

000 001 002 003 004 005 R-CAPSULE: COMPRESSING HIGH-LEVEL PLANS FOR 006 EFFICIENT LARGE LANGUAGE MODEL REASONING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028

ABSTRACT

029
030 Chain-of-Thought (CoT) prompting helps Large Language Models (LLMs) tackle
031 complex reasoning by eliciting explicit step-by-step rationales. However, CoT's
032 verbosity increases latency and memory usage and may propagate early errors
033 across long chains. We propose the **Reasoning Capsule (R-Capsule)**, a frame-
034 work that aims to combine the efficiency of latent reasoning with the trans-
035 parency of explicit CoT. The core idea is to compress the high-level plan into
036 a small set of learned latent tokens (a Reasoning Capsule) while keeping exe-
037 cution steps lightweight or explicit. This hybrid approach is inspired by the In-
038 formation Bottleneck (IB) principle, where we encourage the capsule to be ap-
039 proximately minimal yet sufficient for the task. Minimality is encouraged via a
040 low-capacity bottleneck, which helps improve efficiency. Sufficiency is encou-
041 raged via a dual objective: a primary task loss for answer accuracy and an auxil-
042 iary plan-reconstruction loss that encourages the capsule to faithfully represent the
043 original textual plan. The reconstruction objective helps ground the latent space,
044 thereby improving interpretability and reducing the use of uninformative short-
045 cuts. Our framework strikes a balance between efficiency, accuracy, and inter-
046 pretability, thereby reducing the visible token footprint of reasoning while main-
047 taining or improving accuracy on complex benchmarks. Our codes are available
048 at: <https://anonymous.4open.science/r/Reasoning-Capsule-7BE0>
049
050
051
052
053

1 INTRODUCTION

054 Large Language Models (LLMs) exhibit strong multi-step reasoning when prompted with Chain-
055 of-Thought (CoT) Wei et al. (2022); Lightman et al. (2023). By instructing models to generate an
056 explicit sequence of intermediate steps, CoT significantly improves performance on tasks ranging
057 from arithmetic and commonsense reasoning to symbolic manipulation. However, explicit chains
058 are costly: generating long sequences increases inference latency and memory usage. Furthermore,
059 these long-form generations are susceptible to cascading errors, where a mistake in an early step
060 compromises the entire reasoning process. As LLMs are increasingly deployed in latency- and cost-
061 sensitive applications, the community has sought alternatives that preserve CoT's accuracy benefits
062 while reducing its overhead.

063 Existing approaches to mitigate these issues can be grouped into three broad families, each with dis-
064 tinct trade-offs. Ensemble and sampling-based methods (e.g., self-consistency Wang et al. (2022);
065 Yao et al. (2023a); Besta et al. (2024); Chen et al. (2025)) improve accuracy by aggregating multiple
066 reasoning chains. While effective, they multiply inference-time cost and do not address verbosity at
067 its root. Implicit or latent reasoning methods Deng et al. (2024); Hao et al. (2024) compress inter-
068 mediate computation into dense vectors and decode short outputs, saving tokens. However, they are
069 often opaque: compressing both planning and execution can entangle them, hindering verifiability
070 and inviting shortcuts when the latent channel is unconstrained.

071 Hierarchical and modular reasoning approaches (e.g., plan-then-solve Huang et al. (2022); Wang
072 et al. (2023)) separate high-level planning from low-level execution. This structure enhances faith-
073 fulness and controllability; however, plans are typically generated explicitly in natural language or
074 via tool calls, reintroducing token overhead and sensitivity to exposure bias and plan-execution mis-
075 match. These limitations motivate a more targeted question: can we obtain the efficiency of latent
076 reasoning without sacrificing the structure and transparency of explicit plans? We answer this in the

affirmative by introducing the Reasoning Capsule. This framework compresses only the high-level plan into a compact, continuous latent while keeping execution lightweight and optionally explicit. Our key observation, supported by systematic experiments on arithmetic and commonsense reasoning benchmarks, is twofold: (1) explicitly generating textual plans before steps often degrades accuracy due to longer sequences and increased opportunities for error; yet (2) compressing the plan into a small number of contiguous latent tokens, while leaving execution uncompressed or lightly decoded, yields consistent gains over generating steps directly, and substantially outperforms compressing the execution itself. In other words, the plan is the right target for compression, whereas compressing the full CoT tends to discard useful inductive biases and supervision signals.

In the latent-planning stage, a decoder-only LLM projects its internal state through a low-capacity bottleneck to produce K capsule tokens. The model then conditions on these tokens (e.g., as soft prompts/prefix) for subsequent generation, replacing explicit plan text. In the execution stage, an auxiliary one-layer transformer (plan decoder) is trained to reconstruct the high-level plan and supervise CoT and answer generation from the capsule. At inference, we skip explicit CoT and directly generate the answer conditioned on the capsule; the auxiliary decoder is used only during training. This design respects the hierarchical nature of reasoning—planning versus execution—while minimizing the visibility of tokens. To make capsules compact and semantically meaningful, we adopt an IB-inspired design. Tishby et al. (2000). The bottleneck projection enforces minimality by constraining capacity. In contrast, a dual objective enforces sufficiency: a standard next-token loss for answer generation and an auxiliary reconstruction loss that trains the model to recover the high-level textual plan from the capsule. This reconstruction grounds the capsule in an interpretable strategy and counteracts latent collapse, avoiding uninformative shortcuts. Empirically, we find that (i) learning to first generate an explicit plan and then steps often harms performance; (ii) compressing the plan into latent tokens improves over step-first baselines; and (iii) further compressing the steps substantially degrades results—highlighting the asymmetry between plan and execution in what should be compressed. We validate our approach on arithmetic benchmarks and commonsense reasoning benchmarks. Across datasets, Reasoning Capsules deliver competitive or improved accuracy with fewer visible tokens and reduced latency compared to explicit CoT. They outperform entirely latent CoT schemes that compress both plan and steps. Ablations varying capsule length and bottleneck dimension illustrate a robust accuracy–efficiency trade-off. Qualitative analyses indicate that decoded plans remain faithful, and the model’s attention is concentrated on capsule tokens during execution. Our contributions are threefold:

- We introduce Reasoning Capsules, a framework that compresses high-level plans into compact latent tokens to drive downstream execution, reconciling the efficiency of latent reasoning with the structure and interpretability of explicit plans.
- We provide a principled grounding via the Information Bottleneck, and instantiate it with an architectural bottleneck plus a plan-reconstruction objective that yields minimal yet sufficient, semantically grounded latents.
- We present a practical training recipe that integrates with GPT-based decoders and a lightweight one-layer decoder for supervision, along with comprehensive experiments on arithmetic and commonsense reasoning showing consistent token savings, latency reductions, and accuracy gains over explicit-plan and entirely latent CoT baselines.

2 METHODOLOGY

In this paper, we introduce **Reasoning Capsule**, a framework designed to enhance the efficiency and accuracy of multi-step reasoning in Large Language Models (LLMs). The core idea is to compress high-level strategic plans into compact, continuous latent representations. This approach mitigates the computational and statistical inefficiencies of generating verbose textual reasoning chains. We first present the overall framework, then provide a theoretical justification from the perspective of the Information Bottleneck principle, and finally detail the training objective.

