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ABSTRACT
The in-depth analysis of time series has gained a lot of research
interest in recent years, with the identification of periodic patterns
being one important aspect. Many of the methods for identifying
periodic patterns require time series’ season length as input param-
eter. There exist only a few algorithms for automatic season length
approximation. Many of these rely on simplifications such as data
discretization and user defined parameters. This paper presents
an algorithm for season length detection that is designed to be
sufficiently reliable to be used in practical applications and does
not require any input other than the time series to be analyzed. The
algorithm estimates a time series’ season length by interpolating,
filtering and detrending the data. This is followed by analyzing the
distances between zeros in the directly corresponding autocorre-
lation function. Our algorithm was tested against a comparable
algorithm and outperformed it by passing 122 out of 165 tests,
while the existing algorithm passed 83 tests. The robustness of our
method can be jointly attributed to both the algorithmic approach
and also to design decisions taken at the implementational level.
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1 INTRODUCTION
In many areas of natural science and economics there exists an
abundance data which can be used beneficially once they are pro-
cessed. Often these data are collected at regular intervals to enable
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making statistical assumptions and predictions for numerous appli-
cations. Data collected repeatedly over a time span is referred to as
time series.

The in-depth analysis of time series has been a central topic of
research in recent years. Typically, time series are investigated to
better understand their past behavior and to make forecasts for
future data. To achieve this, identifying trends and regularities are
particularly useful, as they allow one to generalize from the given
data to a larger context.

A very natural approach to finding these relevant patterns is the
Exploratory Data Analysis [11]. This method relies on visualizing
the data, typically without making any prior assumptions about
the data. An advantage of this procedure is that humans usually
analyze visual data very effectively and thus identify many relevant
features of the data.

Figure 1: A simple example of a time series with trend and
periodic patterns. Here the season length is 12 month.

While data visualization works well with many time series, there
are also several cases where it is insufficient. When dealing with
very complex data, it is often difficult to infer meaningful features.
Furthermore, it is also frequently necessary to analyze dozens of
time series, where manual analysis quickly becomes tedious or even
infeasible. Therefore, an automated and robust approach that can
deal with complex data is required.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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While there are many established algorithms for trend estima-
tion [2] [12], methods for finding periodic patterns and features are
much younger. One popular approach is the data cube concept [4],
which relies on constructing and employing a data cube for finding
periodic features in a time series. This method would, for instance,
successfully identify a peak of ice cream sales every summer given
monthly sales data over several years. However, to achieve this, the
algorithm requires the user to input the time series’ season length
(or frequency). In the example depicted in Figure 1 the season length
would be 12, as the sales pattern repeats every 12 months.

Today, there already exist a few algorithms for approximating
season length. Most of them rely on data discretization before
analysis, which is a simplification of data as seen above to discrete
numbers such as 2, 4, and 6. For finding so-called symbol periodicity
in discretized data one can for instance use suffix trees [10] or
convolution [3]. One downside of discretization is that it inevitably
leads to a loss of information, which might change the result in
some cases. A more significant disadvantage of discretization is that
contemporary time series symbolization methods such as SAX [8]
require the user to define the number of symbols to which the data
is discretized. This is be problematic since data mining algorithms
should in general have as few parameters as possible [7].

A different approach that does not rely on data discretization
is searching for local peaks and troughs in a time series’ autocor-
relation function [13]. This method works fully automated and
efficiently computes the correct season length of many time series.
Yet there are still several cases where this algorithm is not able to
identify the correct frequencies - particularly in time series with
noisy data or very long periods.

Due to the above mentioned algorithm’s disadvantages, it should
be beneficial to find a more reliable method. Such an algorithm
should not rely on user defined parameters or data discretization
and still correctly identify a time series’ season length. A method
that was designed to meets these requirements is presented in this
paper. The source code of our system, the test data set and detailed
test results can be accessed online1.

2 BACKGROUND
The existing time series analysis literature has proposed several
different approaches for seasonality detection. Often the term pe-
riodicity detection is used in literature for the same task. These
methods can be split in three different categories: explicit season
length, discretized time series, and single season length.

