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DeepPointMap2:
Accurate and Robust LiDAR-Visual SLAMwith Neural Descriptors

Anonymous Authors

ABSTRACT
Simultaneous Localization andMapping (SLAM) plays a pivotal role
in autonomous driving and robotics. Given the complexity of road
environments, there is a growing research emphasis on developing
robust and accurate multi-modal SLAM systems. Existing methods
often rely on hand-craft feature extraction and cross-modal fusion
techniques, resulting in limited feature representation capability
and reduced flexibility and robustness. To address this challenge, we
introduceDeepPointMap2, a novel learning-based LiDAR-Visual
SLAM architecture that leverages neural descriptors to tackle multi-
ple SLAM sub-tasks in a unifiedmanner. Our approach employs neu-
ral networks to extract multi-modal feature tokens, which are then
adaptively fusedby theVisual-Point FusionModule to generate sparse
neural 3D descriptors, ensuring precise localization and robust per-
formance.Asapioneeringwork,ourmethodachieves state-of-the-art
localizationperformance amongvariousVisual-based, LiDAR-based,
and Visual-LiDAR-based methods in widely used benchmarks, as
shown in the experiment results. Furthermore, the approach proves
to be robust in scenarios involving camera failure and LiDAR ob-
struction.

CCS CONCEPTS
•Computingmethodologies→Neural networks;Vision for
robotics;Reconstruction; Scene understanding.

KEYWORDS
Visual-LiDAR SLAM, Multi-modal Fusion, Neural Descriptors

1 INTRODUCTION
Simultaneous Localization andMapping (SLAM), aiming to estimate
the agent’s location while mapping its environment, is pivotal in
autonomous driving and robotics, enabling navigation in unseen
environments and understanding the surroundings. The environ-
ments in which autonomous vehicles operate are highly complex,
making it challenging to achieve accurate SLAMwith a single sensor.
Multi-modal perception emerges as a crucial strategy, integrating
various sensors like monocular cameras and LiDARs to enhance
SLAM system capabilities.

As shown in Fig. 1, autonomous driving scenarios sometimes
face challenges such as obstructed LiDAR point clouds and un-
der/overexposure images. Such conditions can lead to a degradation
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(a) LiDAR Obstruction (b) Camera Over/Under Exposure 

a

b

Figure 1: Examples of challenging scenes in road environ-
ments. (a) LiDAR obstructed by large vehicles, resulting in
incomplete point clouds. (b) Camera with limited dynamic
range struggles to properly expose in high-contrast scenes.

in the performance of multi-modal SLAMmethods. Some existing
approaches [46, 59] typically process point cloud and image data
separately in individual branches and employpost-fusion to estimate
the trajectory. However, these approaches suffer from a limitation in
adequately integrating information frommultiple modalities during
the feature extraction process, leading to a weak feature represen-
tation capability. While some other approaches [4, 31, 44, 55] fuse
the feature before position estimation. Although these methods
achieved accurate localization performance, they lack robustness
against sensor failure or degeneration.

The pioneeringwork, DeepPointMap [62], utilizes neural descrip-
tors to achieve accurate localization. It is confirmed that the neural
descriptors enable efficient and accurate feature representation and
benefit the SLAM performance. However, it only involves LiDAR
point cloud modality and encounters challenges in scenarios with
sparse reference objects and limited geometric information. To ad-
dress these challenges, we introduce a learning-based LiDAR-Visual
SLAM approach, DeepPointMap2, aiming to enhance the key pro-
cesses of feature extraction and localization in SLAM task using neu-
ral networks. We utilize two arbitrary backbone networks to extract
multi-scale tokens from both image and point cloud. A Visual-Point
Fusion module is followed to aggregate these multi-modal tokens
into 3D neural descriptors. This end-to-end learnable framework al-
lows themodel to adaptively learn how to fusemulti-modal features,
providing better feature representation and robustness, compared
to existing manual-designed extraction and fusion strategies.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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The proposed framework offers several advantages over existing
methods.Representation capacity: Our method aggregates multi-
scale features in a learning-based manner, providing descriptors
with both local fine-grained geometric features and coarse-grained
scene information, thereby enhancing the representation capac-
ity.Robustness: Our approach has strong robustness by utilizing
learning-based cross-modal feature fusion strategy. When encoun-
tering LiDAR obstruction or camera failure, themodel can still main-
tain accurate localization and mapping. Flexibility: Our method is
a simple and end-to-end pipeline, and can accommodate arbitrary
single-modal backbone. Users can choose the appropriate backbone
according to their needs. In addition, the network structure is also
potentially able to fuse more modal inputs.

Our contributions can be summarized as follows:

• Weproposedapioneering learning-basedVisual-LiDARSLAM
framework, DeepPointMap2, that leverages multi-modal neu-
ral 3D descriptors to represent the environment with high
fidelity. These descriptors are designed to capture more re-
fined features and adeptly integrate information frommul-
tiple modalities, thereby ensuring enhanced representation
and robust performance.

• Our framework includes a specialized deep neural network
module for robust cross-modal feature fusion, which inte-
grates features from both images and point clouds. This mod-
ule incorporates learnable weights and spatial correspon-
dence mechanisms to fuse information effectively.

• Experimental results show that our approach achieves state-
of-the-art (SOTA) performance in localization accuracy. No-
tably, DeepPointMap2 achieves stable performance when fac-
ing modalities missing scenarios, such as in the event of cam-
era failure or LiDAR obstruction.

