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Abstract

The estimation of optical flow and 6-DoF ego-motion, two fundamental tasks in
3D vision, has typically been addressed independently. For neuromorphic vision
(e.g., event cameras), however, the lack of robust data association makes solving
the two problems separately an ill-posed challenge, especially in the absence of
supervision via ground truth. Existing works mitigate this ill-posedness by either
enforcing the smoothness of the flow field via an explicit variational regularizer or
leveraging explicit structure-and-motion priors in the parametrization to improve
event alignment. The former notably introduces bias in results and computational
overhead, while the latter, which parametrizes the optical flow in terms of the
scene depth and the camera motion, often converges to suboptimal local minima.
To address these issues, we propose an unsupervised framework that jointly op-
timizes egomotion and optical flow via implicit spatial-temporal and geometric
regularization. First, by modeling camera’s egomotion as a continuous spline
and optical flow as an implicit neural representation, our method inherently em-
beds spatial-temporal coherence through inductive biases. Second, we incorporate
structure-and-motion priors through differential geometric constraints, bypassing
explicit depth estimation while maintaining rigorous geometric consistency. As
a result, our framework (called E-MoFlow) unifies egomotion and optical flow
estimation via implicit regularization under a fully unsupervised paradigm. Exper-
iments demonstrate its versatility to general 6-DoF motion scenarios, achieving
state-of-the-art performance among unsupervised methods and competitive even
with supervised approaches.

1 Introduction

Optical flow estimation [1] and 6-DoF camera motion recovery [2] are two core building blocks in
many 3D vision tasks, playing a crucial role in providing motion and structural information for various
downstream applications such as object tracking [3, 4], scene reconstruction [5, 6], and Simultaneous
Localization and Mapping (SLAM) [7–9]. In classical computer vision, these two problems have
been extensively studied and can be successfully solved independently, thanks to well-established
feature extraction techniques [10] and data association [11] algorithms. However, when applied to
the emerging field of neuromorphic vision [12], these traditional methods face significant challenges.
The unique nature of event cameras [12], which reports asynchronous and sparse events instead of
capturing frames, brings challenges in estimating optical flow and 6-DoF camera motion reliably.
For example, optical flow estimation from event data faces the well-known aperture problem [13],
where the learned flow is essentially the normal flow [14]. Furthermore, depth-free 6-DoF motion

∗Equal Contribution: {liwenpu,liaobangyan}@westlake.edu.cn
† Corresponding author: liupeidong@westlake.edu.cn

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://akawincent.github.io/EMoFlow/


Input Events

Neural Implicit 
Optical Flow Field

EgoMotion Spline

tim
e

time

E-MoFlow
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(b) Recovered dense optical flow fields and cor-
responding images of warped events (IWE).

Figure 1: Illustration of E-MoFlow.

estimation in general scenes has been proved to be theoretically intractable [15] unless a locally
constant depth assumption is imposed on the event data [16]. These challenges stem primarily from
the absence of reliable long-term association in event data, rendering independent estimation of these
two problems ill-posed and error-prone.

To overcome these challenges, existing approaches have primarily focused on regularization tech-
niques to constrain the inherently ill-posed nature of these problems. One common strategy leverages
spatial-temporal regularization to explicitly enforce optical flow continuity over both time and
space [17–19]. These methods typically incorporate additional loss terms during optimization, which
helps stabilize solutions but introduces trade-offs: the regularization constraints may bias flow
estimation while simultaneously increasing computational complexity. In contrast, our approach
embeds these regularization priors implicitly through learned representations. We formulate camera
egomotion as a spline in the space of first-order kinematics [20] and optical flow as an implicit neural
representation [21], which intrinsically encode spatial-temporal continuity. This representation-driven
regularization eliminates the need for explicit constraint terms while maintaining solution stability.

Another line of works [16, 19] introduce geometric regularization by jointly estimating motion and
depth. These approaches have shown improvements in optical flow accuracy, as depth information
provides valuable constraints for motion estimation. However, these methods typically rely on motion
fields [22] or re-projection equations [6] to relate optical flow, depth, and camera motion. This explicit
depth estimation increases the degrees of freedom in the model, leading to a higher risk of local
minima and instability during the optimization process. To address this issue, we adopt differential
geometric constraints [23] to jointly estimate egomotion and optical flow without requiring explicit
depth estimation. This approach implicitly incorporates geometric regularization, stabilizing the
solution while retaining the ability to accurately estimate egomotion and flow.

In summary, E-MoFlow as shown in Fig. 1, unifies egomotion and optical flow estimation through
implicit regularization under a fully unsupervised learning paradigm. We conduct extensive experi-
ments across a variety of 6-DoF motion scenarios, demonstrating the applicability and robustness of
our method. Experimental results demonstrate that E-MoFlow outperforms existing unsupervised
methods and achieves comparable performance to supervised approaches.

2 Related Work

Event-based Optical Flow Learning Event cameras asynchronously measure per-pixel intensity
changes, not absolute values at fixed intervals [12]. This enables high dynamic range and low-latency
sensing. However, estimating optical flow from local event patches inherently suffers from the
aperture problem [13, 14]. Because traditional optimization-based methods struggle to recover full
motion fields from this ambiguous local data, learning-based approaches have become dominant.
These learning-based optical flow methods are broadly categorized as supervised, semi-supervised,
and unsupervised.