1. Explicit season length. The first type of algorithms depends on
an external specification of the period length to extract periodic
features. The previously mentioned data cube concept [4] was a pi-
oneer method for mining periodic features in time series databases.
Other examples are the chi-squared test [9] or binary vectors [1].
The advantage of such procedures is their low time complexity and
their reliable results. However, relying on an external specification
of the period inherently prevents these methods from detecting an
unknown period. In many applications a parameter-free method is
being highly desired.

1https://github.com/mtoller/autocorr_season_length_detection

2. Discretized time series. The second type of algorithms for de-
tecting periodic features test all possible periods of a time series.
This is typically performed on a discretized time series, as otherwise
such algorithms would quickly become computationally infeasible.
Examples for such methods are suffix trees [10], convolution [3]
and data sketches [6]. Unlike the previous type, these algorithms
typically find all potentially relevant periodic patterns without pre-
vious specification of the period. However, since they depend on
data discretization, they can only be as accurate as the underlying
data discretization allows. Furthermore they may return more than
one possible result. While this is often an accurate reflection of a
time series periodic features, it is often advantageous in practice to
provide a single dominant period for further automated processing
of a time series.

3. Single season length. The third type of algorithms approxi-
mates a single season length from the raw data. While such an
approach might be too limited for highly complex data, it can be
useful in cases where time series have one dominant frequency.
One popular algorithm [5] of this category can be found in the R
forecast library and was derived from another method [13] which
is based on autocorrelation. The algorithm presented in this paper
belongs to the third type and focuses on improving the robustness
of the season length detection.

Combination of methods. All three categories consequently serve
different purposes in time series seasonality detection and also can
be combined in useful ways. For example, an algorithm of type 3
can be used for season length detection, which can then be used as
input for a type 1 algorithm to enable correct periodicity mining.
Further, type 2 and 3 can be combined on the same time series to
assess the effect discretization has on a specific time series.

3 CONCEPTS
Let x = {x1,x2, ...,xn } be a series of real-valued observations and
∆x the interval at which these observations are made. If x has a
subsequence of observationsQx which occurs every s observations
after its first occurrence, x is seasonal. Moreover, if Qx is not part
of a longer repeating subsequence of x and it cannot be divided
into shorter equal subsequences, then x is perfectly seasonal with
season length s∆x .

∆x is negligible since it is independent from x . The problem of
finding season length s∆x can therefore be reduced to finding the
characteristic subsequence Qx which fulfills the following formal
criteria 1 and 2. The first criterion is

|Qx | = s (1)

which means the number of observations in Qx must be equal
to the number of observations in x from one occurrence of Qx to
its next. The second criterion is

∀q ∈ ρ(Qx ) \Qx : qk , Qx (2)

with ρ(Qx ) being the power set (set of all subsets) of Qx and qk :=
q⌢qk−1 (q followed by qk−1). This means thatQx must not contain
a subsequence q that can be repeated k times to create Qx , i.e.
Qx , {q,q,q, ...}.

For example, given a time series

y = {0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 1, 2} (3)

https://github.com/mtoller/autocorr_season_length_detection
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the sequence a = {0, 2, 1, 2} is repeated four times in y. Sequence
a cannot be reduced to shorter equal sequences, as a1,2 = {0, 2} ,
a3,4 = {1, 2} and the number of observations in a is equal to the
number of observations from one occurrence of a to its next occur-
rence |a | = sa = 4. Therefore a = Qy and y has a season length of
4∆y .

If one extends the sequence by one element to b = {0, 2, 1, 2, 0}
then |b | = 5 , sb = 8, which means it cannot be Qy . Now consider-
ing sequence c = {0, 2, 1, 2, 0, 2, 1, 2} the first criterion is fulfilled:
|c | = sc = 8. Yet the second condition is violated as c can be split
into the equal subsequences c1,2,3,4 = c5,6,7,8 = {0, 2, 1, 2}, there-
fore c can be divided into shorter equal sequences and also cannot
be Qy .

3.1 Detrending
Many time series have a trend in addition to its seasonality, which
means that the seasonal influences revolve around a trend function.
For instance, in the example in Equation 3 there could be a linear
increase in the observations after every season, e.g.

y′ = {0, 2, 1, 2, 0.1, 2.1, 1.1, 2.1, 0.2, 2.2, 1.2, 2.2, ...}

In this case Qy′ would be time-dependent:

Qy′(t) = {0, 2, 1, 2} +
1
10

∗ ⌊
t

4
⌋

with t ∈ N0. However, the unscaled season length sy′ = |Qy′ | is
identical for all t and is therefore not time-dependent. Hence it
is desirable to remove trend influences from a time series before
analyzing seasonality.