2 RELATEDWORK
2.1 LiDAR SLAM
LiDAR point clouds are commonly represented as unordered sets
of 3D coordinates. In SLAMmethods, the process typically involves
first (1) extracting key-pointswith geometric features from the point
cloud, followed by (2) matching corresponding key-points between
adjacent framesbasedon their geometric features, andfinally (3) solv-
ing the relative pose transformation through SVD [2] or iterative
techniques [29]. Extracting geometric features from the point cloud
constitutes a critical step in LiDAR-based SLAM approaches.
Knowledge-based methods compute the feature based on pre-
definedgeometricmetrics, suchas curvatureanddensity. LOAM[58],
as one of the early works, and its subsequent approaches [19, 42, 52,
53] utilized point-wise curvature to detect edge and planar points.
Then, the association is applied within each category. Additionally,
MULLS [34] further classify key-points intomore specific categories
to establish a more accurate association. PUMA [49] introduced
a surface mesh representation that better captured the geometric
appearance of objects in the scene. Although these methods can
extract features efficiently, their representation capability is limited,
necessitating more key-points and complex association algorithms.
Learning-basedmethods utilize deep neural networks to extract
point cloud features.PointNetLK[1]employsPointNet [35] toextract

scan-level features and applies a modified Lucas-Kanade algorithm
for transformation estimation. LO-Net [22] proposed a scan-to-scan
odometry network that predicts normals, identifies dynamic re-
gions, and incorporates a spatiotemporal geometrical consistency
constraint for improved interactions between sequential scans. To
achieve accuracy loop detection, LCDNet [5] and its lightweight
variant DeLightLCD [54] utilized a 3D voxel CNNnetwork to extract
descriptors and estimate coarse transformation. DeepPointMap [62]
pioneers the use of neural networks for unified odometry and loop
detection, employing neural descriptors for accurate localization
with efficient memory use.

Despite the robustness of the LiDAR sensor, its inability to capture
informative texturemakes it suffer fromstructure-less environments
(e.g., tunnels). The partial obstruction issues may further hinder its
performance.

2.2 Visual SLAM
Similar to LiDAR SLAM, monocular visual SLAM can also be con-
sidered a data association task. Visual SLAM can be categorized into
indirect and direct methods depending on the association method.
Directmethods directly minimize the pixel-wise photometric error
between frames to estimate camera motion. DTAM [33] utilized all
pixels of frames and estimated the relative pose of the camera. To
reduce computational complexity, LSD-SLAM [11] and DSO [10]
selected pixels with large gradients. As one of the most famous
methods, SVO [13] further introduced the FAST feature detector to
enhance feature extraction ability and achieve precise association.
Indirectmethods focus on detecting and matching sparse feature
descriptors from images to reduce computational complexity. To
achieve this, some methods [20, 21, 41, 45] extract point features
from image using pixels’ neighbor, while some [50, 61] focus on
line features.Meanwhile, somemethods utilize neural networks to
select and extract descriptors. SemanticFusion [30] utilizes CNNs
to perform semantic segmentation to build the semantic map. To
suppress the effects of dynamic objects, Cheng et al. [6] also uses a
neural network to select static sparse descriptors.

Although visual SLAMmethods only require inexpensive cam-
eras, they may encounter challenges such as sensitivity to illumina-
tion (e.g., HDR environment) or weather (e.g., rain).

2.3 Visual-LiDAR SLAM
Visual-LiDAR SLAM models can be divided into two categories,
depending on the cross-modal feature fusion strategy.
Loosely-Coupledmethodsconsider theestimationof severalmodal-
ities separately. The cross-modal fusion procedure is applied after
each estimation is generated. FAST-LIVO [63], R2LIVE [26], and its
subsequent R3LIVE [25] employ a Kalman-Filter to fuse LiDAR, Vi-
sual, and IMUmeasurements, yielding precise odometry results. Sim-
ilarly, LIV-LAM [39] proposes an unsupervised learning method for
object discovery based on a camera detector and a LiDAR odometry,
followed by the fusion of detected objects and LiDARmeasurements
using pose-graph optimization.
Tightly-Coupledmethods, unlike loosely-coupled ones, fuse sen-
sor measurements from each modality before the state estimating,



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

DeepPointMap2: Accurate and Robust LiDAR-Visual SLAMwith Neural Descriptors ACMMM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Camera

LiDAR

Im
age 

Backbone Pose-Graph

LiD
AR

 
Backbone

C
ross Attn

Self Attn
Self Attn

(b) DPM Decoder

FFN

M
LP

M
LP𝜎 𝛿

Pool

M
LP Weighted SVD𝑝'

Global
Optimization

Fetch

Visual-Point Fusion 
Module

𝒳

𝒫

ℛ

(a) DPM Encoder (c) Mapping

Store

Trigger

Sim-Head Offset-Head

Overlap-HeadCross-Attention

Descriptors

Feature-
Pixel

Key-Point

𝑇
Transfor
mation

Figure 2:DeepPointMap2 consists of three components. (a) DPM encoder extract multi-modal features and aggregate them into
3D neural descriptors. (b) DPM decoder utilizes descriptors for solvingmultiple SLAM subtasks i.e., odometry and loop detection.
(3) MappingModulemanage the observation and reconstructedmap.

which are often more accurate. DEMO [57] utilized depth infor-
mation from LiDAR (or RGB-D camera) to enhance the bundle
adjustment-based visual odometry. In DEMO, the depth information
is integrated into the optimization process to refine the estimated
camera poses. Huang et al. [18] introduced a visual-LiDARodometry
method using point and line features extracted from images. After
estimating depth based on LiDAR data, the point and line depths are
utilized as prior factors in the point-line bundle adjustment process.
LAMV-SLAM [55] integrates LiDAR and monocular visual data by
employing online photometric calibration and a depth fusion algo-
rithm to provide accurate depth values for visual features, enhancing
mapping and localization in outdoor environments.

