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ABSTRACT

Extreme Multi-label Text Classification (XMC) involves learning a classifier that
can assign an input with a subset of most relevant labels from millions of label
choices. Recent works in this domain have increasingly focused on the problem
setting with short-text input data, and labels endowed with short textual descrip-
tions called label features. Short-text XMC with label features has found numerous
applications in areas such as prediction of related searches, title-based product
recommendation, bid-phrase suggestion, amongst others. In this paper, we propose
Gandalf, a graph induced data augmentation based on label features, such that the
generated data-points can supplement the training distribution. By exploiting the
characteristics of the short-text XMC problem, it leverages the label features to
construct valid training instances, and uses the label graph for generating the corre-
sponding soft-label targets, hence effectively capturing the label-label correlations.
While most recent advances (such as SIAMESEXML and ECLARE) in XMC have
been algorithmic, mainly aimed towards developing novel deep-learning architec-
tures, our data-centric augmentation approach is orthogonal to these methodologies.
We demonstrate the generality and effectiveness of Gandalf by showing up to 30%
relative improvements for 5 state-of-the-art algorithms across 4 benchmark datasets
consisting of up to 1.3 million labels.

1 INTRODUCTION

Extreme Multilabel Classification (XMC) has found multiple applications in the domains of related
searches (Jain et al., 2019), product recommendation (Medini et al., 2019), dynamic search advertising
(Prabhu et al., 2018), etc. which require predicting the most relevant results that either frequently
co-occur or are highly correlated with the given product instance or search query. In the XMC setting,
these problems are often modelled through embedding-based retrieval-cum-ranking pipelines over
millions of possible web pages/products/ad-phrases considered as labels.

Nature of short-text XMC and Extreme class imbalance Typically, in the tasks of related search
prediction, bid-phrase suggestion, and related-product recommendation based on titles, the input data
instance is in the form of a short-text query. These short-text instances (names or titles), on average,
consist of only 3-8 words . In order to effectively model these scenarios, there has been an increasing
focus on building encoders as part of deep learning pipelines that can capture the nuances of such
short-text inputs (Dahiya et al., 2021b; Kharbanda et al., 2021).

The real world datasets in XMC are highly imbalanced towards popular or trending ad-
phrases/products. Moreover, these datasets adhere to Zipf’s law (Ye et al., 2020), i.e., most labels in
these extremely large output spaces are tail labels, having very few (< 5) instances in a training set
spanning hundreds of thousands data points (Tab : 1, Appendix). While there is already an insuffi-
ciency of training data, the short-text nature of training instances makes it even more challenging for
the models to learn meaningful, non-overfitting encoded representations for tail words and labels.

Frugal architectures and Label features Due to the low latency requirements of XMC applications,
most recent works are also focused on building lightweight and frugal architectures that can predict
in milliseconds and scale up to millions of labels (Dahiya et al., 2021a). Despite being frugal in terms
of number of layers/parameters in the network, these models are capable of fitting well enough on
the training data, although their generalization to the test samples remains poor (Fig : 1a). Hence,
creating deeper models for better representation learning is perhaps not optimal under this setting.
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Figure 1: Effect of different data augmentations on INCEPTIONXML-LF over LF-AmazonTitles-
131K dataset. (a) shows that a significant generalization gap exists between Train and Test P@1.
However, remarkable improvements can be noted in (b) and (c) as a result of using the proposed data
augmentation Gandalf. While text mixup (Chen et al., 2020) provides a regularization effect and is
effective in reducing overfitting, our proposed alternative LabelMix baseline performs much better.

Recent works, however, make expensive architectural adjustments (Mittal et al., 2021a) to leverage
the text associated with labels (“label features”, discussed in §2) in order to improve generalization.

1.1 RELATED WORK: XMC WITH LABEL FEATURES

Earlier works in XMC primarily focused on problems consisting of entire long-text documents,
consisting of hundreds of words/tokens, such as those encountered in tagging for Wikipedia (Babbar
& Schölkopf, 2017; You et al., 2019). On the output side, the labels were identified by numeric IDs
and hence devoid of any semantic meaning. Most works under this setting are aimed towards scaling
up transformers as encoders for XMC tasks (Chang et al., 2020; Zhang et al., 2021).

By associating labels with their corresponding texts, which are in turn, product titles, document
names or bid-phrases themselves, the contemporary application of XMC has gone beyond standard
document tagging tasks. With the existence of label features, there exist three correlations that can
be exploited for better representation learning: (i) query-label (ii) query-query and (iii) label-label
correlations. Recent works have been successful in leveraging label features and pushing state-of-
the-art by exploiting the first two correlations. For example, SIAMESEXML (Dahiya et al., 2021a)
employs a siamese pre-training stage based on a contrastive learning objective between a data point
and its label features optimizing negative log-likelihood loss. GALAXC (Saini et al., 2021) employs
a graph convolutional network over a combined query-label bipartite graph. DECAF and ECLARE
(Mittal et al., 2021a;b) make architectural additions to exploit higher order query-label correlations by
extending the DeepXML pipeline to accommodate extra ASTEC-like encoders (Dahiya et al., 2021b).

In contrast to the recent algorithmic developments for short-text XMC with label features, and
following the work of (Banko & Brill, 2001), which posits higher relevance of developing more
training data as compared to choice of classifiers in small data regimes, we take a data-centric
approach and focus on developing data augmentation techniques for short-text XMC.

1.2 CONTRIBUTIONS

This work has three-fold contributions:

• As our primary contribution, we propose Gandalf — GrAph iNduced Data Augmentation based
on Label Features — a simple data augmentation algorithm to efficiently leverage label features as
valid training instances in XMC. Augmenting training data via Gandalf faciliates the core objective
of short-text XMC by enabling the model to effectively capture label-label correlations in the latent
space without the need of making architectural modifications,

• Empirically, we demonstrate the generality and effectiveness of Gandalf by showing up to 30%
relative improvements in 5 state-of-the-art extreme classifiers across 4 public benchmark datasets.
We show that by using Gandalf, methods which inherently do not leverage label features beat strong
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baselines which either employ complicated training procedures (Dahiya et al., 2021a) or make
heavy architectural modifications (Mittal et al., 2021a;b) to benefit by leveraging label features.

• In order to test Gandalf against a strong data-augmentation baseline, we propose LabelMix as
an effective interpolation-based data augmentation baseline, which currently does not exist for
short-text XMC. In the process of arriving at LabelMix, we also discuss the effectiveness of mixup
(Zhang et al., 2018) and its variants and aim at answering “Can we extend mixup to feature-label
extrapolation to guarantee a robust model behavior far away from the training data?”, a question
posed in (Zhang et al., 2018) as a future work.

