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ABSTRACT

Chain-of-Thought (CoT) prompting helps Large Language Models (LLMs) tackle
complex reasoning by eliciting explicit step-by-step rationales. However, CoT’s
verbosity increases latency and memory usage and may propagate early errors
across long chains. We propose the Reasoning Capsule (R-Capsule), a frame-
work that aims to combine the efficiency of latent reasoning with the trans-
parency of explicit CoT. The core idea is to compress the high-level plan into
a small set of learned latent tokens (a Reasoning Capsule) while keeping exe-
cution steps lightweight or explicit. This hybrid approach is inspired by the In-
formation Bottleneck (IB) principle, where we encourage the capsule to be ap-
proximately minimal yet sufficient for the task. Minimality is encouraged via a
low-capacity bottleneck, which helps improve efficiency. Sufficiency is encour-
aged via a dual objective: a primary task loss for answer accuracy and an auxil-
iary plan-reconstruction loss that encourages the capsule to faithfully represent the
original textual plan. The reconstruction objective helps ground the latent space,
thereby improving interpretability and reducing the use of uninformative short-
cuts. Our framework strikes a balance between efficiency, accuracy, and inter-
pretability, thereby reducing the visible token footprint of reasoning while main-
taining or improving accuracy on complex benchmarks. Our codes are available
at: https://anonymous.4open.science/r/Reasoning-Capsule-7BE0

1 INTRODUCTION

Large Language Models (LLMs) exhibit strong multi-step reasoning when prompted with Chain-
of-Thought (CoT) Wei et al. (2022); Lightman et al. (2023). By instructing models to generate an
explicit sequence of intermediate steps, CoT significantly improves performance on tasks ranging
from arithmetic and commonsense reasoning to symbolic manipulation. However, explicit chains
are costly: generating long sequences increases inference latency and memory usage. Furthermore,
these long-form generations are susceptible to cascading errors, where a mistake in an early step
compromises the entire reasoning process. As LLMs are increasingly deployed in latency- and cost-
sensitive applications, the community has sought alternatives that preserve CoT’s accuracy benefits
while reducing its overhead.

Existing approaches to mitigate these issues can be grouped into three broad families, each with dis-
tinct trade-offs. Ensemble and sampling-based methods (e.g., self-consistency Wang et al. (2022);
Yao et al. (2023a); Besta et al. (2024); Chen et al. (2025)) improve accuracy by aggregating multiple
reasoning chains. While effective, they multiply inference-time cost and do not address verbosity at
its root. Implicit or latent reasoning methods Deng et al. (2024); Hao et al. (2024) compress inter-
mediate computation into dense vectors and decode short outputs, saving tokens. However, they are
often opaque: compressing both planning and execution can entangle them, hindering verifiability
and inviting shortcuts when the latent channel is unconstrained.

Hierarchical and modular reasoning approaches (e.g., plan-then-solve Huang et al. (2022); Wang
et al. (2023)) separate high-level planning from low-level execution. This structure enhances faith-
fulness and controllability; however, plans are typically generated explicitly in natural language or
via tool calls, reintroducing token overhead and sensitivity to exposure bias and plan-execution mis-
match. These limitations motivate a more targeted question: can we obtain the efficiency of latent
reasoning without sacrificing the structure and transparency of explicit plans? We answer this in the
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affirmative by introducing the Reasoning Capsule. This framework compresses only the high-level
plan into a compact, continuous latent while keeping execution lightweight and optionally explicit.
Our key observation, supported by systematic experiments on arithmetic and commonsense rea-
soning benchmarks, is twofold: (1) explicitly generating textual plans before steps often degrades
accuracy due to longer sequences and increased opportunities for error; yet (2) compressing the plan
into a small number of contiguous latent tokens, while leaving execution uncompressed or lightly
decoded, yields consistent gains over generating steps directly, and substantially outperforms com-
pressing the execution itself. In other words, the plan is the right target for compression, whereas
compressing the full CoT tends to discard useful inductive biases and supervision signals.

In the latent-planning stage, a decoder-only LLM projects its internal state through a low-capacity
bottleneck to produce K capsule tokens. The model then conditions on these tokens (e.g., as soft
prompts/prefix) for subsequent generation, replacing explicit plan text. In the execution stage, an
auxiliary one-layer transformer (plan decoder) is trained to reconstruct the high-level plan and super-
vise CoT and answer generation from the capsule. At inference, we skip explicit CoT and directly
generate the answer conditioned on the capsule; the auxiliary decoder is used only during training.
This design respects the hierarchical nature of reasoning—planning versus execution—while mini-
mizing the visibility of tokens. To make capsules compact and semantically meaningful, we adopt
an IB-inspired design. Tishby et al. (2000). The bottleneck projection enforces minimality by con-
straining capacity. In contrast, a dual objective enforces sufficiency: a standard next-token loss for
answer generation and an auxiliary reconstruction loss that trains the model to recover the high-level
textual plan from the capsule. This reconstruction grounds the capsule in an interpretable strategy
and counteracts latent collapse, avoiding uninformative shortcuts. Empirically, we find that (i) learn-
ing to first generate an explicit plan and then steps often harms performance; (ii) compressing the
plan into latent tokens improves over step-first baselines; and (iii) further compressing the steps sub-
stantially degrades results—highlighting the asymmetry between plan and execution in what should
be compressed. We validate our approach on arithmetic benchmarks and commonsense reasoning
benchmarks. Across datasets, Reasoning Capsules deliver competitive or improved accuracy with
fewer visible tokens and reduced latency compared to explicit CoT. They outperform entirely latent
CoT schemes that compress both plan and steps. Ablations varying capsule length and bottleneck di-
mension illustrate a robust accuracy–efficiency trade-off. Qualitative analyses indicate that decoded
plans remain faithful, and the model’s attention is concentrated on capsule tokens during execution.
Our contributions are threefold:

• We introduce Reasoning Capsules, a framework that compresses high-level plans into com-
pact latent tokens to drive downstream execution, reconciling the efficiency of latent rea-
soning with the structure and interpretability of explicit plans.

