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Abstract

Recent years have witnessed a growing inter-001
est towards learning distributed query repre-002
sentations that are able to capture search in-003
tent semantics. Most existing approaches learn004
query embeddings using relevance supervision005
making them suited only to document rank-006
ing tasks. Besides, they generally consider ei-007
ther user’s query reformulations or system’s008
rankings whereas previous findings show that009
user’s query behavior and knowledge change010
depending on the system’s results, intertwine011
and affect each other during the completion012
of a search task. In this paper, we explore the013
value of multi-view learning for generic and un-014
supervised session-aware query representation015
learning. First, single-view query embeddings016
are obtained in separate spaces from query re-017
formulations and document ranking representa-018
tions using transformers. Then, we investigate019
the use of linear (CCA) and non linear (UMAP)020
multi-view learning methods, to align those021
spaces with the aim of revealing similarity traits022
in the multi-view shared space. Experimental023
evaluation is carried out in a query classifica-024
tion and session-based retrieval downstream025
tasks using respectively the KDD and TREC026
session datasets. The results show that multi-027
view learning is an effective and controllable028
approach for unsupervised learning of generic029
query representations and can reflect search be-030
havior patterns.031

1 Introduction032

Understanding user’s search intent is central in in-033

formation retrieval (IR). Modeling user’s intent in-034

evitably requires to capture search context. Search035

history is arguably the most salient facet of context036

that has been widely captured and used in previous037

work (Teevan et al., 2005; Dehghani et al., 2017;038

Aloteibi and Clark, 2020; Zhou et al., 2020). It039

mainly includes the following: (1) the previous040

user’s queries, generally recorded into physical ses-041

sions (also called time-based sessions (Lucchese042

et al., 2011)) or task-based sessions (also called 043

missions (Hagen et al., 2013)); (2) the retrieved 044

documents that the user subsequently selects (e.g., 045

based on clicks), among those retrieved by the IR 046

system in response to her queries. Mining user’s 047

search intent from search history is challenging 048

because of phenomena such as vocabulary mis- 049

match between the query and documents, ambigu- 050

ity issues since two queries even with slight lexical 051

variations may underline different intents (Steiner, 052

2019; Sanderson, 2008), and topic change in user’s 053

search behavior which is particularly prominent 054

while completing complex search tasks (e.g., ex- 055

ploratory and multi-step tasks (Hassan Awadallah 056

et al., 2014; He and Yilmaz, 2017). To address 057

these challenges, recent years have witnessed a 058

growing interest in learning query representations 059

to capture hidden syntactic and semantic relation- 060

ships (Zamani and Croft, 2016; Grbovic et al., 061

2016; Bing et al., 2018; Zhang et al., 2019; Zhou 062

et al., 2020). However, learning context-aware 063

query embeddings faces two main issues: (1) user’s 064

query formulations included in the search sessions 065

bring word contexts that do not extensively occur 066

at the training phase in web search data (Keller and 067

Lapata, 2003); (2) queries do not exhibit a clear 068

structure as sentences. In most of previous work, 069

query embeddings are learned based on search ses- 070

sion contexts modeled from relevant or pseudo- 071

relevant documents returned by the system (Zamani 072

and Croft, 2016, 2017; Zhang et al., 2019). These 073

methods are suited to supervised relevance ranking 074

tasks with sufficient training data. Other methods 075

learn distributed query representations based on 076

user’s query reformulations in the search session 077

(Grbovic et al., 2016; Sen et al., 2018; Zhou et al., 078

2020). These methods are rather unsupervised and 079

applicable to a wide range of downstream language 080

processing tasks making them generic. 081

In this work, we explore the unsupervised problem 082

of learning generic distributed query representa- 083
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tions, able to support a wide range of downstream084