Loosely-coupledmethods providemodal flexibility but risk losing
critical informationandaccuracydue tounderutilized inter-modal re-
lationships. Although tightly-coupled methods are more integrated,
they rely on all sensors operating correctly and a single sensor failure
can diminish performance or cause system failure.

3 ARCHITECTURE
3.1 Model Overview
As illustrated in Fig. 2, our proposedDeepPointMap2 consists of three
main components: (a)DPMEncoder aims to extract feature tokens
frommulti-modal sensor data and aggregate them into comprehen-
sive descriptors for each frame, (b) DPM Decoder utilize neural
networks to estimate the transformationmatrix between two frames
based on their descriptors and perform loop detection to assist with
constructing a consistent map, and (c)MappingModule store the
frame-wise information into a pose-graph structure and executes
global-optimization once a loop closure is confirmed.

3.2 DPMEncoder
DeepPointMap2 is a multi-modal SLAM framework that utilizes neu-
ral descriptors R with compressed semantic features to represent
3D scenes. A descriptor r𝑖 can be denoted as r𝑖 = (rxyz

𝑖
,rfeat
𝑖

), where
rxyz
𝑖

denotes the 3D coordinate and rfeat
𝑖

is the associated feature.
DPM Encoder takes both point cloud and image as input, as illus-

trated in Fig. 3 (a). For point clouds, we use PointNeXt [36], one of
the most famous neural architectures for point cloud understanding,
as our backbone to extract multi-scale key-points p𝑖 := (pxyz

𝑖
,pfeat
𝑖

),
where pxyz

𝑖
is the coordinate of key-point and pfeat

𝑖
is its feature. For

imagedata,weemployConvNeXt [28]withFPN[27] to extractmulti-
scale feature map.We denote each feature-pixel as x𝑖 := (xuv

𝑖
,xfeat
𝑖

),
where xuv

𝑖
is its UV coordinate.

After extracting multi-scale feature tokens (as P and X), the
Visual-Point Fusion Module fuse these features and generate the
descriptors R. As shown in Fig. 3, the Visual-Point Fusion Module
consists of two parts: Reference-Points Generator (RPG) and Multi-
Modal Transformer (MMT) Decoders. Given the multi-scale tokens
of both modalities (X,P), the RPG generates a set of 3D reference
points (ref-points) based on the input point cloud. Subsequently, the
MMTcascadely fuses feature tokens into these ref-points, and finally
generates descriptors R.

3.2.1 Reference-Points Generator. The Reference-Points Generator
(RPG) aims to generate a set of 3D reference points (ref-points) r𝑖
that serve as seeds for aggregatingmulti-modal tokens in subsequent
modules. These ref-points are carefully selected to be both uniform
across the point cloud and representative of the underlying scene
structure, which is essential for effective aggregation and robust
feature representation. To achieve this, we employ farthest-point-
sampling (FPS) to select 𝑛 ref-points coordinates rxyz

𝑖
from the orig-

inal point cloud. This strategy ensures that the selected ref-points
are well-distributed and cover the spatial extent of the environment.
We then initialize the features of each ref-point using an MLP based
on their spatial coordinates:

rfeat
𝑖 =MLP

(
rxyz
𝑖

)
(1)

3.2.2 Multi-Modal Transformer Decoder Layers. A sequence of 𝐿
Multi-Modal Transformer (MMT) Decoders is applied to further
process and refine the aggregated multi-modal tokens, following
the Reference-Points Generator (RPG). Each MMT takes multi-scale
(1) image feature-pixelsX = (xuv,xfeat), (2) LiDAR key-points P =

(pxyz,pfeat), and (3) reference points R = (rxyz,rfeat) as inputs. Ini-
tially, the ref-points are input intoamulti-head self-attentionmodule,
which effectively enhances their features by allowing information
exchange among ref-points. As shown in Figure Fig. 3 (b), eachMMT
layer consists of two branches: LiDAR and Image. Each branch is a
transformer decoder structure with multiple layers, where Query
is ref-points R, both Key and Value are feature-pixels X in image
branch or key-points P in LiDAR branch.
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Figure 3: Overview of DPMEncoder. The encoder takes image and point cloud as inputs, and fuses themulti-scale feature tokens
into descriptors to represent the environments and solve subsequent SLAM subtasks.
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Figure 4: Distance of Feature Tokens to Reference points.

