions (Biggs
etal., 2024; Du et al., 2024). Furthermore, our constraints
enforce that the resulting product is properly weighted to
ensure the solution diverges as little as possible from each
of the individual distributions (see Figure 1).

4.1. Product composition of diffusion models

We introduce diffusion models to Problem (UR-A) via an
optimization problem in the function space,

minimize wu

u>0,s€S ]
subject to  Dxw(p(x0;5) || p(z0; 8*)) < u, (SR-C)
fori=1,...,m.
We define a Lagrangian for Problem (SR-C) as

Lano(sp,u, ) == Lanp(p(z0; sp),u, A). Similarly, we
introduce the primal and dual values Py and Diyp- Al-
though Problem (SR-C) is a non-convex optimization prob-
lem, the strong duality still holds.

Theorem 4 (Strong duality). Let Assumption 2 hold for
some p(+; ) with s € S. Then, Problem (SR-C) is strongly
dual, i.e., Pixp = Dinp-

See the proof of Theorem 4 in Appendix C.6. For solving the
constrained optimization problem (SR-C) we use a primal-
dual approach similar to the one discussed in Section 3.1.

Primal minimization: At iteration n, we obtain a new
model s("*1) via a Lagrangian maximization,

(1)

€ argmin Lanp(sp, A™). (16)

seS

Dual maximization: Then, we use the model s(*+1) to
estimate the constraint violation and perform a dual sub-
gradient ascent step,

AU = Aty (Dia (plos s ) Ip(wo; 5)) — ) |

a7
We note that computing the point-wise KL that shows up
in both the Lagrangian and the constraint violations is not
trivial. Recall that Lemma 2 gives us a way to compute
the point-wise KL Dy (p(zo; s) || p(zo; s°)). However, it
requires that the functions s and s’ each be a valid score
function for some process. It is reasonable to assume this is

N .

the case for s° since it represents a pretrained model where
it would have been trained to approximate the true score of a
forward diffusion process. Yet regarding the function s that
we are optimizing over, there is no guarantee that any given
s € S is a valid score function. Lemma 3 lets us minimize
the Lagrangian in spite of this:

Lemma 3. The Lagrangian for Problem (SR-C) is equiva-
lently written as

Lann(s,A) = D (p(z0; 5) || 45np (%0)) — 10g Zann ().

Furthermore, a Lagrangian minimizer s =
argmin Lanp(s,\) can be obtained through minimiz-

ing the following objective:

2
Zwt Elo'\‘qii”))( )Equ(wﬂl‘o) |:||S(IZ’, t) -V log q(SCt|l‘0)||

t=0

(18)
N (Vagzo, (1—ay)I), and the minimizer
is sN) = Vlog q/(&)u .

where q(x¢|xg) ~

See Appendix C for proof. With Lemma 3, as long as we
have access to samples from the distribution q/(&)D, we can
approximate the expectation in (18) and use gradient-based
optimization methods to find the minimizer s(*). To obtain
these samples, we use annealed Markov Chain Monte Carlo
(MCMC) sampling as proposed by (Du et al., 2024); see
Appendix B for sampling details. For the dual update, we
can evaluate the KL divergence Dxy (po(+;s™) || po(+; s%))
between the marginal densities induced by the Lagrangian
minimizer s*) and the individual score functions s° using
Lemma 2 since both are valid score functions.

Remark 2. In practice the primal steps will yield an approx-

imate Lagrangian minimizer 5(/\)( z,t) ~ Vlog qAND ().
This results in two sources of error in evaluating the expec-
tations on the RHS of (42):

) [ po(55"))

T ) 2
= Z@t Eynpi(350) l:HS(/\)(m7t) — sl(x,t)HQ] + e
t=0

Dir(po(-5s

First, the error induced by not using the exact sV in

||3(A) x,t) — st(x,t) H2 Second, the error induced by not
evaluating the expectation on correct trajectories given by
x ~ py(-;5N). However the second error can be reduced
since if we have a way of sampling from the true product
Ty ~ ql(&)D’ o We can get samples from py(-; sN) just by
adding Gaussian noise to x.
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Figure 3. We finetune stable diffusion with one reward emphasizing aesthetic quality (MPS), and Saturation and Local Contrast regularizers.
Left: Value of the rewards after finetuning. Right: Images sampled from the aligned models, and the model trained solely with MPS (Zhang

et al., 2024a) reward for comparison.

5. Computational experiments
5.1. Finetuning to align with multiple rewards

We extend the AlignProp framework (Prabhudesai et al.,
2024a) to accommodate multiple reward constraints and
dual updates. We finetune Stable Diffusion v1.5 ! on widely
used differentiable image quality and aesthetic rewards,
namely aesthetic (Schuhmann et al., 2022), hps (Wu et al.,
2023a), pickscore (Kirstain et al., 2023), imagereward (Xu
et al., 2023a) and mps (Zhang et al., 2024a). Since these
rewards have widely varying scales, which can make set-
ting the constraint levels challenging, we normalize them
by computing the average and standard deviation over a
number of batches. In all experiments, models are finetuned
using LoRA (Hu et al., 2022). Experimental settings and
hyperparameters are detailed in Appendix F.

L. MPS + contrast, saturation, sharpness constraints. A
common shortcoming of several off-the-shelf aesthetics, im-
age preference and quality reward models is their tendency
to overfit to certain image characteristics such as saturation,
and sharp high-contrast textures. See, for example, images
in the first column in Figure 3 (right). In order to mitigate
this issue, we add regularizers to the reward to explicitly
penalize these characteristics. However, if the regulariza-
tion weight is not carefully set, models fit these regularizers
rather than the reward. As shown in Figure 3, when us-
ing equal weights the MPS reward decreases (left plot). In
contrast, our constrained approach can effectively control
multiple undesired artifacts while ensuring none of the re-
wards are neglected by obtaining a near feasible solution
for the specified constraint level, which represents a 50%
improvement.

"https://huggingface.co/stable-diffusion-v1-5/stable-
diffusion-v1-5

I1. Multiple aesthetic constraints. When finetuning with
multiple rewards, arbitrarily setting fixed weights can lead
to disparate performance among them. This can be observed
in Figure 4 (left plot), where the model overfits to one re-
ward while neglecting the more challenging reward (hps).
In contrast, constraining all rewards allows the model to im-
prove all rewards by the desired constraint level, including
challenging ones (hps). As pictured in Figure 4, minimizing
the KL subject to constraints also results in lower KL to the
pre-trained model (middle plot). Without constraint, due to
reward overfitting the finetuned model diverges too far from
the pretrained model which is undesirable (right plot).

5.2. Product composition of diffusion models

In high-dimensional settings like image generation, using
MCMC to get samples from the true product distribution
and then minimizing the Lagrangian via (18) to find the true
product score function is prohibitively costly. To circumvent
this, we use a surrogate for the true score both for sampling
and computing the KL, as detailed in Appendix F.

I. Composing models fine-tuned on different rewards.
We investigate the composition of multiple finetuned ver-
sions of the same base model, where each one fit LoORA
adapters a different reward function. A key challenge lies
in selecting appropriate weights for this combination. Arbi-
trary choices may lead to undesirable trade-offs and under-
representation of certain models in the mixture as evidenced
in Figure 5 by drops in up to 30% in some rewards. Our
constrained approach gives us a way to find the weights that
keep us close to each individual model, leading to higher
rewards for all models.