• We provide a principled grounding via the Information Bottleneck, and instantiate it with
an architectural bottleneck plus a plan-reconstruction objective that yields minimal yet suf-
ficient, semantically grounded latents.

• We present a practical training recipe that integrates with GPT-based decoders and a
lightweight one-layer decoder for supervision, along with comprehensive experiments on
arithmetic and commonsense reasoning showing consistent token savings, latency reduc-
tions, and accuracy gains over explicit-plan and entirely latent CoT baselines.

2 METHODOLOGY

In this paper, we introduce Reasoning Capsule, a framework designed to enhance the efficiency and
accuracy of multi-step reasoning in Large Language Models (LLMs). The core idea is to compress
high-level strategic plans into compact, continuous latent representations. This approach mitigates
the computational and statistical inefficiencies of generating verbose textual reasoning chains. We
first present the overall framework, then provide a theoretical justification from the perspective of
the Information Bottleneck principle, and finally detail the training objective.

2.1 FROM CHAIN-OF-THOUGHT TO LATENT PLANNING

Standard Chain-of-Thought (CoT) tackles a problem Q by generating an explicit sequence of rea-
soning steps S = (s1, s2, . . . , sN ) before producing a final answer A. The whole generation process
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is modeled as p(S,A|Q). While effective, generating the explicit sequence S token by token is com-
putationally expensive and can introduce cascading errors.

Our key insight is that reasoning chains often exhibit a hierarchical structure: a high-level strategic
plan (e.g., “first, calculate the discount; then, compute the final price”) followed by low-level, step-
by-step execution (e.g., “⟨⟨100 × 0.2 = 20⟩⟩”, “⟨⟨100 − 20 = 80⟩⟩”). We hypothesize that the
high-level plan is a primary candidate for compression, as its semantic essence is more critical than
its specific wording for guiding the final solution.

We therefore propose Latent Planning, a paradigm where the LLM first generates a compact latent
representation of the high-level plan—the Reasoning Capsule—and then conditions on this capsule
to execute the low-level reasoning steps. Let the explicit high-level plan be P and the subsequent
execution steps be Sexec. Our approach bifurcates the reasoning process:

Latent Planning Stage: Given Q, the model generates a set of capsules C = {c1, . . . , cK} that
encode the high-level strategy originally articulated in P . This stage models p(C|Q).

Conditioned Execution Stage: The model generates the execution steps Sexec and the final answer
A conditioned on both the question Q and the latent plan C. This stage models p(Sexec, A|Q,C).

The overall generative process is thus factorized as p(Sexec, A|Q,C)p(C|Q).

2.2 ARCHITECTURE: GENERATING AND UTILIZING REASONING CAPSULES

Our architecture is built upon a standard decoder-only transformer. We introduce a mechanism to
generate and consume Reasoning Capsules within the forward pass (see Figure 1).

Capsule Generation. To generate a capsule, we prompt the model to emit a special ‘[CAPSULE]‘
token at the point where a textual plan would typically be articulated. The hidden state ht ∈ RD

from the final transformer layer corresponding to this token is used as input to a bottleneck network.
This network projects the high-dimensional hidden state into a low-dimensional capsule c ∈ Rd,
where d ≪ D:

c = Proj(ht) = Wpht + bp, (1)

where Wp ∈ Rd×D and bp ∈ Rd are learnable parameters. This projection acts as a structural
implementation of the compression objective in the Information Bottleneck principle, forcing the
model to distill the most salient strategic information from the context-rich hidden state ht.

Conditioning on Capsules. Once generated, the capsule c must guide subsequent reasoning. We
project the capsule back into the model’s input embedding space using a separate linear transfor-
mation. This projected embedding is then fed as input to the transformer at the beginning of the
execution stage. This allows the capsule to condition the generation of all subsequent tokens (Sexec
and A), effectively acting as a compact, latent instruction that steers the model’s computations.

2.3 THEORETICAL GROUNDING: THE INFORMATION BOTTLENECK PERSPECTIVE

A key challenge in latent variable models is ensuring the representations are both compressed and
meaningful. Our design is formally motivated by the Information Bottleneck (IB) principle Tishby
et al. (2000). The IB principle provides a framework for learning a compressed representation Z of a
source variable X that is maximally informative about a target variable Y . The objective is to learn a
mapping p(Z|X) that maximizes the Lagrangian LIB = I(Z;Y )− βI(X;Z), where I(·; ·) denotes
mutual information and β is a Lagrange multiplier. The source variable X is the hidden state ht,
which contains rich, high-bandwidth information about the question Q and reasoning context. The
compressed representation Z is the Reasoning Capsule c. The target variable Y is the information
required to solve the task, i.e., the execution steps and final answer (Sexec, A).