To further improve the performance of decoder layers, we in-
troduce a novel cross-attention transformer module, named Biased
Transformer, to replace the original scale-dot transformer block. As
illustrated in Fig. 3 (c), the Biased Transformer module adaptively
combines relative spatial distances with feature similarities between
ref-points and feature-tokens. This integration facilitates amore pre-
cise and context-aware feature fusion strategy, thereby enhancing
the overall accuracy and robustness of the SLAM framework.
LiDAR branch: Unlike the original scale-dot transformer [47], the
Biased Transformer incorporates the distance between query and
key in both spatial and feature space. Following scale-dot attention,
we calculate the learnable attention map 𝐸 (1) in feature space using
pair-wise dot-product without positional embedding:

𝐸
(1)
𝑖 𝑗

=
1
√
𝑑
·𝑊𝑞 (pfeat

𝑖 ) ·𝑊𝑘 (rfeat
𝑗 ) (2)

where𝑊𝑞 and𝑊𝑘 are learnable weights layers and 𝑑 is the feature
dimension. Meanwhile, as illustrated in Fig. 4 (a), since we know
the relative position between key-points pxyz

𝑖
and ref-points rxyz

𝑗
, a

spatial attention map 𝐸 (2) is derived based on Euclidean distance:

𝐸
(2)
𝑖 𝑗

=exp
(
−𝛼1 ·𝑑𝑖 𝑗

)
(3)

where 𝑑𝑖 𝑗 = ∥pxyz
𝑖

− rxyz
𝑗

∥2 is the distance between ref-points and
key-points and 𝛼1 is a pre-defined hyperparameter.

The final attention map for the Biased Transformer is obtained
by merging these two attention maps by:

𝐸LiDAR=Softmax
(
𝐸 (1) +𝜉

(
𝐸 (2)

))
(4)

where 𝜉 is a Z-score normalization function. This normalization
ensures the stability and comparability of the combined attention
weights, allowing for a more effective fusion of spatial and feature
information in the LiDAR branch.
Image branch: The learnable attention map 𝐸 (1) can be calculated
same as Eq. (2). However, due to the distinct coordinates of feature-
pixels x𝑖 and ref-points r𝑗 , the spatial attention map 𝐸 (2) cannot be
directly computed using Equation Eq. (3). Some methods project Li-
DAR key-points onto image coordinates and then extract fixed-size
image patch features. These patch-wise feature are attached to the
corresponding key-points. However, it is important to note that due
to the potential scale uncertainty introduced by perspective projec-
tion, thefixed-size fusionmechanismmaybe inaccurate.Tosolve this
problem, we introduce a metric based on the point-ray distance. As
demonstrated inFig. 4 (b), each feature-pixelx𝑖 in the imagecanbede-
finedas a rayv𝑖 emanating fromthe camera’s optical centervori

𝑖
,with

its directional vector vdir
𝑖

calculated from its pixel coordinate xuv
𝑖
.

𝑣𝑖 :=

{
vori
𝑖 =𝑇

vdir
𝑖 =𝑇 ×𝐾−1×(xu

𝑖 ,x
u
𝑖 ,1,1)

⊤ (5)

where 𝑇 is the transformation matrix from the camera to LiDAR
and 𝐾 is the intrinsic matrix of the camera. Given the disparate
sensing ranges of cameras and LIDAR, it is necessary to initially
determine if each ref-point falls within the camera’s field of view
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and subsequently create a corresponding mask𝑀 by:

𝑀𝑖 𝑗 =

1 ,if vori
𝑖 ·

(
rxyz
𝑗

−vori
𝑖

)
≥ 0

0 ,otherwise.
(6)

The attention map can be calculated based on the distance 𝑑𝑖 𝑗 be-
tween ref-points to the rays, given by:

𝑑𝑖 𝑗 =
vdir
𝑖vdir
𝑖


2

·
(
rxyz
𝑗

−vori
𝑖

)
(7)

The spatial attention map is then calculated similar to Eq. (3) by:

𝐸
(2)
𝑖 𝑗

=𝑀𝑖 𝑗 ·exp
(
−𝛼2 ·𝑑𝑖 𝑗

)
(8)

To this end, the spatial attention map 𝐸 (2)
𝑖 𝑗

of the image branch is
calculated, but now indicating the spatial relationship between the
3D ref-points and the 2D feature-pixels. It is worth noting that since
the computation is done in 3D space, the weights 𝐸 (2)

𝑖 𝑗
are able to

precisely account for scale variations in the image that arise fromper-
spective projection. Finally, the combined attention map 𝐸Image for
the image branch is computed using Eq. (4), adaptively integrating
both the learnable and spatial attention mechanisms.
Feature fusion:After obtaining the corresponding modalities fea-
tures, the feature of 𝑙-th layer ref-points Rfeat

𝑙
are updated as:

Rfeat
𝑙

=MLP
(
Rfeat
𝑙−1 ⊕ Rfeat

𝑙−1×𝐸
LiDAR ⊕ Rfeat

𝑙−1×𝐸
Image

)
(9)

The ref-pointsR𝐿 outputted from theMMTblock are then treated
as the final descriptors R, providing multi-modal condensed envi-
ronment information.

3.3 DPMDecoder
Following DeepPointMap [62], we use the DPM Decoder to solve
the relative transformation matrix𝑇 for odometry and overlap prob-
ability 𝑝overlap for loop detection between frames 𝑡1 and 𝑡2 based on
their descriptors R𝑡1 and R𝑡2 . In detail, the DPMDecoder contains
a transformer-based block and three individual heads, as shown
in Fig. 2 (b). The block exchanges information between two set of
descriptors and output correlated descriptors, denoted as R̄𝑡1 and R̄𝑡2 .