search tasks. As outlined recently, unsupervised085

representation learning for IR has not received086

much attention yet (Lin, 2021). This paper attempts087

to fill this gap by following a query oriented fash-088

ion. Specifically, we argue that by considering only089

one facet of the search session (i.e., documents090

vs. query reformulations) as done in Sen et al.091

(2018); Grbovic et al. (2016); Zamani and Croft092

(2016); Zhang et al. (2019); Zhou et al. (2020), or093

by considering them both but without relating the094

semantics underlying between the user’s search in-095

tent and the system’s document results (Bing et al.,096

2018), we lose valuable mutual information about097

the interactive intentions (Xie, 2002) that could act098

as a soft supervision during the search task. Based099

on previous findings (Eickhoff et al., 2014; Liu100

et al., 2019a) showing how user’s query behavior101

and knowledge change from system’s results dur-102

ing the search session, we propose a framework103

for Session-aware Query rEpresentation learning104

based on multi-View Learning (SaQuEViL).105

SaQuEViL is a two-step architecture that con-106

sists of two single-view query encoders, namely107

user-view and system-view query encoders, and a108

multi-view query encoder. Each single-view query109

encoder is based on a bidirectional transformer110

(Vaswani et al., 2017) at the session level. By inves-111

tigating the use of unsupervised multi-view based112

learning algorithms, namely Cross-modal Factor113

Analysis (CFA) and Uniform Manifold Approx-114

imation and Projection (UMAP), the multi-view115

encoder takes as input the two single-view query116

embeddings related to the same query and provides117

a multi-view query representation. The underlying118

objective functions aim to maximize the alignment119

of features between both views which leans to re-120

veal the underlying manifold. In the multi-view121

embedding space, similar queries formulated in the122

context of similar tasks have spatially close repre-123

sentations.124

Our key contributions are: 1) we model generic125

session-aware query representation as an unsuper-126

vised multi-view learning task using a two-step127

framework architecture, SaQuEViL; 2) we exper-128

imentally show the effectiveness of multi-view129

based representations in query classification and130

session-retrieval as downstream tasks; 3) we con-131

duct quantitative and qualitative analyses showing132

the potential of SaQuEViL in understanding user’s133

search behavior.134

2 Related Work 135

2.1 Distributed query representation 136

A common problem in IR is that queries –the piv- 137

otal parts of a retrieval process– are under-specified 138

which is prone to the vocabulary mismatch and 139

thereby, the poor performance of search-related 140

tasks. Recently, much attention has been paid to 141

learning distributed query representations. Previ- 142

ous work following this approach can be organized 143

based on the facet of query context and type of 144

supervision used to learn the distributed represen- 145

tations. In the first line of work, both query context 146

and supervision include user’s relevance signals on 147

documents (Zamani and Croft, 2016, 2017; Zhang 148

et al., 2019). The underlying assumption is that the 149

more queries share the same relevant or pseudo- 150

relevant documents among those selected by the 151

retrieval system, the more they have semantically 152

close intent leading to similar embeddings in the 153

latent representation space. Using a probabilistic 154

framework, Zamani and Croft (2016) propose to 155

learn relevance-based query representations based 156

on the embeddings of the query words. Then, the 157

closeness between the probability distribution of 158

the query representation, based on similarity met- 159

rics of word embeddings, and the query language 160

model is maximised. Zhang et al. (2019) propose 161

the GEN Encoder which learns distributed repre- 162

sentations of queries in two stages. The first stage 163

captures user’s intent based on document clicks 164

by using the assumption that queries with similar 165

clicks underline similar intent. The second stage de- 166

noises the representations and enhances their gen- 167

eralizability by leveraging human paraphrase label- 168

ing in a multi-task learning setting. The second line 169

of work relies on query context held by the search 170

history through query reformulations recorded into 171

physical sessions (Grbovic et al., 2016) or task- 172

based sessions (Mehrotra and Yilmaz, 2017; Sen 173

et al., 2018). Query embeddings are learned based 174

on the assumption that lexically similar queries for- 175

mulated in similar search sessions across users are 176

semantically related leading to close representa- 177

tions in the embedding space. Mehrotra and Yil- 178

maz (2017) propose task-aware query embeddings 179

by applying the skip-gram model on sequences of 180

queries belonging to the same task-based session. 181

These query representations learned in an unsuper- 182

vised manner are expected to be generic, thought 183

their evaluation has been limited to specific down- 184

stream tasks such as query expansion in sponsored 185
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search (Grbovic et al., 2016) and search task ex-186