2.1 FROM CHAIN-OF-THOUGHT TO LATENT PLANNING

Standard Chain-of-Thought (CoT) tackles a problem Q by generating an explicit sequence of reasoning steps $S = (s_1, s_2, \dots, s_N)$ before producing a final answer A . The whole generation process

108 is modeled as $p(S, A|Q)$. While effective, generating the explicit sequence S token by token is
 109 computationally expensive and can introduce cascading errors.
 110

111 Our key insight is that reasoning chains often exhibit a hierarchical structure: a high-level strategic
 112 plan (e.g., “first, calculate the discount; then, compute the final price”) followed by low-level, step-
 113 by-step execution (e.g., “ $\langle\langle 100 \times 0.2 = 20 \rangle\rangle$ ”, “ $\langle\langle 100 - 20 = 80 \rangle\rangle$ ”). We hypothesize that the
 114 high-level plan is a primary candidate for compression, as its semantic essence is more critical than
 115 its specific wording for guiding the final solution.
 116

117 We therefore propose **Latent Planning**, a paradigm where the LLM first generates a compact latent
 118 representation of the high-level plan—the Reasoning Capsule—and then conditions on this capsule
 119 to execute the low-level reasoning steps. Let the explicit high-level plan be P and the subsequent
 120 execution steps be S_{exec} . Our approach bifurcates the reasoning process:
 121

122 **Latent Planning Stage:** Given Q , the model generates a set of capsules $C = \{c_1, \dots, c_K\}$ that
 123 encode the high-level strategy originally articulated in P . This stage models $p(C|Q)$.
 124

125 **Conditioned Execution Stage:** The model generates the execution steps S_{exec} and the final answer
 126 A conditioned on both the question Q and the latent plan C . This stage models $p(S_{\text{exec}}, A|Q, C)$.
 127

128 The overall generative process is thus factorized as $p(S_{\text{exec}}, A|Q, C)p(C|Q)$.
 129

130 2.2 ARCHITECTURE: GENERATING AND UTILIZING REASONING CAPSULES

131 Our architecture is built upon a standard decoder-only transformer. We introduce a mechanism to
 132 generate and consume Reasoning Capsules within the forward pass (see Figure 1).
 133

134 **Capsule Generation.** To generate a capsule, we prompt the model to emit a special ‘[CAPSULE]’
 135 token at the point where a textual plan would typically be articulated. The hidden state $h_t \in \mathbb{R}^D$
 136 from the final transformer layer corresponding to this token is used as input to a bottleneck network.
 137 This network projects the high-dimensional hidden state into a low-dimensional capsule $c \in \mathbb{R}^d$,
 138 where $d \ll D$:
 139

$$c = \text{Proj}(h_t) = W_p h_t + b_p, \quad (1)$$

140 where $W_p \in \mathbb{R}^{d \times D}$ and $b_p \in \mathbb{R}^d$ are learnable parameters. This projection acts as a structural
 141 implementation of the compression objective in the Information Bottleneck principle, forcing the
 142 model to distill the most salient strategic information from the context-rich hidden state h_t .
 143

144 **Conditioning on Capsules.** Once generated, the capsule c must guide subsequent reasoning. We
 145 project the capsule back into the model’s input embedding space using a separate linear trans-
 146 formation. This projected embedding is then fed as input to the transformer at the beginning of the
 147 execution stage. This allows the capsule to condition the generation of all subsequent tokens (S_{exec}
 148 and A), effectively acting as a compact, latent instruction that steers the model’s computations.
 149

150 2.3 THEORETICAL GROUNDING: THE INFORMATION BOTTLENECK PERSPECTIVE

151 A key challenge in latent variable models is ensuring the representations are both compressed and
 152 meaningful. Our design is formally motivated by the **Information Bottleneck (IB) principle** Tishby
 153 et al. (2000). The IB principle provides a framework for learning a compressed representation Z of a
 154 source variable X that is maximally informative about a target variable Y . The objective is to learn a
 155 mapping $p(Z|X)$ that maximizes the Lagrangian $\mathcal{L}_{\text{IB}} = I(Z; Y) - \beta I(X; Z)$, where $I(\cdot; \cdot)$ denotes
 156 mutual information and β is a Lagrange multiplier. The source variable X is the hidden state h_t ,
 157 which contains rich, high-bandwidth information about the question Q and reasoning context. The
 158 compressed representation Z is the Reasoning Capsule c . The target variable Y is the information
 159 required to solve the task, i.e., the execution steps and final answer (S_{exec}, A).
 160

161 The goal is to learn a capsule c that is a **minimal sufficient statistic** for the reasoning task.
 162

163 **Minimality (Compression):** The capsule c must be a compressed version of h_t . This corresponds
 164 to minimizing the mutual information $I(h_t; c)$, which forces the model to discard irrelevant information
 165 like specific phrasing or syntactic variations. Our bottleneck architecture (Eq. 1) directly serves
 166

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

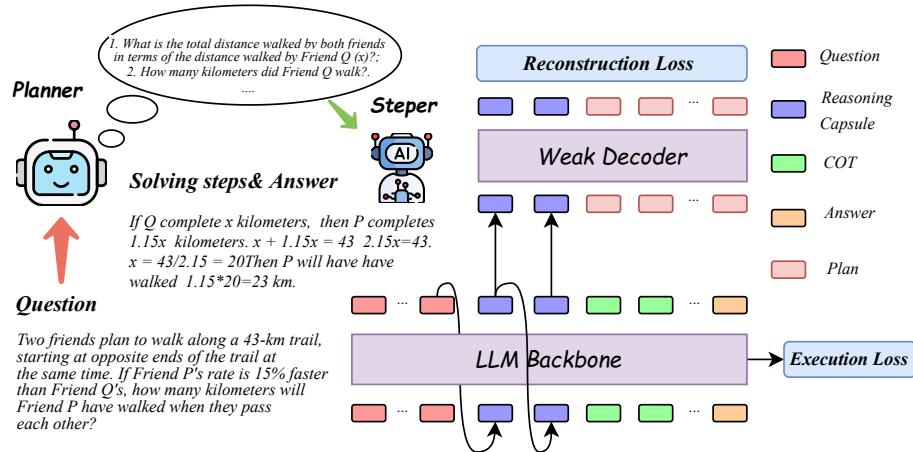


Figure 1: A conceptual diagram of our Reasoning Capsule framework. The LLM generates a compact latent capsule representing the high-level plan, which is passed through a bottleneck. This capsule conditions the subsequent generation of the execution steps and the final answer. An auxiliary reconstruction decoder ensures the capsule is semantically grounded by forcing it to reconstruct the original textual plan, guided by the Information Bottleneck principle.

185 this goal. By projecting $h_t \in \mathbb{R}^D$ into a low-dimensional space $c \in \mathbb{R}^d$ where $d \ll D$, we constrain
186 the information capacity of the capsule, providing a strong inductive bias for compression.

187 **Sufficiency (Informativeness):** The capsule c must retain all information from h_t that is relevant
188 for producing the correct solution by maximizing the mutual information $I(c; S_{\text{exec}}, A)$.

189 Directly optimizing $I(c; S_{\text{exec}}, A)$ is intractable. We instead use the original high-level textual plan,
190 P , as an effective proxy. We hypothesize that P encapsulates the core strategic information needed
191 for the task. Therefore, we aim to maximize $I(c; P)$ as a surrogate objective for sufficiency. This
192 ensures that the latent capsule is semantically grounded in the human-interpretable reasoning plan.
193 Our training objective, detailed next, is a practical realization of this IB-based formulation.