Forodometry, theSimilarityHeadestimates thecorrespondence
𝜎 between two sets of descriptors based on pairwise descriptor fea-
ture similarity. To tackle the problem led by the spatial sparsity of
descriptors,Offset Head predict the relative offsets 𝛿 between de-
scriptor pairs. Finally, the precise relative transformation𝑇 can be
estimated using weighted-SVD [2].

For loop detection, we use Overlap Head to predict the loop-
probability 𝑝o that the distance between two frames is less than a
predefined threshold 𝜀loop. We obtain frame-wise features for both
frames by average pooling R̄𝑡1 and R̄𝑡2 , then concatenating them
and predicted the desired probability 𝑝o via an MLP.

3.4 Mapping
We utilize Pose-Graph to store our reconstructed map, following
Zhang et al. [62]. For each frame, we extract its descriptors (Sec. 3.2)
and retrieve its nearest keyframe from the pose-graph to estimate
its pose (Sec. 3.3). A key-frame selection process then determine the
frame should be assigned as a keyframe. If a frame is assigned as a

keyframe, a scan-to-map refinement will be applied to improve the
pose estimation accuracy. We also conduct loop detection once a
keyframe is established. A standard pose-graph optimization will
be applied once the loop closure is conformed, to ensure the global
consistency of the reconstructed map.

4 TRAINING
We jointly train the DPM Encoder and DPM Decoder end-to-end,
with the following multiple losses.
PairingLoss.Representing the geometry and texture features of ref-
points is the key to descriptors. The ideal descriptors should share
similar features if they are close in global coordinates and vice versa.
Thus,we adopt InfoNCE [17] loss as pairing lossLp ondescriptorsR.
For each descriptor r(𝑖,𝑡1 ) ∈R𝑡1 from frame 𝑡1, a descriptor r( 𝑗,𝑡2 ) ∈
R𝑡2 from frame 𝑡2 with the distance of 𝑑𝑖 𝑗 =

rxyz
(𝑖,𝑡1 )−r

xyz
( 𝑗,𝑡2 )


2
are

assigned as (1) positive pair R+
𝑡2
iff 𝑗 = argmin𝑗 𝑑𝑖 𝑗 and 𝑑𝑖 𝑗 ≤ 𝜀pair

where 𝜀pair is a pre-defined threshold, or (2) nature pair R◦
𝑡2
if 𝑑𝑖 𝑗 ≤

𝜀pair, otherwise (3) negative pair R−
𝑡2
. The pairing loss is calculated as:

Lp=Er(𝑖,𝑡1 )


−log

©«
∑
r∈R+

𝑡2
exp

(
rfeat
(𝑖,𝑡1 )

⊙rfeat

𝜏

)
∑
r∈R+

𝑡2∪R
−
𝑡2

exp
(
rfeat
(𝑖,𝑡1 )

⊙rfeat

𝜏

) ª®®®®¬


(10)

where 𝜏 is a pre-defined constant. Note that the nature pairs are not
contributed to this loss.

To accelerate convergence, we apply the same loss to the corre-
lated descriptors R̄ aswell as key-pointsP, denoted asCoarse Pairing
Loss Lc and Backbone Auxiliary Loss Lb.
Offset Loss. Following the definition of three pair types above but
with a different threshold 𝜀offset, we use both positive and nurture
pairs of correlated descriptors R̄ to train the Offset Head to predict
the offsets.

Lo=Er𝑖


1���R̄+

𝑡2
∪R̄◦

𝑡2

��� ∑︁
R̄+
𝑡2∪R̄

◦
𝑡2

𝛿𝑖, 𝑗 −𝛿∗𝑖, 𝑗 Σ
 (11)

where 𝛿𝑖, 𝑗 represents the predicted offset from r̄(𝑖,𝑡1 ) to r̄( 𝑗,𝑡2 ) in 𝑡1
coordinate system, and 𝛿∗

𝑖
is its ground-truth. ∥·∥Σ represents the

Mahalanobis distance.We utilize both positive and neutral pairs with
a different distance threshold 𝜀o to accelerate the convergence and
improve the robustness.
Overlap Loss.We use Binary Cross Entropy (BCE) lossLd to train
the Overlap Head.
Training Procedure.We utilize two-phase training procedure dis-
cussed in Zhang et al. [62]. Phase one aims to train the registration
ability of our method. We randomly sample frame pairs within 20 m
fromdataset, anduse the lossL=𝜆pLp+𝜆cLc+𝜆bLb+𝜆oLo to train
DeepPointMap2. Phase two aims to train the loop-detection ability.
Thus we randomly sample frame pairs with a distance less/greater
than 𝜀loop with equal probability. In this phase, only the Overlap
Head is trainedwith the loss ofL𝑑 whereas othermodules are frozen.
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Table 1: Localization Accuracy on KITTI Odometry Benchmark (Trans↓ and Rot↓).