Supervised methods [24–32] rely on dense ground-truth optical flow for training, typically requiring
large-scale synthetic or real-world datasets. However, acquiring accurate flow annotations at scale
is prohibitively expensive, often leading to a significant sim-to-real gap that restricts their practical
deployment in real-world environments. Semi-supervised methods, such as [18, 33, 34], mitigate
this limitation by incorporating grayscale images and enforcing photometric consistency as a su-

2



pervisory signal. While these approaches reduce dependency on labeled data, their performance
is highly sensitive to the quality of reconstructed intensity images, making them unreliable in ex-
treme conditions (e.g., high-speed motion or low-light scenarios). In contrast, unsupervised learning
methods [17, 19, 27, 32, 35–37] operate solely on event data, eliminating the need for external super-
vision. These methods typically optimize optical flow using contrast maximization (CMax) objectives
[15], which align event warping with estimated motion. Depending on their learning paradigm,
unsupervised approaches can be further divided into online and offline fashion. The former (e.g.,
[27, 32, 35–37]) employs neural networks to predict optical flow directly from event representations
(e.g., event images or voxel grids). These approaches enable efficient, real-time inference but may
suffer from error accumulation due to their feedforward nature. The latter (e.g., [17]) iteratively
refines flow estimates from scratch for each new event batch. While more computationally intensive,
this kind of method avoids the limitations of learned feature extraction, though often at the cost of
reduced efficiency compared to online techniques.

In this work, we adopt an unsupervised learning paradigm that combines the efficiency of neural
networks with high estimation accuracy. Our approach eliminates reliance on labeled data or auxiliary
intensity images, ensuring robust performance across diverse and challenging scenarios.

Event Camera Egomotion Estimation Direct egomotion estimation from event streams represents
a fundamental yet highly challenging problem in event-based computer vision. Existing approaches
primarily follow either 1) linear solver or 2) nonlinear optimization paradigms, each with distinct
advantages and limitations.

Linear solver methods employ well-designed geometric constraints to derive closed-form motion
solutions. For instance, EvLinearSolver [14] achieves 3-DoF rotation estimation and 6-DoF motion
(by incorporating depth priors) through event-based normal flow constraints. Related work by [38, 39]
utilizes event-based line features for translation estimation when angular velocity is known. As a
result, these methods fundamentally require some form of prior knowledge, preventing complete
egomotion recovery from event data alone. On the nonlinear optimization front, contrast-based
approaches [15, 40–42] warp events to a reference timestamp and optimize motion parameters
by maximizing the contrast in the resulting Image of Warped Events (IWE). While effective for
certain motion patterns, these methods face critical challenges including degenerate solutions like
event collapse [41] and inherent limitations in recovering full 6-DoF motion without depth priors
(or necessarily assuming a constant depth shared by local events). Alternative spatial-temporal
registration methods [43–46] leverage time surfaces for motion estimation, offering computational
efficiency through sparse event processing but demonstrating increased sensitivity to noise compared
to contrast-based techniques. More recently, [47] et al. propose an iterative optimization pipeline for
6-DoF motion estimation using event-based line features.

In conclusion, current solutions - whether linear or nonlinear - still cannot achieve reliable 6-DoF
motion estimation in general scenarios without restrictive assumptions. This fundamental limitation
highlights the need for more robust approaches capable of handling the full complexity of egomotion
estimation from event data.

Flow and Motion Joint Estimation Joint estimation of optical flow and camera motion typically
builds upon the motion field theory [22] or re-projection constraints [6], which inherently require
depth estimation. [19] pioneers an event-based framework using discretized spatial-temporal volumes
to jointly predict optical flow and ego-motion, employing motion compensation through motion blur
based and temporal re-projection losses for unsupervised learning. Similarly, [48] utilizes the Evenly-
Cascaded Convolutional Network to parameterize depth and pose, employing the re-projection error
between warped event images and the current frame as a supervisory signal to jointly optimize depth,
motion, and optical flow.

A distinct approach is presented by [16], which introduces a contrast maximization framework for
simultaneous estimation of optical flow, depth, and egomotion through motion field parameterization.
However, these joint estimation methods face a critical challenge: the inclusion of depth estimation
expands the parameterization space, introducing additional degrees of freedom that require stronger
regularization to avoid convergence to local minima.

Neural Flow Fields Recent studies [21, 49] have demonstrated the significant potential of using
deep neural network as continuous and memory-efficient implicit representations for tasks such as
view synthesis [50] [51], scene flow estimation [52, 53], and Non-Rigid Structure from Motion [54].
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Figure 2: Training Pipeline of E-MoFlow. Given the input event data, we use differential flow
loss Eq. (8) and differential geometric loss Eq. (9) to train the neural network Eq. (2) and spline
parameters Eq. (6). These two losses are optimized together until convergence. Solid arrows denote
the forward process; dashed arrows denote gradient backpropagation.

This class of methods leverages coordinate-based networks to store the mapping from spatio-temporal
coordinates to target vectors, such as radiance values or motion fields. The inherent smoothness
bias of the neural network architecture itself serves as a powerful "neural prior," providing implicit
regularization for downstream problems and replacing traditional handcrafted regularizers.

By modeling the differential properties of the scene [52–54], this paradigm can be extended to
represent entire temporal dynamics as Ordinary Differential Equations (ODEs) and to estimate
complex, long-term 3D trajectories. This provides a solid foundation for our proposed method.

3 Methodology

In this section, we will first introduce the continuous representations of optical flow and camera
motion (Sec. 3.1). Next, we will introduce the differential losses used in our work (Sec. 3.2), including
differential flow loss Eq. (8) and differential geometric loss Eq. (9). Finally, we summarize our
training pipeline in Sec. 3.3.

3.1 Continuous Representations

To include the spatial-temporal consistency prior through continuous representations implicitly, we
model ego-motion and optical flow as spline [20] and implicit neural representations [21], respectively.

Continuous Flow. Implicit neural representations [21] model the continuous signal through a
spatial-temporal coordinate based neural network. Specifically, given a time t and a normalized pixel
coordinate x, the neural network will output a normalized optical flow vector uθ(t,x). We can write
it as

uθ(t,x) = NNθ(t,x), (1)
where we denote the parameters of this neural network as θ. The detailed implementation can be
found in Sec. 4.1. Besides, following the Neural Ordinary Differential Equation (Neural ODE) [55],
we can reformulate the warping trajectory of an event ek

.
= {xk, tk} as a neural ODE solution.