195 2.4 GROUNDED TRAINING OBJECTIVE

197 To operationalize the IB principle, we train the model with a multi-task objective that balances task
198 performance (sufficiency for the answer) and representational fidelity (sufficiency for the plan). The
199 total loss \mathcal{L} is a weighted sum of an execution loss and a plan reconstruction loss,

$$200 \quad \mathcal{L} = \mathcal{L}_{\text{exec}} + \lambda \mathcal{L}_{\text{recon}}, \quad (2)$$

202 where λ is a hyperparameter balancing the two objectives.

203 **Execution Loss ($\mathcal{L}_{\text{exec}}$)**. This is the primary task loss, ensuring the capsule is sufficient for solving
204 the problem. It is a standard auto-regressive cross-entropy loss for generating the target sequence
205 $T = (S_{\text{exec}}, A)$, which includes both the intermediate execution steps and the final answer. The
206 generation is conditioned on the question Q and the generated set of capsules C :

$$208 \quad \mathcal{L}_{\text{exec}} = -\log p(T|Q, C). \quad (3)$$

209 Minimizing this loss implicitly maximizes the mutual information $I(C; T)$, encouraging the cap-
210 sules to be directly helpful for the downstream task.

211 **Reconstruction Loss ($\mathcal{L}_{\text{recon}}$)**. This auxiliary loss serves as our practical method for maximizing
212 $I(C; P)$, grounding the latent space and ensuring interpretability. We employ a separate, shallow
213 transformer decoder that takes the sequence of capsules C as input and is trained to reconstruct the
214 original high-level textual plan P :

$$215 \quad \mathcal{L}_{\text{recon}} = -\log p(P|C). \quad (4)$$

This loss forces each capsule to encode sufficient information to recover its corresponding textual plan component, ensuring the latent plan is a faithful and high-fidelity representation of the explicit one. This prevents the model from learning uninterpretable latent shortcuts, making the reasoning process more robust.

By combining these components, our framework learns to form compact, efficient, and semantically meaningful plans, thereby practically and effectively realizing the goals of the Information Bottleneck principle.

3 EXPERIMENTS

To validate the effectiveness and efficiency of our **Reasoning Capsule** framework, we conduct a comprehensive set of experiments on various reasoning benchmarks. Our evaluation is designed to answer several key research questions that stem from the claims made in our methodology.

- **RQ1 (Effectiveness):** Does our Reasoning Capsule framework outperform strong baselines, exceptionally standard Chain-of-Thought fine-tuning (CoT-SFT), in terms of reasoning accuracy?
- **RQ2 (Generalizability):** Is the performance improvement of Reasoning Capsules consistent across mathematical and commonsense reasoning domains?
- **RQ3 (Scalability):** How does the benefit of our latent planning approach scale with the size of the base language model?
- **RQ4 (Efficiency):** Does the latent planning paradigm lead to a more compact and efficient reasoning process, measured by generation length and latency?
- **RQ5 (Interpretability):** Do the latent capsules encode genuine, verifiable planning information?

3.1 EXPERIMENTAL SETUP

3.1.1 DATASETS

We evaluate our method on standard benchmarks for mathematical and commonsense reasoning.

- **Mathematical Reasoning:** **GSM8K** Cobbe et al. (2021) (grade-school math word problems), **MultiArith** Roy & Roth (2016) (math problems requiring multiple reasoning steps), and **AQuA** Ling et al. (2017) (multiple-choice algebraic word problems).
- **Commonsense Reasoning:** **StrategyQA** Geva et al. (2021) (yes/no questions requiring a multi-step reasoning strategy) and **CommonsenseQA 2.0 (CSQA2)** Talmor et al. (2018; 2022) (a challenging multiple-choice QA dataset requiring prior knowledge).

3.1.2 CoT DATA GENERATION

We generate the CoT data using the `gpt-03` model via few-shot prompting. For each problem, we prompt the model to produce a solution plan and step-by-step reasoning. During this process, the final answer is withheld from the model. We employ rollout sampling with a temperature of 1.0 and repeat the generation up to 10 times per problem, stopping once a process yielding the correct answer is found. If all 10 attempts fail to produce a proper solution, we then provide the model with the correct answer and prompt it to generate a valid reasoning path, including the plan and steps. The generated prompts and cases are provided in Appendix B.

3.1.3 BASE MODELS

To test the scalability (RQ3), we conduct experiments on three decoder-only transformer models of varying sizes: **GPT-2 (0.2B)** Radford et al. (2019), **LLaMA-3 (1B)** Dubey et al. (2024), **LLaMA-3.1 (7B)** Dubey et al. (2024), **Qwen-3 (8B)** Yang et al. (2025). All methods are fine-tuned on the same pre-trained checkpoints for a fair comparison.

270
 271 Table 1: Main results on mathematical and commonsense reasoning benchmarks. We report accuracy
 272 (%) on five datasets for methods applied to GPT-2 (115M) and LLaMA-3 (1B) models. Our
 273 R-Capsule consistently outperforms the strong CoT-SFT baseline.

Method	Mathematical Reasoning			Commonsense Reasoning	
	GSM8K	MultiArith	AQuA	StrategyQA	CSQA2
<i>Model: GPT-2 (150M)</i>					
Standard SFT	19.1	78.5	28.1	–	–
CoT-SFT	42.9	86.9	33.2	–	–
Plan-SFT	37.5	82.6	30.9	–	–
Coconut	34.1	84.8	32.8	–	–
iCoT	41.5	85.2	33.0	–	–
R-Capsule (Ours)	46.2	92.4	37.9	–	–
<i>Model: LLaMA-3 (1B)</i>					
Standard SFT	44.1	89.0	35.5	60.5	55.1
CoT-SFT	59.7	94.1	48.4	62.9	57.2
Plan-SFT	59.7	94.1	44.8	63.4	56.5
R-Capsule (Ours)	63.8	96.5	52.1	66.8	59.8

288 3.1.4 BASELINES 289

290 We compare our **Reasoning Capsule** framework against a series of strong baselines:

291 **Standard SFT (w/o CoT):** A standard supervised fine-tuning baseline where the model is trained
 292 to directly predict the final answer A from the question Q, that is, modeling $p(A|Q)$. This establishes
 293 the performance without any explicit reasoning steps.

294 **CoT-SFT:** The standard Chain-of-Thought fine-tuning approach Wei et al. (2022). The model is
 295 trained to generate the complete textual reasoning chain S followed by the final answer A, modeling
 296 $p(S, A|Q)$. This is our main and strongest baseline.

297 **Coconut:** A method that improves reasoning by generating multiple reasoning paths and using a
 298 verifier to select the most consistent one, thereby enhancing robustness Hao et al. (2024).

300 **iCoT:** a method that allows language models to gradually internalize chain-of-thought (CoT) rea-
 301 soning steps by incrementally removing intermediate CoT tokens and fine-tuning, thereby achieving
 302 implicit CoT reasoning with high accuracy and fast inferenceDeng et al. (2024).

303 **Plan-SFT:** a unified post-training framework that distills synthetic "planning trajectories" (task de-
 304 compositions) from large-scale LLMs and fine-tunes smaller open-source LLMs via supervised fine-
 305 tuningParmar et al. (2025).