The goal is to learn a capsule c that is a minimal sufficient statistic for the reasoning task.

Minimality (Compression): The capsule c must be a compressed version of ht. This corresponds
to minimizing the mutual information I(ht; c), which forces the model to discard irrelevant informa-
tion like specific phrasing or syntactic variations. Our bottleneck architecture (Eq. 1) directly serves
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Planner
Steper

1. What is the total distance walked by both friends 
in terms of the distance walked by Friend Q (x)?; 

2. How many kilometers did Friend Q walk?.
....

If Q complete x kilometers,  then P completes 
1.15x  kilometers. x + 1.15x = 43  2.15x=43. 
x = 43/2.15 = 20Then P will have have  
walked  1.15*20=23 km.

Solving steps& Answer

Two friends plan to walk along a 43-km trail, 
starting at opposite ends of the trail at 
the same time. If Friend P's rate is 15% faster 
than Friend Q's, how many kilometers will 
Friend P have walked when they pass 
each other?

Question

Reconstruction Loss 

Weak Decoder
...

LLM Backbone

... ...

Execution Loss

...

Question

     Reasoning 
Capsule

COT

Answer

Plan

... ...

Figure 1: A conceptual diagram of our Reasoning Capsule framework. The LLM generates a com-
pact latent capsule representing the high-level plan, which is passed through a bottleneck. This
capsule conditions the subsequent generation of the execution steps and the final answer. An auxil-
iary reconstruction decoder ensures the capsule is semantically grounded by forcing it to reconstruct
the original textual plan, guided by the Information Bottleneck principle.

this goal. By projecting ht ∈ RD into a low-dimensional space c ∈ Rd where d ≪ D, we constrain
the information capacity of the capsule, providing a strong inductive bias for compression.

Sufficiency (Informativeness): The capsule c must retain all information from ht that is relevant
for producing the correct solution by maximizing the mutual information I(c;Sexec, A).

Directly optimizing I(c;Sexec, A) is intractable. We instead use the original high-level textual plan,
P , as an effective proxy. We hypothesize that P encapsulates the core strategic information needed
for the task. Therefore, we aim to maximize I(c;P ) as a surrogate objective for sufficiency. This
ensures that the latent capsule is semantically grounded in the human-interpretable reasoning plan.
Our training objective, detailed next, is a practical realization of this IB-based formulation.

2.4 GROUNDED TRAINING OBJECTIVE

To operationalize the IB principle, we train the model with a multi-task objective that balances task
performance (sufficiency for the answer) and representational fidelity (sufficiency for the plan). The
total loss L is a weighted sum of an execution loss and a plan reconstruction loss,

L = Lexec + λLrecon, (2)

where λ is a hyperparameter balancing the two objectives.

Execution Loss (Lexec). This is the primary task loss, ensuring the capsule is sufficient for solving
the problem. It is a standard auto-regressive cross-entropy loss for generating the target sequence
T = (Sexec, A), which includes both the intermediate execution steps and the final answer. The
generation is conditioned on the question Q and the generated set of capsules C:

Lexec = − log p(T |Q,C). (3)

Minimizing this loss implicitly maximizes the mutual information I(C;T ), encouraging the cap-
sules to be directly helpful for the downstream task.

Reconstruction Loss (Lrecon). This auxiliary loss serves as our practical method for maximizing
I(C;P ), grounding the latent space and ensuring interpretability. We employ a separate, shallow
transformer decoder that takes the sequence of capsules C as input and is trained to reconstruct the
original high-level textual plan P :

Lrecon = − log p(P |C). (4)

4
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This loss forces each capsule to encode sufficient information to recover its corresponding textual
plan component, ensuring the latent plan is a faithful and high-fidelity representation of the explicit
one. This prevents the model from learning uninterpretable latent shortcuts, making the reasoning
process more robust.

By combining these components, our framework learns to form compact, efficient, and semanti-
cally meaningful plans, thereby practically and effectively realizing the goals of the Information
Bottleneck principle.

3 EXPERIMENTS

To validate the effectiveness and efficiency of our Reasoning Capsule framework, we conduct a
comprehensive set of experiments on various reasoning benchmarks. Our evaluation is designed to
answer several key research questions that stem from the claims made in our methodology.

• RQ1 (Effectiveness): Does our Reasoning Capsule framework outperform strong base-
lines, exceptionally standard Chain-of-Thought fine-tuning (CoT-SFT), in terms of reason-
ing accuracy?

• RQ2 (Generalizability): Is the performance improvement of Reasoning Capsules consis-
tent across mathematical and commonsense reasoning domains?

• RQ3 (Scalability): How does the benefit of our latent planning approach scale with the
size of the base language model?

• RQ4 (Efficiency): Does the latent planning paradigm lead to a more compact and efficient
reasoning process, measured by generation length and latency?

• RQ5 (Interpretability): Do the latent capsules encode genuine, verifiable planning infor-
mation?

3.1 EXPERIMENTAL SETUP

3.1.1 DATASETS

We evaluate our method on standard benchmarks for mathematical and commonsense reasoning.

• Mathematical Reasoning: GSM8K Cobbe et al. (2021) (grade-school math word prob-
lems), MultiArith Roy & Roth (2016) (math problems requiring multiple reasoning steps),
and AQuA Ling et al. (2017) (multiple-choice algebraic word problems).