I1. Concept composition with stable diffusion. Following
the setting in (Skreta et al., 2025), we compose two text-to-
image diffusion models conditioned on different inputs. We
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Figure 4. Finetuning with multiple image quality/aesthetic rewards.
Top: Reward trajectories in training. Middle: KL to pre-trained
model constrained. Bottom: Images sampled from the aligned
models and the pre-trained model for reference.
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Figure 5. Composition of adapters finetuned for different rewards,
for an equal weighted and product mixture. 100 represents the
reward attained by the model trained with each individual reward.
Higher is better.

Min. CLIP (1) Min. BLIP (})

Combined Prompting 22.1 0.204
Equal Weights 22.7 0.252
Constrained (Ours) 22.9 0.268

Table 1. Comparing constrained approach to baselines on min-
imum CLIP and BLIP scores. The scores are averaged over 50
different prompt pairs sampled from a list of simple prompts.

use constrained learning (SR-C) to find the optimal weights
to compose these two models. We compare to the baseline
of using equal weights for the composition. The closeness
to each model also encourages the representation of the
concept in the images generated by the composed model as
reflected by the improved text-to-image similarity metrics
CLIP (Hessel et al., 2022) and BLIP (Li et al., 2022) scores
in Table 1. We compute the similarity score between the
generated images and each of the two prompts and compare
the minimums. We also compare to the baseline of gener-
ating images from a combined prompt. Images generated
with each approach along with implementation details and
more experimental results can be found in Appendix F.

6. Conclusion

We have developed a constrained optimization framework
that unifies alignment and composition of diffusion models
by enforcing that the aligned model satisfies reward con-
straints and/or remains close to each pre-trained model. We
provide a theoretical characterization of the solutions to the
constrained alignment and composition problems, and de-
velop Lagrangian-based primal-dual training algorithms to
approximate these solutions. Empirically, we demonstrate
our constrained approach in image generation, applying it
to alignment and composition, and show that our aligned or
composed model satisfies constraints, effectively.
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Supplementary Materials for
“Composition and Alignment of Diffusion Models using
Constrained Learning”

A. Limitations and Broader Impact

Limitations: Despite offering a unified constrained learning framework and demonstrating strong empirical results, further
experiments are needed to assess our method’s effectiveness on alignment and composition tasks beyond image generation,
under mixed alignment and composition constraints, and in combination with inference-time techniques. Additionally,
further theoretical work is needed to understand optimality of non-convex constrained optimization, convergence and sample
complexity of primal-dual training algorithms.

Broader impact: Our method can enhance diffusion models’ compliance with diverse requirements, such as realism, safety,
fairness, and transparency. By introducing a unified constrained learning framework, our work offers practical guidance for
developing more reliable and responsible diffusion model training algorithms, with potential impact across applications such
as content generation, robotic control, and scientific discovery.

B. Related Work

Alignment of diffusion models. Our constrained alignment is related to a line of work on fine-tuning diffusion models.
Standard fine-tuning typically involves optimizing either a task-specific reward that encodes desired properties, or a weighted
sum of this reward and a regularization term that encourages closeness to the pre-trained model; see (Fan & Lee, 2023;
Xu et al., 2023b; Lee et al., 2023; Wu et al., 2023b; Zhang & Xu, 2023; Wu et al., 2024; Black et al., 2024; Clark et al.,
2024; Zhang et al., 2024b) for studies using the single reward objective and (Uehara et al., 2024b; Zhao et al., 2024; Uehara
et al., 2024d;c; Prabhudesai et al., 2024b; Fan et al., 2023; Han et al., 2024) for those using the weighted sum objective. The
former class of single reward-based studies focus exclusively on generating samples with higher rewards, often at the cost of
generalization beyond the training data. The latter class introduces a regularization term that regulates the model to be close
to the pre-trained one, while leaving the trade-off between reward and closeness unspecified; see (Uehara et al., 2024a) for
their typical pros and cons in practice. There are three key drawbacks to using either the single reward or weighted sum
objective: (i) the trade-off between reward maximization and leveraging the utility of the pre-trained model is often chosen
heuristically; (ii) it is unclear whether the reward satisfies the intended constraints; and (iii) multiple constraints are not
naturally encoded within a single reward function. In contrast, we formulate alignment as a constrained learning problem:
minimizing deviation from the pre-trained model subject to reward constraints. This offers a more principled alternative to
existing ad hoc approaches (Chen et al., 2024; Giannone et al., 2023). Our new alignment formulation (i) offers a theoretical
guarantee of an optimal trade-off between reward satisfaction and proximity to the pre-trained model, and (ii) allows for
the direct imposition of multiple reward constraints. We also remark that our constrained learning approach generalizes to
fine-tuning of diffusion models with preference (Wallace et al., 2024; Yang et al., 2024; Li et al., 2024).

Composition of diffusion models. Our constrained composition approach is related to prior work on compositional
generation with diffusion models. When composing pre-trained diffusion models, two widely used approaches are (i)
product composition (or conjunction) and (ii) mixture composition (or disjunction). In product composition, it has been
observed that the diffusion process is not compositional, e.g., a weighted sum of diffusion models does not generate samples
from the product of the individual target distributions (Du et al., 2024; Bradley & Nakkiran, 2024; Chidambaram et al., 2024).
To address this issue, the weighted sum approach has been shown to be effective when combined with additional assumptions
or techniques, such as energy-based models (Liu et al., 2022; Du et al., 2024), MCMC sampling (Du et al., 2024), diffusion
soup (Biggs et al., 2024), and superposition (Skreta et al., 2025). However, how to determine optimal weights for the
individual models is not yet fully understood. In contrast, we propose a constrained optimization framework for composing
diffusion models that explicitly determines the optimal composition weights. Hence, this formulation enables an optimal
trade-off among the pre-trained diffusion models. Moreover, our constrained composition approach also generalizes to
mixture composition, offering advantages over prior work (Liu et al., 2022; Du et al., 2024; Biggs et al., 2024; Skreta et al.,
2025).

Diffusion models under constraints. Our work is pertinent to a line of research that incorporates constraints into diffusion
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models. To ensure that generated samples satisfy given constraints, several ad hoc approaches have proposed that train
diffusion models under hard constraints, e.g., projected diffusion models (Liang et al., 2024; Christopher et al., 2024;
Liang et al., 2025), constrained posterior sampling (Narasimhan et al., 2024), and proximal Langevin dynamics (Zampini
et al., 2025). In contrast, our constrained alignment approach focuses on expected constraints defined via reward functions
and provides optimality guarantees through duality theory. A more closely related work considers constrained diffusion
models with expected constraints, focusing on mixture composition (Khalafi et al., 2024). In comparison, we develop new
constrained diffusion models for reward alignment and product composition.