traction (Sen et al., 2018). A recent line of work187

uses context built up on query reformulation in a188

session and documents (Bing et al., 2018; Zhou189

et al., 2020). For instance, Bing et al. (2018) model190

an unified graph information where vertices con-191

sist of queries in the session, clicked documents192

and corresponding websites; and edges reflect un-193

differentiated semantic relationships. The authors194

propose a supervised model based on an objective195

function that aims at optimizing, over session data,196

the log-likelihood of reaching a leaf (i.e., query,197

URL) in the corresponding Huffman tree.198

In contrast to most all the aforementioned works199

that model query representation as supervised text200

representation learning based on the core idea of201

“query sentence”, we model query representation as202

multi-view learning of manifold underlying queries203

and document results based on the core idea of in-204

teractive intentions (Xie, 2002) that provide soft205

supervision during the search session.206

2.2 Session-aware query reformulation207

Session-aware query reformulation is involved in208

retrieval-based interactive systems, including dy-209

namic IR systems (Yang et al., 2016), multi-turn210

Question Answering (QA) (Mensio et al., 2018),211

and dialogue systems (Cui et al., 2019). Several212

works studied the connections between search ses-213

sions, intentions in query reformulation, and search214

behavior (Lu et al., 2017; Liu et al., 2019b; Tamine215

et al., 2020). Among the major findings, we par-216

ticularly mention the following: (1) query refor-217

mulation patterns can be observed in search ses-218

sions providing insights on the search process char-219

acteristics such as underlying search task stage220

(Tamine et al., 2020; Eickhoff et al., 2014) and221

success (Odijk et al., 2015); (2) during the session222

search, system’s results often lead to a change in223

both user’s knowledge and the complexity of sub-224

sequent queries (Eickhoff et al., 2014; Liu et al.,225

2019a); (3) user search process runs into sequential226

phases, specialization, and intent shift. As user’s227

search intents are gradually satisfied based on sys-228

tem’s results, their subsequent queries lean to topi-229

cally shift (Chen et al., 2021).230

The main findings that have been drawn from the231

literature review strengthen our motivation toward232

learning single-view query embeddings that cap-233

ture hidden session-related patterns from the two234

perspectives of user’s sequence of query reformu-235

lations in the one hand and system’s results in the236

other hand, and then identify mutual information 237

that can reveal similarities across users’ search in- 238

tents. 239

3 Background 240

3.1 Multi-view representation learning 241

Multi-view representation learning (Li et al., 2019) 242

aims to recover a meaningful latent representation 243

of a target object using data provided by one or 244

multiple sources. The views correspond to mea- 245

surement modalities from such different sources, 246

such as text and images of the same scene (Hwang 247

and Grauman, 2012) but may also be multiple in- 248

formation from the same source such as document 249

text and hyperlinks (Bickel and Scheffer, 2004). Po- 250

tential applications of multi-view learning include 251

cross-modal retrieval (Hwang and Grauman, 2012; 252

Li et al., 2003) and machine translation (Faruqui 253

and Dyer, 2014). SOTA methods for multi-view 254

feature learning are the Canonical Correlation Anal- 255

ysis (CCA) (Dhillon et al., 2011) and Cross-modal 256

Factor Analysis (CFA) (Li et al., 2003) whose pri- 257

mary goal is to maximize the correlations of fea- 258

tures among multiple different views. These meth- 259

ods generally admit global solutions and ignore 260

the non-linearities of multi-view data (Viinikanoja 261

et al., 2010). Unlikely, k-neighbor based manifold 262

learning methods such as Laplacian Eigenmaps 263

(Belkin and Niyogi, 2003), IsoMap (Tenenbaum 264

et al., 2000), and Uniform Manifold Approxima- 265

tion and Projection (UMAP) (McInnes et al., 2018) 266

recover non-linear dependencies between views. 267

The core of these methods relies upon optimization 268

over a graphical representation of different data 269

sets that are characterized by the same underlying 270

manifold where edges in the graph are computed to 271

preserve the topological structure of this manifold. 272

This optimization yields a shared low-dimensional 273

space where the latent representations of semanti- 274

cally similar data are spatially close to one another. 275

Recently, several proposed methods for multi-view 276

representation learning are based on deep neural 277

networks. For instance, Deep CCA aims to learn 278

complex nonlinear transformations of two views in 279

a shared space (Andrew et al., 2013). 280

3.2 Definitions and notations 281

We introduce here some key definitions. Note that 282

we refer the term of embedding to either the user- 283

view query vector or system-view query vector and 284

refer the term of representation as the final multi- 285

view query vector. 286
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Definition 1. Search session. In the literature re-287