In particular, given the initial condition, the warping terminal point at time t can be denoted as
ek(t)

.
= {xk(t), t} and it satisfies the following equation:

dxk(t)

dt
= NNθ(t,xk(t)), xk(tk) = xk. (2)

This ODE can be integrated by any off-the-shelf ODE solvers (e.g., euler [56], rk4 [57], dopri5 [58]),
with the solution defining the event warping trajectory:

xk(t) = xk +

∫ t

tk

NNθ(s,xk(s)) ds (3)

For the backward gradient, this can be solved by a reverse adjoint ODE. Given a scalar-valued loss
function at the reference time point L(xk(tref)), the adjoint state ak(t) = dL/dxk(t) namely the
gradient at time t can be represented by

dak(t)

dt
= −ak(t)

⊤ ∂NNθ(t,xk(t))

∂xk(t)
, ak(tref) =

dL(xk(tref))

dxk(tref)
. (4)
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Figure 3: Landscape of different loss functions. By jointly estimating these two losses, we can
avoid getting stuck in local minima, making it possible to solve the ill-posed problem.

Finally, to get the gradient to the parameters, we can perform a simple integral along time as:

dL

dθ
= −

∫ tk

tref

ak(t)
⊤ ∂NNθ(t,xk(t))

∂θ
dt (5)

Remark. Unlike previous work, which directly models displacement [17, 19], our approach directly
models optical flow (velocity field). This enables our method to be applicable to scenes with more
aggressive motion. Additionally, direct backpropagation of gradients can lead to gradient explosion
and excessive memory usage [55]. The Neural ODE [55] approach mitigates this by modeling the
backpropagation of gradients as an adjoint ODE, significantly reducing memory consumption.

Continuous Motion. Unlike optical flow, camera ego-motion is low-dimensional, and we represent
it using a cubic B-spline [20]. Specifically, given n+1 control points βi ∈ R6, the angular and linear
velocities ωβ(t),νβ(t) at time t can be derived as follows:

[ωβ(t);νβ(t)] =

n∑
i=0

Bi,3(t)βi, (6)

where Bi,3 denotes the cubic basis function of B-spline. For more details, please refer to the
supplementary material.

3.2 Loss Functions

Building on the continuous representations introduced earlier, in this section, we continue by present-
ing the differential losses used in our work. Specifically, the differential flow loss Eq. (8) employs the
CMax loss [15] to learn optical flow. Additionally, a differential geometric loss is proposed in Eq. (9)
to handle the 6-dof motion scenario. By combining these two losses, we are able to overcome the
ill-posed problem while simultaneously avoiding the need for depth estimation.

Differential Flow Loss For the differential flow loss, we follow the standard contrast maximization
pipeline [15] to learn the continuous optical flow field. Given a set of events input E = {ek}Nk=1 , ek

.
=

{xk, tk} with size N , following the definition of warping trajectory defined in Eq. (3), we can warp
each of them to a reference time tref, denoted as E(tref) = {ek(tref)}Nk=1. Then, all the event are
accumulated into an image of warped events (IWE),

I(x, E(tref)) =

N∑
k=1

N (x;xk(tref), σ
2), (7)

where σ defines the gaussian smoothing kernel size. Then, by the following differential flow loss, we
can measure the concentration of events.

Lflow(E(tref), θ) = − 1

HW

H∑
i=1

W∑
j=1

(Iij − µI)
2, (8)

where H , W and µI =
∑H

i=1

∑W
j=1 Iij denotes the hight, width and the mean of IWE, respectively.
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Differential Geometric Loss In the multi-view geometry literature, there are two equations connect
optical flow and ego-motion: the motion field equation [22] and the epipolar equation [23]. Although
not widely known, the differential epipolar equation [23] can theoretically be viewed as the differential
forms of the epipolar constraint. Our differential geometric loss is primarily based on this equation.
Specifically, the 6-DOF motion differential geometric loss in homogeneous coordinate can be defined
to be:

Lgeometry(t,x, θ, β) =
∥∥ûθ(t,x)

⊤[νβ(t)]×x̂− x̂⊤sβ(t)x̂
∥∥2
2
, (9)

where sβ(t) =
1
2 ([νβ(t)]×[ωβ(t)]× + [ωβ(t)]×[νβ(t)]×), hat ·̂ denotes the homogeneous coordi-

nate and [·]× denotes the skew-symmetric operation.

Remark. As shown in Fig. 3, by jointly estimating these two losses, we can prevent optical flow
estimation from getting trapped in local minima, making it possible to solve the inherently ill-posed
problem involving translational motion.

3.3 Training Pipeline

After collecting the representations and losses, we are ready to build the unsupervised training
pipeline. As shown in Fig. 2, given a sequence of event data E , we use differential flow and
differential geometric losses to train the neural network and spline parameters.

min
θ,β

Etref [Lflow(Eneigh(tref), θ)] + E{x,t}∼E [Lgeometry(t,x, θ, β)] , (10)

For the differential flow loss, we randomly select a reference time tref and a set of surrounding events
Eneigh(tref) around it, then evaluate the differential flow loss Lflow(Eneigh(tref), θ) and back propagate
the gradient using Neural ODE to train the network parameters θ. For the differential geometric loss,
we randomly sample some events e = {x, t} ∼ E , collect the corresponding optical flow for each
event NNθ(t, x) and camera velocity [ωβ(t);νβ(t)] derived from the spline β at time t, compute and
accumulate the differential geometric loss, and then back propagate the gradient to train both the
neural network θ and the spline β. These two losses are optimized simultaneously until convergence.

4 Experiments

4.1 Experimental Setup

Datasets and Metrics. We conduct comprehensive evaluations on the MVSEC dataset [64], which
is the de facto standard dataset used in prior work to benchmark optical flow and 6-DoF ego-motion
estimations. This dataset contains both indoor sequences recorded by drones and outdoor sequences
recorded by vehicles. Additionally, we benchmarked optical flow estimation on the more challenging
DSEC [65] dataset, which features complex textures, diverse motion patterns, and varying lighting
conditions. For optical flow evaluation, we compute three standard metrics: endpoint error (EPE),
angular error (AE) and the percentage of pixels with EPE > 3 pixels (denoted by "% Out"), exclusively
over valid ground truth regions with event activity in the evaluation interval. For motion estimation
accuracy, we adopt the root mean square error (RMSE) metric proposed in [14] to measure angular
velocity (◦/s) and linear velocity (m/s) errors.