Approximating the trend components can be achieved with re-
gression analysis [2], which is a procedure for finding a function
which minimizes the mean square error between the observations
and the approximated function. Its cost function can be written as

C(θ ) =
1
N

N∑
i=1

((Xi )
T θ − xi )

2 (4)

where X is the design matrix, x the time series and θ = {θ1, ...θn }
the parameters of the regression. A design matrix is a matrix where
each row describes one observation and each column models an
assumed feature onto the corresponding observation. For instance,
in polynomial regression X can be written as

X =



1 1 1 1 ...

1 2 4 8 ...

1 3 9 27 ...

1 4 16 64 ...
...
...
...

...
. . .


To find the parameters which minimize the cost function, one

can use the analytical solution

θ = (XTX )−1XT x . (5)
The trend of time series x can then be removed with

xdetrend = x − Xθ . (6)

Removing all trend influences from a time series significantly
facilitates investigating seasonal effects, as the characteristic subse-
quences Q(t )

x then directly correlate with each other. This property

Figure 2: Examples of time series with (blue) and without
(black) quadratic trend.

allows one to investigate the time series’ autocorrelation instead of
the time series itself. Such an approach is advantageous since the
original observations are frequently much more difficult to analyze
than autocorrelation.

3.2 Removing Noise
Before directly analysing the characteristic subsequence Qx , an-
other major component of many time series needs to be consid-
ered. Most non-discretized time series contain random inaccuracies,
which are often named noise or residuals. Minimizing these random
influences is desirable, since they tend to obscure the true nature
of the observations. This is typically achieved by means of filters.

As noise typically affects every observation in a time series,
it tends to have a shorter period than seasonality, which has a
period of at least 2 observations. Such a shorter period leads to
noise having a higher frequency than seasonality. Therefore, it is
advantageous to apply a low-pass filter on the time series, which
rejects any frequency higher than a given threshold. This smooths
the curve while maintaining the original season length.

However, using a low-pass filter also has a negative effect on the
observations. While removing white noise, filters likewise alter the
observations’ correlation. To lessen these unwanted side effects,
one may interpolate the data before applying the low-pass filter.

3.3 Analyzing Correlation
Only after removing most noise from the observations, it is possi-
ble to meaningfully investigate autocorrelation of a time series. A
time series’ autocorrelation is the correlation of its observations at
different times. Autocorrelation is formally defined as

Ax (τ ) =

∫ ∞

−∞

xtxt+τdt (7)
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where τ is the lag at which the observations are compared, and
x is the complex conjugate of x . Since time series are time-discrete
and real-valued, this can be further simplified to

Ax (τ ) =
T∑
t
xtxt+τ . (8)

After a further normalization the resulting values range from −1
to +1. The former implies complete anti-correlation between the
two observations, while the latter means full correlation.

In general, two objects a and b correlate, if a change in a is likely
to be linked with the same change in b as well, whereas negative
correlation would be associated with a change in b in the opposite
direction. In case of 0 correlation, a change in a is independent from
b.

Autocorrelation describes the correlation of a with itself at a
different point in time. If a is seasonal, then its autocorrelation
will be seasonal with the same season length. This property en-
sures that investigating autocorrelation leads to the same season
length as analyzing the original observations, which is usually more
challenging.

3.4 Interpolating the Observations
Autocorrelation should make it possible to observe seasonality.
Yet when applied on time series being preprocessed via low-pass
filters one will experience a negative side-effect: Its characteristic
subsequence’s length |QAx | no longer matches the length original
subsequence |Qx |. Instead, its unscaled season length is |QAx | =

k |Qx | withk ∈ N and consequently a multiple of the original length,
which makes finding the correct season length more difficult.