307 3.1.5 IMPLEMENTATION DETAILS 308

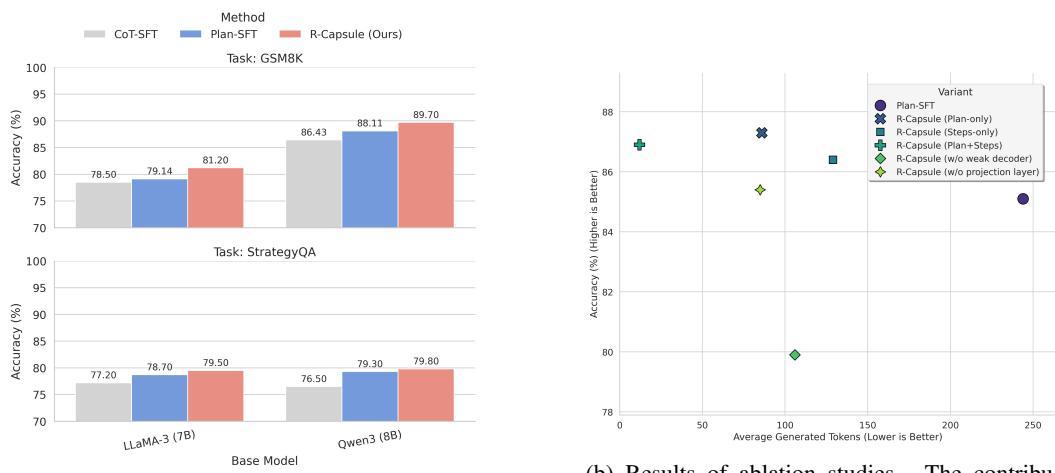
309 We employ the AdamW optimizer with a learning rate of 5×10^{-6} , where β_1 and β_2 are set to 0.9
 310 and 0.999, respectively, and the weight decay is 0.01. The learning rate follows a cosine schedule
 311 with a linear warmup over the first 10% of total training steps. We use a total batch size of 32 (4
 312 per GPU across 8 NVIDIA A800 GPUs) without gradient accumulation. The training epochs are
 313 set differently for various models: 5 epochs for GPT2, and 3 epochs for LLaMA3-1B, LLaMA3-
 314 7B, and Qwen3-8B. The length of the Reasoning Capsule is fixed at 2. For the loss function, the
 315 reconstruction loss (adopting MSE loss) is weighted by $\lambda = 0.5$ against the main task loss.

316 3.2 MAIN RESULTS (RQ1 & RQ2) 317

318 The results in Table 1 demonstrate the effectiveness and generalizability of our Reasoning Capsule
 319 framework (RQ1 and RQ2). Across both GPT-2 and LLaMA-3 (1B) backbones, our method con-
 320 sistently surpasses the strong CoT-SFT baseline on all five mathematical and commonsense reasoning
 321 benchmarks. For instance, on GSM8K, R-Capsule provides a +3.3% and +4.1% absolute improve-
 322 ment for GPT-2 and LLaMA-3, respectively. This confirms the core benefits of our latent planning
 323 approach on established model sizes.

324 3.3 SCALABILITY ANALYSIS (RQ3)

326 To address our third research question (RQ3) concerning the scalability of our approach, we con-
 327 ducted a focused evaluation on two contemporary 7-billion-parameter models: LLaMA-3-7B and
 328 Qwen3-8B. In this analysis, we compare our **R-Capsule** against the **CoT-SFT** baseline on the
 329 **GSM8K** (mathematical reasoning) and **StrategyQA** (commonsense reasoning) benchmarks. This
 330 enables us to evaluate whether the performance gains of our method scale effectively with model
 331 size across various reasoning domains.



348 (a) Performance of models with increasing parameter counts. R-Capsule maintains and, in some
 349 cases, enhances its accuracy gains at larger scales.

351 Figure 2: (a) Scalability analysis: Accuracy (%) on a representative task with increasing model size.
 352 (b) Ablation study: Effects of removing individual components on model performance.

354 The results, presented in Figure 2a, demonstrate that the advantages of the R-Capsule framework
 355 persist and are even amplified on these larger models. For instance, on LLaMA-3-7B, R-Capsule
 356 achieves a significant absolute improvement of **2.7%** on **GSM8K** and **2.3%** on **StrategyQA** over
 357 the **CoT-SFT** baseline. A similar trend is observed on Qwen3-8B, where our method yields a
 358 notable improvement of **3.27%** on **GSM8K** and **3.3%** on **StrategyQA**. These consistent gains across
 359 two distinct and powerful foundation models strongly suggest that the structural benefits of latent
 360 planning, as embodied by our R-Capsule, represent a general principle that scales effectively with
 361 model capability. This finding provides a robust affirmative answer to RQ3.

362 3.4 ABLATION STUDY: WHERE TO COMPRESS

364 We ablate which part of the reasoning process to compress. We augment the reasoning chain with
 365 an explicit textual **plan**, creating two components: the plan and the steps. We test four variants:

- 368 • **Plan-SFT**: Explicit plan → explicit steps (no compression).
- 369 • **R-Capsule (Plan-only)**: Latent plan → explicit steps. This is our main proposal.
- 370 • **R-Capsule (Steps-only)**: Latent steps, analogous to implicit CoT.
- 371 • **R-Capsule (Plan+Steps)**: Latent plan → latent steps (maximal compression).

373 Figure 2b shows that compressing only the plan (**R-Capsule (Plan-only)**) achieves the best
 374 accuracy-efficiency trade-off. It improves accuracy over the explicit Plan-SFT baseline while
 375 reducing generated tokens by over 60% (e.g., from 244 to 86 on Qwen3 8B). This suggests that
 376 encoding the high-level plan latently provides a robust guide for generating explicit, low-level steps.
 377 In contrast, compressing the detailed steps (**Steps-only** or **Plan+Steps**) is less effective, with
 the latter showing a drop in accuracy despite achieving maximum compression. Finally, ablating

378 Table 2: Token budget and latency comparison on GSM8K (Qwen3). Latency is measured with a
 379 batch size of 1 on the A100.

381 Method	382 Tokens to Answer	383 Compression Ratio	384 Latency (s)
385 Explicit Plan-CoT	386 447	387 1.0	388 3.12
389 R-Capsule (Plan-Latent)	390 232	391 0.52	392 1.47

386 the **projection layer** or the **weak decoder** leads to significant performance degradation (e.g., -7.4%
 387 acc. on Qwen3 without the weak decoder), confirming their architectural importance.

389 3.5 EFFICIENCY AND LENGTH ANALYSIS (RQ4)

391 To address our fourth research question (RQ4) concerning efficiency, we analyze the generation
 392 length and inference latency of our proposed method. As detailed in Table 2, we evaluate our R-
 393 Caps (Plan-Latent) approach against the Explicit Plan-CoT baseline on the GSM8K benchmark. We
 394 measure two key metrics: the total number of tokens generated to reach the final answer and the end-
 395 to-end inference latency on a single A100 GPU. The results demonstrate a substantial improvement
 396 in efficiency. Our R-Capsule (Plan-Latent) method requires only 232 tokens to derive an answer,
 397 marking a 48% reduction compared to the 447 tokens used by the baseline. This corresponds to a
 398 compression ratio of 0.52, indicating that our method can produce solutions that are nearly half the
 399 length of standard explicit reasoning chains. This significant reduction in token generation directly
 400 translates to a notable decrease in latency. The inference time drops from 3.12 seconds for Explicit
 401 Plan-CoT to just 1.47 seconds for our method, achieving a 2.12x speedup. This efficiency gain stems
 402 from our model’s ability to operate on compact latent representations of the plan, bypassing the need
 403 to generate verbose, token-intensive intermediate steps.