Baselines. Optical flow estimation using event camera is a widely explored task with various
methodological paradigms. We categorize existing approaches into four primary classes: Supervised
Learning(SL), which requires ground truch optical flow for training (e.g., E-RAFT [26], EV-FlowNet-
EST [25], EV-FlowNet+ [29], DCEIFlow [59], TMA [24], ADM-Flow [31]); Semi-Supervised
Learning (SSL), leveraging grayscale images as supervision through photometric loss construction
(e.g., EV-FlowNet [18], STE-FlowNet [33]); Unsupervised Learning (USL), relying solely on
event data by warping events to reference time and maximizing accumulated image contrast (e.g.,
MotionPriorCMax [36], ConvGRU-EV-FlowNet [32], FireFlowNet [27], USL-EV-FlowNet [19],
ET-FlowNeT [35], EV-MGRFlowNet [63], Paredes et al. [37]); and Model-Based (MB) methods,
which also adopt contrast maximization objectives but employ traditional nonlinear optimization
instead of neural networks (e.g., MultiCM-V2[16], MultiCM [17], Akolkar et al. [13], Nagata et
al. [60], Brebion et al. [61], Cuadrado et al. [28], Shiba et al. [62]). From these paradigms, we
select representative prior works as strong baselines for comprehensive quantitative benchmarking of
optical flow estimation performance.
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Table 1: Quantitative comparison of optical flow estimation task on MVSEC dataset. Bold is the
best among all methods; underlined is second best. Pink represents the best in the ’USL’; Orange
represents the second best in the ’USL’.

indoor_flying1 indoor_flying2 indoor_flying3 outdoor_day1 average

dt = 1 EPE ↓ %Out ↓ EPE ↓ %Out ↓ EPE ↓ %Out ↓ EPE ↓ %Out ↓ EPE ↓ %Out ↓

SL

EV-FlowNet-EST [25] 0.97 0.91 1.38 8.20 1.43 6.47 – – – –
EV-FlowNet+ [29] 0.56 1.00 0.66 1.00 0.59 1.00 0.68 0.99 0.623 0.998
E-RAFT [26] 1.10 5.72 1.94 30.79 1.66 25.20 0.24 1.70 1.235 15.853
DCEIFlow [59] 0.75 1.55 0.90 2.10 0.80 1.77 0.22 0.00 0.668 1.355
TMA [24] 1.06 3.63 1.81 27.29 1.58 23.26 0.25 0.07 1.175 13.563
ADM-Flow [31] 0.52 0.14 0.68 1.18 0.52 0.04 0.41 0.00 0.533 0.340

SS
L EV-FlowNet [18] 1.03 2.20 1.72 15.10 1.53 11.90 0.49 0.20 1.193 7.350

STE-FlowNet [33] 0.57 0.10 0.79 1.60 0.72 1.30 0.42 0.00 0.625 0.750

M
B

Akolkar et al. [13] 1.52 – 1.59 – 1.89 – 2.75 – 1.938 –
Nagata et al. [60] 0.62 – 0.93 – 0.84 – 0.77 – 0.790 –
Brebion et al. [61] 0.52 0.10 0.98 5.50 0.71 2.10 0.53 0.20 0.685 1.975
Cuadrado et al. [28] 0.58 – 0.72 – 0.67 – 0.85 – 0.705 –
Shiba et al. [62] 1.05 2.90 1.68 13.44 1.43 8.97 0.94 3.08 1.275 7.098
MultiCM [17] 0.42 0.09 0.60 0.59 0.50 0.29 0.30 0.11 0.455 0.270
MultiCM-V2 [16] 0.30 0.00 0.47 0.01 0.34 0.00 0.28 0.21 0.348 0.055

U
SL

USL-EV-FlowNet [19] 0.58 0.00 1.02 4.00 0.87 3.00 0.32 0.00 0.698 1.750
FireFlowNet [27] 0.97 2.60 1.67 15.30 1.43 11.00 1.06 6.60 1.283 8.875
ConvGRU-EV-FlowNet [32] 0.60 0.51 1.17 8.06 0.93 5.64 0.47 0.25 0.793 3.615
ET-FlowNeT [35] 0.57 0.53 1.20 8.48 0.95 5.73 0.39 0.12 0.778 3.715
EV-MGRFlowNet [63] 0.41 0.17 0.70 2.35 0.59 1.29 0.28 0.02 0.495 0.958
Paredes et al. [37] 0.44 0.00 0.88 4.51 0.70 2.41 0.27 0.05 0.573 1.743
MotionPriorCMax [36] 0.45 0.09 0.71 2.40 0.60 0.93 – – – –
Ours 0.40 0.30 0.52 0.18 0.46 0.29 0.42 0.54 0.450 0.328

dt = 4

SL

E-RAFT [26] 2.81 40.25 5.09 64.19 4.46 57.11 0.72 1.12 3.270 40.668
DCEIFlow [59] 2.08 21.47 3.48 42.05 2.51 29.73 0.89 3.19 2.240 24.110
TMA [24] 2.43 29.91 4.32 52.74 3.60 42.02 0.70 1.08 2.762 31.438
ADM-Flow [31] 1.42 7.78 1.88 16.70 1.61 11.40 1.51 10.20 1.605 11.520