view, there are two main definitions of search ses-288

sions: (1) a physical session (Hagen et al., 2013)289

is a set of consecutive queries automatically delim-290

ited using a time-out threshold on user’s activities;291

(2) a task-based session which targets an atomic292

information need through a set of queries that are293

possibly neither consecutive nor within the same294

time-based session. SaQuEViL can be readily ap-295

plied to both definitions of search sessions.296

Formally, let S be the set of users’ search sessions.297

A user’s search session S ⊂ S consists of: (1)298

all on-session user’s queries q1,S , q2,S , . . . , qk,S or-299

dered by time where each query qm,S , consists of300

Km words qm,S = {wm1, wm2 . . . , wmKm}; (2)301

the sets of N top documents returned by the re-302

trieval system as an answer to each query qm,S ,303

denoted as DN
m,S .304

Definition 2. User-view query embedding. Each305

on-session query qm,S is embedded as a d1-306

dimensional user-view query embedding, denoted307

as qu
m,S ∈ Rd1 , that captures the user’s formula-308

tion of his search intent. qu
m,S is encoded based on309

its formulation {wm1, wm2 . . . , wmKm} as well as310

all the formulations of the previous queries in the311

session {qm−1,S , qm−2,S . . . , q1,S}.312

Definition 3. System-view query embedding.313

Each on-session query qm,S is embedded as a d2-314

dimensional system-view query embedding, de-315

noted as qs
m,S ∈ Rd2 , that captures the system’s316

understanding of the user’s search intent. qs
m,S is317

encoded based on document results obtained from318

the concatenation of the query qm,S along with319

previous queries in the session.320

4 Session-Aware Query Representation321

By Multi-View Learning322

4.1 Problem statement323

Let S = {S1, . . . , SK} be a set of sessions such324

as Si = {q1,i, q2,i, . . . , qki,i}, including a total of325

n on-session queries qm,i with n = (
∑

ki)i=K
i=1 .326

The objective of SaQuEViL is twofold: (1) encod-327

ing Σ1 ∈ Rn×d1 (resp. Σ2 ∈ Rn×d2) the vector328

space embedding and user-view query embeddings329

qu
m,i (resp. system-view query embeddings qs

m,i);330

(2) learn a multi-view latent space Σ∗ ∈ Rn×d331

(with d ≤ min(d1, d2)) and query representations332

q̂m,i ∈ Σ∗ by jointly achieving pairwise align-333

ments between the user-view embedding qu
m,i and334

system-view embedding qs
m,i and recovering an op-335

timal alignment of manifolds over all the query rep-336

Figure 1: Overview of the SaQuEViL framework.

resentations q̂m,i. Final representations are picked 337

to match the downstream task, either when docu- 338

ment matching is required or session-aware query 339

is required. 340

The two key assumptions of multi-view learning 341

are satisfied (Blum and Mitchell, 1998; Foster et al., 342

2008): (1) each of the user-view and system-view 343

are independent conditionally to the sessions; and 344

(2) the two single views provide a redundant esti- 345

mate of the session. 346

347

4.2 Multi-view query representation learning 348

4.2.1 Framework overview 349

Figure 1 presents an overview of the SaQuE- 350

ViL framework. For encoding the single-view 351

query embeddings qu
m,i, q

s
m,i, we opted for BERT 352

(Devlin et al., 2019) as transformer embedding 353

and followed the standard CLS encoding strategy 354

(BERTCLS). So, qu
m,i (resp. qs

m,i) is obtained 355

by applying Γ(BERTCLS([CLS]qm,i)) (resp. 356

⊗j=N
j=1 BERTCLS([CLS]head(djm,i))), where ⊗ is 357

a vector concatenation operator, head(·) is a func- 358

tion that returns the title and first tokens of a given 359

document, and Γ is an expansion function such as 360

broadcast used to match the dimensions. 361

Following, we detail the key principles of multi- 362

view query representation learning q̂m,i using lin- 363

ear (CFA (Dhillon et al., 2011)) and non-linear 364

(UMAP (McInnes et al., 2018)) methods. 365

4.2.2 CFA-based representation learning 366

Given the two mean centered matrices Qu ∈ 367

Rd1×n and Qs ∈ Rd2×n, where columns refer re- 368

spectively to the user-view embeddings qu
m,i and 369

system-view embedding qs
m,i, CFA learns two lin- 370

ear and orthogonal transformations A ∈ Rd1×d and 371

B ∈ Rd2×d such that the distance between A⊺Qu 372

and B⊺Qs is minimized. The CFA objective is: 373

A∗, B∗ = argminA,B(∥ A⊺Qu−B⊺Qs ∥F ) (1) 374
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where A⊺A = I and B⊺B = I and ∥ · ∥F is the375