404 3.6 INTERPRETABILITY OF LATENT CAPSULES (RQ5)

406 To validate our core hypothesis, that the bottleneck architecture distills a plan into a compact, ab-
 407 abstract latent representation, we investigate the information encoded within these latent capsules.
 408 By analyzing the output of a weak decoder fed with a corresponding capsule, we aim to provide
 409 qualitative evidence that these capsules preserve the plan’s essential logical structure, effectively
 410 functioning as abstract ‘latent thoughts’ rather than mere textual compressions. As the case demon-
 411 strates, the output from the weak decoder (weak decoder plan) is significantly more concise than
 412 the original plan. It strips away redundant descriptive language, distilling the core steps into direct.
 413 This provides strong evidence for our central hypothesis: the bottleneck architecture incentivizes the
 414 model not merely to compress the plan, but to compile it into an abstract computational graph.

415 Case Study: Model Output

417 “question”: ”In a spelling contest, Peter and Christina are on one team... Peter misses seven
 418 words and Christina misses 6, fewer than half the words Peter spelled correctly. How many
 419 words were misspelled by their team?”

420 “plan”: ”Here’s a plan to solve the problem: 1. Calculate Peter’s correct words... 2. Find
 421 half of Peter’s correct words... 3. Determine Christina’s incorrect words... 4. Sum Peter’s
 422 and Christina’s incorrect words...”

423 “weak decoder plan”: ”Determine the number of words Peter spelled correctly. Calculate
 424 half of the words Peter spelled correctly. Determine the number of words Christina spelled
 425 incorrectly. Calculate the total number of words misspelled by the team.”

426 “steps”: ”1. Peter’s correct words: $50 - 7 = 43$ 4. Total team incorrect words: $7 + 15 =$
 427 22.

428 Further analysis (Appendix C) supports these findings:

- 430 • **Vocabulary Distribution:** Projecting latent tokens into the vocabulary space reveals a
 431 focus on abstract verbs (e.g., ‘calculate’, ‘total’) rather than specific numbers, indicating
 432 they capture high-level intent.

432 • **Attention Analysis:** The decoder attends heavily to the latent plan tokens when generating
 433 subsequent calculation steps, confirming they serve as a guide.
 434

435 This evidence confirms that latent capsules are most effective for representing high-level strategic
 436 plans, while explicit generation remains crucial for detailed, procedural steps.
 437

438 4 RELATED WORK 439

440 Chain-of-Thought Prompting Chain-of-Thought (CoT) promptingWei et al. (2022) has been shown
 441 to significantly enhance performance on complex tasks by generating explicit, step-by-step reasoning
 442 tracesSun et al. (2024). Variants like self-consistency aggregationWang et al. (2022) further im-
 443 prove reliability by ensembling multiple reasoning chains. Representative examples of this paradigm
 444 include o1El-Kishky (2024) and DeepSeek R1DeepSeek-AI et al. (2025)—both reasoning models
 445 that have achieved strong performance. Collectively, these findings confirm that CoT prompting
 446 effectively addresses the challenges of complex task reasoning: its explicit step-by-step trace de-
 447 sign breaks down intricate problems into manageable logical segments, while variant optimizations
 448 (e.g., tree of thoughtsYao et al. (2023b),self-refineYang et al. (2024)) mitigate uncertainty in rea-
 449 soning processes. The strong performance of models such as o1 and DeepSeek R1 further validates
 450 that the CoT paradigm is not only theoretically sound but also practically impactful, becoming a
 451 foundational approach for enhancing reasoning capabilities in advanced models.
 452

453 Latent Planning and the Information Bottleneck However, the verbosity of CoT not only increases
 454 inference latency and memory overheadHong et al. (2025) but also risks propagating errors across
 455 long reasoning sequences. Implicit or latent reasoning schemesDeng et al. (2023); Ye et al. (2025)
 456 compress intermediate reasoning steps into dense vectorsHao et al. (2024), enabling faster infer-
 457 enceCheng & Durme (2024) but at the cost of reduced interpretability. Without explicit grounding,
 458 such representations may encode spurious shortcuts. By contrast, we leverage the Information Bot-
 459 tleneck principleTishby et al. (2000) to achieve two key goals: (i) enforcing minimality via a low-
 460 dimensional bottleneck, and (ii) ensuring sufficiency through an auxiliary reconstruction loss that
 461 recovers the original high-level plan. This dual objective guarantees that each *Reasoning Capsule* is
 462 both compact and semantically faithful. For additional details or supplementary materials about the
 463 content discussed in this section/chapter, readers are kindly referred to Appendix D.
 464

465 Hierarchical and Modular Reasoning Hierarchical reasoning frameworks decouple planning from
 466 execution, e.g., in plan-and-solve prompting or modular CoT Parmar et al. (2025). Tool-oriented
 467 methods (e.g., ToolformerSchick et al. (2023), ReActYao et al. (2023c)) similarly structure the rea-
 468 soning process into tool selection and execution. These approaches, however, rely on generating
 469 and parsing explicit plans or tool invocation commandsHao et al. (2023), which introduces extra
 470 computational overheadWang et al. (2024). Our method internalizes high-level planning within a
 471 latent space, eliminating the need for explicit plan text or tool-specific syntax. A subsequent recon-
 472 struction module then verifies that this latent plan accurately encapsulates the intended reasoning
 473 strategy, thereby unifying structural rigor and inference efficiency within a single model.
 474

475 5 CONCLUSION 476

477 In this paper, we introduce Reasoning Capsules (**R-Capsule**), a hybrid framework that reconciles the
 478 efficiency of latent reasoning with the transparency of explicit CoT. Our key insight is to decouple
 479 high-level planning from low-level execution, compressing only the strategic plan into a compact
 480 set of latent tokens—the capsule. Grounded in the Information Bottleneck principle, our method
 481 enforces the capsule to be both minimal, by discarding redundant information via a low-capacity
 482 bottleneck, and sufficient, by optimizing a dual objective for task accuracy and plan reconstruc-
 483 tion. This design preserves the high-level reasoning structure while drastically reducing token overhead.
 484 Extensive experiments on mathematical (e.g., GSM8K) and commonsense (e.g., StrategyQA) rea-
 485 soning benchmarks demonstrate that R-Capsule significantly outperforms strong baselines across
 486 various model sizes. Ablation and interpretability studies confirm that our approach of compressing
 487 only the plan yields an optimal trade-off and that the capsules encode meaningful strategic intent.
 488 R-Capsule establishes that targeted compression of high-level plans is a principled and effective path
 489 toward efficient, accurate, and interpretable LLM reasoning.
 490

486 REFERENCES
487

488 Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
489 inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczek, et al. Graph of
490 thoughts: Solving elaborate problems with large language models. In *Proceedings of the AAAI
491 conference on artificial intelligence*, volume 38, pp. 17682–17690, 2024.

492 Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
493 Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
494 thought for reasoning large language models. *arXiv preprint arXiv:2503.09567*, 2025.

495 Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning through
496 dense representations, 2024. URL <https://arxiv.org/abs/2412.13171>.

498 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
499 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
500 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

501 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
502 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
503 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
504 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
505 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
506 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
507 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
508 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
509 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
510 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
511 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
512 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
513 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghai Lu, Shangyan Zhou, Shanhua Chen, Shengfeng
514 Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
515 Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
516 Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
517 Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
518 Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
519 aoshua Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
520 Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
521 Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
522 Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
523 Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
524 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
525 Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
526 Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
527 Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
528 Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
529 ment learning, 2025. URL <https://arxiv.org/abs/2501.12948>.

530 Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul Smolensky, Vishrav Chaudhary, and Stuart
531 Shieber. Implicit chain of thought reasoning via knowledge distillation, 2023. URL <https://arxiv.org/abs/2311.01460>.

532 Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to inter-
533 nalize cot step by step. *arXiv preprint arXiv:2405.14838*, 2024.