C. Proofs

For conciseness, wherever it is clear from the context we omit the time subscript:
Dxui.(po:r(zo:1; 8p)) = Dx(p(zo.7; 5p)) (19)

C.1. Proof of Lemma 1

Proof. The DDIM process is Markovian in reverse time with the conditional likelihoods given by

plai—1|ze; s) =N <1/ a;_lxt + B s(xe,t), 0,52[> (20)
t

Using (20) we expand the path-wise KL:

DKL(?O:T('; Sp) H pO:T('; Sq))
= ]E.’CU:T ~p [logp('rO:T; Sp) - 10gp(x0:T§ Sq) }
(l“t 1 \l‘us )
1
( )
( )

\_/ ]E 1 P(Ti—1 |xta p
= E : zr ~pria(),zr—1 ~pr(-|zr), .. ;xo ~p1(-|z1) [1O8
t=T P(Tt— |xt75q

1
= Z Bao.r ~p [DrL(p(@i—1 | @43 5p) || P21 | 245 5¢))]

@ Z Eo, oo [Bt [5p (@1, t) = sq(ae, 1) ]

© o Bt
D3 B [ s ) sa(aw O]

t=T

where (a) is due to the diffusion process, (b) is due to the exchangeable sum and integration, (c¢) is the definition of reverse
KL divergence at time ¢, (d) is due to the reverse KL divergence between two Guassians with the same covariance and

means differing by 5;(sp(z¢,t) — s¢(2¢,1)), and in (e) we abbreviate E, « p,,, as Eyp,} that is taken over the randomness
of Markov process. O

C.2. Proof of Lemma 2

Proof Roadmap: The proof for Lemma 2 is quite involved, thus we have divided the proof into multiple parts for readability.

* We begin by giving a few definitions for continuous time diffusion processes.
e Then in Lemma 4 we characterize how the KL between the marginals of two processes changes over time.
* Using Lemma 4 we prove Lemma 5 which is the analogue of Lemma 2 in continuous time.

* Next, Lemmas 6, 7, 8, allow us to bound the discretization error e incurred when going from continuous time processes
to corresponding discretized processes and complete the proof.
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Notation Guide: In this Section(C.2) we will be dealing with continuous time forward and reverse diffusion processes and
their discretized counterparts.

» We denote the continuous time variable 7 € [0, 1] to differentiate it from the discrete time indices ¢ € {0,--- ,T'}.
t = 0 corresponds to 7 = 1 and ¢ = T corresponds to 7 = 0. 2

* We denote as X, the continuous time reverse DDIM process and X; as the corresponding discrete time process.

* The forward processes we denote with an additional bar e.g. X, X; denote the continuous time and discrete time
forward processes respectively.

* Marginal density of continuos time DDIM process with score predictor s(x, 7) at time 7 we denote as: p,(z, s)

Continuous time Preliminaries. Given a function s(x,7) : R? x [0, 1] — R?, and a noise schedule @&, increasing from
ap = 0to &; = 1, we define a continuous time reverse DDIM process as:

2

202{ n %)S(%T,T))dt—FaTd%T, Xo ~ N(0,1) 1)

o
ax, = (ﬁxr + (

The variance schedule o is arbitrary and determines the randomness of the trajectories (e.g. if o, = 0 for all 7, then the
trajectories will be deterministic). The DDIM generative process (21) induces marginal densities p (z, ) for 7 € [0, 1]

For reference the Discrete time DDIM process defined in the main paper is:

Qi1

X1 = Xi + Bes(Xy,t) + oy (22)

Qi

Up to first order approximation, the discrete time process (22) is the Euler-Maruyama discretization of the continuous time
process (21). A uniform discretization of time is assumed i.e. 7 = 1 — % (See (Domingo-Enrich et al., 2025) Appendix B.1
for the full derivation).

Given random variables Xy ~ po = N (0,1) and X1 ~ p1, where p; is some probability distribution (e.g. the data

distribution), we define a reference flow X, for 7 € [0, 1] as:

X =a,; X0+ GX (23)

Note that there is no specific process implied by the definition above, since different processes can have the same marginal
densities as the reference flow at all times 7. We denote by p,(+) the density of X.. As «, decreases from ap = 1to oy = 0,
and ¢, increases from (o = 0 to {; = 1 the reference flow gives an interpolation between py = N (0, I) and p;.

If the score predictor s(x, 7) = V. log p,(z), then the DDIM process (21) has the same marginals as the reference flow (23)
ie. pr(x,s) =p-(x)for 7 € [0,1]. This is assuming proper choice of a, ; i.e. ar = /1 — ar, {; = V/a,.

The following Lemma which generalizes Theorem 1 from (Lyu, 2012), characterizes how the KL between marginals of two
continuous time forward processes changes with time.

Lemma 4. Consider reference flows defined as X, =, X0+ Xy, forT €0,1] where Xo ~ N(0,I). Denote by p(-),
the marginal density of X, when X1 ~ p1 and similarly §,(-), the marginal density of X, when X1 ~ qi. The following
then holds:

2 D (- ()3-0)) = 303 DeC- ()l la-() 24

where v, = (; /o, and Dp(p||q) denotes the Fisher divergence.
Proof. We start by defining ), as a time-dependent scaling of X, :

_ 1 - _ _
2)7 = 7x7' - xl + %ffo (25)

T

ZFor consistency with other works from whom we will utilize some results in our proofs, namely (Domingo-Enrich et al., 2025;
Lyu, 2012), the direction of time we consider in continuous time is reversed compared to discrete time. This does not affect any of our
derivations and results beyond a small change of notation.
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where 7, := (;/a,. Denote by p-(9-), the marginal density of ), when X; ~ p; and similarly ¢;(2),), the marginal
density of ), when X1 ~ q;. Now we generalize Theorem 1 from (Lyu, 2012) to show that (24) holds for p., q,. Their
Theorem is for the specific case of v, = /1 — ¢.3

We now present Lemmas 4.1 and 4.2 which we will need in the remainder of the proof.

Lemma 4.1. For density p.(2).) as defined in Theorem 1, the following identity holds:

d~ - -
ap‘r(@r) = 77';77A§3Tp7'(m‘r)~ (26)

Proof. Proof of Lemma 4.1. We start with p,(),) which is the convolution of a Gaussian distribution with p; (X;):

o 1 ), — X1 .
p- (D7) = /3€1 Wexp <—W> p1(X1), 27

Taking the derivative we have:

. o |19, — X | D — P\ -
By = [ BB e (—M AEN

x V2 (2my2)d/2 22 @8
= )
i 9. -2\ . s
- —— _— X).
/ael 7e @my2)a P ( 273 Pl
On the other hand, taking the gradient of p, (), ) with respect to ), we get:
Vg pr (D) = — Y, — Xy 1 ex _M p1(X1) (29)
N O K U2 g
Taking the divergence of the gradient, we have:
< = 12 < = 112
. V. -X° 1 19 - &7 s
Ag - (D~ / H exp | —T——F—5—— | p1(X1),
9, r(Dr) % oo (@my)? 292 *a) 30)
= ~ 2
_ / da_1 exp _M p1 (%)
%, 97 (2m7) 42 292 '
Comparing Equations (28) and (30) proves the result.
O

Lemma 4.2. For any positive valued function f(z) : R? — R whose gradient V. f and Laplacian A, f are well defined,
we have the identity

Ay f(z)
f(z)
3Just to avoid any confusion, in (Lyu, 2012), at t = 0 we have the data distribution and as ¢ increases the distributions converge to

Gaussians. However in the current paper, the direction of time is the opposite, meaning ¢ = 0 corresponds to the pure Gaussians and at
t = 1 we have the data distributions.

