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Abstract

Given the large scale of public functional Magnetic Resonance Imaging (fMRI),
e.g., UK Biobank (UKB) and Human Connectome Projects (HCP), brain foundation
models are emerging. Although the amount of samples under rich environmental
variables is unprecedented, existing brain foundation models learn from fMRI
derived from a narrow range of cognitive states stimulated by similar environments,
causing the limited robustness demonstrated in various applications and datasets
acquired with different pipelines and limited sample size. By capitalizing on the
variety of cognitive status as subjects performing explicit tasks, we present the
mixture of brain experts, namely BrainMoE, pre-training on tasking fMRI with rich
behavioral tasks in addition to resting fMRI for a robust brain foundation model.
Brain experts are designed to produce embeddings for different behavioral tasks re-
lated to cognition. Afterward, these cognition embeddings are mixed by a cognition
adapter via cross-attention so that BrainMoE can handle orthogonal embeddings
and be robust on those boutique downstream datasets. We have pre-trained two
existing self-regressive architectures and one new supervised architecture as brain
experts on 68,251 fMRI scans among UKB and HCP, containing 12 different cog-
nitive states. Then, BrainMoE is evaluated on a variety of applications, including
sex, age prediction, human behavior recognition, disease early diagnosis of Autism,
Parkinson’s disease, Alzheimer’s disease, and Schizophrenia, and fMRI-EEG mul-
timodal applications, where promising results in eight datasets from three different
pipelines indicate great potential to facilitate current neuroimaging applications in
clinical routines.

1 Introduction

Like foundation models for other topics, brain foundation models aim to learn feature representation
fundamentally from large-scale data of neuroimaging. Functional Magnetic Resonance Imaging
(fMRI) of the brain, as it offers insight into the relationship between functional fluctuations and
human behavior [[1]], is critical to discovering the enigma of human cognition and promoting clinical
applications. Blood-Oxygen-Level Dependent (BOLD) signal in fMRI measures neuronal activity.
Such raw signals are preprocessed as timeseries of regional mean or the functional connectivity
(FC) by coefficient correlation for analysis with high Signal-to-Noise Ratio (SNR) [6]]. While the
exploration of brain foundation model has expanded to various masking strategies for either (latent)
BOLD or FC reconstruction [23} |11 [34]], previous works formulating this problem as transferring
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Figure 1: Motivation of BrainMoE through the lens of the information bottleneck theory. (a) Feature
representation learning makes an information bottleneck between data and label space, where X
denotes data, Z denotes latent feature representation, Y is the label of data, and I(-; -) is the mutual
information. (b) A model pre-trained on multiple cognitive states may compromise the underlying
heterogeneity between different states, where Z cannot be optimal for all states. (c) The mixture of
brain experts dedicated to diverse cognitive states leads to a joint cognition embedding so that the
downstream applications can be advanced by stratified pre-training on rich behavioral tasks.

self-regressive methodologies from natural language and image to neuroimaging ignored the inter-
correlation between non-imaging phenotypes [14]. Furthermore, they are restricted by a narrow range
of one or two cognitive states, e.g., the resting state, causing samples with behaviors other than resting
to be overlooked. Due to the lack of explicit designs to utilize the complete brain fMRI dataset with
respect to neuroscience knowledge, a mixture of brain experts is proposed towards a robust brain
foundation model in this work.

UK Biobank (UKB) [20] and two Human Connectome Projects (HCP) [29] 5] that contain healthy
subjects 22 to 100 years of age are mainly used as pre-training datasets since they have a large scale.
Previously, most subjects in resting state among UKB and HCP were included in BrainMass [34] and
BrainJEPA [11]. While BrainLM [23]] involved an additional tasking state in UKB, its performance
has shown worse than others. Even though BrainMass has collected the most available published
resting fMRI data on the OpenNeuro platform [22], ten available cognitive states in HCP datasets
were ignored. It is intuitive to train a single model with all available data. However, as shown in Fig.
[] (a) and (b), simply pre-training with all cognitive states results in a single model being suboptimal
to samples with different cognitive states, e.g., the red information bottleneck established by mutual
information is suboptimal in the latent space where cognition related behaviors are variable. In fact,
a single model is observed to compromise the underlying heterogeneity between cognitive states
derived from diverse neural circuits stimulated by different behaviors [25]. This issue necessitates
mixing experts specialized in different cognitive states, as shown in Fig. |1|(c), where each expert
produces the cognition embedding, that is, a feature representation stratified by cognitive states.

On the other hand, tremendous efforts have been made to benchmark generally purposed models [18,
24, [10] and brain-dedicated architectures [19,[17, 4, |31]] on brain fMRI data. A common observation
on the results is that performance is diverse using BOLD or FC as the model input for different
datasets, leading to related brain fMRI analysis works being categorized by types of input: (1)
BOLD foundation models [23| [11]] and (2) FC foundation models [[15, 34]]. Nevertheless, this
reduces the adaptability of previous brain foundation models for datasets that fit better with a type
of input differentiated from the pre-training stage. Mixture-of-experts (MoE) cooperating with
router and adapter [35} 37]] has demonstrated great potential for multimodal, referring to BOLD and
FC in our data, and multitask, referring to multiple cognitive states. Therefore, a novel cognition
adapter is proposed to facilitate BrainMoE as a robust brain foundation model learning from various
cognitive states. Although adapters in MoE for language and vision fields are using small architecture
like a multilayer perceptron (MLP) [[18], a high scalability of the cognition adapter can ensure
the transformation from cognition embeddings to objectives. Given that MLP is not scalable (see
Appendix), a Transformer decoder is utilized for adapting BrainMoE to downstream applications.

To this end, this work has three contributions: (1) We propose BrainMoE, an MoE framework for
brain fMRI data that towards high robustness for downstream tasks with different pipelines and
limited sample size. (2) A cognition adapter is designed to adapt embeddings from experts pre-trained
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Figure 2: Increasing the scale of pre-training data of a brain foundation model leads to a marginal
or negative performance boost due to 11 overlooked cognitive states. Four columns are four down-
stream applications, where ABIDE and PPMI are disease recognition, and HCPA and HCPYA are
human behavior recognition. Two rows are two expert architectures, where BrainMass uses FC and
BrainJEPA uses BOLD.

with various cognitive states, regardless of the input type, for finetuning. (3) Two existing brain
foundation models pre-trained in self-supervised manners and one cognition classifier pre-trained in
a supervised manner are both evaluated as experts in BrainMoE, where experts pre-train on 68,251
fMRI scans among UKB and HCPs and fine-tune on various applications, including sex prediction,
human behavior recognition, and disease early diagnosis of Autism, Parkinson’s disease, Alzheimer’s
disease, and Schizophrenia among seven datasets.