534 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
535 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
536 *arXiv e-prints*, pp. arXiv–2407, 2024.

537 Ahmed El-Kishky. Openai o1 system card. *ArXiv*, abs/2412.16720, 2024. URL <https://api.semanticscholar.org/CorpusID:272648256>.

540 Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
 541 use a laptop? a question answering benchmark with implicit reasoning strategies. *Transactions of*
 542 *the Association for Computational Linguistics*, 9:346–361, 2021.

543

544 Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
 545 Reasoning with language model is planning with world model, 2023. URL <https://arxiv.org/abs/2305.14992>.

546

547 Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
 548 Tian. Training large language models to reason in a continuous latent space. *arXiv preprint*
 549 *arXiv:2412.06769*, 2024.

550

551 Jialiang Hong, Taihang Zhen, Kai Chen, Jiaheng Liu, Wenpeng Zhu, Jing Huo, Yang Gao, De-
 552 peng Wang, Haitao Wan, Xi Yang, Boyan Wang, and Fanyu Meng. Reconsidering over-
 553 thinking: Penalizing internal and external redundancy in cot reasoning, 2025. URL <https://arxiv.org/abs/2508.02178>.

554

555 Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
 556 planners: Extracting actionable knowledge for embodied agents. In *International conference on*
 557 *machine learning*, pp. 9118–9147. PMLR, 2022.

558

559 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 560 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth*
 561 *International Conference on Learning Representations*, 2023.

562

563 Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale: Learn-
 564 ing to solve algebraic word problems. *arXiv preprint arXiv:1705.04146*, 2017.

565

566 Mihir Parmar, Palash Goyal, Xin Liu, Yiwen Song, Mingyang Ling, Chitta Baral, Hamid Palangi,
 567 and Tomas Pfister. Plan-tuning: Post-training language models to learn step-by-step planning for
 568 complex problem solving. 2025.

569

570 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 571 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

572

573 Subhro Roy and Dan Roth. Solving general arithmetic word problems. *arXiv preprint*
 574 *arXiv:1608.01413*, 2016.

575

576 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
 577 Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
 578 use tools, 2023. URL <https://arxiv.org/abs/2302.04761>.

579

580 Jiankai Sun, Chuanyang Zheng, Enze Xie, Zhengying Liu, Ruihang Chu, Jianing Qiu, Jiaqi Xu,
 581 Mingyu Ding, Hongyang Li, Mengzhe Geng, Yue Wu, Wenhui Wang, Junsong Chen, Zhangyue
 582 Yin, Xiaozhe Ren, Jie Fu, Junxian He, Wu Yuan, Qi Liu, Xihui Liu, Yu Li, Hao Dong, Yu Cheng,
 583 Ming Zhang, Pheng Ann Heng, Jifeng Dai, Ping Luo, Jingdong Wang, Ji-Rong Wen, Xipeng Qiu,
 584 Yike Guo, Hui Xiong, Qun Liu, and Zhenguo Li. A survey of reasoning with foundation models,
 585 2024. URL <https://arxiv.org/abs/2312.11562>.

586

587 Alon Talmor, Jonathan Herzog, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
 588 answering challenge targeting commonsense knowledge. *arXiv preprint arXiv:1811.00937*, 2018.

589

590 Alon Talmor, Ori Yoran, Ronan Le Bras, Chandra Bhagavatula, Yoav Goldberg, Yejin Choi, and
 591 Jonathan Berant. Commonsenseqa 2.0: Exposing the limits of ai through gamification. *arXiv*
 592 *preprint arXiv:2201.05320*, 2022.

593

594 Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. *arXiv*
 595 *preprint physics/0004057*, 2000.

596

597 Evan Z Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, William Song, Vaskar Nath, Zi-
 598 wen Han, Sean M. Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language im-
 599 proves LLM search for code generation. In *The First Workshop on System-2 Reasoning at Scale*,
 600 *NeurIPS’24*, 2024. URL <https://openreview.net/forum?id=B2iSfPNj49>.

594 Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
 595 Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
 596 models. *arXiv preprint arXiv:2305.04091*, 2023.

597 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 598 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 599 *arXiv preprint arXiv:2203.11171*, 2022.

600 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 601 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 602 *neural information processing systems*, 35:24824–24837, 2022.

603 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 604 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 605 *arXiv:2505.09388*, 2025.

606 Yuqing Yang, Yan Ma, and Pengfei Liu. Weak-to-strong reasoning. In Yaser Al-Onaizan, Mo-
 607 hit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Lin-
 608 guistics: EMNLP 2024*, pp. 8350–8367, Miami, Florida, USA, November 2024. Association
 609 for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.490. URL <https://aclanthology.org/2024.findings-emnlp.490/>.

610 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
 611 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023a.
 612 URL <https://arxiv.org/abs/2305.10601>, 3:1, 2023a.

613 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
 614 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023b.
 615 URL <https://arxiv.org/abs/2305.10601>.

616 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 617 React: Synergizing reasoning and acting in language models, 2023c. URL <https://arxiv.org/abs/2210.03629>.

618 Jiaran Ye, Zijun Yao, Zhidian Huang, Liangming Pan, Jinxin Liu, Yushi Bai, Amy Xin, Liu We-
 619 ichuan, Xiaoyin Che, Lei Hou, and Juanzi Li. How does transformer learn implicit reasoning?,
 620 2025. URL <https://arxiv.org/abs/2505.23653>.

621 A USE OF LARGE LANGUAGE MODELS

622 We utilized Large Language Models (LLMs), such as Gemini-2.5-Pro, during the preparation of
 623 this manuscript. The usage was twofold: 1) for polishing the language, which included correcting
 624 grammatical errors and improving sentence clarity; and 2) as a brainstorming partner to discuss and
 625 refine technical details. The authors retained complete control over the content, and all final ideas,
 626 claims, and text are our own. We take full responsibility for the entire paper.

627 B CHAIN-OF-THOUGHT DATA GENERATION DETAILS

628 To ensure the reproducibility of our Chain-of-Thought (CoT) training data, this section provides the
 629 complete few-shot prompt template used for generating high-level plans and step-by-step execution
 630 steps via GPT-o3, along with representative examples of the generated outputs.

631 B.1 FEW-SHOT PROMPT TEMPLATE FOR COT GENERATION

632 The prompt template follows a structured format to guide GPT-o3 in distinguishing between high-
 633 level plans (task decomposition logic without specific calculations) and low-level execution steps
 634 (concrete mathematical operations or reasoning details). The template includes explicit instructions
 635 and two reference examples, as shown below:

648

649

650

651

652

653

654

655

656

657

Prompt

Provide a question you need to generate a problem-solving idea based on the question, solution and answer to split the problem into multiple sub-questions as a problem-solving plan and the mathematical formula steps. Here I give two examples. example 1. xxx example 2. xxx As shown in the example, you need to output the "plan", "steps" and "answer" sections in the format of "plan: xxx steps:xxx answer: xxx". Do not output other contents.

655

656

B.2 REPRESENTATIVE GENERATED COT EXAMPLES

657

We provide two complete examples of CoT outputs generated using the above template, corresponding to a mathematical reasoning problem (from GSM8K) and a commonsense reasoning problem (from StrategyQA), respectively. These examples illustrate the consistent distinction between "plan" (task decomposition) and "steps" (concrete execution) in our data.

663

664

B.2.1 EXAMPLE FROM GSM8K (MATHEMATICAL REASONING)

665

666

Case Study: Model Output

667

668

669

Problem: Two friends plan to walk along a 43-km trail, starting at opposite ends of the trail at the same time. If Friend P's rate is 15% faster than Friend Q's, how many kilometers will Friend P have walked when they pass each other?