• Commonsense Reasoning: StrategyQA Geva et al. (2021) (yes/no questions requiring a
multi-step reasoning strategy) and CommonsenseQA 2.0 (CSQA2) Talmor et al. (2018;
2022) (a challenging multiple-choice QA dataset requiring prior knowledge).

3.1.2 COT DATA GENERATION

We generate the CoT data using the gpt-o3 model via few-shot prompting. For each problem, we
prompt the model to produce a solution plan and step-by-step reasoning. During this process, the
final answer is withheld from the model. We employ rollout sampling with a temperature of 1.0
and repeat the generation up to 10 times per problem, stopping once a process yielding the correct
answer is found. If all 10 attempts fail to produce a proper solution, we then provide the model with
the correct answer and prompt it to generate a valid reasoning path, including the plan and steps.
The generated prompts and cases are provided in Appendix B.

3.1.3 BASE MODELS

To test the scalability (RQ3), we conduct experiments on three decoder-only transformer models of
varying sizes: GPT-2 (0.2B) Radford et al. (2019), LLaMA-3 (1B) Dubey et al. (2024), LLaMA-
3.1 (7B) Dubey et al. (2024), Qwen-3 (8B) Yang et al. (2025). All methods are fine-tuned on the
same pre-trained checkpoints for a fair comparison.
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Table 1: Main results on mathematical and commonsense reasoning benchmarks. We report accu-
racy (%) on five datasets for methods applied to GPT-2 (115M) and LLaMA-3 (1B) models. Our
R-Capsule consistently outperforms the strong CoT-SFT baseline.

Mathematical Reasoning Commonsense Reasoning
Method GSM8K MultiArith AQuA StrategyQA CSQA2
Model: GPT-2 (150M)

Standard SFT 19.1 78.5 28.1 – –
CoT-SFT 42.9 86.9 33.2 – –
Plan-SFT 37.5 82.6 30.9 – –
Coconut 34.1 84.8 32.8 – –
iCoT 41.5 85.2 33.0 – –
R-Capsule (Ours) 46.2 92.4 37.9 – –

Model: LLaMA-3 (1B)

Standard SFT 44.1 89.0 35.5 60.5 55.1
CoT-SFT 59.7 94.1 48.4 62.9 57.2
Plan-SFT 59.7 94.1 44.8 63.4 56.5
R-Capsule (Ours) 63.8 96.5 52.1 66.8 59.8

3.1.4 BASELINES

We compare our Reasoning Capsule framework against a series of strong baselines:

Standard SFT (w/o CoT): A standard supervised fine-tuning baseline where the model is trained
to directly predict the final answer A from the question Q, that is, modeling p (AQ). This establishes
the performance without any explicit reasoning steps.

CoT-SFT: The standard Chain-of-Thought fine-tuning approach Wei et al. (2022). The model is
trained to generate the complete textual reasoning chain S followed by the final answer A, modeling
p (S, AQ). This is our main and strongest baseline.

Coconut: A method that improves reasoning by generating multiple reasoning paths and using a
verifier to select the most consistent one, thereby enhancing robustness Hao et al. (2024).

iCoT: a method that allows language models to gradually internalize chain-of-thought (CoT) rea-
soning steps by incrementally removing intermediate CoT tokens and fine-tuning, thereby achieving
implicit CoT reasoning with high accuracy and fast inferenceDeng et al. (2024).

Plan-SFT: a unified post-training framework that distills synthetic ”planning trajectories” (task de-
compositions) from large-scale LLMs and fine-tunes smaller open-source LLMs via supervised fine-
tuningParmar et al. (2025).

3.1.5 IMPLEMENTATION DETAILS

We employ the AdamW optimizer with a learning rate of 5 × 10−6, where β1 and β2 are set to 0.9
and 0.999, respectively, and the weight decay is 0.01. The learning rate follows a cosine schedule
with a linear warmup over the first 10% of total training steps. We use a total batch size of 32 (4
per GPU across 8 NVIDIA A800 GPUs) without gradient accumulation. The training epochs are
set differently for various models: 5 epochs for GPT2, and 3 epochs for LLaMA3-1B, LLaMA3-
7B, and Qwen3-8B. The length of the Reasoning Capsule is fixed at 2. For the loss function, the
reconstruction loss (adopting MSE loss) is weighted by λ = 0.5 against the main task loss.

3.2 MAIN RESULTS (RQ1 & RQ2)

The results in Table 1 demonstrate the effectiveness and generalizability of our Reasoning Capsule
framework (RQ1 and RQ2). Across both GPT-2 and LLaMA-3 (1B) backbones, our method consis-
tently surpasses the strong CoT-SFT baseline on all five mathematical and commonsense reasoning
benchmarks. For instance, on GSM8K, R-Capsule provides a +3.3% and +4.1% absolute improve-
ment for GPT-2 and LLaMA-3, respectively. This confirms the core benefits of our latent planning
approach on established model sizes.
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3.3 SCALABILITY ANALYSIS (RQ3)

To address our third research question (RQ3) concerning the scalability of our approach, we con-
ducted a focused evaluation on two contemporary 7-billion-parameter models: LLaMA-3-7B and
Qwen3-8B. In this analysis, we compare our R-Capsule against the CoT-SFT baseline on the
GSM8K (mathematical reasoning) and StrategyQA (commonsense reasoning) benchmarks. This
enables us to evaluate whether the performance gains of our method scale effectively with model
size across various reasoning domains.