SS
L EV-FlowNet [18] 2.25 24.70 4.05 45.30 3.45 39.70 1.23 7.30 2.745 29.250

STE-FlowNet [33] 1.77 14.70 2.52 26.10 2.23 22.10 0.99 3.90 1.878 16.700

M
B Shiba et al. [62] 4.06 53.88 6.39 71.82 5.36 65.57 3.60 49.04 4.853 60.077

MultiCM [17] 1.68 12.79 2.49 26.31 2.06 18.93 1.25 9.19 1.870 16.805
MultiCM-V2 [16] 1.18 4.77 1.87 15.51 1.38 7.62 1.05 5.68 1.108 8.305

U
SL

USL-EV-FlowNet [19] 2.18 24.20 3.85 46.80 3.18 47.80 1.30 9.70 2.628 32.125
ConvGRU-EV-FlowNet [32] 2.16 21.51 3.90 40.72 3.00 29.60 1.69 12.50 2.688 26.083
ET-FlowNeT [35] 2.08 20.02 3.99 41.33 3.13 31.70 1.47 9.17 2.667 25.555
EV-MGRFlowNet [63] 1.50 8.67 2.39 23.70 2.06 18.00 1.10 6.22 1.763 14.147
Ours 1.58 9.2 2.04 18.54 1.84 13.57 1.63 14.42 1.773 13.933

For 6-DoF motion estimation, existing methods can be categorized into two classes based on whether
depth prior knowledge is required. Approaches such as AEmin [42], Incmin [66], and PEME [43]
require depth-augmented event data to achieve a 6-DoF estimation, while ECN [48] and MultiCM-V2
[16] can perform a 6-DoF estimation relying solely on raw event streams without depth priors.

Implementation Details. The neural implicit flow field adopts the MLP architecture. The detailed
network architecture can be found in appendix. Following prior works [17] [43], we partition the
entire event sequence into multiple segments during training, with each segment containing 30k
events for MVSEC [64] and 300k events for DSEC [65]. Because the time interval of each segment
is short, the cubic spline modeling continuous camera motion employs only 4 control knots, whose
6-dimensional vectors are initialized to a constant value of 0.2. To solve the event warping trajectory
Eq. (2), we employ the euler solver for its computational efficiency in numerical integration. The
weight of the differential geometric loss is set to 0.25 and the differential flow loss to 1. We employ
two separate AdamW optimizers [67] for the neural implicit flow field NNθ and the camera motion
parameters β. For the MVSEC dataset, the learning rate for the flow field is exponentially decayed
from 1× 10−4 to 6.3× 10−5, whereas for the DSEC dataset, it is cosine annealed from 2× 10−3
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Table 2: Quantitative comparison of optical flow estimation task on DSEC dataset. Bold is the
best among all methods; underlined is second best. Pink represents the best in the ’USL’; Orange
represents the second best in the ’USL’.

All interlaken_00_b interlaken_01_a thun_01_a

Method EPE ↓ AE ↓ %Out ↓ EPE ↓ AE ↓ %Out ↓ EPE ↓ AE ↓ %Out ↓ EPE ↓ AE ↓ %Out ↓
(SL) E-RAFT [26] 0.79 2.85 2.68 1.39 2.36 6.19 0.90 2.54 3.91 0.65 2.94 1.87
(SL) TMA [24] 0.74 2.68 2.30 1.39 2.16 5.79 0.81 2.23 3.11 0.62 2.88 1.61
(MB) MultiCM-V2 [16] 3.47 13.98 30.86 5.74 9.19 38.93 3.74 9.77 31.37 2.12 11.06 17.68

(USL) Paredes et al. [37] 2.33 10.56 17.77 3.34 6.22 25.72 2.49 6.88 19.15 1.73 9.75 10.39
(USL) MotionPriorCMax [36] 3.20 8.53 15.21 3.21 4.89 20.45 2.38 5.46 17.40 1.39 6.99 7.36
(USL) EV-FlowNet [19] 3.86 – 31.45 6.32 – 47.95 4.91 – 36.07 2.33 – 20.92
(USL) Ours 3.14 10.87 19.43 7.24 14.43 35.53 3.18 7.52 19.21 1.83 6.89 12.65

thun_01_b zurich_city_12_a zurich_city_14_c zurich_city_15_a

Method EPE ↓ AE ↓ %Out ↓ EPE ↓ AE ↓ %Out ↓ EPE ↓ AE ↓ %Out ↓ EPE ↓ AE ↓ %Out ↓
(SL) E-RAFT [26] 0.58 2.20 1.52 0.61 4.50 1.06 0.71 3.43 1.91 0.59 2.55 1.30
(SL) TMA [24] 0.55 2.10 1.31 0.57 4.38 0.87 0.66 3.09 1.99 0.55 2.51 1.08
(MB) MultiCM-V2 [17] 2.48 12.05 23.56 3.86 28.61 43.96 2.72 12.62 30.53 2.35 11.82 20.99

(USL) Paredes et al. [37] 1.66 8.41 9.34 2.72 23.16 26.65 2.64 10.23 23.01 1.69 8.88 9.98
(USL) MotionPriorCMax [36] 1.54 6.55 9.69 8.33 20.16 22.39 1.78 8.79 12.99 1.45 6.27 8.34
(USL) EV-FlowNet [19] 3.04 – 25.41 2.62 – 25.80 3.36 – 36.34 2.97 – 25.53
(USL) Ours 1.66 5.62 10.55 3.52 24.92 28.51 1.89 6.13 15.44 1.51 5.66 9.08

Table 3: Quantitative comparison of 6-DoF egomotion estimation task on MVSEC dataset. The
notation "w/ D" denotes requiring depth prior information, whereas "w/o D" indicates no need for
depth information. Bold is the best among all methods; underlined is second best.

indoor_flying1 indoor_flying2 indoor_flying3 outdoor_day1 average

RMSω↓ RMSv↓ RMSω↓ RMSv↓ RMSω↓ RMSv↓ RMSω↓ RMSv↓ RMSω↓ RMSv↓

w
/D

AEmin [42] 1.38 0.069 – – – – 4.00 0.677 – –
IncEmin [66] 1.65 0.085 – – – – 4.05 1.035 – –
PEME [43] 1.05 0.039 – – – – 2.72 0.598 – –

w
/o

D ECN [48] – – – – – – – 0.70 – –
MultiCM-V2 [16] 7.72 0.24 11.50 0.27 9.53 0.31 6.85 5.90 8.900 1.680
Ours 3.44 0.11 5.31 0.12 4.12 0.15 3.38 0.76 4.062 0.285

to 1× 10−7. The learning rate for the camera motion is kept constant at 1× 10−3 for both datasets.
Each short event segment is trained for 1k iterations. All experiments were conducted on a NVIDIA
RTX 4090.