2 Preliminaries

Brain foundation models To the best of our knowledge, BrainL.M [23]] represents the first brain
foundation model. It applied Masked Autoencoding (MAE) to BOLD signals reconstruction. How-
ever, densely filling the entire fMRI time series can impair the model’s capacity to differentiate
between noise and meaningful signals. Prior work [3]] has demonstrated that masked pretraining
in generative frameworks such as MAE often yields suboptimal results in off-the-shelf evaluations,
such as linear probing. Similarly, BrainJEPA [11] introduces an alternative architecture employing
a distinct JEPA-based masking strategy, addressing BrainLLM’s limitations by drawing on insights
from I-JEPA [3]. Although BrainJEPA reports superior performance relative to linear probing, it does
not explicitly incorporate pre-training with tasking fMRI. BrainMass [34]] used a larger pre-training
dataset (see Appendix) and a matching objective between pseudo FC matrices as a novel framework.
Whilst, it used sololy the resting fMRI and overlooked more than 38k tasking fMRI in the dataset.

Resting- and tasking-state f/MRI Neuroimaging data contains brain activity reflecting the interac-
tion between functional fluctuations and human behavior. Studies controlled subjects in a resting
or explicit tasking state during the data acquisition to offer distinct, complementary perspectives on
brain function [36]]. Large-scale studies [29] 5, [20] are observed to collect at least one tasking state in
addition to the resting state, while brain foundation models mainly pre-train on the portion under the
resting state, overlooking half or more data in the datasets. The intuitive method of mixing all data
together may compromise the underlying heterogeneity between different states. Fig. 2]shows that the
improvement gained from pre-training with 38k more data containing 11 overlooked cognitive states
is marginal on four downstream classifications: ABIDE is 2-class classification for Autism diagnosis,
PPMI is 4-class for staged Parkinson’s disease, HCPA is 4-class, and HCPYA is 7-class for human
behavior recognition. In contrast, BrainMoE can bring an impressive performance enhancement
by stratifying and adapting cognitive states. Note that ABIDE and PPMI are preprocessed by the
pipeline of [33]], which is different from our pipeline (see Appendix) for HCPs and UKB datasets.
Furthermore, BrainMass and BrainJEPA reconstruct FC and BOLD latent features, respectively.
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Figure 3: Framework of BrainMoE. (a) Pre-training has two options: (1) Previous models train with
a reconstruction objective, where samples used for BrainMoE pre-training are stratified by cognitive
states. (2) A new architecture of cognition classification can be set as the objective via cross-entropy
between embeddings and cognitive states. (b) Fine-tuning a router for the expert selection and a
cognition adapter for the combination of frozen experts. (c¢) Brain expert is adaptable to any model
architecture, learning feature representation from either FC or BOLD signal, where the vector of
latent feature before the final predictive layer is used as a cognition embedding. (d) Cognition
adapter is a Transformer decoder, where MHSA stands for multi-head self-attention, and FFN is a
feedforward network.

These primary results demonstrate empirical and clear evidence to support the motivation to stratify
data according to cognitive states for multiple experts and learn joint cognition embeddings.

3 Methods

BrainMOoE is designed to work with arbitrary brain foundation models as experts and to cooperate
with a router and an adapter for fine-tuning on the downstream. Assume the input, BOLD or FC, is
denoted by X € RM*Cin with M regions of the brain atlas and C;,, channels of input vector. Target
of brain experts is to produce cognition embeddings, Z. For the router and adapter, it is to predict Y
for downstream applications given pre-trained experts.

3.1 Framework

The framework of BrainMoE is separated into two stages as shown in Fig. [3|(a) pre-training and (b)
fine-tuning, where N experts, denoted by f(-) : RM*Cin — RChid with C;4 the hidden channel
number, learn from large-scale datasets containing subjects explicitly tasking on /N cognition-related
behaviors to produce a variety of cognition embeddings, and fine-tune a router for expert weights
P e RY, for selecting top-k (k € [1, N]) experts, and a cognition adapter for predicting downstream
tasks based on cognition embeddings. Following the observed performance that relies on input type,
preprocessing pipeline, and model architecture, BrainMoE has a framework suitable to experts with
no requirement for data type and architecture.

3.2 Expert pre-training

In Fig. 3] (a), two objectives can be used to pre-train the brain expert, the reconstruction and the
classification. (1) The pre-training of existing brain foundation models is reconstructing latent feature
of input, FC or BOLD, from its masked version via a bottleneck or transformer encoder architecture.
We utilized BrainMass or BrainJEPA as candidates of brain experts. The latent feature is produced by



existing architectures as the cognition embedding, denoted by Z € R4, Each expert is pre-trained
with the data that has the same cognitive state.

Z:= f(X) = argmin ||Z — g(X)[*, M

where g is the target network. As shown in Fig. [3] (c), the brain expert can be any architecture
that produces a latent feature representation, which is frozen and copied for the downstream. The
pre-training objective is not restrict to the reconstruction or a new classification for cognitive states.

In Fig. [3|(a) (2), we propose a new pre-training objective, cognitive state classification, to explicitly
learn from the cross-entropy between the latent feature and the cognitive state, C ELoss(p(Z), Ycog),
where p : REi¢ — R! is a linear layer, and Y04 is the binary label of a cognitive state. The
architecture for this expert is the same as the cognition adapter introduced in the next section.

3.3 Cognition adapter fine-tuning

The architecture of the cognition adapter is designed as a Transformer decoder shown in Fig. 3| (d).
The purpose of this adapter is to adapt multiple experts from a stratified feature representation based
on cognitive states to a downstream application, a classification task in this work.