670

671

672

673

674

Generated Output: Plan: 1. Define a variable to represent the distance walked by Friend Q when they meet. 2. Express Friend P's distance in terms of Q's distance using the given speed ratio (since time is equal for both, distance ratio equals speed ratio). 3. Set up an equation based on the total trail length (sum of P's and Q's distances = 43 km). 4. Solve the equation to find Q's distance, then calculate P's distance.

675

676

677

Steps: 1. Let x = distance (in km) walked by Friend Q when they meet. 2. Friend P's speed is 15% faster than Q's, so P's distance = $(1.15x)$. 3. Total trail length: $(x + 1.15x = 43)$ km. 4. Combine like terms: $(2.15x = 43)$. 5. Solve for x : $(x = 43 / 2.15 = 20)$ km (Q's distance). 6. Calculate P's distance: $(1.15 \times 20 = 23)$ km.

Answer: 23

678

679

680

B.2.2 EXAMPLE FROM STRATEGYQA (COMMONSENSE REASONING)

681

682

683

Case Study: Model Output

684

685

Problem: Can a penguin fly from the South Pole to the North Pole?

686

687

688

Generated Output: Plan: 1. Confirm the key biological characteristic of penguins related to flight. 2. Analyze the geographical distance between the South Pole and North Pole, and the required mode of travel for such a distance. 3. Evaluate whether penguins' physical capabilities match the travel requirements. 4. Conclude whether the journey is possible.

689

690

691

692

693

694

695

Steps: 1. Penguins are flightless birds—they have wings adapted for swimming (flippers) but lack the wing structure and muscle strength needed for flight. 2. The distance between the South Pole and North Pole is approximately 12,742 km (diameter of Earth), which would require sustained flight for days (even for flying birds). 3. Since penguins cannot fly, they cannot traverse this distance via air; additionally, ocean routes between the poles are blocked by ice sheets, making swimming impossible. 4. Thus, a penguin cannot fly from the South Pole to the North Pole.

Answer: No

696

697

698

699

C INTERPRETABILITY

700

701

To understand why this implicit plan representation is so effective, we conducted an in-depth analysis of the information encoded within these latent tokens. We set the number of latent plan tokens

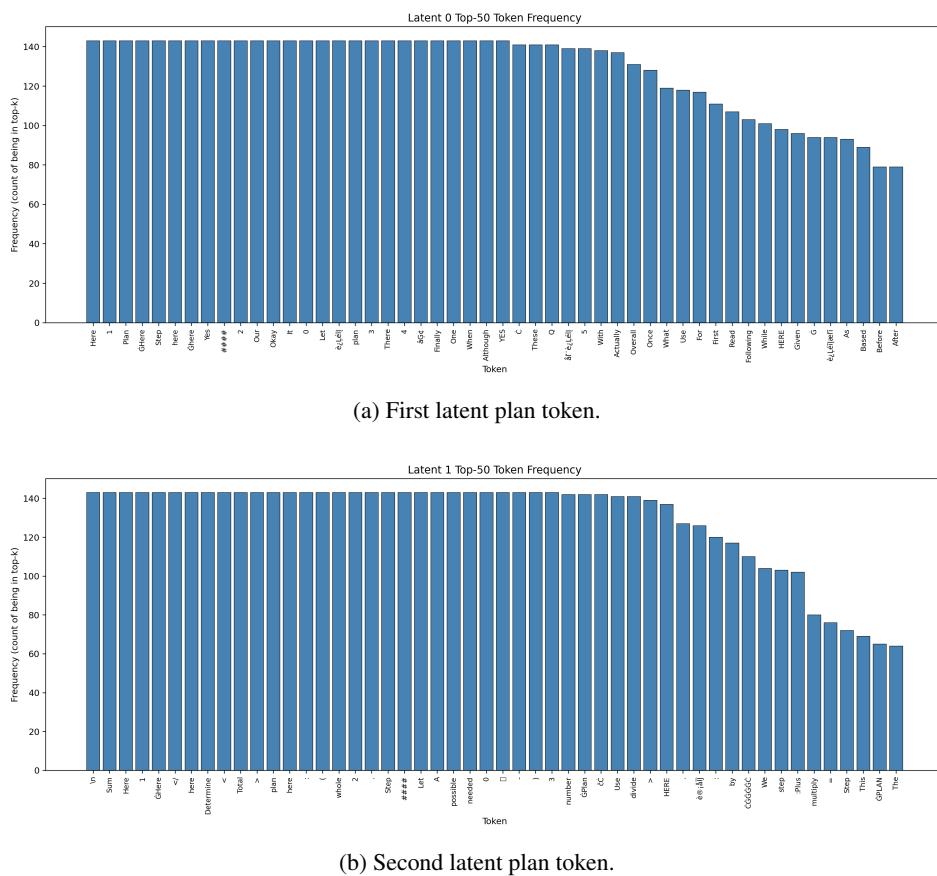


Figure 3: Vocabulary distribution of the LM head logits for the two latent plan tokens, aggregated over 200 test cases. The analysis reveals an explicit functional specialization. **(a)** The first token learns to encode **intent and initiation**, with its top predictions dominated by discourse markers ('Here', 'Plan', 'First') and instructional verbs ('Calculate', 'Find'). **(b)** The second token focuses on **structure and execution**, predicting structural elements (newlines, parentheses), mathematical operators ('-', '*'), and operational terms ('Sum', 'multiply') to format the subsequent step.

to two. We analyzed the vocabulary distribution of the language model head's logits corresponding to each token across a sample of 200 different problems. The results, visualized in Figure 3, reveal a fascinating specialization of roles between the latent tokens.

The First Latent Plan Token: Encoding Intent and Initiation. As shown in Figure 3(a), the vocabulary distribution for the first latent token is dominated by high-frequency "discourse markers" and "initiator" words. Tokens such as Here, Plan, Step, Let's, and First appear with high probability. This suggests that the first token has learned to function as a structural signal, activating a "planning" or "reasoning-initiation" mode within the model. Furthermore, the presence of instructional verbs like Calculate, Think, Find, and Determine in the mid-frequency range indicates that this token also captures the high-level intent or the primary cognitive action required for the initial part of the plan. It essentially tells the model, "Begin reasoning, and the first major goal is to calculate/find something."