= A, log f(x) + ||Va log f(2)]|. 31)

15
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We now continue with the proof of Lemma 4. We start with the definition of Fisher divergence for generic distributions p, q:

Dr(plla) = / p(z) [V logp() — Vlog () | da
_ o || Ye@) V(@) ? N
e H p(x q(x) a (32)
N N A ] S A A
- )<H fet e Pa)a) )d

We apply integration by parts to the third term. For any open bounded subset 2 of R? with a piecewise smooth boundary
I'=o:

[ w8~ [ )T (TIogae))ds
zEN q(x) zeQ 33)
— [ s@alogg@)is+ [ pl)(Vioga(a) AT
e r
Assuming that both p(z) and ¢(x) are smooth and fast-decaying, the boundary term in (33) vanishes.
Then we can combine (32) and (33) to write:
Delplla) = [ pla) (19 10gp(a) I + |V o a(o)]” + 2, og g(2)) de (34)
Returning to our distributions p,(2),) and q,(2),) we can rewrite (34) as:
2 ~ ~
De-O 1300 = | 5.0 (7 1o8B-@0) | + 17 logd (D)1 + 289, lozd (D)) &0, 65

For conciseness in notation, we drop references to variables ) and X; in the integration, the density functions, and the
operators whenever this does not lead to ambiguity. We start by applying Lemma 4.2 to Equation (34):

Dr(pllg)

/ﬁ(\VIogﬂQ +|Viogql? +2Alogc}) ,

_ _ Aq -
/p (|Vlogp2 + ?q +A10gq> )

Next, we expand the derivative of the KL divergence:

d
7 —Dxr(pllg) = /d plog = +/ —logp /—1ogq.

We can eliminate the second term by exchanging integration and differentiation of 7:

dp d [ .
1 =
/ ogp = = ar / p=0

As a result, there are three remaining terms in computing - D 1,(p]|¢), which we can further substitute using Lemma 4.1,

as:
d
/fplogp /*plogq—/ dflogq,
Aq
Vo Yr /Aplogp /Aplogq—/pf

16
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:
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Using integration by parts, the first term in (37) is changed to:

/Aplogp 28

Yi=

/VpTngp

The limits in the first term become zero given the smoothness and fast decay properties of p(%). The remaining term can be
further simplified as:

/VﬁTVIOg]’J: /5(v1ogﬁ)Tv1og§: /ﬁ\VIogfﬂQ.

The second term in (37) can be manipulated similarly, by first using integration by parts to get:

/Aplogq = Z o

yz— o

/Vp V logq.

Applying integration by parts again to Vp?'V log g, we have:

d ~ Y =—00

~ ~ _Ologq|¥ ~ ~

/VpTVlogq: > b D9, —/pAlogq-
i=1 v lyi=o0

The limits at the boundary values are all zero due to the smoothness and fast decay properties of p(#). Now collecting all
terms, we have [ plogp = — [p|Vlogp|? and [ plogq = [ pAloggq. Thus (37) becomes:

d - . - ~ A7
EDKL(p”E[) = —v Y /p (|V10g1v2 + Alogq + a) )

Combining with (36), this leads to the following:

d
dr
Again replacing p., ¢ with the marginals of diffusion processes we get:

d

27 PP () 16 ()) = =73 De(pr () [ 6-())- (39)

Dxv(pr1¢7) = ==Y+ Dr(pr|q7)- (38)

Recall that p(-) and q,(-) were the densities of the scaled random variable 2), = ii}. This leads to p, (X, )dX, =

P-(D-)dD,. Thus, it is straightforward to show that both KL divergence and Fisher divergence are invariant to the scaling
of the underlying random variables.:

Do) = [ 5D 108 D09, = [ (210 P % — DOl ) o)

= ~ =~ VPT(@T) Vq'r(@‘r) 5

De(p-()|a,- () = (), < — Py

(B Ol () = [ B0 | 2205 - eIy

V@) V(@) | s

= (X7 — — = dX; = De(p.()||la-(- 41
[ | S - T F(o- ()l () @
Thus we can replace the divergences in (38) with those of the non-scaled distribution, which concludes the proof. O

We now present the continuous-time analogue of Lemma 2 which characterizes the point-wise KL divergence of two
continuous time diffusion processes:

17
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Lemma 5. Consider two score predictors sy(z,7) = Vg logp,(x), sq(z,7) = V, log g, (x), where p,, q, are marginal
densities of two reference flows, with the same noise schedule, starting from initial distributions pg and qo, respectively. Then,
the point-wise KL divergence between two distributions of the samples generated by running continuous time DDIM (21)
with s, and s is given by
1
Dxr(po(55p) [ Po(55q)) = / . Gr B mp, (15p) | I5p(@,7) = 54(2,7)|3 (42)

T =

where W is a time-dependent constant

Proof. We start with a direct application of Lemma 4:

1

Dxr(p1()[a1(-))

Dw (po()l[90()) — /

T=

. V2= Dr(p- ()l[dr () dr

1
~ [ e Bas, [V 108b ) = Viogd =) 2] ar

1 , (43)
= [ B, [lspta) = sylo DI dr
1 .
ar
= [ S [l ) @] dr

In the second line we used the fact that po(-) = qo(-) = N(0, ), therefore Dxr.(po(-)||qo()) = 0. The third line follows
from our definition of the score functions. Finally, in the last line we used the fact that 7y, = —<F which follows from

Yr = (/o and o2 + (2 = 1:

T dr “a; o
. CTCTQT - Oé‘r(?—
= "
™ 44
a0 —dar(1—a?) “4)
= o3
ad
by denoting @&, := — <z we conclude the proof. O

3
az

We now start bridging the gap between continuous and discrete time. First we present a result from (Mou et al., 2019):

Lemma 6. The KL divergence between the marginals of the discrete time p;(-) and continuous time p, 7 (-) is bounded as:

Drr(pi (5 8p)Ipeyr (5 8p)) < (45)

c
T2
where c is a constant depending on assumptions.

See (Mou et al., 2019) for the proof (Theorem 1). Next we need to characterize the sensitivity of the KL divergence to
perturbations in the first and second arguments.

log(w) is bounded. Then, the point-wise KL between the continuous time processes
pO( %Sq)

approximates the point-wise KL between the discrete time processes up to a discretization error €1(T):

Lemma 7. Assume M := max,

[ Dke (o (5 8p)IPo(+5 84)) = Dxi(po (5 sp)lIpo (-5 89)) < e (T), (46)
where e1(T) = O(1/T).