Assume that the token vectors shown in dashed rectangle in Fig. [3|(d) is denoted by Z € R*+P)xChia_

where P is the class number in the downstream application. Note that Z.; := Z © P representing
the top-k cognition embeddings from experts and Z k:(k+p) denotes randomly initialized task query
embeddings. It is also a cognition classifier without Z.i.. Then, as demonstrated in the architecture, a
layer of the adapter starts at a multi-head self-attention (MHSA), Z = Softmax(QK” //Chia)V,
with following definitions B L _

Q:=Zan, K =18,V =177, 2
where &y, 3,7, € RCnia*Chid are learnable parameters, and h is the head index. Last, a multi-
head cross-attention brings the information from the raw input to the task embeddings. Suppose
I e RM*M jg FC matrix. Cross-attention between Z and I with alternative definitions

Q =1y, K := 23,V := 14, 3)

where &, 5, € RM*Cnia 3, € RCriaxChia are Jearnable parameters. FEN denotes a feedforward
network constructed by MLP. Note that the bias in linear layers is omitted in this section for clarity.
Finally, after multiple layers of the cognition adapter, a linear layer, RP*Cri¢ — RFX1  takes
only the task query and produces the logistic prediction to accomplish fine-tuning on a downstream
application.

4 Experiments

We evaluate the proposed BrainMoE on 3 pre-training datasets, including UK Biobank (UKB), HCP
Aging (HCPA), and HCP Young Adult (HCPYA), and 7 downstream datasets, including ADNI,
ABIDE, PPMI, Taowu, SZ, HCPA, and HCPYA. UKB and two HCPs contain 68,251 scans of
brain fMRI from 21,797 subjects under 12 different cognitive states on resting or tasking. Five
disease-related datasets contain more than 1,500 subjects under the same resting state but various
health status.

To comprehensively evaluate and showcase the performance, we conduct experiments on both
randomly initialized and pre-trained models across tasks involving disease, sex, and brain state
recognition. Specifically, our study aims to address two key research questions: (RQ1) To what
extent does BrainMoE improve the prediction performance from the baseline using different expert
architectures? (RQ2) Which pre-training objectives are the most robust across various downstream
applications? Additionally, we provide ablation studies to further support our findings.

Datasets We preprocess fMRI and partition brain regions using the AAL atlas [28] for UKB, HCPA,
HCPYA, and ADNI. Details can be found in the Appendix. Other datasets are preprocessed by [33].
SZ is an in-house data preprocessed by a third party.

UK Biobank (HCPA) dataset [20] is a large-scale dataset with MRI data. There are fMRI (n=51,780)
involved in this work. It consists of one resting state and one tasking state that engages cognitive and
sensory-motor [[13].
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Figure 4: The performance of BrainMoE and BrainMass pre-trained with all samples, and n=12
pre-trained individual experts on phenotypic and sex classifications among 7 datasets, where scores
lower than 50% are hidden for clarity, and the pre-training (PT) size ranges from 68,251 to 637.

The Lifespan Human Connectome Project Aging (HCPA) dataset [5] is instrumental in task
recognition research, offering a comprehensive view of the aging process. It includes data from 717
subjects, encompassing fMRI records (n=4,863) with four human behaviors associated with memory,
sensory-motor, and the resting state.

The Human Connectome Project Young Adult (HCPYA) dataset [29] has tackled key aspects of
the neural pathways that underlie brain function and behavior via high-quality neuroimaging data
in over 1,100 healthy young adults. It includes data from seven human behaviors associated with
various cognitive tasks, e.g., language and working memory.

Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset [32] serves as an invaluable resource,
featuring a collection of pre-processed fMRI (n=138) and including clinical diagnostic labels. It
encompasses a spectrum of cognitive states: Cognitive Normal (CN), Subjective Memory Complaints
(SMC), Early-Stage Mild Cognitive Impairment (EMCI), Late-Stage Mild Cognitive Impairment
(LMCI), and Alzheimer’s Disease (AD). Considering the class unbalance issue, we simplified these
categories into two broad groups based on disease severity: we combined CN, SMC, and EMCI into
‘CN’ group, while LMCI and AD were grouped as the ‘AD’ group.

Parkinson’s Progression Markers Initiative (PPMI) dataset [33]] presents a substantial collection
of data from 209 subjects. It encompasses states of mental health: normal control, scans without
evidence of dopaminergic deficit (SWEDD), prodromal, and Parkinson’s disease (PD).

Taowu [33] is one of the earliest image datasets released for Parkinson’s and contains 40 subjects.

Autism Brain Imaging Data Exchange (ABIDE) dataset [33]] presents data from 1,025 young
adults. The initiative aggregated fMRI data collected from laboratories around the world to support
the research on Autism Spectrum Disorder (ASD).

Schizophrenia (SZ) is the in-house data that contains 189 subjects. There are 30 converted and 159
nonconverted.

Implementation Following previous works, our experiments are conducted with subject-level
cross-validation (CV). The average score and the standard deviation are both listed. To make our
results comparable with previous papers, HCPA, HCPYA, and ADNI use a 5-fold CV as same as
[9} 131]], while others use 10-fold as same as [33]. Since HCPs are used for both pre-training and
fine-tuning, the training data in the two stages is always from the corresponding CV fold’s training
set to prevent data leakage. Hyperparameters, e.g., learning rate and hidden channels, can be found in
the Appendix.

State-of-the-art (SOTA) brain foundation models, BrainMass [34] and BrainJEPA [11]], are selected
as expert architectures along with the new classifier architecture proposed in this work. Note that the
original BrainMass fine-tuning utilizes the support vector machine (SVM) that has a lower scale of
learnable parameters than others. Therefore, an enhancement of BrainMass is evaluated in this work
by replacing SVM with a 2-layer MLP.



Table 1: MoE improvement on phenotypic classification F1 score compared to the baseline, where
30k is pre-trained on resting-state data (n=29,951), and 68k is pre-trained on all data (n=68,251). PT
stands for pre-training. Colored text indicates the performance increase/decrease from using 68k.