The Second Latent Plan Token: Encoding Structure and Execution. The distribution for the second latent token, shown in Figure 3(b), paints a different but complementary picture. This token’s top predictions are heavily skewed towards structural and mathematical symbols, including newline characters (`\n`), comparison operators (`<`, `>`), parentheses (`(`, `)`), and arithmetic operators (`-`, `*`, `=`). This strongly indicates that the second token has specialized in encoding the executional and structural format of the subsequent calculation step. It prepares the model for the precise symbolic manipulation required, acting as a bridge between the high-level intent (from the first token) and

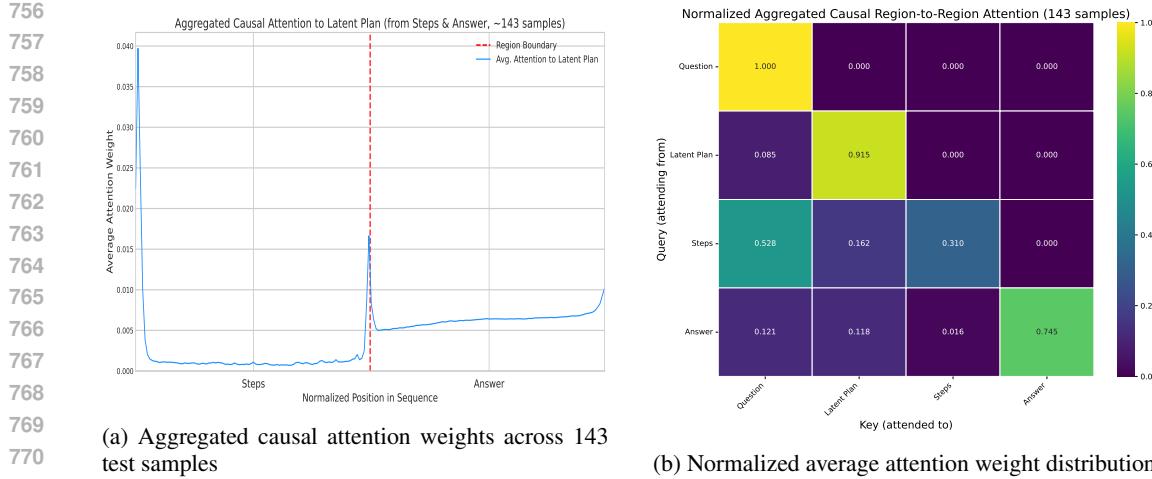


Figure 4: Hierarchical attention analysis of Reasoning Capsules.

the low-level, formatted output of the CoT step. The co-occurrence of tokens like Sum, Total, number, divide, and multiply further solidifies its role in priming the model for specific mathematical operations.

C.1 ATTENTION ANALYSIS

To validate the Reasoning Capsule’s role in guiding generation, we quantitatively analyzed the decoder’s attention mechanism. Using 143 samples from the GSM8K dataset, we tracked the attention from the generated Steps & Answer sequence to the Latent Plan (Reasoning Capsule).

For the analysis, we segmented the input into three regions: Question, Latent Plan, and Steps & Answer. We then calculated the average attention from the Steps & Answer region to the Latent Plan region, aggregated across all samples. The results are visualized as:

- **Attention Curve (Figure 4a):** Plots the average attention weight against the normalized position in the Steps & Answer sequence, showing the attention trend during generation.
- **Inter-Region Attention Heatmap (Figure 4b):** An aggregated heatmap showing the attention flow between all defined regions (Query and Key).

C.2 ATTENTION CURVE (FIGURE 4A): SUSTAINED GUIDANCE

The attention to the Latent Plan remains high and stable throughout the generations, confirming its continuous guiding role.

- **Step Generation (Normalized Position 0–0.8):** Attention is stable, indicating that the model continuously references the high-level plan while generating low-level calculation steps.
- **Answer Generation (Normalized Position 0.8–1.0):** Attention slightly increases as the model cross-references the plan to ensure the final answer aligns with the initial strategy.

C.3 INTER-REGION ATTENTION HEATMAP (FIGURE 4B): LATENT PLAN DOMINANCE

The heatmap quantifies the Latent Plan’s dominance in attention allocation.

- **Strong Guidance for Generation:** The attention from Steps to the Latent Plan (0.745) and from Answer to the Latent Plan (0.310) is significantly higher than to the original Question (0.121 and 0.162, respectively). This confirms the capsule acts as the primary strategic guide.

810
 811
 812
 813
 814
 815
 816
 817
 818
 819

- **Information Compression:** Low attention to the *Question* suggests the Latent Plan effectively extracts and condenses all necessary information, making repeated access to the original problem unnecessary.
- **Reduced Error Propagation:** Near-zero self-attention within the generated steps (*Steps* \rightarrow *Steps*) indicates the model relies on the global Latent Plan as a unified reference rather than on preceding steps, which helps mitigate cascading errors.

D INFORMATION BOTTLENECK FORMULATION FOR REASONING CAPSULES

820 We formalize the training objective of Reasoning Capsules under the **Information Bottleneck (IB)**
 821 principle (Tishby et al., 2000). Our goal is to learn a compressed latent representation $C \in \mathbb{R}^d$
 822 of the high-level plan that is *minimal* yet *sufficient* for both reconstructing the original plan P and
 823 predicting the final answer A .

D.1 IB OBJECTIVE

824 Given the hidden state $\mathbf{h}_t \in \mathbb{R}^D$ at the capsule-token position, we seek a stochastic encoding $p(C |$
 825 $\mathbf{h}_t)$ that solves

$$\min_{p(C|\mathbf{h}_t)} \underbrace{I(\mathbf{h}_t; C)}_{\text{compression}} - \beta \underbrace{I(C; P)}_{\text{plan reconstruction}} - \gamma \underbrace{I(C; A)}_{\text{answer prediction}} \quad (5)$$

831 where

832

- $I(\mathbf{h}_t; C)$ enforces **minimality** by limiting the information contained in the capsule;
- $I(C; P)$ ensures **sufficiency** for reconstructing the textual plan P ;
- $I(C; A)$ guarantees that the capsule is predictive of the final answer A ;
- $\beta, \gamma > 0$ are Lagrange multipliers controlling the trade-off between compression and sufficiency.

D.2 PARAMETRIC APPROXIMATION

833 In practice, we employ a **deterministic encoder** with a linear bottleneck

$$834 C = \text{Proj}(\mathbf{h}_t) = \mathbf{W}_p \mathbf{h}_t + \mathbf{b}_p, \quad \mathbf{W}_p \in \mathbb{R}^{d \times D}, d \ll D. \quad (6)$$

835 This structural bottleneck enforces hard minimality: under a Gaussian assumption, the mutual information is upper-bounded by $I(\mathbf{h}_t; C) \leq \frac{d}{2} \log(2\pi e \sigma^2)$.

D.3 TRAINING OBJECTIVE AS IB SURROGATE

836 We optimize a variational upper bound on Eq. equation 5:

$$837 \mathcal{L}_{\text{IB}} = \underbrace{-\log p_\theta(P | C)}_{\text{plan reconstruction}} + \lambda \underbrace{-\log p_\phi(A | C, Q)}_{\text{answer prediction}} \quad (7)$$

838 where

839

- $p_\theta(P | C)$ is a *shallow* transformer decoder that regenerates the plan;
- $p_\phi(A | C, Q)$ is the primary model that produces the final answer;
- λ balances the two losses, and is numerically equivalent to the ratio β/γ in Eq. equation 5.

E LATENT TOKEN NUMBER ABLATION

863 To validate the choice of latent token number K (fixed as 2 in the main text), we conduct ablation experiments on $K \in \{1, 2, 3, 4\}$ using GSM8K (mathematical reasoning) and StrategyQA

Table 3: Latent Token Number K Ablation on Qwen3-8B

Model	K	GSM8K Acc. (%)	GSM8K Tokens	StrategyQA Acc. (%)	Latency (s)
Qwen3-8B	1	87.9	82	78.1	1.53
	2	89.7	86	79.8	1.65
	3	86.2	103	79.5	1.89
	4	85.5	118	78.9	2.11

(commonsense reasoning) datasets. We evaluate accuracy, generated tokens (before answer), and inference latency (batch size=1 on A100), with results shown in Table 3.

Key observations: 1. $K = 2$ achieves the highest accuracy across models/datasets. $K = 1$ under-represents the plan (lower accuracy), while $K \geq 3$ increases token count/latency without accuracy gains (redundant information). 2. Latency grows linearly with K , as more latent tokens require additional projection/computation. Thus, $K = 2$ balances accuracy and efficiency.