(a) Performance of models with increasing param-
eter counts. R-Capsule maintains and, in some
cases, enhances its accuracy gains at larger scales.

(b) Results of ablation studies. The contribu-
tions of different components of R-Capsule are
analyzed, showing their impact on overall perfor-
mance.

Figure 2: (a) Scalability analysis: Accuracy (%) on a representative task with increasing model size.
(b) Ablation study: Effects of removing individual components on model performance.

The results, presented in Figure 2a, demonstrate that the advantages of the R-Capsule framework
persist and are even amplified on these larger models. For instance, on LLaMA-3-7B, R-Capsule
achieves a significant absolute improvement of 2.7% on GSM8K and 2.3% on StrategyQA over
the CoT-SFT baseline. A similar trend is observed on Qwen3-8B, where our method yields a
notable improvement of 3.27% on GSM8K and 3.3% on StrategyQA. These consistent gains across
two distinct and powerful foundation models strongly suggest that the structural benefits of latent
planning, as embodied by our R-Capsule, represent a general principle that scales effectively with
model capability. This finding provides a robust affirmative answer to RQ3.

3.4 ABLATION STUDY: WHERE TO COMPRESS

We ablate which part of the reasoning process to compress. We augment the reasoning chain with
an explicit textual plan, creating two components: the plan and the steps. We test four variants:

• Plan-SFT: Explicit plan → explicit steps (no compression).

• R-Capsule (Plan-only): Latent plan → explicit steps. This is our main proposal.

• R-Capsule (Steps-only): Latent steps, analogous to implicit CoT.

• R-Capsule (Plan+Steps): Latent plan → latent steps (maximal compression).

Figure 2b shows that compressing only the plan (R-Capsule (Plan-only)) achieves the best
accuracy-efficiency trade-off. It improves accuracy over the explicit Plan-SFT baseline while
reducing generated tokens by over 60% (e.g., from 244 to 86 on Qwen3 8B). This suggests that
encoding the high-level plan latently provides a robust guide for generating explicit, low-level steps.
In contrast, compressing the detailed steps (Steps-only or Plan+Steps) is less effective, with
the latter showing a drop in accuracy despite achieving maximum compression. Finally, ablating

7
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Table 2: Token budget and latency comparison on GSM8K (Qwen3). Latency is measured with a
batch size of 1 on the A100.

Method Tokens to Answer Compression Ratio Latency (s)
Explicit Plan-CoT 447 1.0 3.12
R-Capsule (Plan-Latent) 232 0.52 1.47

the projection layer or the weak decoder leads to significant performance degradation (e.g., -7.4%
acc. on Qwen3 without the weak decoder), confirming their architectural importance.

3.5 EFFICIENCY AND LENGTH ANALYSIS (RQ4)

To address our fourth research question (RQ4) concerning efficiency, we analyze the generation
length and inference latency of our proposed method. As detailed in Table 2, we evaluate our R-
Caps (Plan-Latent) approach against the Explicit Plan-CoT baseline on the GSM8K benchmark. We
measure two key metrics: the total number of tokens generated to reach the final answer and the end-
to-end inference latency on a single A100 GPU. The results demonstrate a substantial improvement
in efficiency. Our R-Capsule (Plan-Latent) method requires only 232 tokens to derive an answer,
marking a 48% reduction compared to the 447 tokens used by the baseline. This corresponds to a
compression ratio of 0.52, indicating that our method can produce solutions that are nearly half the
length of standard explicit reasoning chains. This significant reduction in token generation directly
translates to a notable decrease in latency. The inference time drops from 3.12 seconds for Explicit
Plan-CoT to just 1.47 seconds for our method, achieving a 2.12x speedup. This efficiency gain stems
from our model’s ability to operate on compact latent representations of the plan, bypassing the need
to generate verbose, token-intensive intermediate steps.

3.6 INTERPRETABILITY OF LATENT CAPSULES (RQ5)

To validate our core hypothesis, that the bottleneck architecture distills a plan into a compact, ab-
stract latent representation, we investigate the information encoded within these latent capsules.
By analyzing the output of a weak decoder fed with a corresponding capsule, we aim to provide
qualitative evidence that these capsules preserve the plan’s essential logical structure, effectively
functioning as abstract ’latent thoughts’ rather than mere textual compressions. As the case demon-
strates, the output from the weak decoder (weak decoder plan) is significantly more concise than
the original plan. It strips away redundant descriptive language, distilling the core steps into direct.
This provides strong evidence for our central hypothesis: the bottleneck architecture incentivizes the
model not merely to compress the plan, but to compile it into an abstract computational graph.

Case Study: Model Output

”question”: ”In a spelling contest, Peter and Christina are on one team... Peter misses seven
words and Christina misses 6, fewer than half the words Peter spelled correctly. How many
words were misspelled by their team?”
”plan”: ”Here’s a plan to solve the problem: 1. Calculate Peter’s correct words... 2. Find
half of Peter’s correct words... 3. Determine Christina’s incorrect words... 4. Sum Peter’s
and Christina’s incorrect words...”
”weak decoder plan”: ”Determine the number of words Peter spelled correctly. Calculate
half of the words Peter spelled correctly. Determine the number of words Christina spelled
incorrectly. Calculate the total number of words misspelled by the team.”
”steps”: ”1. Peter’s correct words: 50− 7 = 43. ... 4. Total team incorrect words: 7 + 15 =
22.