BrainMass BrainJEPA
Predictor SVM SVM MLP MLP BrainMoE ViT ViT BrainMoE
PT # 30k 68k 30k 68k 68k 30k 68k 68k
ADNI 75-32i7-06 75-32i7406 76.86i7‘26 80~70i7.85 81-23i11.00 74~16i8.55 741618.55 77.1 116.64
LAD 0.00 3.841  4.371 0.00 2.95 1
ABIDE 62.31+1.95 64.1242.31 66.811+4.18 67.8143.91 70.26+3.40 36.25+6.93 39.8243.91 54.55+9.89
LLASD 1.81 1 1.001  3.451 3.771  18.30 1
PPMI 54-87i15.76 56-52i14.86 58-9Oi14.29 59-77i14-22 62-97i13.94 38.69i13,91 38.69i13,91 60~49i11.59
L,PD (staged) 1.65 1 0.871  4.071 0.00 21.80 1
Taowu 58-33i34.78 65.67i20,55 70-29i17.97 68.00i21,46 88.57i12,51 36.08126.38 3694120.98 79.86i14,46
L,PD (binary) 7.341 2.29 |  18.28 1 0.86 17  43.78 1
SZ 76-95i9401 76-95i9401 79-85i8469 77.63ig,56 83-10i11.33 76.98i9,00 78-97i9.79 82.86i9,19
L,Schizophrenia 0.00 2.22 | 3.251 1.99 1 5.88 1
HCPA  85.1640.41 89.7310.58 87.91+0.48 90.6310.74 96.67+0.77 59.54+15.47 53.12414.19 81.74+0.51
L,3-task, rest 4.571 2.721  8.76 1 6.42 |  22.20 1
HCPYA 77-51i2442 80.87i1‘77 79-4’0i1478 81-27i1.27 93-19i0.72 50.68i25,20 56~10i29.16 74~59i3-79
L, 7-task 3.36 1 1.871  13.791 5.421  23.911

4.1 RQI1: MoE vs baselines

The average F1 scores of BrainMoE and BrainMass pretrained with all samples, and n=12 individual
experts per cognitive state on phenotypic and sex classifications among 7 datasets are shown in Fig. ]
Previous studies have demonstrated good PT data scalability with resting-state fMRI data. However,
according to Fig. [ there are consistently existing task-specific experts (e.g., language for AD,
working memory for PD) outperforming Resting experts, confirming that task-state fMRI contains
valuable information for brain modeling. Conclusively, BrainMoE holds the best performance
compared to all experts across 7 datasets. This supports that the utilization of cognitive embeddings
from BrainMoE leads to more robustness of brain modeling than naively training a single task of
fMRI.

In Table[I] we summarize the impact of BrainMoE on downstream phenotypic classification, reporting
improvements in the F1 score relative to non—-MoE baselines for disease and human behavior
recognition. Across all tasks (ADNI, ABIDE, PPMI, Taowu, SZ, HCPA, HCPYA), intuitively
expanding pre-training data from 30k to 68k yields modest gains, even negative gains, for both
BrainMass with SVM and MLP, e.g. ABIDE BrainMass SVM: +1.81 F1 and SZ BrainMass MLP:
-2.22 F1, and BrainJEPA with Vision Transformer (ViT), e.g., HCPA BrainJEPA: -6.42 F1. In
contrast, introducing our BrainMoE with the proposed cognition adapter on top of the 68k pre-trained
backbone amplifies these gains substantially: phenotypic F1 score uplifts range from +3.25 F1 (SZ
Schizophrenia) to +43.78 F1 (Taowu PD), and it consistently brings a positive effect. Even BrainJEPA
baselines that do not gain F1 improvement from more data on HCPA and HCPYA benefit from
BrainMoE, albeit to a lesser extent (e.g., HCPYA: +3.04 F1). Notably, the largest relative benefit
appears on smaller cohorts, e.g., Taowu (n=40), where BrainMoE achieves +18.28 and +43.76 F1
over 68k BrainMass and BrainJEPA baselines.

Table |2| reports analogous results for sex classification. Worse than phenotypic classification, in-
creasing pre-training size delivers small, commonly no improvements for BrainMass and BrainJEPA
using SVM, MLP, and ViT, where 11 out of 18 experiments have dropped F1 scores in red text. In
contrast, BrainMoE recovers and exceeds prior performance. It consistently demonstrates F1 score
gains, except for BrainJEPA on ABIDE. It is worth noting that the most dramatic uplift appears on
the smallest dataset (Taowu, n=40), where BrainMoE increases F1 by +43.76 on BrainJEPA.

Overall, the above results demonstrate that (1) a large scale pre-training without stratifying cognitive
states improves downstream performance modestly (sometimes negatively), and (2) the proposed
BrainMoE framework produces substantial gains, especially on downstream applications with a
limited sample size.



Table 2: MoE improvement on sex classification F1 score compared to the baseline, where the sample
size of the downstream dataset is indicated. PT stands for pre-training.

BrainMass BrainJEPA
Predictor SVM SVM MLP MLP BrainMoE ViT ViT BrainMoE
PT # 30k 68k 30k 68k 68k 30k 68k 68k
ADNI  48.6046.55 54.30112.4564.824+4.30 59.30413.0569.2245.26 37.7048.73 36.4215.22 62.9847.76
Ln=138 5.70 1 5.52 |  4.40 1 1.28 |  25.28 1
ABIDE  73.8443.49 73.8413.40 75.124597 75124632 85214377 78.084584 78.08+5.84 78.0846.15
Ln=1025 0.00 0.00 10.09 1 0.00 0.00
PPMI 52.03+14.16 56.58 +12.2863.32414.906 64.73+14.1279.81 +8.46 46.23+9.00 46.23+9.00 67.57+7.24
Ln=209 4.55 1 1.41 7 16.49 1 0.00 21.34 1
Taowu 46-24i23.96 46.24J_r23A96 62.861&&20 55.384_F20A93 74-00i27A7946-24i23-9751'67i21-12 90'00i12»96
Ln=40 0.00 7.48 |  11.14 1 5.431  43.76 1
HCPA  66.20+1.58 68.25+1.70 66.93+0.63 68.58+0.99 76.76+0.03 40.32+4.07 40.3244.07 44.2417.01
L,n=4863 2.05 1 1.651 9.831 0.00 3.92 1
HCPYA 63.3343.01 65.47+3.51 64.57+2.53 66.98+3.30 74.36+4.43 40.20+4.202 40.204+4.22 43.2415.19
Ln=3293 2.14 1 2.411  9.791 0.00 3.04 1
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Figure 5: The distribution of dominating expert combinations of (a) late fusion MoE and (b)
BrainMoE shows the router preference, where the first 4 letters of cognitive state are used as
abbreviation. (c¢) The correlation between cognition embeddings of experts shows expert diversity.