18
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Proof. We first prove a similar relation for generic distributions 7 (), p(«) and their perturbations 7(x), p(z);

Where it is clear from the context, we omit the integration variables. Perturbing the first argument gives us:

D | 7) - Duar )l = [710g (Z) = [rtog (Z) + [Grogn — F1ogm)
~ D (Fllm)+ [ G- mtog () .

u(G)) fe-o

= DKL(% || 7'(') + QIOgMdTv(%, ﬂ')

< DKL(/ﬂ\’ || 7T) + max (

log( ’;(;’) )‘ and dry denotes the total variation distance between distributions. Next, perturbing the

where log M := max,

second argument we get:

R R (48)
~pP — T,
< fee 6oy
p T p
< maX( ) /Ip pl =2M drv(p, p)
Using (47), (48) we get:
|Dxo(7 || p) — Dxu( || p)| < [Dxo(7 || p) — Dxu( || p)| + |Dxo(T || p) — Dxu( || p)
< Dx(7 || m) + 2M drv(p, p) + 2log M drv (7, ) )

<DKL ™ H m +2M“*DKL p||p +210gM\/*DKL T HTF

where in the last line we utilized Pinsker’s inequality to bound the TV distance with the square root of the KL divergence.
Now we apply (49) to diffusion models:

| Dk (Po (5 8p) [P0 (5 84)) — DxL(po (5 5p)|[Po (5 8¢))| < Dxr(po(58p) [l Po(-;5p))

1
+2M \/QDKL(po(‘; sq) | Po(+554)) (50)

1
+2log M \/QDKL(PO('%Sp) [ Po (5 5p))

Furthermore from Lemma 6 we know:

Dxi(po(55p) | po(58p)) < ¢/T?, Dxi(pol:;sq) || po(+584)) < ¢/T? (51)

Putting together (50) and (51) we get:
[ Dke(Po(5 8p)|Po(+584)) — Dre(po(:; 5p)llpo(5 89))| < € (T) (52)
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where €1 (T) := ¢/T? + (2M + 2log M)+/c/T?. The second term dominates therefore €1 (7') = O(1/T') which concludes
the proof.

O
Lemma 8. Assume B, Bs as defined below are finite:
By :=sup ||sp(x, 7) — sq(z,7)]], (53)
By :=sup —T(sp(z,T) — sq(x, 7)) (54)
x,T 2

Then the integral from Lemma 5 giving the point-wise KL in continuous time can be approximated with a discrete time sum
as follows:

1 T
~ 1.
[ @B [l ) = a3 ] = 3 G e o [l 8) = sufa 03] | < D) 59

=0 t=0

where the discretization error is ea(T) = O(1/T).

Proof. There are two sources of error we need to consider. First we bound the error in approximating an integral with a sum:

1 T
~ 1.
/ BBy 0 m) = 03 | = 3 8 B s [ In(:8) = s 01 ]| 56
T= t=0
1 T
1 1 df
= — Lo < = -
[ 1@ =3 g/ < s |5 7
t=0 >

where we have defined f(7) := W, E; <y (.1s,) [ Isp(x, ) — sq(z,T) ||§ } . We now upper bound the supremum to show
that it is finite:

d d

% = - (/p,,(m 15p) [15p(2,7) — sq(z, 7|5 dx) (58)
. : 5d ) 2)d 59
= [ rlzis) Isor) = sy 3o+ [, @is) (s r) = sy nlde 69

We bound each term in (59) separately. Then the first term in (59) is bounded because % (pr(z;sp)) is finite as characterized
in Lemma 4.1. The second term in (59) we expand further:

[ et ssp) e lsplem) = sa(w B = [ 2008, ) = syt ), PART - Bl )
d
< 2sup [|sp(z, 7) — s¢(x, 7|5 E(sp(a:,T) —sq(x,7))|| <2B1B (61)
x,T 2

The second source of error is replacing expectation over the continuous time marginal p; /7 (- ; s,) with expectation over the
discrete time marginal p,(-; s,,) which we can bound by using the fact that the two aforementioned marginals are close to
each other.

T T
S 2B By ntesny | I, 0) = sqlar )2 ] - Z BT Eanpicisy) | Isp(@ ) = so(@, 03] @2

t=0 —

1
<Y F@yrdry (pi(-5p) peyr (5 5p)) - sup sy (e, 7) = sq(, 7)1 (63)
t=0 r
T c 1 c 1
~ / 2 / 2 _

where we used Lemma 6 to get the last line which concludes the proof. O
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It remains to combine Lemmas 7, 8 to complete the proof of Lemma 2:
T
~ 2
Dia(pol-39) 1 Po(-350) = D2 B Bampyisy) | Isp(@t) = syl DI} | + er (65)
t=0

where |e7| < €,(T) + €2(T) = O(1/T). (We abuse notation to denote 7/ as @, in (65) and in the main paper.)

C.3. Proof of Theorem 1
Proof. For any A > 0, the optimal solution p*(-; A) is uniquely determined by solving a partial minimization problem,

minimize Lapi(p, A).
peP

Application of Donsker and Varadhan’s variational formula yields the optimal solution
Pr(5A) o g()er 0

Since the strong duality holds for Problem (UR-A), its optimal solution is given by p*(-; \) evaluated at A = A\*.
It is straightforward to evaluate the dual function by the definition D(A) = L(p*(-; \), A). O

C.4. Proof of Theorem 2

Proof. We first consider the constrained alignment (SR-A) in the path space {po.7(+)}. Since the KL divergence is convex
in the path space and the constraints are linear, the strong duality holds in the path space, i.e., there exists a pair (pf., (), A*)
such that

Py = D(06.r() | qor(55¢) = Daur(\*) == Diyy.
Equivalently, (p§.1-(-), A\*) is a saddle point of the Lagrangian Lay(po.7(-), ),
Lau(po.r(-),A) < Lau(@.r(-),A*) < Lau(por(-), ") forall po.r(-) and A > 0.

Since the function class S is expressive enough, any path po.7(+) can be represented as po.7(+; s,) with some s, € S; and
vice versa. Thus, we can express pg.(+) as po.7(+; s3) with some s3 € S. We also note that the dual functions Dap1(A) in
the path and function spaces are the same. Hence, the dual value for (SR-A) remains to be Dary(A*). Thus, (s;‘,, A*)isa
saddle point of the Lagrangian Lapi(sp, A) := LaLi(po.r(+; Sp), A),

EALI(s;, A) < EALI(S;7 N) < Laui(sp, \*) forall s, € Sand A > 0.

Therefore, the strong duality holds for (SR-A) in the function space S. O

C.5. Proof of Theorem 3
Proof. By the definition,

m

Lanp(p,u; A) = u+ Z i (DKL(p Ilq") — “)
i=1
14 S (MBanp [l0gp(5)] ~ AEsep [loB G (0)])
i=1
= u—u\1+ i)\iEmNp[logp(x)] —Eznp [log ﬁ (ql(ff))/\]
= u—u\'l o =
+i& (Emp [logp(2)] = Exnyp [10% ﬁ (qi(l‘))ﬁi*D
i=1 i=1
= u+ i Ai (DKL(P Il gi) — U) — 1" Xlog Zanp(N).
i=1
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By taking A = A*, we obtain a primal problem: maximize, ¢ p ., > 0 Lanp(p, ©; A*), which solves the constrained alignment
problem (UR-A) because of the strong duality. By the varational optimality, maximization of Lanp(p, u; A*) over p and u is
at a unique maximizer,

A*
P o ae ()
and u* = 0if 1 — 1T A\* > 0 and u* = oo otherwise. This gives the optimal model p*(-) = p*(-; \*).