Further analysis (Appendix C) supports these findings:

• Vocabulary Distribution: Projecting latent tokens into the vocabulary space reveals a
focus on abstract verbs (e.g., ‘calculate‘, ‘total‘) rather than specific numbers, indicating
they capture high-level intent.
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• Attention Analysis: The decoder attends heavily to the latent plan tokens when generating
subsequent calculation steps, confirming they serve as a guide.

This evidence confirms that latent capsules are most effective for representing high-level strategic
plans, while explicit generation remains crucial for detailed, procedural steps.

4 RELATED WORK

Chain-of-Thought Prompting Chain-of-Thought (CoT) promptingWei et al. (2022) has been shown
to significantly enhance performance on complex tasks by generating explicit, step-by-step reason-
ing tracesSun et al. (2024). Variants like self-consistency aggregationWang et al. (2022) further im-
prove reliability by ensembling multiple reasoning chains. Representative examples of this paradigm
include o1El-Kishky (2024) and DeepSeek R1DeepSeek-AI et al. (2025)—both reasoning models
that have achieved strong performance. Collectively, these findings confirm that CoT prompting
effectively addresses the challenges of complex task reasoning: its explicit step-by-step trace de-
sign breaks down intricate problems into manageable logical segments, while variant optimizations
(e.g., tree of thoughtsYao et al. (2023b),self-refineYang et al. (2024)) mitigate uncertainty in rea-
soning processes. The strong performance of models such as o1 and DeepSeek R1 further validates
that the CoT paradigm is not only theoretically sound but also practically impactful, becoming a
foundational approach for enhancing reasoning capabilities in advanced models.

Latent Planning and the Information Bottleneck However, the verbosity of CoT not only increases
inference latency and memory overheadHong et al. (2025) but also risks propagating errors across
long reasoning sequences. Implicit or latent reasoning schemesDeng et al. (2023); Ye et al. (2025)
compress intermediate reasoning steps into dense vectorsHao et al. (2024), enabling faster infer-
enceCheng & Durme (2024) but at the cost of reduced interpretability. Without explicit grounding,
such representations may encode spurious shortcuts. By contrast, we leverage the Information Bot-
tleneck principleTishby et al. (2000) to achieve two key goals: (i) enforcing minimality via a low-
dimensional bottleneck, and (ii) ensuring sufficiency through an auxiliary reconstruction loss that
recovers the original high-level plan. This dual objective guarantees that each Reasoning Capsule is
both compact and semantically faithful. For additional details or supplementary materials about the
content discussed in this section/chapter, readers are kindly referred to Appendix D.

Hierarchical and Modular Reasoning Hierarchical reasoning frameworks decouple planning from
execution, e.g., in plan-and-solve prompting or modular CoT Parmar et al. (2025). Tool-oriented
methods (e.g., ToolformerSchick et al. (2023), ReActYao et al. (2023c)) similarly structure the rea-
soning process into tool selection and execution. These approaches, however, rely on generating
and parsing explicit plans or tool invocation commandsHao et al. (2023), which introduces extra
computational overheadWang et al. (2024). Our method internalizes high-level planning within a
latent space, eliminating the need for explicit plan text or tool-specific syntax. A subsequent recon-
struction module then verifies that this latent plan accurately encapsulates the intended reasoning
strategy, thereby unifying structural rigor and inference efficiency within a single model.

5 CONCLUSION

In this paper, we introduce Reasoning Capsules (R-Capsule), a hybrid framework that reconciles the
efficiency of latent reasoning with the transparency of explicit CoT. Our key insight is to decouple
high-level planning from low-level execution, compressing only the strategic plan into a compact
set of latent tokens—the capsule. Grounded in the Information Bottleneck principle, our method
enforces the capsule to be both minimal, by discarding redundant information via a low-capacity
bottleneck, and sufficient, by optimizing a dual objective for task accuracy and plan reconstruction.
This design preserves the high-level reasoning structure while drastically reducing token overhead.
Extensive experiments on mathematical (e.g., GSM8K) and commonsense (e.g., StrategyQA) rea-
soning benchmarks demonstrate that R-Capsule significantly outperforms strong baselines across
various model sizes. Ablation and interpretability studies confirm that our approach of compressing
only the plan yields an optimal trade-off and that the capsules encode meaningful strategic intent.
R-Capsule establishes that targeted compression of high-level plans is a principled and effective path
toward efficient, accurate, and interpretable LLM reasoning.
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A USE OF LARGE LANGUAGE MODELS

We utilized Large Language Models (LLMs), such as Gemini-2.5-Pro, during the preparation of
this manuscript. The usage was twofold: 1) for polishing the language, which included correcting
grammatical errors and improving sentence clarity; and 2) as a brainstorming partner to discuss and
refine technical details. The authors retained complete control over the content, and all final ideas,
claims, and text are our own. We take full responsibility for the entire paper.

B CHAIN-OF-THOUGHT DATA GENERATION DETAILS

To ensure the reproducibility of our Chain-of-Thought (CoT) training data, this section provides the
complete few-shot prompt template used for generating high-level plans and step-by-step execution
steps via GPT-o3, along with representative examples of the generated outputs.