4.2 RQ2: Pre-training objectives

As described in Sec[3] the BrainMoE framework has no requirement for data type and architecture.
This property results in various pre-training objectives for the brain expert: FC reconstruction (FC
recon.), BOLD reconstruction (BOLD recon.), and cognitive state classification (Cog. Classif.). To
demonstrate which objectives are the most robust, we evaluated three objectives and an all-in-one
BrainMoE on 7 downstream datasets in Table 3land

Briefly, FC reconstruction and all-in-one BrainMoE show the best robustness. They always rank in
the first two places for phenotypic (Table[3)) and sex classification (Table ) across all downstream
datasets, except for the smallest dataset Taowu (n=40). Unlike BrainMoE has the cognition adapter to
implicitly utilize expert embeddings, the late fusion explicitly combines expert predictions, therefore
cannot handle the unbalance issue. We can observe in Table Bl that FC reconstruction shows the most
first rank, 4 out of 7 datasets, and all-in-one has the most first place, 4 out of 7, in Table E} Although
top-k selected experts in all-in-one BrainMoE contain experts in FC reconstruction, the self-attention
in the cognition adapter mixes information between all types of pre-training objectives, yielding
dropped and boosted performance for phenotypic and sex classification, respectively.



Table 3: MoE performance on phenotypic classification F1 score using three types of expert pre-
trained with three objectives, along with an all-in-one MoE mixing all types of experts, where LF is
Late Fusion, Ex. # denotes expert number. Bold is the first rank and underline is the second.

Ex. # ADNI ABIDE PPMI Taowu SZ HCPA HCPYA

Baseline
BrainMass 1 80-70i7.85 67.81413‘91 59.77J_r14‘22 68.00i2146 77-63418‘56 90.637:0474 81'27i1-27
BrainJEPA 1 74~16i8.55 39-82i3.91 38.69i13‘91 36~94i20.98 78.97i9,79 53-12i14.19 56~10i29.16

LF-MoE 12 73-334510‘87 69.89413‘06 61.114115‘29 91'24i11~72 76.95419‘50 94.967_L2‘64 88.58i3_39
BrainMoE
FC recon. 12 81'23i11-00 70.26413,40 62.974113‘94 88.574112,51 83.104111‘33 96.67i0‘77 93.19450,72

BOLD recon. 12 77-1116.64 54~55i9.89 60-49i11.59 79.86i14,46 82.86i9,19 81-74i0.51 74-59i3-79
COg. classif. 12 79-70i10-28 68.65413,31 59-23114465 90.484114,64 83.364110‘08 96.28i0‘70 95.81450,48
All-in-one 36 79-73i10-60 69-13i4.08 60.76i14,85 8593118.32 83-9118.07 96.66i0,94 96.81i0,41

Table 4: MoE performance on sex classification F1 score using three types of expert pre-trained with
three objectives, along with an all-in-one MoE mixing all types of experts. Bold is the first rank and
underline is the second.

Ex. # ADNI ABIDE PPMI Taowu HCPA HCPYA
Baseline
BrainMass 1 59-30i13-05 75-]2i6»32 64-73114&2 55-38i20~93 68.58i0A99 66.98i3A30
BrainJEPA 1 36-42i8422 78.08i5,84 46~23i9.00 51.67i21_12 40-32i4-07 40-20i4422
BrainMoE
FC recon. 12 69-22i5.26 85-21i3.77 79~81i8.46 74~00i27-79 76.76i0,93 74-36i4-43

BOLD recon. 12 62.98i7476 78.08i6,15 67-57i7»24 90'00i12-96 44.24J_r7,01 43-24i8-19
COg. classif. 12 65-75i7.61 82.82i5,11 79~07i7.28 72~22i25-17 75-65i1.26 75~18i1-15
All-in-one 36 70.727_L7458 82.85i5,91 82.80i5,65 75-29i30A56 78-34i2.18 77.67J_r1,54

4.3 Rounter and expert analysis

The preference of routers in late fusion MoE and BrainMoE is shown in Fig. [5](a) and (b), respectively,
where the percentage indicates how many samples have a combination of experts with dominating
router logits (= %). Clearly, BrainMoE has diverse and similar dominating combinations for
heterogeneous and homogeneous applications, respectively. The combinations are mainly dual, and
datasets with the same task share similar pattern (i.e., cognitive state for HCPA and HCPYA, and
PD for PPMI and Taowu). In contrast, late fusion consistently has single dominating expert due
to data scale diversity, e.g., Rest (n=29,971), which implies that the routers trained by BrainMoE
learned more neuroscientific knowledge than the late fusion. Furthermore, the investigation on expert
embeddings is shown in Fig. [5](c). The absolute value of correlation is mostly less than 0.5, indicating
experts are not in conflict or redundant to each other.

4.4 More applications

The age regression Table 5: Age regression performance compared to the baseline, where the
across 6 datasets has sample size of the downstream dataset is indicated, and unit is year.

been evaluated for i gp™  ApNT ABIDE  PPMI Taowu  HCPA  HCPYA
the best baseline, 68k

version of BrainMass, BrainMass 36.28i19_83 36~77i17-2 33~09i21.87 38-10i28.33 22.66i7‘51 5-46i2469
and BrainMoE, as BrainMoE 36.27+10.234.86+2.67 29.89+58.30 30.72+12.2510.56+2.86 3.45+1.0s
listed in Table 3] We

can observe the performance of BrainMoE is the best, where the improvement is especially significant
for ABIDE (n=1,025, 6-58 yrs) with MSE 36.77 — 4.86. This empirical evidence further supports
the robustness of BrainMoE.

. L . Table 6: BrainMoE applies on a multimodal
Multimodal applications of cognitive state, S€X j,taset. NATVIEW 27].

classifications, and age regression in an fMRI-
EEG dataset [27] are listed in Table[6] There are NATVIEW 8-task (F1)Sex (FI) Age (MSE)
388 fMRI-EEG pairs from 22 healthy subjects BrainMass (fMRI) 67.66+5.7463.67+5.16 8.05+5.58
under 8 cognitive states (age[23,51], F:M=1:1). CBraMod (EEG) 68.71.1.46 65.39+2.338.2645.97
BrainMoE is evaluated here with n=1 pre- BrainMoE (13 Ex.)68.73.5.7265.4715.357.995.53
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Figure 6: Impact of altering k£ on downstream classification performance. Mean F1 scores with
standard deviation are reported for four downstream datasets under three expert-selection regimes
(top-1, top 50%, and all experts). Colors represent different datasets.

trained CBraMod [30] expert plus n=12 cognition classifier experts (Shaefer400 version). Results
from a 5-fold CV show the best performance by multimodal BrainMoE.