To avoid this side-effect, it is possible to linearly interpolate
the observations before applying a filter. This means that between
every neighboring observations, several intermediate observations
are inserted. For example, the sequence y = {0, 2, 1, 2} could be
interpolated to y′ = {0, 1, 2, 1.5, 1, 1.5, 2}. The linear interpolation
ψ (t) of two observations x1 and x2 can be written as

ψ (∆t ) = x1 +
x2 − x1
tx2 − tx1

(∆t − tx1 ) (9)

where txi is the time at which xi was observed and ∆t denotes
a chosen point in time between these two observations. By inter-
polating all neighboring observations, x can be expanded to its
interpolated sequence x ′

Interpolating the observations is advantageous, since it usually
lessens the filters negative effect on the length of the characteristic
subsequence. Let χ be x after interpolation, filtering and detrending.
The unscaled season length of its autocorrelation Aχ matches the
unscaled season length of the original observations x , which means
|QAχ | = |Qx |

After interpolating, filtering and detrending the observations
and calculating their autocorrelation, it is finally possible to directly
compute the time series’ unscaled season length s = |QAχ |. This
can be done by analyzing the zeros of Aχ . The distance between
two zeros Aχ (τ1) = 0 and Aχ (τ2) = 0 with τ1 < τ2 is equal to half
the unscaled season length s . Therefore, s can be computed with

s = |Qx | = |QAχ | = 2(τ2 − τ1). (10)

Figure 3: Autocorrelation plot computed after three prepro-
cessing steps - after all three steps have been applied, the
autocorrelation will be further analyzed.

To calculate the true, scaled season length, one has to simply
form the product s∆x , which is negligible in practice.

4 SYSTEM
While the above mentioned concepts work well in theory, there are
several challenges in practice which still need to be met:

• Trends may change over time
• Noise may vary
• Machines have limited numeric precision
• Seasonality is not always perfect
• Presence of outliers

Dealing with these and other problems is imperative for robust
parameter-free season length detection. An overview of the steps
which our system takes to meet these challenges can be seen in
Figure 4.

Another crucial practical aspect is runtime, since time series
tend to contain thousands if not millions of observations. To be
valuable in practice, it is desirable for the implementation to have
a worst-case computational complexity of at the most O(n logn),
with n being the number of observations in the time series.

4.1 Approximating the Trend
The seasonality of a time series typically revolves along a certain
trend. However, this trend may follow an arbitrary function, which
makes removing all trend in any time series impossible. Therefore, it
is necessary to only consider trends which are particularly common
in practice.

Linear trends occur frequently in mathematical functions, but
are not very common in practice. Therefore, it is insufficient to
assume that all time series will have a close to linear trend. However,
as polynomials of higher order tend to over-fit the present data,
linear trends can at least be compared with other assumptions
without over-fitting the data. Consequently, it is useful to begin
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Figure 4: The individual steps of the season length detection
system.

trend approximation by solving the 1st order polynomial linear
regression.

Unlike linear tendencies, quadratic trends are fairly common.
Many relations in nature follow the square - for instance the relation
between speed and acceleration of moving objects. Therefore it is
advantageous to attempt modeling the data with a quadratic trend.
To compare such a model with a linear trend estimation one can
compare the resulting mean square errors, which can be achieved
with

ln(C(θ1) −C(θ2)) > k (11)

where θi are the parameters which minimize the mean square
error C(θ ) with a polynomial of ith degree. The logarithm is ap-
plied since the difference tends to be very large. The constant k
determines the decision boundary between linear and quadratic
trend estimation. In the context of this implementation it will be
assumed that k = e2. This value was chosen empirically rather than
theoretically, which obviously will not be appropriate in all cases.
However, determining the correct value of this and a few other
empirically chosen values for all cases would be beyond the scope
of this paper.

4.2 Choosing the Correct Filter
A promising approach for detrending time series is high-pass filter-
ing. An advantage of this approach is that it can effectively remove
non-stationary trends from time series, which is difficult to achieve
with linear regression. A disadvantage of high-pass filters is that
they depend more strongly on threshold values, which limits their
value to that of the chosen models’ constants.

There is a variety of ways to construct a low-pass filter, yet
none of them can create the ideal low-pass filter, which rejects all
frequencies higher than the cutoff frequency. It is only possible to
approximate a close-to ideal filter, which removes most too high

frequencies while changing the less frequent signals as little as
possible. This can be achieved by generating a Butterworth low-
pass filter, which can be obtained by choosing its order and cutoff
frequency and then applying the corresponding algorithm.