B.1 FEW-SHOT PROMPT TEMPLATE FOR COT GENERATION

The prompt template follows a structured format to guide GPT-o3 in distinguishing between high-
level plans (task decomposition logic without specific calculations) and low-level execution steps
(concrete mathematical operations or reasoning details). The template includes explicit instructions
and two reference examples, as shown below:
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Prompt

Provide a question you need to generate a problem-solving idea based on the question, solu-
tion and answer to split the problem into multiple sub-questions as a problem-solving plan
and the mathematical formula steps. Here I give two examples. example 1. xxx example 2.
xxx As shown in the example, you need to output the ”plan”, ”steps” and ”answer” sections
in the format of ”plan: xxx steps:xxx answer: xxx”. Do not output other contents.

B.2 REPRESENTATIVE GENERATED COT EXAMPLES

We provide two complete examples of CoT outputs generated using the above template, correspond-
ing to a mathematical reasoning problem (from GSM8K) and a commonsense reasoning problem
(from StrategyQA), respectively. These examples illustrate the consistent distinction between ”plan”
(task decomposition) and ”steps” (concrete execution) in our data.

B.2.1 EXAMPLE FROM GSM8K (MATHEMATICAL REASONING)

Case Study: Model Output

Problem: Two friends plan to walk along a 43-km trail, starting at opposite ends of the trail
at the same time. If Friend P’s rate is 15% faster than Friend Q’s, how many kilometers will
Friend P have walked when they pass each other?
Generated Output:Plan: 1. Define a variable to represent the distance walked by Friend Q
when they meet. 2. Express Friend P’s distance in terms of Q’s distance using the given
speed ratio (since time is equal for both, distance ratio equals speed ratio). 3. Set up an
equation based on the total trail length (sum of P’s and Q’s distances = 43 km). 4. Solve the
equation to find Q’s distance, then calculate P’s distance.
Steps: 1. Letx= distance (in km) walked by Friend Q when they meet. 2. Friend P’s speed is
15% faster than Q’s, so P’s distance =(1.15x). 3. Total trail length:(x+ 1.15x = 43)km. 4.
Combine like terms: (2.15x = 43). 5. Solve forx : (x = 432.15 = 20)km (Q’s distance).
6. Calculate P’s distance:(1.1520 = 23)km.
Answer: 23

B.2.2 EXAMPLE FROM STRATEGYQA (COMMONSENSE REASONING)

Case Study: Model Output

Problem: Can a penguin fly from the South Pole to the North Pole?
Generated Output: Plan: 1. Confirm the key biological characteristic of penguins related to
flight. 2. Analyze the geographical distance between the South Pole and North Pole, and
the required mode of travel for such a distance. 3. Evaluate whether penguins’ physical
capabilities match the travel requirements. 4. Conclude whether the journey is possible.
Steps: 1. Penguins are flightless birds—they have wings adapted for swimming (flippers)
but lack the wing structure and muscle strength needed for flight. 2. The distance between
the South Pole and North Pole is approximately 12,742 km (diameter of Earth), which would
require sustained flight for days (even for flying birds). 3. Since penguins cannot fly, they
cannot traverse this distance via air; additionally, ocean routes between the poles are blocked
by ice sheets, making swimming impossible. 4. Thus, a penguin cannot fly from the South
Pole to the North Pole.
Answer: No

C INTERPRETABILITY

To understand why this implicit plan representation is so effective, we conducted an in-depth anal-
ysis of the information encoded within these latent tokens. We set the number of latent plan tokens
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(a) First latent plan token.

(b) Second latent plan token.

Figure 3: Vocabulary distribution of the LM head logits for the two latent plan tokens, aggregated
over 200 test cases. The analysis reveals an explicit functional specialization. (a) The first token
learns to encode intent and initiation, with its top predictions dominated by discourse markers
(‘Here‘, ‘Plan‘, ‘First‘) and instructional verbs (‘Calculate‘, ‘Find‘). (b) The second token focuses
on structure and execution, predicting structural elements (newlines, parentheses), mathematical
operators (‘-‘, ‘*‘), and operational terms (‘Sum‘, ‘multiply‘) to format the subsequent step.

to two. We analyzed the vocabulary distribution of the language model head’s logits corresponding
to each token across a sample of 200 different problems. The results, visualized in Figure 3, reveal
a fascinating specialization of roles between the latent tokens.

The First Latent Plan Token: Encoding Intent and Initiation. As shown in Figure 3(a), the
vocabulary distribution for the first latent token is dominated by high-frequency ”discourse markers”
and ”initiator” words. Tokens such as Here, Plan, Step, Let’s, and First appear with high probability.
This suggests that the first token has learned to function as a structural signal, activating a ”planning”
or ”reasoning-initiation” mode within the model. Furthermore, the presence of instructional verbs
like Calculate, Think, Find, and Determine in the mid-frequency range indicates that this token
also captures the high-level intent or the primary cognitive action required for the initial part of the
plan. It essentially tells the model, ”Begin reasoning, and the first major goal is to calculate/find
something.”

The Second Latent Plan Token: Encoding Structure and Execution. The distribution for the
second latent token, shown in Figure 3(b), paints a different but complementary picture. This to-
ken’s top predictions are heavily skewed towards structural and mathematical symbols, including
newline characters (\n), comparison operators (¡, ¿), parentheses ((, )), and arithmetic operators (-,
*, =). This strongly indicates that the second token has specialized in encoding the executional and
structural format of the subsequent calculation step. It prepares the model for the precise symbolic
manipulation required, acting as a bridge between the high-level intent (from the first token) and
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Figure 4: Hierarchical attention analysis of Reasoning Capsules.

the low-level, formatted output of the CoT step. The co-occurrence of tokens like Sum, Total, num-
ber, divide, and multiply further solidifies its role in priming the model for specific mathematical
operations.