4.5 Ablations

Top-k We alter k£ in BrainMoE to strictly limit how many top experts can be selected for downstream
applications. We evaluated k = 1, k = 50%, and k& = 100% with 12 and 36 experts on four datasets
with relatively larger sample sizes in Fig. [6] where 12-expert BrainMoE uses BrainMass as the expert
architecture. From the left two panels, it is obvious that increasing k has a slight difference for all
phenotypic tasks, except for HCPA. In the right two panels, we can observe that sex classification
benefits less from a larger k. Overall, expert scaling in BrainMoE yields clear benefits for complex,
data-scarce phenotypic tasks, with most gains achieved by employing top half of the experts. Beyond
this, adding experts delivers diminishing returns. In contrast, for the simpler binary sex classification
task, especially with a large expert pool, additional experts do not meaningfully improve performance
and may introduce redundancy or overfitting. Thus, tailoring the number of active experts to task
complexity and dataset size is key for efficient MoE deployment.

5 Conclusion

In conclusion, we propose a new framework of the brain foundation model, BrainMoE, to pre-train
with overlooked tasking-state fMRI for robust downstream applications. We observe that existing
brain foundation models learn from fMRI derived from a narrow range of cognitive states, while
there are 11 available cognitive states as subjects performing explicit tasks in large scale datasets.
Furthermore, we showcase that (i) the straightforward utilization of data with rich human behavioral
variables by pre-training with all data and (ii) the late fusion MoE both improve performance
marginally. Aiming at these challenges, BrainMoE pre-trains each expert on a portion of the datasets
with the same cognitive state among 12 different states for a robust brain foundation model. We
design a scalable cognition adapter to mix brain experts for downstream fine-tuning so that BrainMoE
can handle orthogonal cognition embeddings and be robust on the boutique downstream datasets.
With sufficient 68,251 pre-training fMRI scans among UKB and HCP with 12 different cognitive
states, BrainMoE has shown impressive performance boosting on a variety of applications, including
sex, age prediction, human behavior recognition, multimodal applications, and early diagnosis of
various brain diseases. The promising results demonstrated on eight datasets from three different
pipelines indicate great potential to facilitate current neuroimaging applications in clinical routines.

10



Acknowledgement

This work was supported by the National Institutes of Health (AG091653, AG068399, AG084375)
and the Foundation of Hope. Tianlong Chen was partially funded by the National Institutes of Health
(NIH) under award 1RO1EB037101-01. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either expressed
or implied, of the NIH.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

Analucia A Alegria, Joaquim Radua, and Katya Rubia. Meta-analysis of fmri studies of
disruptive behavior disorders. American Journal of Psychiatry, 173(11):1119-1130, 2016.

Emily J Allen, Ghislain St-Yves, Yihan Wu, Jesse L Breedlove, Jacob S Prince, Logan T
Dowdle, Matthias Nau, Brad Caron, Franco Pestilli, Ian Charest, et al. A massive 7t fmri dataset

to bridge cognitive neuroscience and artificial intelligence. Nature neuroscience, 25(1):116-126,
2022.

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael
Rabbat, Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-
embedding predictive architecture. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15619-15629, 2023.

Hasan A Bedel, Irmak Sivgin, Onat Dalmaz, Salman UH Dar, and Tolga Cukur. Bolt: Fused
window transformers for fmri time series analysis. Medical Image Analysis, 88:102841, 2023.

Susan Y Bookheimer, David H Salat, Melissa Terpstra, Beau M Ances, Deanna M Barch,
Randy L Buckner, Gregory C Burgess, Sandra W Curtiss, Mirella Diaz-Santos, Jennifer Stine
Elam, et al. The lifespan human connectome project in aging: an overview. Neuroimage,
185:335-348, 2019.

César Caballero-Gaudes and Richard C Reynolds. Methods for cleaning the bold fmri signal.
Neuroimage, 154:128-149, 2017.

Li Chen, Patrick Bedard, Mark Hallett, and Silvina G Horovitz. Dynamics of top-down control
and motor networks in parkinson’s disease. Movement Disorders, 36(4):916-926, 2021.

Hejie Cui, Wei Dai, Yanqgiao Zhu, Xuan Kan, Antonio Aodong Chen Gu, Joshua Lukemire,
Liang Zhan, Lifang He, Ying Guo, and Carl Yang. Braingb: a benchmark for brain network
analysis with graph neural networks. IEEE transactions on medical imaging, 42(2):493-506,
2022.

Tingting Dan, Jiaqi Ding, Ziquan Wei, Shahar Kovalsky, Minjeong Kim, Won Hwa Kim, and
Guorong Wu. Re-think and re-design graph neural networks in spaces of continuous graph
diffusion functionals. Advances in Neural Information Processing Systems, 36:59375-59387,
2023.

Jiaqi Ding, Tingting Dan, Ziquan Wei, Hyuna Cho, Paul J Laurienti, Won Hwa Kim, and
Guorong Wu. Machine learning on dynamic functional connectivity: Promise, pitfalls, and
interpretations. arXiv preprint arXiv:2409.11377, 2024.

Zijian Dong, Ruilin Li, Yilei Wu, Thuan Tinh Nguyen, Joanna Su Xian Chong, Fang Ji,
Nathanael Ren Jie Tong, Christopher Li Hsian Chen, and Juan Helen Zhou. Brain-jepa: Brain
dynamics foundation model with gradient positioning and spatiotemporal masking. arXiv
preprint arXiv:2409.19407, 2024.

Michael D Fox, Abraham Z Snyder, Justin L Vincent, Maurizio Corbetta, David C Van Essen,
and Marcus E Raichle. The human brain is intrinsically organized into dynamic, anticorrelated
functional networks. Proceedings of the National Academy of Sciences, 102(27):9673-9678,
2005.

11



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Ahmad R Hariri, Alessandro Tessitore, Venkata S Mattay, Francesco Fera, and Daniel R
Weinberger. The amygdala response to emotional stimuli: a comparison of faces and scenes.
Neuroimage, 17(1):317-323, 2002.

Tong He, Lijun An, Pansheng Chen, Jianzhong Chen, Jiashi Feng, Danilo Bzdok, Avram J
Holmes, Simon B Eickhoff, and BT Thomas Yeo. Meta-matching as a simple framework to
translate phenotypic predictive models from big to small data. Nature neuroscience, 25(6):795—
804, 2022.