06 07 08 09 10

Modality Method Trans Rot Trans Rot Trans Rot Trans Rot Trans Rot

LiDAR LOAM [60] 0.65 - 0.63 - 1.12 - 0.77 - 0.79 -
LO-Net [22] - - 0.56 0.45 1.08 0.43 0.77 0.38 0.92 0.41
ISC-LOAM [53] 0.76 0.41 0.56 0.43 1.20 0.50 1.40 0.59 1.87 0.62
SC-LeGO-LOAM [19] 2.54 1.15 2.48 1.78 2.30 1.24 5.37 2.78 10.50 3.79
F-LOAM [52] 0.84 0.33 0.88 0.62 0.87 0.33 1.03 0.32 1.20 0.29
LiODOM [14] 0.83 0.29 0.88 0.61 0.86 0.33 1.03 0.32 1.20 0.29
LiLO [48] 0.54 0.32 0.60 0.61 1.07 0.41 0.63 0.32 0.99 0.33

Camera VISO2 [16] 0.79 0.51 1.46 1.13 1.62 0.66 0.84 0.64 1.29 0.64
ORB-SLAM2 [32] 0.89 0.27 0.89 0.50 1.03 0.31 0.86 0.25 0.62 0.29
VINS-Fusion [37, 38] 1.35 0.71 1.21 0.90 1.83 0.72 1.82 0.53 2.64 1.01
OV2-SLAM [12] 1.13 0.28 1.03 0.57 1.11 0.31 0.96 0.20 0.52 0.18
SOFT2 [7] 0.60 0.23 0.45 0.29 0.91 0.26 0.75 0.22 0.74 0.24

LiDAR+Camera DEMO [57] 0.96 - 1.16 - 1.24 - 1.17 - 1.14 -
DVL-SLAM [43] 0.92 - 1.26 - 1.32 - 0.66 - 0.70 -
Huang et al. [18] 0.61 - 0.56 - 1.27 - 1.06 - 0.83 -
LAMV-SLAM [55] 0.49 - 0.84 - 1.19 - 0.80 - 0.55 -
DeepPointMap2 0.47 0.20 0.39 0.25 0.77 0.22 0.62 0.23 0.75 0.40

5 EXPERIMENTALANALYSIS
5.1 Settings

Datasets.Our experiments utilize three multi-modal autonomous
driving-oriented datasets: (1) The KITTI Odometry Dataset [15], a
widely used benchmark containing 11 LiDAR-Camera sequences
(00-10), encompassing diverse scenarios from urban to highway
environments. (2) KITTI-360 [24], a large dataset with 9 LiDAR-
Camera sequences that introduce challenges with longer distances
and more complex environment. (3) KITTI-Carla [8], a simulated
dataset with 6 noise-free LiDAR-Camera sequences generated by
Carla [9] simulator, which are used to assist training.
Settings. The model is trained on 6× RTX 3090 GPUs, with AdamW
optimizer [40], initial 𝑙𝑟 = 1 × 10−3, 𝑤𝑑 = 1 × 10−4, and cosine
scheduler. The training set contains the first 6 sequences of KITTI
Odometry dataset (00-05), the first 6 sequences of KITTI-360 dataset
(00, 02-06), and the entire KITTI-Carla dataset (Town01-06). Since
the ground-truth label in the original KITTI Odometry is not ideal,
weutilize amore precise label provided in SemanticKITTI [3] to train
our model. However, we still use the original KITTI ground-truth
for evaluation to make a fair comparison. The evaluation model is
trained for 21 epochs for Phase One and another 10 for Phase Two.
During Phase Two the 𝑙𝑟 and𝑤𝑑 are decayed with a rate of 0.1. We
set the loss weight 𝜆p,𝜆c,𝜆b,𝜆o=1,0.1,0.1,1, the threshold 𝜀pair=1m,
𝜀offset=2m and 𝜀loop=20m.
Metrics.We adopt the official metrics of each benchmark for quan-
titative evaluation: We use Relative Translation Error (Trans↓) (%)
andAverage Rotation Error (Rot↓) (◦/100m) to measure relative lo-
calization accuracy in KITTI Odometry benchmark, and use the
MeanAbsolute Pose Error (APE↓) (m) to evaluate the global trajectory
accuracy for KITTI-360.

5.2 Localization Accuracy
This experiment aims to demostrate the localization accuracy of
our proposed method, DeepPointMap2, in various road scenarios.
The experiment is conducted on five KITTI Odometry sequences
(06-10)with comparisonmethods divided into LiDAR-based, Visual-
Based and LiDAR-Visual-based groups, where each group contains
multiple widely-used and advanced SLAM approaches.

As presented in Tab. 1, DeepPointMap2 achieves the lowest trans-
lation error in four sequences and the lowest rotation error in three
sequences. Somemethodsdonot report rotation errormetrics,which
are marked with “-”. Sequence 08 is the longest sequence among
them, covering a larger urban area and containing multiple loops.
In such complex scenario,DeepPointMap2 significantly outperforms
all LiDAR-Visual-based methods, reducing translation error by 35%
compared to the existing SOTAmethod LAMV-SLAM [55].

To illustrate the superiority of our proposed method in large-
scale scenes, we select two representative sequences (07 and 09)
from the KITTI-360 benchmark, and compare DeepPointMap2 with
the recent SOTA LiDAR-based method DeepPointMap. Sequence 07
was collected in a highway/urban roadway with a length of 4.9 km.
The absence of loop closures in this sequence presents a challenge
for odometry. Sequence 09, on the other hand, was collected in a
complex, large-scale urban environment, with a trajectory length of
over 10.5 km. The environmental complexity and numerous loops
challenge the model’s loop closure capability.