Meanwhile, for any A > 0, the primal problem: maximize, ¢ p 4, > 0 Lanp (p, u; A) defines the dual function Danp(A). By
the varational optimality, maximization of Lanp(p, u; A) over p and w is at a unique maximizer,

* A
PN WNG
and u*(\) = 0if 1 — 17X > 0 and u*(\) = oo otherwise. This defines the dual function,

Danp(A) = Lanp(p* (5 A), u*(A); A)

= w )+ 3N (Dl () afRp() — (V) — 17 Alog Zao(A)

(1 —1"N)u*(\) — 1T Xlog Zann(N)
which completes the proof by following the definition of the dual problem and the dual constraint 1T\ < 1. O

C.6. Proof of Theorem 4

Proof. Similar to the proof of Theorem 2, we can establish a saddle point condition for the Lagrangian Lanp (sp, u, A) by
leveraging the expressiveness of the function class S which represents the path space {po.7(-)}. As the proof follows similar
steps, we omit the detail. O

C.7. Proof of Lemma 3
Proof. From section C.5, we recall:
Lanp(p,u; ) = u+ Z Ai (DKL(p laiNn) — U) — 1" Xlog Zann(A).- (66)
i=1

Since in the diffusion formulation of the problem (SR-A) we have p = pgo(z0; s), ¢* = po(wo; s*), we can derive similarly
to (66) that:

Lano(po(-38),u; A) = u+ Z g (DKL(po('§ s) || q/(\)r\\?n,o(')) - U) — 1" Alog Zanp(N). (67)
i=1

Since minimizing over u would trivially give min, Lanp(p,u; A) = —oo unless AT 1 = 1, we consider the Lagrangian in
the non-trivial case where AT 1 = 1. Then we have:

Lap(p(-38);3) = Lawp(s,A) = Dxw(po(+5) | ainp.o) — 10g Zann(N). (68)

The second term log Zanp () does not depend on s, thus it suffices to minimize Dy (po(+; s) || qx‘\f)D}O) to find the Lagrangian

minimizer which we call s*). The KL is minimized when po(; s()‘)) = q/(x/l\\l)[),o If we have access to samples from qx‘\])D’O,
N

we can fit s to ga\p o by optimizing the Denoising score matching objective similar to Equation (1) in (Song et al., 2021):

T
Lan(s.0) = Y @B, o0 (Bamganfan |[5(2,8) = Vg q(adlao)|” (69)
t=0

From (Song et al., 2021) we know that given sufficient data and predictor capacity of s we have argmin, L¢y (s, \) ~

A
q/(\N)D,O' O
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D. Composition with Forward KL Divergences

We start with the constrained problem formulation using forward KL divergence (UF-C) which we rewrite here:

minimize u
u€R, pE P 4 (70)
subject to Dxi(¢"[|p) < w fori=1,...,m.

In the case of diffusion models, the KL divergence in (70) becomes the forward path-wise KL between the processes:
minimize u
u€R, pe P ‘ (71)
subject to  Dxr(g).0(-) | po:r(-58)) < w fori=1,...,m.

It is important to note here that using the forward KL as a constraint makes sense when ¢’ represent forward diffusion
processes obtained by adding noise to samples from some dataset. We can also solve this forward KL constrained problem
to compose multiple models; In that case we treat samples generated by each model as a separate dataset with underlying
distribution g} (zo).

In summary, the two key differences of Problem (71) to Problem (UR-A) are: (i) The closeness of a model p to a»pretrained
model ¢’ is measured by the forward KL divergence Dy (¢ || p), instead of the reverse KL divergence Dxy.(p || ¢*); (ii) The
distributions {q’}" ; can be the distributions underlying m datasets, not necessarily m pretrained models.

Regardless of whether the ¢’ represent pre-trained models or datasets, evaluating D (gd.+(+) || po.7(+; s)) is intractable
since it requires knowing g.-(-) which in turn requires knowing ¢/ () exactly. To get around this issue we formulate a
closely related problem to (71) by replacing the KL with the Evidence Lower Bound (Elbo):
minimize u
NeRS _ (72)
subject to  Elbo(gy.r;po.r) < u fori=1,...,m

where the Elbo is defined as

Po:T (xO:T)

. 73
Q($1:T|$o) 73)

ElbO(QO:T;pO:T) = E:E()Nqo]Eq(.’tl:TlfL'o) IOg

We note that the typical approach to train a diffusion model is minimizing the Elbo. Furthermore, minimizing Elbo(qo.7; po.T)
over p is equivalent to minimizing the KL divergence Dk (¢).1() || po:7(+; s)) since they only differ by a constant that does
not depend on p. (see (Khalafi et al., 2024) for more details on this)

For a given A, we define a weighted mixture of distributions as

A — A
dan() = D 5774 0): (74)
i=1
and we denote by H (q) the differential entropy of a given distribution ¢,

H(q) = —Eqngllogq(z)] (75)
Theorem 5. Problem (72) is equivalent to the following unconstrained problem:

minimize DKL(QI(;:}; ) | p) (76a)
peEP

where \* is the optimal dual variable given by \* = argmax, . o D()). The dual function has the explicit form, D()\) =
H( (A)). Furthermore, the optimal solution of (7) is given by

qmix
pr =gl (76b)

mix
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Unlike the reverse KL case, here we can characterize the optimal dual multipliers, and the optimal solution further; Note that
the optimal dual multiplier \* = argmax,~ o D(A\) = argmax,~ o H (gmix(-; A*)) is one that maximizes the differential
entropy H (-) of the distribution of the corresponding mixture. This implies that the optimal solution is the most diverse
mixture of the individual distributions.

There are many potential use cases where we may want to compose distributions that don’t overlap in their supports; For
example when combining distributions of multiple dissimilar classes of a dataset. The following characterizes the optimal
solution in such settings.

Corollary 1. For the special case where the distributions ¢° all have disjoint supports, the optimal dual multiplier \* of
Problem (72) can be characterized explicitly as

N eH(d")
NS e

E. Algorithm Details
E.1. Alignment

Recall from Section 3.1 that the algorithm consists of two alternating steps:

Primal minimization: At iteration n, we obtain a new model s(**1) via a Lagrangian maximization,

st ¢ argmin I_/ALI(sp,)\(")).
seS

Dual maximization: Then, we use the model s("*1) to estimate the constraint violation E,,[r(z)] — b, denoted as
r(s("*t1)) — b, and perform a dual sub-gradient ascent step,

A+ — {)\(") + 7 (r(s(”“)) — b) } .
+

In practice we replace minimization over S with minimization over a parametrized family of functions Sp. The full algorithm

is detailed in Algorithm 1.

Algorithm 1 Primal-Dual Algorithm for Reward Alignment of Diffusion Models

1: Input: total diffusion steps 7', diffusion parameter o, total dual iterations H, number of primal steps per dual update
N, dual step size 14, primal step size 7, initial model parameters 6(0).

2: Initialize: A(1) = 1/m.

3: forh=1,---,H do

4: Initialize 6; = 0(h — 1)

5: forn=1,---,Ndo
6: Take a primal gradient descent step
Oni1 = O — 11 - VoLani(0,A™) (77)

7: end for
8: Set the value of the parameters to be used for the next dual update: 8(h) = On 1.
9: Update dual multipliers fori = 1,--- ,m:

Al(h =+ 1) = I:Ay(h) + nd(Ewo NPO(';SO) [m(xo) } — b1)]+ (78)

10: end for

We now discuss the practicality of the primal gradient descent step (77) regarding the Lagrangian function,

Laui(0,A) = Dxo(po.r (- 50) | qo:r (v 54) ) — Z Ai(Bizg ~ po(350) [ Ti(@0) | — bi) (79)
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To derive the gradient of Lay;(0, \), we first take the derivative of the expected reward terms by noting that the expectation is
taken over a distribution that depends on the optimization variable 6. We can use the following result (Lemma 4.1 from (Fan
et al., 2023)) to take the gradient inside the expectation.