Frobenius norm. The solution of Equation (1) is ob-376

tained through the Singular Value Decomposition377

(SVD) of Z = (Qu)⊺Qs, such as Z = SzVzDz378

and A∗ = Sz, B
∗ = Dz (Krzanowski, 1988).379

Thus, we obtain the multi-view query represen-380

tations qu and qs as the rows of the user-view or381

system-view transformations Q̂u = (Qu)⊺A∗ and382

Q̂s = (Qs)⊺B∗ respectively.383

4.2.3 UMAP-based representation learning384

Let G(V, ξ) be the graph where the vertices V385

correspond to queries qm ∈ ∪(Si)
K
i=1 and ξ the386

edges that reflect a weighted neighborhood rela-387

tionship qm ∼ qm′ defined in matrix W such as388

W(m,m′) > 0 if qm,qm′ are neighbors. The389

two key differences between SOTA graph-based390

manifold learning algorithms (Belkin and Niyogi,391

2003; Tenenbaum et al., 2000) lie in the construc-392

tion of the k-neighbor edges ξ and the choice of393

the weights W(i, j). Specifically, in the multi-view394

setting of the UMAP method, for each query qm,395

there are two induced local graphs: (1) the user396

graph Gu
m(Vu, ξum) where Vu is the set of k-nearest397

neighbors of qu
m denoted as Fsetu(qm) and ξm is398

the set of outgoing edges directed from qm to its399

set k-nearest neighbors qumj thereby inducing the400

similarity relationship qu
m ∼ qu

mj defined in ma-401

trix Wu(n, n) ; (2) the system graph Gs
m(Vs, ξsm)402

where Vs is the set of k-nearest neighbors of qs
m403

denoted as Fsets(qm) and ξsm is the set of out-404

going edges directed from qm to its set k-nearest405

neighbors qs
mj thereby inducing the similarity rela-406

tionship qs
m ∼ qs

mj defined in matrix Ws(n, n).407

Pairwise alignment between the user-view and408

system-view of query qm is ensured by building the409

graph G(V, ξ) as a graph intersection between user410

graph Gu
m(Vu, ξum) and system graph Gs

m(Vs, ξsm)411

for each query qm ∈ ∪(Si)
K
i=1. This intersection412

builds the weighting matrix W(n, n) based on the413

weighting matrices Wu and Ws. Spectral opti-414

mization of the multi-view query representations415

is then achieved by functions f : V 7→ R that416

recover the optimal alignment of manifolds under-417

lying queries qm ∈ ∪(Si)
K
i=1 through the mini-418

mization of a cost on graph G(V, ξ), defined as419

(McInnes et al., 2018):420

L(f) =
∑

S∈S;qm,q′m∈S

1

2
(fm − f ′

m)2W(m,m′)

(2)421

subject to scale and translation constraints fT f = 422

1 and fT e = 0. 423

The optimization process of UMAP is detailed 424

in Belkin and Niyogi (2003); McInnes et al. (2018). 425

5 Experimental Setting 426

We address the following research questions: 427

RQ1) How does the SaQuEViL framework per- 428

form in query classification and session-based re- 429

trieval as downstream tasks? 430

RQ2) To what extent the SaQuEViL embedding 431

space preserves the similarities of each of the 432

single-view embedding spaces? 433

RQ3) Can we use SaQuEViL framework to under- 434

stand user’s search behavior? 435

436

5.1 Downstream tasks 437

5.1.1 Query classification 438

The goal of query classification consists in assign- 439

ing an incoming query the most appropriate topic 440

labels (categories). Labels are pre-defined and 441

search-related data are available to train each label. 442

Data. As previously done by Zamani and Croft 443

(2016); Zamani et al. (2017) to evaluate query em- 444

bedding performances, we used the KDD 2005 445

dataset (Li et al., 2005). The dataset consists of 800 446

queries recorded from MSN search log. The dataset 447

also includes 43 categories -that act as candidate 448

task-based sessions- labeled by human assessors. 449

Accordingly, we assume that the set of queries be- 450

longing to each target category c represent a session 451

Sc. To solely measure the quality of the query rep- 452

resentations and ensure comparability across query 453

representations, we opted for the classification strat- 454

egy proposed in Zamani and Croft (2016); Zamani 455

et al. (2017). We first compute the probability of 456

each category (session) p(Sci/q) = δ(S⃗ci,q⃗)∑
j δ(S⃗cj ,q⃗)

457

where q⃗ is a query vector, S⃗ci is the centroid vec- 458

tor of category (session) Sci. S⃗ci is computed by 459

averaging the query vectors q⃗ki of queries qki be- 460

longing to session Sci. Then we select the N top 461

sessions with the highest probabilities as the more 462

likely ones to be assigned to query q. 463

Evaluation metrics. We consider the evaluation 464

metrics used in the KDD challenge (Li et al., 2005), 465

Recall and F1 measures, and carefully followed 466

their description to implement our evaluation script. 467

Statistical tests are performed using two-tailed 468

paired t-test. We depict a significant increase for p 469

< 0.05 as *. 470
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Baselines and scenarios. We reported tradi-471