As shown in Fig. 5, ourDeepPointMap2 demonstrates an advan-
tage in global trajectory estimation error by achieving the ATE of
26.00 in sequence 07, which is better than the APE of 93.77 achieved
by DeepPointMap. The challenge in the highway scenario lies in the
monotonous geometric patterns, which make accurate odometry
difficult when relying solely on LiDAR point clouds. However, the
inclusion of the visual modality, with its rich textural information,
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Table 2: Robustness ofDeepPointMap2when Camera Unavailable and LiDARObstruction (Trans↓) and Rot↓

06 07 08 09 10 Mean

Scenario Frame% Trans Rot Trans Rot Trans Rot Trans Rot Trans Rot Trans Rot

Camera 5% 0.50 0.24 0.38 0.22 0.76 0.21 0.70 0.27 0.76 0.42 0.62 +3% 0.27 +5%
Failure 30% 0.46 0.20 0.36 0.21 0.86 0.26 0.66 0.27 0.71 0.28 0.61 +2% 0.24 -6%

50% 0.53 0.25 0.47 0.30 0.88 0.28 0.85 0.35 0.72 0.38 0.69 +15% 0.31 +20%
100% 0.64 0.30 0.50 0.33 1.46 0.44 1.76 0.51 0.83 0.49 1.04 +73% 0.41 +59%

LiDAR 5% 0.44 0.19 0.37 0.22 0.81 0.23 0.70 0.26 0.80 0.35 0.62 +4% 0.25 -4%
Obstruction 30% 0.43 0.17 0.47 0.30 0.96 0.24 0.81 0.27 0.64 0.32 0.66 +10% 0.26 +0%

50% 0.40 0.17 0.55 0.35 0.92 0.26 0.85 0.29 0.85 0.39 0.71 +19% 0.29 +12%
100% 0.37 0.16 0.53 0.40 1.03 0.34 0.86 0.29 0.89 0.37 0.74 +23% 0.31 +20%

Normal Input 0.47 0.20 0.39 0.25 0.77 0.22 0.62 0.23 0.75 0.40 0.60 0.26

KITTI-360: 07

Grid: 200m

KITTI-360: 09

Ground Truth DeepPointMap (L) DeepPointMap2 (C+L)

Figure 5: Estimated Trajectories on KITTI-360 Benchmark.

enhances the representation ability and, consequently, improves
odometryaccuracy insuchscenarios.As for sequence09, ourmethod
successfully achieves accurate localization and constructs a precise
map in large-scale complex urban environments, showcasing its
robustness and adaptability.

5.3 Strong Robustness
In certain real-world scenarios, one of the sensors (i.e., LiDAR or
camera)may be temporarily unavailable or experience a degradation
in performance, posing significant challenges formulti-modal SLAM
models. To investigate the robustness of our approach,wedesign two
additional experiments to evaluate our multi-modal DeepPointMap2
under these conditions, without any finetuning.

In the first experiment, we simulate camera failure scenarios by
randomly selecting x% (x=5,30,50,100) of frames and blacking out
their image input, as shown in Fig. 6 (b). Quantitative results indicate
that DeepPointMap2 consistently produces remarkable results as
image modalities are missing, as shown in Tab. 2. Even when 50%
of the images are absent, our approach incurs only an average per-
formance decrement of approximately 15%. Furthermore, when all
image modalities are unavailable, the model still functions normally
inmost scenes (e.g., sequences 06, 07 and 10) and demonstrates com-
petitive performance with other methods on sequence 08 and 09.
Meanwhile, we also evaluate the robustness of ourmethod in scenar-
ios where the LiDAR point cloud is obstructed by large vehicles (e.g.,

(a) Normal Input

(b) Camera Failure

(c) LiDAR Obstruct (d) Estimated Trajectory

Figure 6: Robustness ofDeepPointMap2.

trucks or buses), as demonstrated in Fig. 6 (c). To simulate partial ob-
struction,werandomlyselectx%of framesandperformthe following
steps: (1) generate a random-sized and -oriented 3D box at a random
location, and (2) remove all LiDAR points that pass through this box.
Despite this challenge, ourDeepPointMap2 successfully maintains
robust and consistent localization performance. This is attributed to
themethod’s ability to extract discernible features and the adaptabil-
ity of the cross-modal fusion process, which is further enhanced by
the implementationof theRandomOcclusiondata augmentation tech-
nique Even in situations where all frames are affected by occlusion,
our method’s performance exhibits only a modest average decline
of approximately 23%, and it remains competitive when compared
to other SOTA Visual-LiDAR-based methods, as evidenced by the
quantitative analysis presented in Tab. 2. The visualization of the lo-
calization andmapping result on KITTI sequence 08with the LiDAR
obstruction rate and camera failure rate of 100% are shown in Fig. 6
(right). It can be observed that under such harsh scenarios, Deep-
PointMap2 still successfully reconstructed the challenging scenes.

5.4 Ablation Study

Reference-Point Generation.Asmentioned in Sec. 3.2.1, we use
farthest-point-sample strategy to sample 𝑛 = 256 reference-points
rxyz from the input point cloud. In addition, we adapt uniform-
sampling and normal-sampling methods to generate ref-points with
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Table 3: Reference Point Generate Strategies (Trans↓).