However, choosing the correct order and cutoff frequency is
problematic, as the amount and amplitude of noise vary in time
series. In the context of our implementation, the order η = 2 and
cutoff-frequency ω = 0.001π were chosen empirically in prelimi-
nary tests.

4.3 Numeric Inaccuracies
Machines only have a finite numeric precision. Therefore, the theo-
retical method must be adjusted at several points.

Firstly, there usually is no exact 0 in the autocorrelation, rather
the data moves from positive to negative values or vice versa. Con-
sequently, it is necessary to either create a tolerance interval ϵ
around Aχ (τ ) = 0, or to interpolate the data until it is accurate
enough. In case of our implementation, both strategies are applied.

Secondly, even after an almost ideal detrending, the autocorrela-
tion will not have a linear trend of 0, but rather a tendency very
close to 0. To deal with this, a second linear regression is performed
after the autocorrelation was computed. The autocorrelation is then
not searched for Aχ (τ ) = 0, but rather Aχ (τ ) − Xθ = 0, where Xθ
is the linear trend of the Aχ .

Thirdly, due to the consequential mentioned tolerance interval

Aχ (τ ) − Xθ ± ϵ = 0 (12)

there will be several solutions for τ which are in the same tolerance
interval. Therefore, it is necessary to discard all τ1 and τ2 for which
the following condition is true

|τ1 − τ2 | ≤ 1. (13)

This is obvious, since no time series can have a season length
shorter than two observations and the difference between two zeros
corresponds to half the season length.

4.4 Imperfect Seasonality
Another problem that exists in practice is that seasonality is rarely
perfect, as assumed in theory. Frequently, seasonality outliers or
a systematic seasonal change occur, which invalidate the above
formula s = 2(τ2 − τ1). To deal with these problems, it is possible to
not only analyze τ2 and τ1, but rather any pair of adjacent solutions
for Equation 10.

Let α = {α1,α2, ...,αm } be all values for τ so that Equation 10
is fulfilled and let δ = {δ1, ...,δm−1} = {α2 − α1,α3 − α2, ...,αm −

αm−1} be the distances between each pair of adjacent zeros in
Equation 10. By removing all pairs that violate Equation 13 from δ
one can compute all true distances between seasonal repetitions
δ ′ = {δ ′1, ...,δ

′
l }, which are further sorted in ascending order.

These true distances δ ′ provide a better representation of the
season length than an arbitrary pair of solutions τ1 and τ2. However,
simply taking an average of these values does not suffice, since
many time series contain seasonality outliers. Further, numeric
imprecision may cause the implementation to miss correct zeros,
or any remaining noise might add incorrect zeros. Therefore, it is
necessary to perform additional operations on δ ′.
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To separate the correct values in δ ′ from the incorrect, it is
necessary to assume that δ ′ contains a sufficiently large number
of correct values. Since seasonality is stationary in time series, the
correctly identified distances have a low variance in most cases,
while erroneous values tend have a much higher sample variance.

When considering Equation 14, it can be observed that the in-
tervals δ ′

[3,8] and δ
′
[9,10] have a low variance when compared to

intervals including other values.

δ ′ = [281, 546, 697, 703, 704, 705, 706, 706, 1411, 1411, 2823] (14)

A typical zero-to-zero distance vector

This suggests that the correct zero-to-zero distance is either
1
2s ≈ 703 or 1

2s ≈ 1411. By further considering that 703 ∗ 2 ≈ 1411,
it is intuitive to assume that these intervals are multiples of each
other. Since Equation 2 must still be valid, it is safe to assume that a
zero was missed between two zeros and thus caused the multiplied
distance. Therefore, the correct zero-to-zero distance is very likely
703.

While the above example suggests taking the low-variance inter-
val with the smallest mean, it is more reliable to rather search for
the low-variance interval with the highest cardinality. The reason
for this is the necessary assumption that a sufficiently large amount
of the found zero-to-zero distances is almost correct, as otherwise
reliably finding the true season length would be impossible.