Lemma 9. [f pg(xo.7)r(x0) and Vope(xo.1)r(xo) are continuous functions of 0, then we can write the gradient of the
reward function as

T
v0EfEO"’PO('§56) [’I‘(Z‘Q)] = EQJO:T"‘PO:T(';SB) [T(J?Q) Zv9 Ing(J?t_1 | T; 39)‘| .
t=1

For the gradient of the KL divergence, we have

T
1
V49DKL(pO:T(’; 50) || qO:T('; Sq) ) = v@ <Z Ext ~pe(-;80) |:M89(xt7 t) - Sq(xt7 t)”z :|>
t=1 t
T
= Vg (Z By, oo (is0) [DRL(D(@e—1 | 245 80) || P(@0—1 | 245 5q))]>
t=1
T
= D Bayropiase) VoD (p(@eo1 |25 50) | (-1 | 24; 5,)
t=1
T T
+ Z By npi(iso) Z Vologp(zy—1 [ @ so) DxL(p(xi-1 | @3 59) || p(e—1 | 24 Sq))‘| .
t=1 t>t
The second term we ignore in practice for simplicity without hurting performance. See (?)Appendix

A.3]fan2023dpokreinforcementlearningfinetuning for the derivation.

E.2. Composition

For composition, we take a similar approach to Algorithm 1. Recall from Lemma 3 that the Lagrangian minimizer for the
constrained composition problem can be found by minimizing:

T
Lawp(0.0) == 3 @By o B faoy | I50(2,8) = Viog a(zo) |

TO0™~GAND
t=0

Thus, we detail the algorithm for composition in Algorithm 2.

The projection of the dual multipliers vector at the end is because we are maximizing the Dual function and as seen in the
proof of Theorem 3 this requires that AT 1 = 1.

Note that implicit in Algorithm 2 is the fact that for minimizing the Lagrangian L AanD (0, A) we need samples from the
weighted product distribution qx‘\I)D (). We do this using the Annealed MCMC sampling algorithm proposed in (Du et al.,

2024).

Skipping the Primal. As mentioned in Section 5, Annealed MCMC sampling and the minimization of the Lagrangian
Lanp (0, \) at each primal step to match the true score V log gAyp are both difficult and computationally costly. This is why
for the settings other than the Low-Dimensional setting discussed in Appendix F.1 we propose Algorithm 3 that skips the
primal step entirely.

We achieve this by using the surrogate product score (rather than the true score) for computing the point-wise KL needed for
the dual updates. The difference between the two is also discussed in (Du et al., 2024).

true score:  Vlog qx‘\,)D,t(xt) = Vlog (/Z(qo(aro))kiq(xﬂxo)dxo) (82)
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Algorithm 2 Primal-Dual Algorithm for Product Composition (AND) of Diffusion Models

1: Input: total diffusion steps 7', diffusion parameter o, total dual iterations H, number of primal steps per dual update
N, dual step size 74, primal step size 1), initial model parameters 6(0).

2: Initialize: A(1) = 1/m.

3: forh=1,--- ,Hdo

4: Initialize 6; = O(h — 1)

5 forn=1,--- ,Ndo
6: Take a primal gradient descent step
0n+1 - en —MNp - VOz/\AND(97 )\(n)) (80)
7: end for
8: Set the value of the parameters to be used for the next dual update: 8(h) = On 1.
9: Update dual multipliers fori = 1,--- ,m:
Xi(h+1) = Xi(h) + naDxe(po(-5 som) | po(-; ) (81)

10: A(h + 1) = proj (X(h + 1)) , where proj(y) projects its input onto the simplex AT1 = 1.
11: end for

Algorithm 3 Dual-Only Algorithm for Product Composition (AND) of Diffusion Models
1: Input: total diffusion steps 7', diffusion parameter o, total dual iterations H, dual step size 7n4.
2: Initialize: \(1) = 1/m.
3: forh=1,---,H do
4 Update dual multipliers forz =1,--- ,m:

Ni(h+1) = Xi(h) + 1aDxe(@ng 0 () Il po(-:5%)) (84)

el

A(h + 1) = proj (X(h + 1)) , where proj(y) projects its input onto the simplex AT1 = 1.
6: end for
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surrogate score: Vlog qAND (@) Z AV log (/ qo(xo)q(xt|xo)dxo> (83)
For a given ), the surrogate score can be easily computed:

V log g4 qAND () ZA V log (/ qo(xo)q(act|xo)daso> (85)

= AiVlogpi(zs;s') (86)
and thus we can use Lemma 2 to compute the point-wise KLs needed for the dual update. As for the samples needed from
the true product distribution, we also replace them with samples obtained by running DDIM using the surrogate score.
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F. More Experiments and Experimental Details
F.1. Low-dimensional synthetic experiments

For illustrating the difference between the constrained and unconstrained approach visually, we set up experiments where
the generated samples are in R2. For the score predictor we used the same ResNet architecture as used in (Du et al., 2024).

Product composition (AND). Unlike the image experiments, in this low-dimensional setting we used Algorithm 2 for
product composition. See Figure 1 for visualization of the resulting distributions.

Mixture composition (OR). For this experiment we used the same Algorithm as the one used in (Khalafi et al., 2024) for
mixture of distributions. The only modification is doing an additional dual multiplier projection step similar to the last step
of the product composition Algorithm 2. See Figure 2 for visualization of the resulting distributions.

F.2. Reward product composition (section 5.2 (I))

Reward
I Aesthetic 3 Mps [ Pickscore I Imagereward [ Hps

Dy1.

Equal Weights Constrained

Figure 6. KL divergence for the product composition of 5 adapters pre-trained with different rewards. Error bars denote the standard
deviation computed across § text prompts each with four samples.

Implementation details and hyperparameters. We finetuned the model using the Alignprop (Prabhudesai et al., 2024a)
official implementation * for each individual reward using the hyperparameters reported in Table 2. We then composed the
trained adapters running dual ascent using the surrogate score as described in section E.2. We use the average of scores
(denoted as “Equal weights”) as a baseline. Hyperparameters are described in Table 3. The reward values reported in
Figure 4 were normalised so that 0% corresponds to the reward obtained by the pre-trained model, and 100% the reward
obtained by the model fine-tuned solely on the corresponding reward.

Additional results. As shown in Figure 6, equal weighting leads to disparate KL'’s across adapters — in particular high KL
with respect to the adapter trained with the “aesthetic” reward — while our constrained approach effectively reduces the
worst case KL, equalizing divergences across adapters. Table 4 shows images sampled from these two compositions exhibit
different characteristics, with our constrained approach producing smoother backgrounds, shallower depth of field and more
painting-like images.

F.3. Concept composition (section 5.2 (II))

We present additional results for concept composition using three different concepts (as opposed to just 2 in the main paper
and in (Skreta et al., 2025)) As seen in table 5, our approach retains a clear advantage in both CLIP and BLIP scores. See
Table 6 for examples of images generated using each method. Images with the constrained method typically do a better job
of representing all concepts.