tional SOTA pre-trained embeddings as query en-472

coders GloVe (Pennington et al., 2014), Word2vec473

(Mikolov et al., 2013) and BERT (Devlin et al.,474

2019), as well as RPE (Zamani and Croft, 2016; Za-475

mani et al., 2017), a SOTA relevance-based query476

representation model. To show the impact of user-477

view and system-view alignment, we also com-478

pared our multi-view CFA-based and UMAP-based479

query representations q̂ to the representation vec-480

tor obtained by concatenation of qu and qs vectors.481

The latter scenario is denoted w/o Align.482

Training and inference. We performed a 5-483

fold cross-validation over the queries and used the484

documents rankings provided by the ClueWeb121485

corpus to learn the SaQuEViL multi-view query486

representations. The ClueWeb12 corpus was in-487

dexed using the respective default configuration of488

Anserini2 while the retrieval was done using the489

default configuration of Pyserini3 search. With re-490

spect to Figure 1, projected q̂ vectors are averaged491

in order to obtain a unique vector per query. The492

number of labels assigned to each query was tuned493

on the training set from 1 to 5.494

5.1.2 Session-based retrieval495

The goal of session-based retrieval consists in eval-496

uating document rankings over user sessions rather497

than isolated queries (Carterette et al., 2016).498

Data. We use the TREC 2014 session track499

(Carterette et al., 2016) which provides the follow-500

ing: (1) 1,257 full sessions among which 1,021 of501

these have at least one reformulation. On average502

there are 4.33 queries per session, among which503

the final query in the session is referred to as the504

current query; (2) the ranked list of documents for505

each past query; and (3) human annotations about506

type of search for 54 sessions; the latter are labeled507

using 4 categories of user search behavior w.r.t. the508

classification designed by Li and Belkin (2008):509

known-item, interpretive, known-subject, and ex-510

ploratory.511

It is worth of noting that we did not use the users’512

clicks in our experiments since they are consid-513

ered as weak supervision. The corpus used is the514

ClueWeb12 collection. The relevance of a docu-515

ment was judged for the results of the current query516

but judgment is based on the whole session.517

1https://lemurproject.org/clueweb12.
php/

2https://github.com/castorini/anserini
3https://github.com/castorini/pyserini

Evaluation metrics. We use the TREC session 518

track’s official metrics. These are: nDCG@10, 519

ERR@10, nERR@10, and PC@10. All runs are 520

evaluated using the official evaluation script4. 521

Baselines and scenarios. We used classical base- 522

lines including Current and Aggregated query. The 523

latter is a concatenation of all the session’s queries 524

as suggested in Van Gysel et al. (2016). 525

Training and inference. In contrary to query clas- 526

sification, projected q̂ vectors are not aggregated 527

as each is used for document ranking. We first 528

compute a neural score by calculating the cosine 529

similarity between the session vector
∑m−1

j=1 q̂j,S 530

and the document vector q̂
dlm,S

m,S in the SaQuEViL 531

space. Then we obtain the final score used for doc- 532

ument ranking by linearly combining the neural 533

score with the BM25 score as commonly done in 534

neural IR (MacAvaney, 2020). 535

6 Results and Analysis 536

6.1 RQ1: Effectiveness evaluation of 537

SaQuEViL in downstream tasks 538

6.1.1 Query classification 539

Table 1 presents the performance results in terms 540

of Precision and F1. Note that one strong base- 541

line is obtained by encoding the query with BERT 542

(0.4143) which clearly outperforms a supervised 543

alternative (0.3961), e.g., RPE which is trained 544

on relevance signals (Zamani and Croft, 2017). 545

It can be explained as RPE do not use contex- 546

tualized embeddings as BERT. We can interest- 547

ingly see that SaQuEViL, even trained without su- 548

pervision, outperforms (0.443) both unsupervised 549

(GloVe, Word2vec, and BERT) and supervised en- 550

coders (RPE model). This result clearly indicates 551

the value of the alignment to identify relevant mu- 552

tual information between user’s view through query 553

reformulation and system’s view through document 554

rankings to enhance the query representation. We 555

can also see that even without alignment, SaQuE- 556

ViL (0.4274) outperforms BERT (0.4143) indicat- 557

ing that each view information is helpful on this 558

task. Finally, our best scenario corresponds to the 559

SaQuEViL CFA setup that achieves a minimum im- 560

provement of 7% in terms of Precision and F1 w.r.t. 561

reported baselines. This result leads us to consider 562

that linear dependencies are revealed from session- 563

based query reformulations and corresponding doc- 564

uments. 565

4https://trec.nist.gov/data/
session2014.html
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Model Precision F1

GloVe 0.3643 (+22.0%) 0.3912 (+28.3%)
Word2vec 0.3712 (+19.7%) 0.4008 (+25.2%)
BERT 0.4143 (+7.2%) 0.4537 (+10.6%)
RPE 0.3961 (+12.2%) 0.4294 (+16.9%)