2 WHAT EXACTLY ARE LABEL FEATURES?

To elaborate label features, we take examples relevant to our datasets (i) LF-WikiTitles-500K, where
the model needs to predict the relevant categories, given only the title of a wikipedia page, and (ii)
LF-AmazonTitles-131K, where given a product’s name, model needs to recommend related products.

Example 1: For the wikipedia page “2022 French presidential election”, we have the available
categories : April 2022 events in France | 2022 French presidential election | 2022 elections in
France | Presidential elections in France. Further, a google search of the same query, leads to the
following related searches - French election 2022 - The Economist | French presidential election
coverage on FRANCE 24 | Presidential Election 2022: A Euroclash Between a “Liberal... | French
polls, trends and election news for France - POLITICO.eu, amongst others.

Example 2: For “Mario Kart: Double Dash!!” on Amazon, we have available : Super Smash Bros
Melee | Super Mario Sunshine | Mario Party 7 | Super Mario Strikers as the recommended products.

Observations: In view of these examples, one can affirm two important observations: (i) the short-
text XMC problem indeed requires recommending similar items which are either highly correlated
or co-occur frequently with the queried item, and (ii) the queried item and the corresponding label-
features form an “equivalence class” and convey similar intent (Dahiya et al., 2021a). For example, a
valid news headline search on a search engine should either result in a page mentioning the same
headline or similar re-phrased headlines from other news media outlets (see Example 1). As a result,
it can be argued that data instances are interchangeable with their respective labels’ features.

3 GANDALF: DATA AUGMENTATION FOR EXTREME CLASSIFICATION

Notation & Background For training, we have available a multi-label dataset D =
{{xi, yi}Ni=1, {zl}Ll=1}1 comprising of N data points. Each i ∈ [N ] is associated with a small
ground truth label set yi ⊂ [L] from L ∼ 106 possible labels. Further, xi, zl ∈ X denote the textual
descriptions of the data point i and the label l which, in this setting, derive from the same vocabulary
universe V (Dahiya et al., 2021a). The goal is to learn a parameterized function f which maps each
instance xi to the vector of its true labels yi ∈ {0, 1}L where yil = 1 ⇔ l ∈ yi.

A common strategy for handling this learning problem, called the two towers approach, is to map
instances and labels into a common Euclidean space E = Rd, in which the relevance sl(x) of a label
l to an instance is scored using an inner product, sl(x) = ⟨Φ(x),Ψ(l)⟩. We call Φ(x) the encoding
representation of the instance x, and wl := Ψ(l) the decoding representation of label l. If labels
are featureless integers, then Ψ turns into a simple table lookup. In our setting, l is associated with
features zl, so we identify Ψ(l) = Ψ(zl).

The prediction function selects the k highest-scoring labels, f(x) = topk (⟨Φ(x),Ψ(·)⟩). Training is
usually handled using the one-vs-all paradigm, which applies a binary loss function ℓ to each entry
in the score vector. In practice, performing the sum over all labels for each instance is prohibitively
expensive, so the sum is approximated by a shortlist of labels S(xi) that typically contains all the
positive labels, and only those negative labels which are expected to be particularly challenging for
classification (You et al., 2019; Dahiya et al., 2021b; Kharbanda et al., 2021), leading to

LD[Φ,Ψ] =

N∑
i=1

L∑
l=1

ℓ(yil, ⟨Φ(x),Ψ(l)⟩) ≈
N∑
i=1

∑
l∈S(xi)

ℓ(yil, ⟨Φ(x),Ψ(l)⟩). (1)

1 bold symbols y indicate vectors, captial letters Y indicate random variables, and sans-serif y denotes a set
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Label Features as Data Points It is known that standard training on XMC datasets can easily lead
to overfitting even with simple classifiers (Guo et al., 2019), which is confirmed for our setting in
Fig : 1. To reduce the generalization gap, regularization needs to be applied to the label decoder
Ψ, either explicitly as a new term in the loss function (Guo et al., 2019), or implicitly through the
inductive biases of the network structure (Mittal et al., 2021a;b). Exploiting the interchangability of
label and instance text, SIAMESEXML (Dahiya et al., 2021a) proposes to tie encoder and decoder
together and require Ψ(l) = Φ(zl). While indeed yielding improved test performance, this approach
has two drawbacks: Firstly, the condition Ψ(l) = Φ(zl) turns out to be too strong, and it has to allow
for some fine-tuning corrections ηl, yielding Ψ(l) = Φ(zl) + ηl. Secondly, training SIAMESEXML
becomes a multi-staged process. Initially, a contrastive loss needs to be minimized, followed by
fine-tuning with a classification objective.

Dahiya et al. (2021a) motivates its approach by postulating a self-annotation property (Label Self
Proximity), which claims that a label l is relevant to its own textual features with high probability,
P[Yl = 1 | X = zl] > 1 − ϵ for some small ϵ ≪ 1. One natural question thus arises, in a label
space spanning ∼ 106 labels, what are the other labels which annotate zl, when posed as a data
point? Therefore, to effectively augment the training set with zl as a data point, we need to provide
values for the other entries of the label vector yl. These labels should be sampled according to
yl ∼ P[Y | X = zl], which means we need to find sensible approximations to the probabilities for
the other labels P[Yj = 1 | X = zl]. When using the cross-entropy loss, sampling can be forgone by
replacing the discrete labels yl ∈ {0, 1}L by soft labels ysoft

l = P[Y | X = zl].

Exploiting Label Co-Occurrences In order to derive a model for P[Yl′ = 1 | X = zl], we can
take inspiration from the GLAS regularizer (Guo et al., 2019). This regularizer tries to make the
Gram matrix of the label embeddings ⟨wl,wl′⟩ reproduce the co-occurrence statistics of the labels S,

RGLaS[Ψ] = L−2
L∑

l=1

L∑
l′=1

(⟨wl,wl′⟩ − Sll′)
2
. (2)

Here, S denotes the symmetrized conditional probabilities,

Sll′ := 0.5(P[Yl = 1 | Yl′ = 1] + P[Yl′ = 1 | Yl = 1]). (3)

Plugging in wl = Ψ(zl), this regularizer reaches its minimum if

⟨Ψ(zl),Ψ(zl′)⟩ = Sll′ . (4)

By the self-proximity postulate, we can assume Ψ(zl) ≈ Φ(zl). For a given augmented instance with
target soft-label (zl, ysoft

ll′ ), the training will try to minimize ℓ(⟨Φ(zl),Ψ(zl′)⟩, ysoft
ll′ ). To be consistent

with equation 4, we therefore want to choose ysoft
ll′ such that Sll′ = argmin ℓ(·, ysoft

ll′ ). This is fulfilled
for ysoft

ll′ = σ(Sll′) for ℓ being the binary cross-entropy, where σ denotes the logistic function. If ℓ is
the squared error, then the solution is even simpler, with ysoft

ll′ = Sll′ .