Zhibin He, Wuyang Li, Yifan Liu, Xinyu Liu, Junwei Han, Tuo Zhang, and Yixuan Yuan.
Fm-app: Foundation model for any phenotype prediction via fmri to smri knowledge transfer.
IEEFE Transactions on Medical Imaging, 2024.

Mark Jenkinson, Christian F Beckmann, Timothy EJ Behrens, Mark W Woolrich, and Stephen M
Smith. Fsl. Neuroimage, 62(2):782-790, 2012.

Xuan Kan, Wei Dai, Hejie Cui, Zilong Zhang, Ying Guo, and Carl Yang. Brain network
transformer. Advances in Neural Information Processing Systems, 35:25586-25599, 2022.

Raymond Li, Gabriel Murray, and Giuseppe Carenini. Mixture-of-linguistic-experts adapters
for improving and interpreting pre-trained language models. In Houda Bouamor, Juan Pino, and
Kalika Bali, editors, Findings of the Association for Computational Linguistics: EMNLP 2023,
pages 9456-9469, Singapore, December 2023. Association for Computational Linguistics.

Xiaoxiao Li, Yuan Zhou, Nicha Dvornek, Muhan Zhang, Siyuan Gao, Juntang Zhuang, Dustin
Scheinost, Lawrence H Staib, Pamela Ventola, and James S Duncan. Braingnn: Interpretable
brain graph neural network for fmri analysis. Medical Image Analysis, 74:102233, 2021.

Thomas J Littlejohns, Jo Holliday, Lorna M Gibson, Steve Garratt, Niels Oesingmann, Fidel
Alfaro-Almagro, Jimmy D Bell, Chris Boultwood, Rory Collins, Megan C Conroy, et al. The uk
biobank imaging enhancement of 100,000 participants: rationale, data collection, management
and future directions. Nature communications, 11(1):2624, 2020.

Charles J Lynch, Lucina Q Uddin, Kaustubh Supekar, Amirah Khouzam, Jennifer Phillips, and
Vinod Menon. Default mode network in childhood autism: posteromedial cortex heterogeneity
and relationship with social deficits. Biological psychiatry, 74(3):212-219, 2013.

Christopher J Markiewicz, Krzysztof J Gorgolewski, Franklin Feingold, Ross Blair, Yaroslav O
Halchenko, Eric Miller, Nell Hardcastle, Joe Wexler, Oscar Esteban, Mathias Goncavles, et al.
The openneuro resource for sharing of neuroscience data. Elife, 10:e71774, 2021.

Josue Ortega Caro, Antonio Henrique Oliveira Fonseca, Christopher Averill, Syed A Rizvi,
Matteo Rosati, James L Cross, Prateek Mittal, Emanuele Zappala, Daniel Levine, Rahul M
Dhodapkar, et al. Brainlm: A foundation model for brain activity recordings. bioRxiv, pages
2023-09, 2023.

Anwar Said, Roza Bayrak, Tyler Derr, Mudassir Shabbir, Daniel Moyer, Catie Chang, and Xeno-
fon Koutsoukos. Neurograph: Benchmarks for graph machine learning in brain connectomics.
Advances in Neural Information Processing Systems, 36:6509-6531, 2023.

Hannah S Savage, Peter CR Mulders, Philip FP Van Eijndhoven, Jasper Van Oort, Indira
Tendolkar, Janna N Vrijsen, Christian F Beckmann, and Andre F Marquand. Dissecting task-
based fmri activity using normative modelling: an application to the emotional face matching
task. Communications Biology, 7(1):888, 2024.

Paul S Scotti, Mihir Tripathy, Cesar Kadir Torrico Villanueva, Reese Kneeland, Tong Chen,
Ashutosh Narang, Charan Santhirasegaran, Jonathan Xu, Thomas Naselaris, Kenneth A Norman,
et al. Mindeye2: Shared-subject models enable fmri-to-image with 1 hour of data. arXiv preprint
arXiv:2403.11207, 2024.

Qawi K Telesford, Eduardo Gonzalez-Moreira, Ting Xu, Yiwen Tian, Stanley J Colcombe,
Jessica Cloud, Brian E Russ, Arnaud Falchier, Maximilian Nentwich, Jens Madsen, et al.
An open-access dataset of naturalistic viewing using simultaneous eeg-fmri. Scientific Data,
10(1):554, 2023.

12



(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Nathalie Tzourio-Mazoyer, Brigitte Landeau, Dimitri Papathanassiou, Fabrice Crivello, Octave
Etard, Nicolas Delcroix, Bernard Mazoyer, and Marc Joliot. Automated anatomical labeling of
activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject
brain. Neuroimage, 15(1):273-289, 2002.

David C Van Essen, Stephen M Smith, Deanna M Barch, Timothy EJ Behrens, Essa Yacoub,
Kamil Ugurbil, Wu-Minn HCP Consortium, et al. The wu-minn human connectome project: an
overview. Neuroimage, 80:62-79, 2013.

Jiquan Wang, Sha Zhao, Zhiling Luo, Yangxuan Zhou, Haiteng Jiang, Shijian Li, Tao Li, and
Gang Pan. Cbramod: A criss-cross brain foundation model for eeg decoding. arXiv preprint
arXiv:2412.07236, 2024.

Ziquan Wei, Tingting Dan, Jiaqi Ding, and Guorong Wu. Neuropath: A neural pathway
transformer for joining the dots of human connectomes. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024,

Michael W Weiner, Dallas P Veitch, Paul S Aisen, Laurel A Beckett, Nigel J Cairns, Jesse
Cedarbaum, Michael C Donohue, Robert C Green, Danielle Harvey, Clifford R Jack Jr, et al.
Impact of the alzheimer’s disease neuroimaging initiative, 2004 to 2014. Alzheimer’s &
Dementia, 11(7):865-884, 2015.

Jiaxing Xu, Yunhan Yang, David Huang, Sophi Shilpa Gururajapathy, Yiping Ke, Miao Qiao,
Alan Wang, Haribalan Kumar, Josh McGeown, and Eryn Kwon. Data-driven network neu-
roscience: On data collection and benchmark. Advances in Neural Information Processing
Systems, 36:21841-21856, 2023.