Dist. Num. 06 07 08 09 10

FPS 128 0.49 0.38 0.94 0.85 0.78
256 0.47 0.39 0.77 0.62 0.75
512 0.57 0.41 0.88 0.74 0.85

Uniform 256 25.97 31.91 13.48 13.50 13.98
4096 6.92 6.25 10.79 9.86 16.58

Normal 256 25.19 5.21 11.06 26.71 20.85
4096 5.83 39.70 18.04 14.88 71.25

different numbers. The uniform-sampling variant of the RPGmodule
produces𝑛 points drawn from the uniform distribution rxyz∼U[0,1]
and scales them linearly to fit the 3D world space. The normal-
sampling variant follows a similar procedure but generates points
from a normal distribution rxyz∼N(0,0.25).

As indicated in Tab. 3, the localization performance peaks with
𝑛=256 ref-pointswhenemploying the FPS strategy. Reducing the ref-
points number can result in a greater distance between matched de-
scriptors, whichmay reduce themodel’s ability to accurately predict
theoffset values𝛿 . Conversely, increasing thenumberof ref-points to
512 does not yield a significant enhancement in performance, as the
overly close ref-points fail to capture distinct features from the key-
points, given that the LiDAR backbone only extracts 256 key-points.

For alternative sampling strategies such as random distribution,
their main shortcoming stems from the extensive nature of the point
cloud.Many ref-points are generated far from any points in the point
cloud (and key points), which poses a challenge for the network to
effectively aggregate features for these remote points. Furthermore,
the vast scale of the scene leads to a sparse arrangement of ref-points,
potentially surpassing themaximum range (i.e., 𝜀offset) withinwhich
Overlap Head can operate optimally. This scenario compromises the
effectiveness of the offset compensation mechanism, thus diminish-
ing overall performance. Due to the aforementioned factors, neither
uniform nor normal distributed sampling can construct a reasonable
map at 𝑛=256. It is only when 𝑛 is increased to 4096 that the model
can achieve minimal localization accuracy and build recognizable
maps in benchmark sequences.
FusionModule Design. In this additional experiment, we explore
the importance and advantages of our proposed Biased Transformer.
Some existing methods such as PointPainting [51] focus on pixel-
level early-fusion, where each LiDAR point is associatedwith a pixel
and the RGB values are attached to the point before processing by
the LiDAR backbone. In contrast, other multi-modal models opt for
feature-level fusion, integrating features from both image and Li-
DARmodalities. As themost straightforward approach, RoI-Pooling
aggregates the featurewithinawindowandattaches thesepooled fea-
tures to the correspondingpoints.However, the fixedwindowsize re-
sults in a lackof scale invariance,where thepooling region should but
not appears smaller at a distance and larger when close to the point.

Some attention-based methods can also be used for cross-modal
fusion. DeepFusion [23], as one of the SOTA 3D detectors, employs
a learnable scale-dot cross-attention module to fuse LiDAR and cam-
era features. Our Biased Transformer introduces two branches that

Table 4: AttentionModule Design (Trans↓).

Fusion Strategy 06 07 08 09 10

Point Painting 0.56 0.56 1.15 0.94 1.55
RoI Pooling (3×3) 2.34 1.56 4.12 4.24 17.83
Scale-Dot Attention 2.73 1.00 9.63 6.48 6.48
w/o Learnable-Attn. 0.72 0.46 18.00 1.16 1.21
w/o Spatial-Attn. 41.54 21.54 29.91 26.28 20.87
Biased Attention (ours) 0.47 0.39 0.77 0.62 0.75

leverage both feature similarity and spatial distance. In this exper-
iment, we disable each branch to investigate its importance. To save
the computation, we follow Yin et al. [56] and fine-tune all the abla-
tion models (based on the modal evaluated in Sec. 5.2) on the KITTI
dataset for 10 epochs.

(a) PointPainting (b) RoI Pooling (3x3)

(e) w/o Spatial Attention (f) Biased Attention (ours)

(d) w/o Learnable Attention(c) Scale-dot Attention

RGBRGB

Figure 7: AttentionMap Visualization.

As observed in Tab. 4 and Fig. 7, the performance decreased when
replacing the fusion strategy. Although attention-free approaches
(e.g., Painting and RoI) have advantages in inference speed, both
approaches exhibit weaknesses in localization performance. By re-
moving the learnable-attention map, the model relies on the prior
Camera-LiDAR calibration and still maintains a relatively high lo-
calization accuracy, except for one loop detection error in seq08.
Removing the Spatial-Attention Map brings difficulty of learning
the correspondence between images and point clouds, resulting in
failure to localize andmap in most of the sequences. Finally, the clas-
sic scale-dot attention module successfully reconstructs most of the
sequences. However, since the spatial information only exists in the
positional embeddings, themodel is required to learn an appropriate
spatial attention map by itself, resulting in slower convergence and
reduced performance, compared to Biased Attention.

6 CONCLUSIONS
We presentDeepPointMap2, a novel learning-based LiDAR-Visual
SLAM architecture that leverages a flexible Visual-Point Fusion Mod-
ule. This module adeptly aggregate multi-modal tokens, ensuring
precise and resilient performance even in adverse conditions such
as LiDAR obstructions and camera failures.
Limitation. The RPG module utilizes a parameter-free strategy,
FPS, to obtain initial ref-point.We believe that a learn-based strategy
can be used to actively sample these ref-points and avoid sampling
points from dynamic objects (e.g., cars).
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