To apply the above reasoning in a generalized way, it is necessary
to reliably identify these low-variance intervals. This can be done
by computing the quotients between the distances

γ = {γ1,γ2, ...,γl−1} = {
δ ′2
δ ′1
,
δ ′3
δ ′2
, ...,

δ ′l
δ ′l−1

}. (15)

These quotients describe the rate at which the distances between
zeros change. A series of low values for γ implies a stable, low-
variance interval of distances, while high values suggest a jump
between intervals. These high and low values can be separated with

Γi =


1 if i = 1 ∧ |γ1 − γ2 | ≤ k

i if i = l − 1
i + 1 if |γi − γi+1 | > k

0 else

(16)

where k is a constant which was chosen empirically in preliminary
tests with 0 < k < 1 and i = 1, 2, ..., l − 1. This gives a series of
integers where 0 represents a low change of distances, and all other
numbers the index of a high change. By then discarding all zeros
with Γ′ = Γ \ {0}, the longest low-variance interval of distances
can be found with

i∗ = arдmax
i

(Γ′i+1 − Γ′i ) (17)

a = Γ′i∗

b = Γ′i∗+1
where a is the index of the first distance in the interval, and b the

index of the last. If the resulting interval δ ′
[a,b] is long enough, it can

be advantageous do further discard an upper and lower percentile

of the values within the interval. However, in practice, we found
that this alters the result very little in our experiments.

With the longest low-variance interval, an approximation of
the season length can be computed by taking the average of these
distances with

s =
2

b − a

b∑
j=a

δ ′j . (18)

5 EVALUATION
5.1 Data Set
To evaluate the implementation, it is necessary to test it with sev-
eral different time series. For this purpose, two distinct time series
databases were gathered. The first database contained extensive
variations of synthetic data, while the second database consisted of
real financial and climate data. The time series from these databases
were tested in nine test runs, where our implementation was tested
against the existing algorithm in the R forecast library. The test
cases for runs 1 to 7 were taken from the synthetic database, while
the test cases for runs 8 and 9 were taken from the real database
and are briefly described below:

In the Diverse test, both algorithms were confronted with 20
time series, which strongly vary in trend, seasonality, noise and
length. However, all these time series had a consistent season length,
which does not vary within the series. This first testing was meant
to compare the general applicability of the algorithm, which is
achieved by challenging them with very different problems, which
yet have a distinct solution.

In the Complex test, the 20 test cases included many numeric
outliers, largely changing season amplitude, season outliers and
also varying noise. This had the purpose to assess the algorithms’
error tolerance.

The Ambiдuous test included 20 examples with more than one
correct solution. This aimed at observing the choices made by the
algorithms and thus identifying their tendencies or preferences.

The Variations test featured 4 time series, which were each
presented in 5 variations. This was meant to assess the algorithms’
consistency.

The Noise test started with a simple time series without any
noise, which was then tested repeatedly with increasing amounts
of noise. The goal of this run was to compare the noise resilience
of the two algorithms.

The Lenдth test also consisted of a single, simple time series,
which was presented with varying season length. The purpose of
this run was to test both algorithms in different result domains.

The NoSeason test featured 10 examples with no seasonality.
This had the purpose to explore the algorithms’ capability to dis-
tinguish between seasonal and non-seasonal time series.

The Econonmy test consisted of 20 time series of seasonal eco-
nomic data. These financial data were taken primarily from sectors
which display seasonality, such as tourisms and restaurants. Three
of these test cases contained both annual and quarterly seasonal-
ity, and several others only showed a very slight manifestation of
seasonality.

The Climate test contained 20 time series of seasonal climate
data about temperature, precipitation, sun hours or storm counts.
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5.2 Results
During testing, the R library algorithm which uses spectral density
estimation was referred to as Spectral and our system using auto-
correlation as Autocorr. For each test, the season length suggested
by the algorithms was considered correct if it was within an error
margin of ±20% of the reference value.

The accumulated test results are depicted in Table 1, while the
results of the individual test runs can be seen in Figure 5. In the
first 6 tests algorithm Autocorr performed better than algorithm
Spectral . The most significant difference was in the noise test, were
Spectral passed 3 tests and Autocorr 12 tests. The NoSeason test,
which only consisted of time series without seasonality, was the
only test run were both algorithms passed the same number of tests.
In all other test runs, including Economy and Climate , Autocorr
passed more tests than Spectral .