For simplicity, and because of good empirical performance, we choose ysoft
ll′ = Sll′ even when training

with cross-entropy loss. This results in the following, extended version of the self-proximity postulate:

Postulate 1 (Soft-Labels for Label Features) Given a label l with features zl ∈ X , and a proxy for
semantic similarity of labels S, the labels features, when interpreted as an input instance, should
result in predictions

P[Yl′ = 1 | X = zl] ≈ Sll′ . (5)

Label Correlation Graph The label-similarity measure equation 3 used in the original GLaS
regularizer uses only direct co-occurences of labels, which results in a noisy signal that does not
capture higher-order label interdependencies. Therefore, we propose to replace it with the label
correlation graph (LCG) as constructed in ECLARE. LCG ∈ RL×L is inferred by performing a
random walk (with restarts) over a bipartite graph between input data instances and their corresponding
ground-truth labels. Since entries in LCG are normalized and skewed in favor of tail labels, the LCG
can be interpreted as a smoothed and regularized variant of the label co-occurrence matrix. More
intuitively, (Mittal et al., 2021b) show that the LCG correctly identifies a set of semantically similar
labels that either share tokens with the queried label, or co-occur frequently in the same context (for
details, see Fig : 4 in Appendix A), thus making it a good candidate for a label-similarity measure.
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While ECLARE uses the LCG to efficiently mine higher order query tail-label relations by augmenting
the classifier Ψ with graph information, we propose to leverage the graph weights (with an additional
row-wise normalization to get values in range [0, 1]) as probabilistic soft labels for zl as data instance.
Further, to restrict the impact of noisy correlations in large output spaces (Babbar & Schölkopf, 2019),
we empirically find it beneficial to threshold the soft labels obtained from LCG at δ = 0.1 (uniformly
for all datasets). The algorithmic procedure of the data augmentation via Gandalf is shown below :

Algorithm 1: Gandalf Augmentation
1 # j - label index, Z - label feature token matrix

2 def Gandalf(j, Z, LCG, delta=0.1):

3 x = Z[j]

4 y = LCG[j, :] / LCG[j, j] #row-normalize LCG to obtain values in [0, 1]

5 y = numpy.where(y > delta, y, 0) #threshold noisy correlations

6 return (x, y)

Capturing Label-label Correlations The models benefit from Gandalf in two ways: (i) from
Fig. 3 it is evident that Φ(zl) does not exist in the vicinity of Φ(xi), for l ∈ yi, for either head or
tail labels. Thus, Gandalf essentially expands the dataset by adding label features as data points
which are far from training instances in D and, (ii) as labels are product names or document titles
themselves, the new data points created through Gandalf essentially capture the apriori statistical
correlations between products/documents that exist in the label space. As a result, the encoded
representation of correlated labels, learnt by an underlying algorithm, are closer in the representation
space. This especially benefits the tail labels which, more often than not, either get missed out
during shortlisting or rank outside the desired top-k predictions. As shown in the experimental results
(Table 2), the data points generated by Gandalf, indeed, lead to significant improvements for a suite
of existing algorithms. It may be noted that apart from LCG, other sources of modeling correlations,
such as those capturing global and local label correlations or a combination thereof, are also equally
applicable (Huang & Zhou, 2012; Zhu et al., 2017).

Figure 2: A pictorial representation of the proposed Gandalf and LabelMix strategies formed as per
Alg : 1 and Eqn. 9. The title of each plot denotes the data point, the y-axis its labels and the x-axis
their target values. We demonstrate our augmentations on the data point Of the Rings of Power and
the Third Age, which is the final book in the Lord of the Rings(LOTR) series along with labels The
Hobbit and The Lord of the Rings. Notably, the labels found through soft targets through the LCG
are all related to the LOTR universe, with J. R. R. Tolkien being the author, The Quest of Erebor is a
central plot line and, Celebrimbor and Gandalf are major characters. Beyond this, the soft targets
also cover generic labels like 1954/55 in Literature, which is the correct timeline for book release.
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4 LABELMIX: QUERY-LABEL INTERPOLATION

Since the introduction of mixup for images (Zhang et al., 2018), approaches adapted for textual data
(Guo et al., 2020; Chen et al., 2020) have also been proposed. Similar to Verma et al. (2019), these
approaches propose to mix (interpolate) intermediate representations after t layers {ϕt(xi), ϕt(xj)}
of the encoder Φ(x) = φt(ϕt(x)) along with the corresponding label vectors as:

ϕ̃t(xi,xj) := λϕt(xi) + (1− λ)ϕt(xj); ỹ := λyi + (1− λ)yj (6)

where the mixing parameter λ ∈ [0, 1] is sampled from Beta(α, α). The mixed latent representation
ϕ̃t is propagated through the rest of the encoder layers and the loss is calculated using the mixed label
vector as ℓ(⟨φt(ϕ̃t),Ψ⟩, ỹ). However, we observe that while using such formulation of mixup does
reduce overfitting by acting as a regularizer, it does not improve prediction performance on unseen
data (refer to Mixup curves in Fig : 1). These observations are in line with (Chou et al., 2020), who
argue that such formulation of ỹ does not make sense under the imbalanced data regime and hence
argue to create the mixed label vector to favor the minority class. In this section, we thus propose a
new mixup technique - LabelMix as a strong data augmentation baseline for XMC, which favors tail
labels and is more suitable for highly imbalanced problem as encountered in XMC.

Mixup techniques draw inspiration from vicinal risk minimization(VRM) (Chapelle et al., 2000).
In VRM, a model is not trained to minimize the risk over the empirical distribution dPD(x,y) =
1
n

∑n
i=1 δxi(x) δyi(y), but instead over a smoothed out version Pv which also comprises the vicinity

of x. The key task is then to determine what constitutes the vicinity of a data point.