*https://github.com/mihirp1998/AlignProp
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Hyperparameter Value
Batch size 64
Samples per epoch 128
Epochs 10
Sampling steps 50
Backpropagation sampling  Gaussian
KL penalty 0.1
Learning rate 1x1073
LoRA rank 4

Table 2. Hyperparameters used to finetune models using individual rewards.

Hyperparameter Value

Base model runwayml/stable-diffusion-v1-5

Prompts '{'"cheeta}h" , "snail", "hippopotamus",
crocodile", "lobster", "octopus"}

Resolution 512

Batch size 4

Dual steps 5

Dual learning rate 1.0
Sampling steps 25
Guidance scale 5.0
Rewards aesthetic, hps, pickscore, imagereward, mps

Table 3. Hyperparameters for product composition of models finetuned with different rewards.

F.4. Alignment experiments

Reward normalization. In practice, setting constraint levels for multiple rewards that are both feasible and sufficiently
strict to enforce the desired behavior is challenging. Different rewards exhibit widely varying scales. This is illustrated
in Table 7, which shows the mean and standard deviation of reward values for the pre-trained model. This issue can be
exacerbated by the unknown interdependencies among constraints and the lack of prior knowledge about their relative
difficulty or sensitivity.

In order to tackle this, we propose normalizing rewards using the pre-trained model statistics as a simple yet effective
heuristic. This normalization facilitates the setting of constraint levels, enables direct comparisons across rewards and
enhances interpretability. In all of our experiments, we apply this normalization before enforcing constraints. Explicitly, we
set

- r—Q

P T e 87)

Opre

where r denotes the original reward and [i,,c, 0 pre the sample mean and standard deviation of the reward for the pre-trained
model. We find that, with this simple transformation, setting equal constraint levels can yield satisfactory results while
forgoing extensive hyperparameter tuning.

I. MPS + local contrast, saturation.

In this experiment, we augment a standard alignment loss—trained on user preferences—with two differentiable rewards
that control specific image characteristics: local contrast and saturation. These rewards are computationally inexpensive to
evaluate and offer direct interpretability in terms of their visual effect on the generated images. In addition, the unconstrained
maximization of these features would lead to undesirable generations. other potentially useful rewards not explored in this
work are brightness, chroma energy, edge strength, white balancing and histogram matching.

Local contrast reward. In order to prevent images with excessive sharpness, we minimize the “local contrast”, which we
define as the mean absolute difference between the luminance of the image and a low-pass filtered version. Explicitly, let
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Y denote the luminance, computed as Y = 0.2126R + 0.7152G + 0.0722B, and G,, * Y the luminance blurred with a
Gaussian kernel of standard deviation o = 1.0. We minimize the average per pixel difference by maximizing the reward

b
HW

.3

rc = Yij - (Ga * Y)ij s

where H, W denote image dimensions.

Saturation reward. To discourage overly saturated images, we simply penalize saturation, which we compute from R, G, B
pixel values as

(¢) ’

(e) _ (e)
1 MmaXee(R,G,B} T;; — Millee(R G,B} T; ;
rs = — E
HW 1,7 Inaxce{Rﬁc;,B} xi,j + €

where € = 1 x 1078 is a small constant added for numerical stability.

Implementation details and hyperparameters. We implemented our primal-dual alignment approach (Algorithm 1) in the
Alignprop framework. Following their experimental setting, we use different animal prompts for training and evaluation.
Hyperparameters are detailed in Table 8.

Additional results. We include images sampled from the constrained model in Figure 9 for hps and aesthetic reward
functions. Samples from a model trained with an equally weighted model are included for comparison. Constraints prevent
overfitting to the saturation and smoothness penalties.

I1. Multiple aesthetic constraints

Implementation details and hyperparameters. We modified the Alignprop framework to accomodate Algorithm 1.
Following their setup, we use text conditioning on prompts of simple animals, using separate sets for training and evaluation.
In this setting, due to the high variability of rewards throughout training, utilized an exponential moving average to reduce
the variance in slack estimates (and hence dual subgradients) (Sohrabi et al., 2024). Hyperparameters are detailed in
Table 10.

Additional results. We include two images per method and prompt in Figure 11. These are sampled from the same latents
for both models.
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Equal Weights Constrained

Table 4. Images sampled from the same latents for the product of adapters using the equal weights and when using the proposed KL-
constrained reweighting scheme using 5 dual steps.

Min. CLIP (1) Min. BLIP (1)

Combined Prompting 21.52 0.206
Equal Weights 22.18 0.203
Constrained (Ours) 22.45 0.221

Table 5. Comparing constrained approach to baselines on minimum CLIP and BLIP scores. The scores are averaged over 50 different
prompt triplets sampled from a list of simple prompts.
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Combined Prompting Equal Wieghts Constrained

Table 6. Concept composition examples for each method. Prompts used for each row:

Row 1: "apineapple", "a volcano". Row 2: "a donut", "a turtle". Row 3: "alemon", "a dandelion". Row 4: "a dandelion", "a spider
web", "a cinammon roll".

Reward Mean Std

Aesthetic 5.1488  0.4390
HPS 0.2669  0.0057
MPS 5.2365 3.5449
PickScore 21.1547 0.6551
Local Contrast  0.0086  0.0032
Saturation 0.1060  0.0706

Table 7. Mean and standard deviation of reward values for the pre-trained model.
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Table 8. Hyperparameters for reward alignment with contrast and saturation constraints. Constraint levels correspond to normalised

rewards.

Hyperparameter

Value

Base model

Sampling steps

Dual learning rate
Batch size (effective)
Samples per epoch
Epochs

KL penalty

LoRA rank

Constraint level

Equal weights

runwayml/stable-
diffusion-v1-5
15

0.05

4 x16 =64

128

20

0.1

4

MPS: 0.5
Saturation: 0.5
Local contrast: 0.25
0.2
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Equal Weights Constrained

Table 9. Images sampled from models finetuned to maximize MPS (Zhang et al., 2024a), along with sharpness and saturation penalizations.
We compare optimizing an equally weighted objective against our constrained approach.
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Hyperparameter Value
runwayml/stable-
Base model diffusion-v1-5
Sampling steps 15
Dual learning rate 0.05
Batch size (effective) 4 x 16 = 64
Samples per epoch 128
Epochs 25
KL penalty 0.1
LoRA rank 4
MPS: 0.5
HPS: 0.5

Constraint level

Equal weights

Training Prompts

Evaluation Prompts

Aesthetic: 0.5
Pickscore : 0.5

0.2

{"cat", "dog", "horse", "monkey", "rabbit", "zebra"
"spider", "bird", "sheep", "deer", "cow", "goat"
"lion", "tiger", "bear", "raccoon", "fox", "wolf"
"lizard", "beetle", "ant", "butterfly", "fish", "shark"
"whale", "dolphin", "squirrel", "mouse", "rat", "snake"
"turtle", "frog", "chicken", "duck", "goose", "bee"
"pig", "turkey", "fly", "llama", "camel", "bat"
"gorilla", "hedgehog", "kangaroo"}

{"cheetah",
"crocodile",

"snail", "hippopotamus",
"lobster", "octopus"}

Table 10. Hyperparameters for reward alignment with multiple rewards. Constraint levels correspond to normalised rewards.
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Equal Weights Constrained

Table 11. Samples from models fine-tuned using multiple rewards with equal weights and with our constrained alignment method.

36