Yanwu Yang, Chenfei Ye, Guinan Su, Ziyao Zhang, Zhikai Chang, Hairui Chen, Piu Chan, Yue
Yu, and Ting Ma. Brainmass: Advancing brain network analysis for diagnosis with large-scale
self-supervised learning. IEEE Transactions on Medical Imaging, 2024.

Jiazuo Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong Wang, Huchuan Lu, and You He. Boosting
continual learning of vision-language models via mixture-of-experts adapters. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 23219-23230,
2024.

Shu Zhang, Xiang Li, Jinglei Lv, Xi Jiang, Lei Guo, and Tianming Liu. Characterizing and
differentiating task-based and resting state fmri signals via two-stage sparse representations.
Brain imaging and behavior, 10:21-32, 2016.

Zhuofan Zong, Bingqi Ma, Dazhong Shen, Guanglu Song, Hao Shao, Dongzhi Jiang, Hongsheng
Li, and Yu Liu. Mova: Adapting mixture of vision experts to multimodal context. arXiv preprint
arXiv:2404.13046, 2024.

13



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: See Sec[]
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e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Sec[El
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
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The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Sec[dand Appendix
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
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* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Sec
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: See Sec ]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Appendix
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [Yes]
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: See Sec
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: See Appendix
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: [NA]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Accessibility

Public data is accessible via internet (UKBF}, HCPAP| HCPYA[] ADNF| PPMI, ABIDE, and Taowu
can be found hereﬂ). The licenses to obtain those data can also be accessed on the websites. The
codes and data split settings can be acquired via this code repositoryﬂ

B Data preprocessing

The neuroimage processing used for ADNI, UKB, HCPYA, and HCPA consists of the following
major steps: (1) We segment the T1-weighted image into white matter, gray matter, and cerebral
spinal fluid using FSL software [16]. (2) On top of the tissue segmentation in Fig. [/} we parcellate the
cortical surface of fMRI into cortical regions according to the atlas as a regional signal of time-series
in Fig. [/} where FC, in the end, is the Pearson correlation coefficient between regional time-series.

Brain extraction, tissue segmentation, ..., brain mask refinement,...

T1w MRI

e
£

FC matrix

fMRI Head-motion estimation, slice time correction, ..., confounds estimation, ...

Figure 7: General workflows for processing T1-weighted image (T1w MRI) and functional MRI
(fMRI). The output is shown at the right, including the brain network of FC.

C Computing environments and hyperparameters

The experiments are done on a Linux system with one NVIDIA RTX 6000 Ada. Batch size and

learning rate are set as 128 and 1e-4, respectively. The maximum epoch is set as 200 and C},;q = 2048.
Training will be early stopped if accuracy keeps dropping in 50 epochs.

D Comparison between previous works

We list the comparison of experimental datasets between previous works in Table

E Computational complexity

The limitation of BrainMoE is more computational complexity, as listed in Table[§] BrainMoE with
12 experts spends 4 x more time than baselines. All-in-one with 36 experts nearly doubles the time
cost.

“https://www.ukbiobank.ac.uk/

*https://www.humanconnectome.org/
*https://www.humanconnectome . org/study/hcp-young-adult/overview
Shttps://adni.loni.usc.edu/
®https://auckland.figshare.com/articles/dataset/NeurIPS_2022_Datasets/21397377
7https://github.com/Chrisa142857/brain_moe
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Table 7: The comparison of experimental datasets between previous works.

BrainLLM (2024) [23]] BrainMass (2024) [34] BrainJEPA (2024) [11] BrainMoE (Ours)

Brain atlas AAL424 C200 Schaefer400 AALI116
.. . .. . . resting, 11 types
Cognitive state resting, task-hariri resting resting of tasking
Pre-train dataset UKB, HCP g KB, HCP, UKB, HCP UKB, HCP
penNeuron
Pre-train data # 61,038 64,584 40,162 68,251
. ASD, ADHD, HCP, ASD,
Fine-tune dataset UKB, HCP AD. PD, MDD UKB, HCP, ADNI AD. PD, SZ
Parameter amount 650M 34M 307M 709M

Table 8: Computational time cost of BrainMoE inference with two existing architectures and the
all-in-one BrainMoE on the ABIDE dataset.

Test time (ms/sample) BrainMass BrainJEPA

Single model 37.08 28.13
BrainMoE 157.60 133.26
All-in-one 287.21

F Visual decoding potential

Visual decoding task for a new dataset NSD [2] has also been evaluated for MindEye?2 [26] as the
baseline and BrainMoE. We pre-trained two MindEye2s as the specific experts for long-term (novel
trials) and short-term memory (easy/hard trials), respectively. Since visual decoding is a generative
task, output contains much higher dimensions (256 x 1664 vs. class number 2 to 7) than downstream
tasks focused in the main text. Therefore, we skipped our cognition adapter by weighted summing the
diffusion prior of two experts with the BrainMoE routing probabilities. Both baseline and BrainMoE
are pretrained with subjects 2-7 and finetuned with subject 1 on the entire 40 sessions. The final train
and test losses, cosine similarity, and Mean Squared Error (MSE) during finetuning are listed in Table
[ Given the evidence that the performance of BrainMoE is better than the single expert MindEye2,
there is potential for BrainMoE to expand to visual decoding.

Table 9: Visual decoding performance.

MindEye2 BrainMoE

Train loss  9.639 7.994
Test loss 11.142 9.405
Cos. Sim. 0.778 0.840
MSE 0.301 0.261

G Scalability analysis

MLP as a universal predictive head is used in related works for the MoE adapter. Fig. [§]is the
comparison between MLP and the proposed cognition adapter with different amounts of learnable
parameters.

H Visualization

The attention weights conducted by BrainMoE with different & is visualized in Fig. [9] We can observe:
(1) Advanced by the cognition adaptor, BrainMoE agrees with current neuroscience knowledge since
it mainly attends to DAN and DMN for ASD [12| 21]], SMN and FPN for PD [7]. (2) Differences are
slight across enlarged k, indicating that the router produces consistent expert weights.
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Figure 8: The scalability of the MLP adapter and our adapter on disease prediction, where the y-axis
is the fine-tuning loss.

k=100%

ASD

PD

[u Default Mode @ Visual o Frontoparietal © Limbic @ Ventral attention @ Sensorimotor ~ @ Dorsal attention ]

Figure 9: Visualization of attention weights by FC reconstruction BrainMoE.
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