Query-Label Interpolation In recommendation problems, formulated as short-text XMC tasks,
works have focused on reducing distance between Φ(xi) and Φ(zl) ∀ l ∈ yi in order to ensure high
recall rate during the retrieval step and high efficiency while ranking the relevant labels (Mittal et al.,
2021a;b; Saini et al., 2021). Thus, for the short-text XMC task at hand, we require the model to
be invariant under a novel mixup transformation that relates more closely to the aforementioned
recommendation objective. Since Φ(zl) is already expected to be in the vicinity of Φ(xi) and also
exhibit such behaviour in a trained classifier (Fig : 3), the VRM perspective motivates to mix the
encoded representations of a data point with one of its annotating label features as opposed to another
data point in standard mixup formulations. We, therefore, propose to use a new definition of vicinity:
given a data point (xi, yi) ∈ D, its vicinity is given by V (x) := {ϕ̃(xi, zl) : l ∈ yi}.

Sampling Label for Mixup In imbalanced data regimes, tail labels often have very few data points
and thus it makes more sense to sample these labels more often. We thus use an instance-independent
weight vector r ∈ RL (specifically, label frequency raised to the power 0.5 (Mikolov et al., 2013)), the
probability of choosing zl for interpolation from yi is given by yi⊙ r/⟨yi, r⟩, where the denominator
term ensures summation to unity.

While Dahiya et al. (2021a) employ a siamese contrastive loss between Φ(xi) and Φ(zl) s.t. l ∈ yi
in order to bring these closer in the latent space, we posit that an interpolation between these encoded
representations in the latent space should result in an invariance i.e. keep the annotating labels
unchanged. Intuitively, since the encoded representation of a data point is being mixed with that of
one of its label’s text, this should result in a Label-Affirming Invariance. More formally, we propose
a novel postulate for query-label interpolation in shared embedding space:

Postulate 2 (Label-Affirming Invariance) Let (x, y) be a training data point in D, and l ∈ y be a
label relevant to x. Then the classifier should be invariant under mixup with zl in the latent space

topk(⟨Φ(x),Ψ⟩) = topk(⟨φt(ϕ̃t(x, zl)),Ψ⟩) = y ; K = |y| (7)

Modifying Eqn. 6 using postulate 2 for a data point (x, y), we arrive at:

ϕ̃t(x, zl) = λϕt(x) + (1− λ)ϕt(zl); ỹ = y (8)

However, we find it empirically beneficial (ref. Tab : 3) to also accommodate for the label vector of
zl as proposed in postulate 1. This gives us LabelMix:

ϕ̃t(x, zl) = λϕt(x) + (1− λ)ϕt(zl); ỹ = min(1, y + ysoft
l ) (9)
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Figure 3: To obtain this plot, we
take 50,000 product titles from LF-
AmazonTitles-131K dataset and evalu-
ate average cosine similarity between
Φ(xi) and (i) Φ(zl) where zl is a label
feature of one of the annotating labels of
xi, and (ii) Φ(xj), where xi and xj are
“co-documents” i.e. share a label. Evi-
dently, Φ(xi) is already closer to Φ(zl)
in the embedding space as compared to
Φ(xj) and this correlation increases by
using the proposed augmentations.

Not only does LabelMix perform much better than standard mixup techniques (ref. Fig : 1), but also
serves as a strong data augmentation baseline for short-text XMC, as shown in Tab : 2.

5 EXPERIMENTS & DISCUSSION

Benchmarks, Baselines & Metrics We benchmark our experiments on 4 standard public datasets,
the details of which are mentioned in Tab : 1. To test the generality and effectiveness of our proposed
Gandalf, we apply the augmentation across multiple state-of-the-art short-text extreme classifiers: (i)
ASTEC, (ii) DECAF, (iii) ECLARE, and (iv) INCEPTIONXML. Additionally, we also compare against
transformer-encoder based XR-Transformer (Zhang et al., 2021), and SiameseXML++. To compare
Gandalf with conventional data augmentation approaches, we test it against LabelMix which serves
as a strong mixup-based data augmentation baseline more suited for short-text XMC.

As an algorithmic contribution, we extend the INCEPTIONXML encoder to leverage label features in
order to further the state-of-the-art on benchmark datasets and call it INCEPTIONXML-LF. For this,
we augment the OVA classifier with additional label-text embeddings (LTE) and graph-augmented
label embeddings (GALE) as done in (Mittal et al., 2021b). The implementation details and training
strategy can be found in Appendix B. We measure the models’ performance using standard metrics
precision@k, denoted P@k, and its propensity-scored version PSP@k (Jain et al., 2016).

Datasets N L APpL ALpP AWpP
LF-AmazonTitles-131K 294,805 131,073 5.15 2.29 6.92

LF-WikiSeeAlsoTitles-320K 693,082 312,330 4.67 2.11 3.01
LF-WikiTitles-500K 1,813,391 501,070 17.15 4.74 3.10

LF-AmazonTitles-1.3M 2,248,619 1,305,265 38.24 22.20 8.74

Table 1: Details of short-text benchmark datasets with label features. APpL stands for avg. points per
label, ALpP stands for avg. labels per point and AWpP is the length i.e. avg. words per point.

5.1 MAIN RESULTS

We can make some key observations and develop strong insights not only about the short-text XMC
problem with label features but also about specific dataset properties from Table 2. For example, the
training on data points generated via Gandalf gives remarkable improvements on top of the base
versions of existing algorithms especially on LF-AmazonTitles-131K and LF-WikiSeeAlsoTitles-
320K where most labels have ∼5 training data points on average. In these low data regimes, Gandalf
helps capture correlations which are not inherently captured by most existing models. In contrast,
improvements on LF-WikiTitles-500K remain relatively mild where there is enough data per label
for the models to be inherently able to capture these correlations.

Gandalf With Gandalf, gains of up to 30% can be observed in case of ASTEC and INCEPTIONXML
which, by default, do not leverage label features and yet perform at par with their LF-counterparts, i.e.
DECAF and ECLARE, and INCEPTIONXML-LF across all datasets. While architectural modifications
help capture higher order query-label relations and help model predict unseen labels better, they
are computationally expensive, e.g. DECAF (having LTE) takes ∼ 2× time to train while ECLARE
(having both LTE & GALE) takes ∼ 3× compared to its base model ASTEC. Gandalf -augmented
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Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

LF-AmazonTitles-131K LF-AmazonTitles-1.3M

AttentionXML 32.25 21.70 15.61 23.97 28.60 32.57 45.04 39.71 36.25 15.97 19.90 22.54
XR-TRANSFORMER 38.10 25.57 18.32 28.86 34.85 39.59 50.14 44.07 39.98 20.06 24.85 27.79
SIAMESEXML++ 41.42 30.19 21.21 35.80 40.96 46.19 49.02 42.72 38.52 27.12 30.43 32.52