4.2 Results on Optical Flow Estimation

Quantitative Results. We conduct comprehensive quantitative benchmarking for optical flow
estimation on the MVSEC dataset [64] and DSEC dataset [68], as detailed in Tab. 1 and Tab. 2.
The MVSEC benchmarks optical flow estimation over one-frame (dt = 1) and four-frame (dt = 4)
intervals, respectively. Our method outperforms all existing unsupervised learning methods on
the MVSEC dataset. Notably, under the dt = 1 setting, our method ranks second among all
methods, only behind the traditional optimization-based method MultiCM-V2 [16], and outperforms
all supervised learning methods. On the DSEC benchmark, our method performs comparably to
existing unsupervised learning approaches. However, there remains a performance gap compared to
supervised methods. This is primarily because driving scenes involve more complex motion patterns,
abrupt illumination changes, and unstructured scene depth, all of which make it more challenging
for unsupervised methods to learn accurate optical flow. The experimental results demonstrate that
by introducing implicit spatial-temporal continuity constraints Eq. (2) and differential geometric
constraints Eq. (9), our method can unlock the network’s representation capacity in an unsupervised
learning manner, thereby predicting more accurate optical flow.

Qualitative Results. We performed a qualitative comparison with strong baselines on the MVSEC
dataset and DSEC datasets. As shown in Fig.5, the results on the MVSEC datsets demonstrate that
our method predicts optical flow closer to the ground truth. Fig. 6 illustrates that our method also
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indoor_flying1 indoor_flying2 indoor_flying3

Figure 4: Qualitative results of 6-DoF motion estimation on the MVSEC dataset. Due to space
constraints, this figure only presents the linear velocity estimation results. The angular velocity results
are provided in the supplementary material. The top, middle, and bottom rows in each subfigure
correspond to the x-axis, y-axis, and z-axis results, respectively.

MultiCM ConvGRU-EV-FlowNet EV-FlowNetOursGT

Figure 5: Qualitative results of optical flow estimation on the MVSEC dataset. The results
in the first, second, and third rows correspond to sequences indoor_flying1, indoor_flying2 and
indoor_flying3, respectively.

achieved good performance on the DSEC dataset and features smooth optical flow visualizations.
Note that we visualize optical flow only at pixels where events are triggered.

4.3 Results on 6-DoF EgoMotion Estimation

Quantitative Results. To evaluate the performance of 6-DoF motion estimation, we compared our
method with existing approaches on the MVSEC dataset [64], as it provides ground truth camera
motion including angular and linear velocities. As shown in Tab. 3, our method achieves state-of-
the-art 6-DoF motion estimation performance in both indoor and outdoor scenes. This is primarily
attributed to our method’s use of splines to represent camera motion Eq. (6), which provides a strong
continuity prior, combined with our designed differential geometric loss Eq. (9). This loss enables
optical flow information to offer geometrically meaningful guidance for motion learning without
requiring depth priors.

Qualitative Results. We also conducted qualitative evaluation on the 6-DoF motion estimation. As
illustrated in Fig. 4, the 6-DoF motion estimated by our method closely matches the ground truth,
demonstrating that our approach can achieve outstanding motion estimation performance without
requiring depth information in an unsupervised paradigm.
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Figure 6: Qualitative results of optical flow estimation on the DSEC dataset. The results in
the first, second, and third rows correspond to sequences zurich_city_15a, zurich_city_14c and
interlaken_01a, respectively.

Table 4: Ablation studies on differential geometric constraints.
indoor_flying1 indoor_flying2 indoor_flying3 outdoor_day1

dt = 4 EPE ↓ %Out ↓ EPE ↓ %Out ↓ EPE ↓ %Out ↓ EPE ↓ %Out ↓
w/o geometric constrain 1.84 9.68 2.27 18.76 2.27 13.72 1.67 15.13
w/ geometric constrain 1.58 9.2 2.04 18.54 1.84 13.57 1.63 14.42

ground truth motion 1.56 9.13 2.04 18.43 1.84 13.57 1.61 14.25

4.4 Ablation Study

To validate the efficacy of differential geometric constraints Eq. (9), we conducted ablation studies on
the MVSEC dataset [64] under dt = 4 with three configurations: a) no geometric constraints, b) with
differential geometric constraints, and c) direct supervised by ground truth motion. As demonstrated
in Tab. 4, the differential geometric constraints yield improvements in optical flow estimation, even
achieving performance comparable to those supervised with ground truth motion on indoor_flying2
and indoor_flying3. This indicates that our design enhances the geometric plausibility of the estimated
optical flow while effectively avoiding convergence to local minima, as visualized in Fig. 3.

5 Conclusion

This work presents E-MoFlow, a novel framework that unifies 6-DoF egomotion and optical flow
estimation using implicit spatial-temporal and geometric regularization within an unsupervised
learning paradigm. By incorporating implicit neural representations with differential geometry
constraints, our approach effectively tackles the ill-posed challenges of separate estimations of flow
and egomotion from event data. Extensive experiments demonstrate that E-MoFlow achieves state-
of-the-art performance across diverse motion scenarios, matching or surpassing many supervised
approaches.