SaQuEViL
w/o Align 0.4274 0.4827∗

CFA 0.4443∗ 0.5020∗
UMAP 0.4246 0.4802∗

Table 1: Performance of SaQuEViL query representations
and baselines (GloVe (Pennington et al., 2014), Word2vec
(Mikolov et al., 2013), BERT (Devlin et al., 2019), and RPE
(Zamani and Croft, 2017)) in query classification. The im-
provements over each baseline of our best scenario, SaQuEViL
CFA, are reported in brackets. The highest values are high-
lighted in bold. Improvement significance w.r.t. BERT is
indicated by the superscript ‘*’.

Model NDCG@10 ERR@10 nERR@10 PC@10

Current 0.1659 0.1639 0.2332 0.3190
Aggregated 0.1834 0.1952 0.2645 0.3460
SaQuEViL

w/o Align 0.1841 0.2021 0.2749 0.3340
CFA 0.1843 0.1950 0.2646 0.3473
UMAP 0.1835 0.1951 0.2644 0.3450

Table 2: Performance of SaQuEViL query representations
and baselines (Aggregated (Van Gysel et al., 2016)) in session-
based retrieval. Best results are highlighted in bold.

566 6.1.2 Session-based retrieval567

Table 2 presents the performance scores of SaQuE-568

ViL scenarios and baselines in the session-based569

retrieval downstream task. As expected, including570

session information outperforms (0.1834) the use571

of the single query (0.1659) in terms of NDCG@10,572

but also for all the other metrics. Moreover, we can573

notice that SaQuEViL slightly improves the Aggre-574

gated (Van Gysel et al., 2016) results but none sce-575

nario shows a clear wining. SaQuEViL w/o Align576

setup outperforms in terms of ERR@10 (0.2021)577

and nERR@10 (0.2749) but SaQuEViL CFA ob-578

tains the best scores for NDCG@10 (0.1843) and579

PC@10 (0.3473). Nerveless, the improvements580

for the session-based retrieval downstream task are581

modest5. We can also notice that CFA and UMAP582

methods exhibit the same performance trend.583584
6.2 RQ2: Analysis of the SaQuEViL585

multi-View embedding space586
Our main objective here is to analyse to what ex-587

tent the SaQuEViL framework builds a shared em-588

bedding space that preserves the structure of the589

5Note that stronger results on the TREC session 2014
dataset are reported by Aloteibi and Clark (2020), but we only
focused on an extrinsic use of SaQuEViL and integration to
task specific models is out of the scope of the paper.

Figure 2: F1 performances when comparing SaQuEViL CFA
(left) / UMAP (right) multi-view space and the concatenation
of both views embedding. Number of neighbors and ranked
documents are in log scale. Better in color as brighter color
indicates higher values.

single-view spaces. Grounded with the results ob- 590

tained above (Section 6.2), we achieve this goal 591

by analysing the discrepancies between the single- 592

view spaces and the shared space obtained with 593

SaQuEViL using the query representations learned 594

in query classification. For each target query q, we 595

consider the k-neighbors of q̂ in the SaQuEViL 596

shared space as the gold standard and the plurality 597

vote of the k-neighbors in each of the single-view 598

spaces, namely, qu and qs, as the prediction. We 599

used the cosine similarity to find neighbors and 600

then compute Precision, Recall and F-measure met- 601

rics under a multi-label setup, where each query 602

identifier is considered as a target class. In particu- 603

lar, we analyse the impact of two key parameters 604

of the SaQuEViL framework: number of neighbors 605

(k) and number of top documents (N ) used to learn 606

the query representations. Results for different val- 607

ues of k (1, 2, 4, 8, and 16) and N (2, 4, 8, 16, 608

32, and 64) in log scale are presented in Figure 609

2. Three main conclusions can be grasped from 610

Figure 2: (1) increasing the number of neighbors 611

increases the similarity between the spaces until 612

8-16 neighbors then it stabilizes for both methods 613

(CFA and UMAP) in terms of F1; (2) adding extra 614

documents impacts in the same way, e.g. posi- 615

tive at early increments and then stabilizes, but for 616

the two multi-view learning methods; (3) a higher 617

preservation of original similarities in SaQuEViL 618

spaces correlates with higher performances on the 619

downstream task as SaQuEViL CFA obtains a max- 620

imum score close to 0.20 of F1 while UMAP is 621

0.06 points behind (0.14 of F1)6. These results 622

might shed light on possible controllable room of 623

improvements of a wide range of downstream tasks 624

including, but not limited to session-based retrieval. 625

6Note that this correlation must have an upper limit lower
than 1.0 (F1) as exactly similar spaces may lay on similar
performances to our strategy w/o align in downstream tasks.
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Model First k queries into the session
1 3 6 9 all