ASTEC 37.12 25.20 18.24 29.22 34.64 39.49 48.82 42.62 38.44 21.47 25.41 27.86
+ LabelMix 37.95 25.65 18.59 29.91 35.58 40.63 49.56 44.01 39.57 21.69 26.13 28.05
+ Gandalf 43.95 29.66 21.39 37.40 43.03 48.31 53.02 46.13 41.37 27.32 31.20 33.34

DECAF 38.40 25.84 18.65 30.85 36.44 41.42 50.67 44.49 40.35 22.07 26.54 29.30
+ LabelMix 39.30 26.60 19.23 31.81 37.67 42.83 49.63 43.77 39.72 20.35 24.83 27.61
+ Gandalf 42.43 28.96 20.90 35.22 42.12 47.61 53.02 46.65 42.25 25.47 30.14 32.83

ECLARE 40.46 27.54 19.63 33.18 39.55 44.10 50.14 44.09 40.00 23.43 27.90 30.56
+ LabelMix 40.34 27.54 19.96 33.48 39.74 45.11 50.55 44.50 40.38 23.40 27.92 30.58
+ Gandalf 42.51 28.89 20.81 35.72 42.19 47.46 53.87 47.45 43.00 28.86 32.90 35.20

INCEPTIONXML 36.79 24.94 17.95 28.50 34.15 38.79 48.21 42.47 38.59 20.72 24.94 27.52
+ LabelMix 40.41 27.45 19.82 32.12 38.54 43.81 49.33 43.08 39.21 23.67 25.73 28.89
+ Gandalf 44.67 30.00 21.50 37.98 43.83 48.93 50.80 44.54 40.25 25.49 29.42 31.59

INCEPTIONXML-LF 40.74 27.24 19.57 34.52 39.40 44.13 49.01 42.97 39.46 24.56 28.37 31.67
+ LabelMix 41.90 28.20 20.35 35.60 41.07 46.20 49.84 43.71 40.42 26.31 30.14 32.46
+ Gandalf 43.84 29.59 21.30 38.22 43.90 49.03 52.91 47.23 42.84 30.02 33.18 35.56

LF-WikiSeeAlsoTitles-320K LF-WikiTitles-500K

AttentionXML 17.56 11.34 8.52 9.45 10.63 11.73 40.90 21.55 15.05 14.80 13.97 13.88
SIAMESEXML++ 31.97 21.43 16.24 26.82 28.42 30.36 42.08 22.80 16.01 23.53 21.64 21.41

ASTEC 22.72 15.12 11.43 13.69 15.81 17.50 44.40 24.69 17.49 18.31 18.25 18.56
+ LabelMix 22.91 15.79 12.02 13.99 16.57 18.04 44.63 24.91 18.35 19.21 19.53 19.32
+ Gandalf 31.10 21.54 16.53 23.60 26.48 28.80 45.24 25.45 18.57 21.72 20.99 21.16

DECAF 25.14 16.90 12.86 16.73 18.99 21.01 44.21 24.64 17.36 19.29 19.82 19.96
+ LabelMix 26.55 18.04 13.75 17.86 20.46 22.61 44.22 24.47 17.3 21.37 20.72 20.69
+ Gandalf 31.10 21.60 16.31 24.83 27.18 29.29 45.27 25.09 17.67 22.51 21.63 21.43

ECLARE 29.35 19.83 15.05 22.01 24.23 26.27 44.36 24.29 16.91 21.58 20.39 19.84
+ LabelMix 29.42 19.94 15.17 22.05 24.36 26.46 44.41 24.49 17.13 21.21 20.34 19.9
+ Gandalf 31.33 21.40 16.31 24.83 27.18 29.29 45.12 24.45 17.05 24.22 21.41 20.55

INCEPTIONXML 23.10 15.54 11.52 14.15 16.71 17.39 44.61 24.79 19.52 18.65 18.70 18.94
+ LabelMix 25.16 17.03 12.97 16.11 18.72 20.76 44.85 24.91 19.73 19.37 18.98 19.56
+ Gandalf 32.54 22.15 16.86 25.27 27.76 30.03 45.93 25.81 20.36 21.89 21.54 22.56

INCEPTIONXML-LF 28.99 19.53 14.79 21.45 23.65 25.65 44.89 25.71 18.23 23.88 22.58 22.50
+ LabelMix 29.68 20.16 15.32 22.24 24.69 26.80 45.64 26.35 18.78 24.09 22.98 23.00
+ Gandalf 33.12 22.70 17.29 26.68 29.03 31.27 47.13 26.87 19.03 24.12 23.92 23.82

Table 2: Results showing the effectiveness and generality of Gandalf on state-of-the-art extreme
classifiers.

base encoders, on the other hand, do not need to make any architectural modifications or employ
complicated training pipelines to imbue necessary invariances.

LabelMix While being effective in capturing query tail-label correlations, LabelMix can only imbue
limited additional inductive bias into the model. ECLARE, on the other hand, is able to better capture
these higher order correlations through its label graph-augmented classifier (GALE), and thus only
gains trivially from LabelMix. DECAF gains non-trivially on both LF-AmazonTitles-131K and
LF-WikiSeeAlsoTitles-320K datasets as it only encodes label text embeddings (LTE) in its classifier,
which leaves out the scope to capture query tail-label correlations further. Similarly, INCEPTIONXML
stands to gain significantly more from LabelMix compared to its LF-counterpart which also employs
GALE. Notably, LabelMix works much better on INCEPTIONXML(-LF) than ECLARE because of
their dynamic negative mining, which enables the augmentation to work more effectively.

Gandalf vs GALE ECLARE leverages LCG to encode label-label correlations in wl through GALE
which helps the model improve prediction performance on new unseen labels. However, this only
allows the classifier to distribute the loss gradient from a training instance {xi, yi} across yi and
correlated labels as per LCG. This essentially captures higher order query-label correlations while
not exploiting label-labels correlations in a way Gandalf does. Since the correlations learnt from
GALE and Gandalf are independent of each other, we find ECLARE and INCEPTIONXML-LF,
both of which employ GALE, to benefit off training on data points generated using Gandalf.

5.2 ABLATION STUDY

We try using Gandalf and LabelMix without soft-labels (SL) from LCG in Table 3, where Gandalf
w/o SL is essentially equivalent to using label features as data points with self-annotation property
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alone. However, that only helps the model learn label-to-words associations, like LTE in DECAF.
Notably, soft-targets play an important role in enabling the encoder to intrinsically learn the label-label
correlations Table 3 and imbue the necessary inductive bias in the models. For further analysis, we
provide visualizations depicting differences in prediction performances obtained with and without by
our proposed augmentations in Appendix B (Table 5).

Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

LF-AmazonTitles-131K LF-WikiSeeAlsoTitles-320K

InceptionXML 35.62 24.13 17.35 27.53 33.06 37.50 21.53 14.19 10.66 13.06 14.87 16.33

+Synonym Replacement 35.07 23.71 17.08 27.20 32.41 36.77 20.08 13.13 9.92 12.00 13.50 14.90

+ LabelMix w/o SL 37.25 25.02 17.98 29.25 34.58 39.09 22.61 14.98 11.30 14.02 15.95 17.55
+ LabelMix 39.05 26.52 19.15 30.98 37.20 42.26 23.90 16.10 12.28 15.20 17.60 19.56

+ Gandalf w/o SL 37.59 25.25 18.18 30.75 35.54 40.06 24.43 16.16 12.15 16.89 18.45 20.02
+ Gandalf 43.52 29.23 20.92 36.96 42.71 47.64 31.31 21.38 16.22 24.31 26.79 28.83

Table 3: Results demonstrating the effectiveness of using Gandalf soft-labels (denoted SL) and
synonyms replacement on a single InceptionXML model.

6 OTHER RELATED WORK : DATA AUGMENTATION AND XMC

Architectural design choices are often complemented with data augmentation methodologies which
have been found to be successful in imbuing necessary problem-specific invariances in the model,
thereby improving model’s generalization capability on unseen data. Textual augmentations in the
discrete space such as making spelling errors (Xie et al., 2017), WordNet-based (Miller et al., 1990)
replacement with synonyms (Kolomiyets et al., 2011; Li et al., 2017; Wang et al., 2018), text-fragment
switch (Andreas, 2020), random insertion, swap and deletion as proposed in versions of EDA (Wei
& Zou, 2019; Karimi et al., 2021) have been shown to bring some performance improvements
(Coulombe, 2018). However, such transformations can lead to semantic inconsistency and illegibility
and, thus decrease performance for classification tasks (Qiu et al., 2020; Anaby-Tavor et al., 2020).

More recent methods have tried filling these gaps in semantic consistency; (Zhao et al., 2022)
improve upon EDA by converting the requirements of diversity and semantic consistency as a min-
max optimization problem. Many methods leverage language models to suggest context-specific
replacements for masked tokens either discretely via a single synonym (Kobayashi, 2018; Wu et al.,
2019) or as a weighted sum of word embeddings of semantically similar words (Gao et al., 2019).

Even though the above approaches help mitigate semantic inconsistency to some extent, they are not
able to preserve the annotating label, especially in low data regimes (Hu et al., 2019) where a major
chunk of XMC data lies. These issues of semantic inconsistency and label distortion can be more
explicit, particularly for short-text instances in XMC i.e. document titles or product names, where
each word in the query has high correlation with the labels. Deletion or insertion of a word in the
query could completely alter the search to either a more generalized or narrowed down one, or result in
something with little sense. For example, changing the search query from “Beats Wireless headphones”
to “Beats Wireless headphones with microphone” would lead to a filtered result. Furthermore, similar
to label-altering random crops in images (which can be considered as the visual equivalent of word
deletion) as pointed out by (Balestriero et al., 2022), altering the aforementioned query to remove or
replace “Beats” with a synonym might lead to a result not having the intended brand in top 10 hits.

7 CONCLUSION

In this paper, we proposed Gandalf, a data augmentation strategy, which is particularly suited for
short-text extreme classification. It not only eliminates the need for complicated training procedures
in order to imbue inductive biases, but dramatic increase in prediction performance of state-of-the-art
methods in this domain. Additionally, we also developed LabelMix, as a baseline data augmentation
which is motivated from previous interpolation-based textual mixup techniques. It is expected that
our treatment towards studying invariances in this domain will spur further data-centric research on
designing other data augmentation methods to effectively replace architectural additions in order to
leverage label features and achieve faster inference times.
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A VISUALIZATIONS

The highly sparse nature of the XMC problem makes the LCG noisy. In order to reduce this noise
from our soft targets, we threshold the correlation values at δ, and quantify its effect by varying
the parameter, as shown in Table 4. Additional visualizations capturing the label correlations and
their first order-neighbors are shown in Figure 4. To better denote the impact of Gandalf on tail
label prediction, we perform a quantile analysis by distributing the labels into 5 equi-voluminous
bins based on the label frequency in the training data, as shown in Figure 5. Finally, the qualitative
comparison of correctness of outputs generated by the baseline model, and those as a result of the
proposed augmentations is shown in Table 5.

Figure 4: Correlations between labels and their first-order neighbours, as found by the LCG on the
LF-WikiTitles-500K dataset. The legend shows the label in question, the bar chart shows the degree
of correlation with its neighbouring labels. Correlated labels often share tokens with each other
and/or may be used in the same context.

P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

δ LF-AmazonTitles-131K LF-WikiSeeAlsoTitles-320K

0.0 41.71 28.03 20.14 36.94 41.93 46.64 31.40 21.56 16.53 26.01 27.89 29.99
0.1 42.09 28.38 20.45 37.09 42.19 47.04 32.20 21.86 16.60 26.06 28.01 30.03
0.2 41.73 28.10 20.18 37.01 41.99 46.67 31.29 21.35 16.28 25.68 27.59 29.65
0.3 41.39 27.74 19.89 36.71 41.51 46.09 31.03 20.92 15.99 25.11 27.12 29.14

Table 4: Results demonstrating the sensitivity of Gandalf with respect to δ, as defined in Algorithm 1.
All experiments were performed on the InceptionXML-LF model, augmented with Gandalf. As
shown, the empirical performance peaks at a δ value of 0.1 which is sufficient to suppresses the
impact of noisy correlations.
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(a) Contributions to P@5 in LF-AmazonTitles-131K

(b) Contributions to P@5 in LF-WikiSeeAlsoTitles-320K

Figure 5: Analysis demonstrating the effectiveness of Gandalf in improving performance over
tail labels. For this graph, labels were divided into 5 equi-voluminous bins in increasing order of
frequency. The graph shows contribution of each bin to P@5 on different datasets and short-text
extreme classifiers.
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Method Datapoint Baseline Predictions LabelMix Predictions Gandalf Predictions

INCEPTIONXML-LF

Topological group

Pontryagin duality, Topological or-
der, Topological quantum field the-
ory, Topological quantum number,
Quantum topology