C.1 ATTENTION ANALYSIS

To validate the Reasoning Capsule’s role in guiding generation, we quantitatively analyzed the de-
coder’s attention mechanism. Using 143 samples from the GSM8K dataset, we tracked the attention
from the generated Steps & Answer sequence to the Latent Plan (Reasoning Capsule).

For the analysis, we segmented the input into three regions: Question, Latent Plan, and
Steps & Answer. We then calculated the average attention from the Steps & Answer region
to the Latent Plan region, aggregated across all samples. The results are visualized as:

• Attention Curve (Figure 4a): Plots the average attention weight against the normalized
position in the Steps & Answer sequence, showing the attention trend during genera-
tion.

• Inter-Region Attention Heatmap (Figure 4b): An aggregated heatmap showing the at-
tention flow between all defined regions (Query and Key).

C.2 ATTENTION CURVE (FIGURE 4A): SUSTAINED GUIDANCE

The attention to the Latent Plan remains high and stable throughout the generations, confirming its
continuous guiding role.

• Step Generation (Normalized Position 0–0.8): Attention is stable, indicating that the
model continuously references the high-level plan while generating low-level calculation
steps.

• Answer Generation (Normalized Position 0.8–1.0): Attention slightly increases as the
model cross-references the plan to ensure the final answer aligns with the initial strategy.

C.3 INTER-REGION ATTENTION HEATMAP (FIGURE 4B): LATENT PLAN DOMINANCE

The heatmap quantifies the Latent Plan’s dominance in attention allocation.

• Strong Guidance for Generation: The attention from Steps to the Latent Plan (0.745) and
from Answer to the Latent Plan (0.310) is significantly higher than to the original Question
(0.121 and 0.162, respectively). This confirms the capsule acts as the primary strategic
guide.
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• Information Compression: Low attention to the Question suggests the Latent Plan ef-
fectively extracts and condenses all necessary information, making repeated access to the
original problem unnecessary.

• Reduced Error Propagation: Near-zero self-attention within the generated steps (Steps
→ Steps) indicates the model relies on the global Latent Plan as a unified reference rather
than on preceding steps, which helps mitigate cascading errors.

D INFORMATION BOTTLENECK FORMULATION FOR REASONING CAPSULES

We formalize the training objective of Reasoning Capsules under the Information Bottleneck (IB)
principle (Tishby et al., 2000). Our goal is to learn a compressed latent representation C ∈ Rd

of the high-level plan that is minimal yet sufficient for both reconstructing the original plan P and
predicting the final answer A.

D.1 IB OBJECTIVE

Given the hidden state ht ∈ RD at the capsule-token position, we seek a stochastic encoding p(C |
ht) that solves

min
p(C|ht)

I(ht;C)︸ ︷︷ ︸
compression

−β I(C;P )︸ ︷︷ ︸
plan reconstruction

−γ I(C;A)︸ ︷︷ ︸
answer prediction

(5)

where

• I(ht;C) enforces minimality by limiting the information contained in the capsule;
• I(C;P ) ensures sufficiency for reconstructing the textual plan P ;
• I(C;A) guarantees that the capsule is predictive of the final answer A;
• β, γ > 0 are Lagrange multipliers controlling the trade-off between compression and suf-

ficiency.

D.2 PARAMETRIC APPROXIMATION

In practice, we employ a deterministic encoder with a linear bottleneck

C = Proj(ht) = Wpht + bp, Wp ∈ Rd×D, d ≪ D. (6)

This structural bottleneck enforces hard minimality: under a Gaussian assumption, the mutual in-
formation is upper-bounded by I(ht;C) ≤ d

2 log(2πeσ
2).

D.3 TRAINING OBJECTIVE AS IB SURROGATE

We optimize a variational upper bound on Eq. equation 5:

LIB = − log pθ(P | C)︸ ︷︷ ︸
plan reconstruction

+λ− log pϕ(A | C,Q)︸ ︷︷ ︸
answer prediction

(7)

where

• pθ(P | C) is a shallow transformer decoder that regenerates the plan;
• pϕ(A | C,Q) is the primary model that produces the final answer;
• λ balances the two losses, and is numerically equivalent to the ratio β/γ in Eq. equation 5.

E LATENT TOKEN NUMBER ABLATION

To validate the choice of latent token number K (fixed as 2 in the main text), we conduct ab-
lation experiments on K ∈ {1, 2, 3, 4} using GSM8K (mathematical reasoning) and StrategyQA
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Table 3: Latent Token Number K Ablation on Qwen3-8B

Model K GSM8K Acc. (%) GSM8K Tokens StrategyQA Acc. (%) Latency (s)

Qwen3-8B

1 87.9 82 78.1 1.53
2 89.7 86 79.8 1.65
3 86.2 103 79.5 1.89
4 85.5 118 78.9 2.11

(commonsense reasoning) datasets. We evaluate accuracy, generated tokens (before answer), and
inference latency (batch size=1 on A100), with results shown in Table 3.

Key observations: 1. K = 2 achieves the highest accuracy across models/datasets. K = 1 under-
represents the plan (lower accuracy), while K ≥ 3 increases token count/latency without accuracy
gains (redundant information). 2. Latency grows linearly with K, as more latent tokens require
additional projection/computation. Thus, K = 2 balances accuracy and efficiency.
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