Aggregated 0.373 0.573 0.553 0.535 0.535

SaQuEViL
w/o Align 0.462 0.571 0.607 0.589 0.589
CFA 0.516 0.569 0.625 0.625 0.625
UMAP 0.498 0.571 0.625 0.589 0.589

Table 3: F1-micro performances of SaQuEViL and baseline
(Aggregated (Van Gysel et al., 2016)) encoders in search type
classification using TREC session 2014. Highest values of
F1-measure are highlighted in bold.

6.3 RQ3: Search behavior understanding626

Our aim here is to understand in what extent the627

SaQuEViL representation space helps understand-628

ing behaviors in user session. To do so, we used629

the type of search annotations provided in the630

TREC session 2014 dataset (known-item, interpre-631

tive, known-subject, and exploratory). A standard632

5-cross fold setup with k-nearest neighbor clas-633

sifier is used to draw the intrinsic capabilities of634

the encoders to distinguish user search behavior635

types. Average results of F1-micro across the 5636

folds are presented in Table 3. To perform the clas-637

sification at the test stage, we used as context the638

first k queries of sessions (columns 1, 3, 6 and 9)639

as well as the full session (column all). As can640

be seen from Table 3, SaQuEViL CFA encoder641

(0.625) clearly outperforms the proposed alterna-642

tives, the BERT encoder for the Aggregated queries643

(0.535) and the SaQuEViL w/o Align (0.589) when644

considering the full session. Looking at the im-645

pact of context length (k) in the classification, we646

can note that the Aggregated query representation647

starts with a low performance (0.373) and, when648

up to 3 queries are used in the session, it achieves649

the maximal performance (0.573). However, the650

SaQuEViL w/o Align encoder starts in a higher651

performance (0.462) and achieves the maximal per-652

formance when up to 6 queries are used from the653

session (0.607). In both cases, the performance654

drops when the size of the session increases. This655

also points an advantage of SaQuEViL CFA en-656

coder as it shows a more stable performance (0.516657

to 0.625) regardless the number of used queries.658

To further our analysis, we plot in Figure 3 distribu-659

tions of distances between adjacent query pairs for660

each session w.r.t. corresponding search type and661

by using different query encoders: GloVe, SaQuE-662

ViL w/o Align, and SaQuEViL CFA7. We can see663

7UMAP exhibits the same distribution trend than CFA and
has not been presented for limited space.

(a) (b) (c)

Figure 3: Distribution of cosine similarities for (a) GloVe,
(b) SaQuEViL-w/o Align, and (c) SaQuEViL CFA between
adjacent queries per session categorised by search type known-
item, interpretive, known-subject, and exploratory.

that the distribution of CFA encoder significantly 664

differs from the other encoders. Interestingly, we 665

note that CFA better separates the four search types 666

and gradually differentiates the trends of query sim- 667

ilarities based on the two dimensions of search 668

namely “goal-quality” and “product” of the search. 669

Indeed, the curves with more spread query simi- 670

larity values (0.87-0.99) correspond to interpretive 671

and exploratory sessions which reflect non-factual 672

task products with either specific or amorphous 673

goals leading to issue semantically different queries 674

along the sessions. Unlikely, the curves with high 675

density of narrow and relatively high similarity 676

values (0.93-0.99) reflect factual search as charac- 677

terised in known-subject and known-item search. 678

7 Conclusion 679

The paper presented SaQuEViL, a framework that 680

learns query representations that reflect users’ in- 681

tents within a session-based search. By relying on 682

the key finding that system’s results affects user’s 683

query behavior and knowledge, we advocate the 684

use of unsupervised multi-view learning to capture 685

manifolds in a shared distributed representation 686

space. Through experimental evaluation in two 687

downstream tasks, we show the effectiveness of 688

SaQuEViL over supervised and unsupervised pre- 689

trained encoders, though improvements are lim- 690

ited in session-based retrieval that inherently re- 691

quires relevance supervision. A series of experi- 692

ments and qualitative analyses also show the po- 693

tential of SaQuEViL to control the representation 694

space through key parameters that directly influ- 695

ence performance of downstream tasks and addi- 696

tionally, to clearly separate user behaviour patterns 697

in search sessions. We believe that this work opens 698

avenues of research in the design of unsupervised 699

distributed representations able to support search 700

tasks, which has not received much attention yet. 701
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