Topological order, Algebraic
group, Topological ring, Topo-
logical quantum field theory,
Topological quantum number

Compact group, Haar measure, Lie
group, Algebraic group, Topologi-
cal ring

DECAF

Topological quantum computer,
Topological order, Topological
quantum field theory, Topological
quantum number, Quantum topol-
ogy

Topological order, Algebraic
group, Topological ring, Topo-
logical quantum field theory,
Topological quantum number

Compact group, Haar measure, Lie
group, Algebraic group, Topologi-
cal ring

ECLARE

Topological quantum computer,
Topological order, Topological
quantum field theory, Topological
quantum number, Quantum topol-
ogy

Topological order, Topological
ring, Topological quantum field
theory, Topological quantum num-
ber, Quantum topology

Compact group, Topological order,
Lie group, Algebraic group, Topo-
logical ring

INCEPTIONXML-LF

Oat

List of lighthouses in Scotland,
List of Northern Lighthouse Board
lighthouses, Oatcake, Communes
of the Finistere department, Com-
munes of the Cotes-d’Armor de-
partment

Oatcake, Oat milk, Rolled oats,
List of oat diseases, Goboat

Oatcake, Oatmeal, Oat milk, Por-
ridge, Rolled oats

DECAF
Oatcake, Oatmeal, Design for All
(in ICT), Oatley Point Reserve,
Oatley Pleasure Grounds

Oatcake, Oatmeal, Oat milk, Oat-
ley Point Reserve, Oatley Pleasure
Grounds

Oatcake, Oatmeal, Oat milk, Por-
ridge, Rolled oats

ECLARE

Oatmeal, Oat milk, Parks in Syd-
ney, Oatley Point Reserve, Oatley
Pleasure Grounds

Oatmeal, Rolled oats, McCann’s
Steel Cut Irish Oatmeal, Oatley
Point Reserve, Oatley Pleasure
Grounds

Oatcake, Porridge, Rolled oats,
Oatley Point Reserve, Oatley Plea-
sure Grounds

INCEPTIONXML-LF

Grand Lake,
Colorado

Colorado metropolitan areas, Front
Range Urban Corridor, Outline
of Colorado, Index of Colorado-
related articles, State of Colorado

Colorado metropolitan areas,
Outline of Colorado, Index of
Colorado-related articles, State of
Colorado, Colorado counties

Colorado metropolitan areas,
Outline of Colorado, Index of
Colorado-related articles, Col-
orado cities and towns, Colorado
counties

DECAF

Colorado metropolitan areas, Front
Range Urban Corridor, State of
Colorado, Colorado municipali-
ties, National Register of Historic
Places listings in Grand County,
Colorado

Front Range Urban Corridor, In-
dex of Colorado-related articles,
National Register of Historic
Places listings in Grand County,
Colorado, Grand County, Col-
orado, List of lakes in Colorado

Outline of Colorado, State of Col-
orado, Colorado cities and towns,
Colorado municipalities, Colorado
counties

ECLARE

State of Colorado, Colorado cities
and towns, Colorado counties, Na-
tional Register of Historic Places
listings in Grand County, Colorado,
Grand County, Colorado

Colorado metropolitan areas, State
of Colorado, Colorado cities and
towns, Colorado counties, Col-
orado census designated places

Outline of Colorado, Index of
Colorado-related articles, State of
Colorado, Colorado cities and
towns, Colorado counties

INCEPTIONXML-LF

Lunar Orbiter
program

Lunar Orbiter Image Recovery
Project, Lunar Orbiter 3, Lunar Or-
biter 5, Chinese Lunar Exploration
Program, List of future lunar mis-
sions

Exploration of the Moon, List of
missions to the Moon, Lunar Or-
biter Image Recovery Project, Lu-
nar Orbiter 3, Lunar Orbiter 5

Surveyor program, Luna pro-
gramme, Lunar Orbiter Image Re-
covery Project, Lunar Orbiter 3,
Lunar Orbiter 5

DECAF

Exploration of the Moon, List of
man-made objects on the Moon,
Lunar Orbiter Image Recovery
Project, Lunar Orbiter 3, Lunar Or-
biter 5

Exploration of the Moon, Lunar
Orbiter program, Lunar Orbiter Im-
age Recovery Project, Lunar Or-
biter 3, Lunar Orbiter 5

Exploration of the Moon, Apollo
program, Surveyor program, Luna
programme, Lunar Orbiter pro-
gram

ECLARE

Exploration of the Moon, Lunar
Orbiter program, Lunar Orbiter Im-
age Recovery Project, Lunar Or-
biter 3, Lunar Orbiter 5

Exploration of the Moon, Lunar
Orbiter program, Lunar Orbiter Im-
age Recovery Project, Lunar Or-
biter 3, Lunar Orbiter 5

Exploration of the Moon, Pioneer
program, Surveyor program, Luna
programme, Lunar Orbiter pro-
gram

INCEPTIONXML-LF

Armed Forces of
Saudi Arabia

Royal Saudi Air Defense, Royal
Saudi Strategic Missile Force,
Saudi Royal Guard Regiment, Ter-
rorism in Saudi Arabia, Capital
punishment in Saudi Arabia

Saudi-led intervention in Bahrain,
Royal Saudi Navy, Royal Saudi
Air Defense, Royal Saudi Strategic
Missile Force, Saudi Royal Guard
Regiment

Military of Saudi Arabia, Royal
Saudi Air Force, Royal Saudi Air
Defense, Royal Saudi Strategic
Missile Force, King Khalid Mili-
tary City

DECAF

Saudi Arabian-led intervention in
Yemen, Saudi-led intervention in
Bahrain, Human rights in Saudi
Arabia, Legal system of Saudi Ara-
bia, Joint Chiefs of Staff (Saudi
Arabia)

Saudi-led intervention in Bahrain,
Saudi Arabia, Military of Saudi
Arabia, Royal Saudi Strategic Mis-
sile Force, Saudi Arabian National
Guard

Royal Saudi Air Force, Royal
Saudi Navy, Royal Saudi Air De-
fense, Royal Saudi Strategic Mis-
sile Force, Saudi Arabian National
Guard

ECLARE

List of armed groups in the Syrian
Civil War, Military of Saudi Ara-
bia, Royal Saudi Strategic Missile
Force, King Khalid Military City,
Joint Chiefs of Staff (Saudi Ara-
bia)

Military of Saudi Arabia, Royal
Saudi Air Defense, King Khalid
Military City, Saudi Royal Guard
Regiment, List of rulers of Saudi
Arabia

Military of Saudi Arabia, Royal
Saudi Air Defense, Royal Saudi
Strategic Missile Force, King
Khalid Military City, Saudi Royal
Guard Regiment

Table 5: Prediction examples of different datapoints from the LF-WikiSeeAlsoTitles-320K dataset.
Labels indicate mispredictions. It may be noted that queries with even just a single word, like "Oat",
which predicts unrelated labels in the case of the baseline prediction, gets all the labels right with
the addition of Gandalf. Furthermore, even mispredictions get closer when our data augmentation
strategy is introduced.
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B INCEPTIONXML-LF

Figure 6: INCEPTIONXML-LF. The improved Inception Module along with instance attention is
shown in detail. Changes to the INCEPTIONXML framework using the ECLARE classifier are also
shown.