Database #Test Cases Spectral Autocorr
Synthetic 125 62 96

Real 40 21 26∑
165 83 122

Table 1: Numeric Test Results with the number of correctly
identified season lengths for both algorithms.
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Figure 5: Test results of algorithms Spectral andAutocorr for
all 9 test runs.

Figure 6 displays the relative difference between the detected
season length and the reference value for all test cases. The area
between the curves and zero represents the accumulated test error
of the algorithms. Spectral had an accumulated error of 172%, while
Autocorr’s relative errors add up to 57%.

Figure 6: Relative detection error in all test cases -Autocorr’s
curve was negated to contrast the deviations

6 DISCUSSION
The purpose of this paper was to present an algorithm developed for
identifying time series’ season length which is sufficiently reliable
to be used in real-world applications. The conducted tests tried to
cover many different aspects of time series behavior and our system
compares favorably against the reference algorithm.

However, the overall results alone do not necessarily suggest
that the methods applied in Autocorr are preferable for identifying
season length in all settings. Both implementations still rely on
empirically chosen constants, which may have an influence on the
outcome. For example, had the constant inAutocorr for distinguish-
ing linear and quadratic trends been chosen slightly higher, then
several time series with quadratic trends may have been misclas-
sified. This argument can be made for every empiric constant in
both implementations.

The Noise test, which was a repeated test of the same time series
while increasing the noise component from test to test, has revealed
a noise susceptibility of Spectral . This is likely an inherent property
of workingwith spectral density estimates, as noise tends to hide the
relevant frequencies. This is also supported by the Variations test,
where Spectral failed to disregard outliers induced on otherwise
unchanged time series.

Another noteworthy observation is that Spectral frequently mis-
classified season lengths longer than 100∆x . In fact, Spectral never
suggested a season length longer than 998∆x , although there were
18 cases where this would have been necessary. This suggests that
the implementation of Spectral may not be the optimal choice for
investigating seasonality in large time series with very long season
lengths. Additional evidence for this assumption is provided by the
Lenдth test, which was designed to test this particular aspect of
seasonality.

A dependency that greatly affects both algorithms is that they
both rely on an adequate removal of trend from the time series.
Algorithm Autocorr always returned an erroneous result if it failed
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to correctly identify the trend. Moreover, neither Spectral nor
Autocorr were capable of detrending any non-linear or non-square
trend. Correctly removing trends from time series is an active re-
search field, fostering the hope that this issue will be addressed.

There is also a single case of a false positive in Autocorr that
is not directly apparent. While it did correctly analyze the season
length of test case 5 in the the NoSeason test, it was only coinci-
dental that the result is correct. The reason for this is that Autocorr
perfectly removed all trend from this purely quadratic time series
and then considered almost every not interpolated point in the
autocorrelation as potential zero. Computing the mean distance
between these obviously yields an average of 1, which is then dis-
carded due to Equation 13. However, with an only slightly altered
time series, the average distance could be rounded up to 2, which
would not be discarded, yet still incorrect for a purely quadratic
time series.

The most expensive operation in both implementations is com-
puting the matrix-inverse required for detrending the data, which
has a worst-case computational complexity of O(n2.3727). This is
far above the desirable computational complexity of O(n logn), as
for an exemplar time series with 1000 observations, in the ideal case
k ∗ 103 operations would be required, whereas both implementa-
tions need in the worst case k ∗ 106 operations, which is a thousand
times higher.

7 CONCLUSION
Detecting season length in time series without human assistance
is challenging. The method presented in this paper attempts to
complete this task by interpolating, filtering and detrending a time
series and then analyzing the distances between zeros in its auto-
correlation function. The implementation of this concept is still
leaves room for improvement, as it still relies on several empirically
chosen constants. However, the results demonstrated sufficient
robustness in our evaluation.

Future work concerning automated season length detection
might attempt to eliminate the algorithm’s constant-dependency
by inferring them from the data. Further, the detrending can likely
be improved by including high-pass filtering into the procedure.
Another interesting concept would be to develop a season length
detection algorithm based on a machine learning method like a
neural network.

To advance automated seasonality and periodicity mining in
general, it is important to develop automated procedures for a dy-
namic computation of otherwise static constants in contemporary
algorithms. Achieving this is an interesting challenge for the future.
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