Acknowledgements. This work was supported in part by NSFC under Grant 62202389, in part by
a grant from the Westlake University-Muyuan Joint Research Institute, and in part by the Westlake
Education Foundation.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We summarize the limitations of this work in the conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: For each important equation in methodology section, we have clearly indicated
its source citation.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the experiments section, we provide a detailed description of our implemen-
tation, and we will release the source code upon acceptance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will release the code upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified all the training and test details in the methodology and
experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our method uses "% Out" in In the experiments section to denote the percentage
of pixels with an End-Point Error (EPE) greater than 3 pixels, which effectively reflects the
statistical significance of different approaches.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the implementation details, we have provided the resource configuration
specifications of the computers for each experiment..

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper is in full compliance with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of all assets used in this paper, including code,
data, and models, have been properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have provided enough introduction and documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only use LLM for writing modification.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Network Architecture

Our network adopts a simple MLP architecture that takes spatial-temporal coordinates (x, t) as input
and outputs optical flow signal u = (u, v). Compared to [19, 27, 32, 36, 37, 63], this coordinate-
based MLP implicitly represents optical flow at spatial-temporal coordinates, essentially a velocity
field, without relying on explicit discrete structures (e.g., voxel grid, event count image), enabling
temporally continuous and dense flow estimation.
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Figure 7: Schematic Diagram of the Neural Implicit Optical Flow Field Network Architecture.
The input of the network is three-channel spatial-temporal coordinates (x, t), and the output is
optical flow u = (u, v). The yellow rectangles represent 256-dimensional hidden units. The orange
diamonds denote ReLU activation functions. The blue arrows indicate residual connections. The
green arrows represent concatenating the original input to the output of the fifth layer.

Specifically, our network architecture, inspired by NeRF [69], employs 9 fully-connected layers
with 256 dimensional hidden units. The first eight layers utilize ReLU activations to enforce a low
Lipschitz constant, ensuring smoother responses to input variations [70], [71]. This design suppresses
high-frequency features while favoring learning of low-frequency features, aligning with the prior
that optical flow exhibits spatial-temporal smoothness [17–19]. Notably, no activation function (e.g.,
ReLU or sigmoid) is applied to the output layer, as optical flow inherently spans both positive and
negative values. To further stabilize network training, we introduce residual connections between the
second layer to the eighth layer and implement skip connections that concatenate the raw input with
the activation outputs of fifth layer. The complete architecture is illustrated in 7.

Although the original NeRF architecture employs positional encoding that enhances high-frequency
feature learning [69], our framework deliberately omits such encoding. This design aligns with our
goal to model optical flow field which is inherently low-frequency spatial-temporal signals, while
avoiding spectral bias toward high-frequency feature [72].

B Continuous Motion Representation

In this section, we discuss how to select an appropriate motion parameterization F based on the
characteristics of camera egomotion. Given a time t, F maps it to the camera’s angular velocity ω
and linear velocity ν at that moment.

F : t → (ω,ν), R → R3 × R3 (11)

In scenarios such as drones, handheld devices, and vehicle-mounted systems, camera ego-motion is
constrained by strong prior assumptions. Specifically, camera motion exhibits temporal continuity
and smoothness, meaning no abrupt changes occur within infinitesimal time intervals ∆t. This prior
is formalized as:

dkF
dtk

≤ Ok, k ∈ {0, 1, 2, . . . ,K} (12)

k denotes the order of the derivative and O specifies the upper bounds for their respective derivatives.
The equation indicates that the k-th order motion derivatives exist and are continuous. This can be
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simplified as:
F ∈ Ck (13)

Ck denotes the set of functions that have continuous derivatives up to the k-th order. Additionally, the
motion of the camera is low-dimensional [2]. Thus, there is no need to over-parameterize the camera
motion (e.g., using neural networks).

In summary, we employ cubic B-spline as F to parameterize the camera motion, as its basis functions
exhibit C2 continuity and compact representation via sparse control knots [20]. Specifically, we
use four control knots β = [β0, β1, β2, β3]

T ∈ R4×6 over a time interval t ∈ [0, 1]. Therefore, the
motion parameterization F can be formally defined as:

F(t) = (ωβ (t) ,νβ (t)) ∈ R3 × R3

ωβ(t) = [ B(t) β ]0:2
νβ(t) = [ B(t) β ]3:5

(14)

This definition allows us to derive the camera’s angular velocity ωβ(t) and linear velocity νβ(t) at
time t, where B(t) ∈ R1×4 denotes the cubic B-spline basis functions, defined as follows:

B(t) =
1

6

[
t3 t2 t 1

] −1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

 (15)

This design choice inherently satisfies the prior assumptions: 1) Cubic B-spline intrinsically enforces
C2 smoothness priors, ensuring natural continuity in velocity, acceleration and jerk without requiring
explicit smoothness constraints. 2) By utilizing sparse control knots, this approach model continuous
camera motion while maintaining a low-dimensional parameterization of the 6-DoF egomotion.

C Differential Geometric Loss

In 3D vision, the motion of the camera (ω,ν) induces a motion field m of projected points on the
normalized image plane x. Assuming the camera is a rigid body, the relationship between the motion
field and the camera motion can be expressed by the following equation, which we formulate in
homogeneous coordinates:

m(x) =
1

Z(x)
A(x)ν +B(x)ω, x = [x, y, 1]T (16)

The matrices A(x) and B(x) are functions of homogeneous image coordinates defined as follows:

A(x) =

[−1 0 x
0 −1 y
0 0 0

]
, B(x) =

 xy −(1 + x2) y
(1 + y2) −xy −x

0 0 0

 (17)

In practice, m(x) is approximated by optical flow field u(x) = [u, v, 0]T under brightness constancy
assumption.

u(x) =
1

Z(x)
A(x)ν +B(x)ω (18)

Eq.(18) is a critically important motion field equation, which establishes the relationship between
optical flow and camera egomotion [22], [73].