Model Outlook: Short-text queries are encoded by a modified InceptionXML encoder, which
encodes an input query xi using an encoder Φq := (E, θ) parameterised by E and θ, where E
denotes a D-dimensional embedding layer of RV×D for vocabulary tokens V = [t1, t2, . . . , tV ] and
θ denotes the parameters of the embedding enhancement and the inception module respectively.
Alongside Φq, INCEPTIONXML-LF learns two frugal ASTEC-like Dahiya et al. (2021b) encoders,
one each as a label-text encoder Φl := {E,R} and a graph augmented encoder Φg := {E,R}. Here,
R denotes the parameters of a fully connected layer bounded by a spectral norm and the embedding
layer E is shared between all Φq,Φl and Φg for joint query-label word embedding learning. Further,
an attention module A, meta-classifier Wm and an extreme classifier We are also learnt together with
the encoders. Next, we specify the details of all components of INCEPTIONXML-LF.

B.1 INSTANCE-ATTENTION IN QUERY ENCODER

We make two improvements to the inception module INCEPTIONXML for better efficiency. Firstly,
in the inception module, the activation maps from the first convolution layer are concatenated before
passing them onto the second convolution layer. To make this more computationally efficient, we
replace this “inception-like” setting with a “mixture of expert” setting Yang et al. (2019). Specifically,
a route function is added that produces dynamic weights for each instance to perform a dynamic
element-wise weighted sum of activation maps of each filter. Along with the three convolutional
experts, we also add an average pool as a down sampling residual connection to ensure better gradient
flow across the encoder.

Second, we decouple the second convolution layer to have one each for the meta and extreme
classification tasks.

B.2 DYNAMIC HARD NEGATIVE MINING

Training one-vs-all (OvA) label classifiers becomes infeasible in the XMC setting where we have
hundreds of thousands or even millions of labels. To mitigate this problem, the final prediction or
loss calculation is done on a shortlist of size

√
L comprising of only hard-negatives label. This

mechanism helps reduce complexity of XMC from an intractable O(NDL) to a computationally
feasible O(ND

√
L) problem. INCEPTIONXML-LF inherits the synchronized hard negative mining

framework as used in the INCEPTIONXML. Specifically, the encoded meta representation is passed
through the meta-classifier which predicts the top-K relevant label clusters per input query. All
labels present in the top-K shortlisted label clusters then form the hard negative label shortlist for the
extreme task. This allows for progressively harder labels to get shortlisted per short-text query as the
training proceeds and the encoder learns better representations.
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B.3 LABEL-TEXT AND LCG AUGMENTED CLASSIFIERS

INCEPTIONXML-LF’s extreme classifier weight vectors We comprise of 3 weights, as in Mittal
et al. (2021b). Specifically, the weight vectors are a result of an attention-based sum of (i) label-text
embeddings, created through Φl, (ii) graph augmented label embeddings, created through graph
encoder Φg and, (iii) randomly initialized per-label independent weights wl.

As shown in Fig. 6, we first obtain label-text embeddings as z1l = E · z0l , where z0l are the TF-IDF
weights of label feature corresponding to label l. Next, we use the label correlation graph G to create
the graph-weighted label-text embeddings z2l =

∑
m∈[L] Glm · z0l to capture higher order query-tail

label correlations. z1l and z2l are then passed into the frugal encoders Φl and Φg respectively. These
encoders comprise only of a residual connection across a fully connected layer as α ·R ·G(z̃l)+β · z̃l,
where z̃l = {z1l , z2l }, G represents GELU activation and α and β are learned weights. Finally, the
per-label weight vectors for the extreme task are obtained as

We,l = A(z1l , z
2
l ,wl) = α1 · z1l + α2 · z2l + α3 ·wl

where A is the attention block and α{1,2,3} are the dynamic attention weights produced by the
attention block.

B.4 TWO-PHASED TRAINING

Motivation: We find there to be a mismatch in the training objectives in DeepXML-based ap-
proaches like ASTEC, DECAF and ECLARE which first train their word embeddings on meta-labels in
Phase I and then transfer these learnt embeddings for classification over extreme fine-grained labels in
Phase III Dahiya et al. (2021b). Thus, in our two-phased training for INCEPTIONXML-LF, we keep
our training objective same for both phases. Note that, in INCEPTIONXML-LF the word embeddings
are always learnt on labels instead of meta-labels or label clusters and we only augment our extreme
classifier weight vectors We with label-text embeddings and LCG weighted label embeddings. We
keep the meta-classifier Wm as a standard randomly initialized classification layer.

Phase I: In the first phase, we initialize the embedding layer E with pre-trained GloVe embeddings
Pennington et al. (2014), the residual layer R in Φl and Φg is initialized to identity and the rest of the
model comprising of Φq,Wm and A is randomly initialized. The model is then trained end-to-end
but without using free weight vectors wl in the extreme classifier We. This set up implies that We

only consists of weights tied to E through Φl and Φg which allows for efficient joint learning of
query-label word embeddings Mittal et al. (2021a) in the absence of free weight vectors. Model
training in this phase follows the INCEPTIONXML+ pipeline as described in Kharbanda et al. (2021)
without detaching any gradients to the extreme classifier for the first few epochs. In this phase, the
final per-label score is given by:

Pl = A(Φl(z
1
l ), Φg(z

2
l )) · Φq(x)

Phase II: In this phase, we first refine our clusters based on the jointly learnt word embeddings.
Specifically, we recluster the labels using the dense z1l representations instead of using their sparse
PIFA representations Chang et al. (2020) and consequently reinitialize Wm. We repeat the Phase I
training, but this time the formulation of We also includes wl which are initialised with the updated
z1l as well. Here, the final per-label score is given by:

Pl = A(Φl(z
1
l ), Φg(z

2
l ), wl) · Φq(x)
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