However, the presence of Z(x) in this equation implies that recovering camera motion from optical
flow or deriving optical flow from camera motion requires knowledge of depth values at each image
coordinate. Prior works such as [14, 15, 40–42], rely on depth priors or assume locally shared depth
values when performing 6-DOF motion estimation, while methods like [16, 19, 48] jointly estimate
depth alongside optical flow and 6-DOF motion. However, this expands the parameterization space
of the optimization problem, introducing additional degrees of freedom that may lead to convergence
to local minima. Therefore, to enable the formulation of an unsupervised loss function that can
simultaneously estimate optical flow and 6-DOF motion with high accuracy, we need to eliminate the
dependence on Z(x).
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Table 5: Ablation studies on early stopping strategy.
indoor_flying1 indoor_flying2 indoor_flying3 outdoor_day1

Ti
m

e w/o early stopping 9.30s 9.41s 9.50s 10.77s
w/ early stopping 4.21s 4.30s 4.87s 4.56s

efficiency improvement 2.21× ↑ 2.19× ↑ 1.99× ↑ 2.36× ↑
E

PE w/o early stopping 1.58 2.04 1.84 1.63
w/ early stopping 1.61 2.09 1.90 1.68
performance drop 1.90% ↓ 2.45% ↓ 3.26% ↓ 3.07% ↓

We transpose Eq.(18) and then left-multiply by ν × x, form the inner product of u(x) and ν × x,
yieding a scalar equation to isolate Z(x) as follows. × denotes the cross product operation.

u(x)T (ν × x) =

(
1

Z(x)
A(x)ν +B(x)ω

)
(ν × x) (19)

Simplify the above equation to obtain:

u(x)T [ν]×x =
1

Z(x)
νTA(x)T [ν]×x + ωTB(x)T [ν]×x (20)

where [·]× denotes the skew-symmetric operation. Interestingly, it can be proven that the coefficient
of the term that involves Z(x) in Eq.(20) is identically zero.

νTA(x)T [ν]×x ≡ 0 (21)

Therefore, Eq.(20) can be further simplified as follows:

u(x)T [ν]×x − ωTB(x)T [ν]×x = 0 (22)

By expanding ωTB(x)T [ν]×x, Eq.(22) can be rewritten in the following form:

u(x)T [ν]×x − xT sx = 0, s =
1

2
([ω]×[ν]× + [ν]×[ω]×) (23)

Finally, we obtained an equation that connects the optical flow field and camera motion without
relying on depth values.Eq.(23) can theoretically be regarded as a differential form of the epipolar
constraint. We use this as our differential geometric loss to jointly learn optical flow and 6-DoF
motion, as shown in the following equation.

Lgeometry(t,x, θ, β) =
∥∥uθ(t,x)

T [νβ(t)]×x− xT sβ(t)x
∥∥2
2
,

sβ(t) =
1

2
([ωβ(t)]×[νβ(t)]× + [νβ(t)]×[ωβ(t)]×)

(24)

Here, uθ(t,x) represents the optical flow obtained from our neural implicit representation, while
ωβ(t) and νβ(t) denote the angular velocity and linear velocity of the camera, derived from the cubic
B-spline continuous motion representation.

D More Ablation Studies

Early Stopping Strategy. To enhance computational efficiency, we employed the early-stopping
strategy from [52–54] on the MVSEC dataset [64] under dt = 4. Specifically, we set the patience to
45 and the minimum improvement threshold to 1× 10−3, applying the early stopping strategy after
300 iterations. The results in Tab. 5 indicate that the training speed was boosted by 2.2x, while the
optical flow estimation accuracy showed only a slight 2.67% drop in the EPE. This demonstrates that
the strategy significantly reduces training time at the cost of only a minor loss in accuracy, achieving
an excellent trade-off.

E More Qualitative Results

We further provide additional qualitative results. As shown in 8, our method achieves comprehensive
6-DoF motion estimation on the MVSEC dataset [64]. The angular velocity and linear velocity
estimated by our approach closely match the ground-truth motion.
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indoor flying1 indoor flying2 indoor flying3

Figure 8: Complete qualitative results of 6-DoF motion estimation on the MVSEC dataset. The
top section displays the linear velocity estimation results (in m/s), while the bottom section shows
the angular velocity estimation results (in deg/s). The top, middle, and bottom rows in each subfigure
correspond to the x-axis, y-axis, and z-axis results, respectively.

Figure 9: Color wheel for visualizing optical flow. A green color in the optical flow visualization
corresponds to motion directed toward the lower-left corner of the image, while the saturation of the
color encodes the flow magnitude — more vivid hues indicate larger displacement values.

For MVSEC datasets [64], We provide additional qualitative comparisons of optical flow estimation
between our method and MultiCM [17], the second-best performing baseline. As shown in 10, our
approach predicts optical flow with superior continuity and smoothness, validating the effectiveness
of our neural implicit optical flow field representation. The color wheel used to visualize optical flow
is shown in 9, where different colors encode the magnitude and direction of the optical flow.

For DSEC datasets [68], We provide additional visualization comparisons of optical flow estimation
between our method, state-of-the-art unsupervised learning methods, and supervised learning methods
on more sequences. The results in Fig. 11 demonstrate that in some scenarios, our method yields
visually superior results with smoother optical flow, while in scenes with complex textures and drastic
depth changes, it may produce errors at the edges.

Furthermore, we also provide visualization results of the flow field in X − Y − T 3D space on the
MVSEC dataset [64]. The results in Fig. 12 indicate that our method exhibits an emergent capability
for point tracking, which is the ability to track the movement of points in pixel space.
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Figure 10: More qualitative results of optical flow estimation on the MVSEC dataset. It can be
clearly observed that our method estimates smoother optical flow, free from abrupt variations, and
demonstrates closer alignment with the ground truth optical flow. This indicates that our approach
more effectively models the intrinsically spatial-temporally continuous optical flow field.

Figure 11: More qualitative results of optical flow estimation on the DSEC dataset. Qualitative
results of optical flow estimation on the DSEC dataset. The results in the first, second, third, and
fourth rows correspond to sequences interlaken_00b, thun_01a, thun_01a, and zurich_city_14a
respectively.
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Figure 12: Point tracking results of flow field on the MVSEC dataset.
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