arXiv:2509.21301v1 [cs.0S] 25 Sep 2025

Nova: Real-Time Agentic Vision-Language Model

Serving with Adaptive Cross-Stage Parallelization

Yuhang Xuf, Shengzhong Liu*T, Dong Zhang®, Bingheng Yan$, Fan Wuf, Guihai Chen’
TShanghai Jiao Tong University , SInspur Data Co.,Ltd.
Email: {xuyuhangtmx, shengzhong} @sjtu.edu.cn, {zhangdong, yanbh}@inspur.com,
{fwu, gchen}@cs.sjtu.edu.cn

Abstract—This paper presents Nova, a real-time scheduling
framework for serving agentic vision-language models (VLMs)
on a single GPU with balanced per-request latency and overall re-
quest process throughput. Our design begins by enabling effective
pipelining across vision encode, LLM prefill, and LLM decode
stages of VLMs, by exploiting their heterogeneous resource
demands during execution and incorporating elastic GPU spatial
partitioning among stages to maximally utilize the compute
and memory resources. Building on this, we introduce a real-
time scheduling algorithm that adaptively calibrates resource
allocation among stages based on a Pareto-optimal analysis of
the latency—throughput trade-off, allowing the system to sustain
responsiveness and resource efficiency under dynamic request
loads. To further alleviate GPU memory pressure, we design a
lightweight weight offloading strategy for vision encoders that
preserves inference efficiency with minimized memory overhead.
Extensive evaluations on both synthetic and real-world agent
workloads demonstrate that Nova consistently outperforms the
state-of-the-art baselines, improving the maximum latency by up
to 23.3%, while keeping competitive throughput.

I. INTRODUCTION

Recent advances in vision-language models (VLMs) have
enabled a new class of interactive agents that can perceive
visual environments and generate language-based actions [1]-
[7]. Such VLM agents, capable of interpreting graphical user
interfaces (GUIs) and textual user instructions, offer trans-
formative capabilities across application domains, including
mobile automation, remote control, and digital assistance [8]-
[10]. Different from standard LLM applications like chat and
summarization, VLM agents must operate under tight latency
constraints to ensure smooth and reactive behaviors. As a
result, responsive serving becomes a critical requirement for
deploying VLM-based agents in practice.

This paper considers the scenario of serving agentic VLMs
on a single GPU, designed for data-sensitive application
domains (e.g., banking, healthcare, government) that prohibit
offloading GUI images to cloud servers. Unlike cloud clusters
consisting of massive GPUs, where different stages of VLM
inference, including vision encode, LLM prefill, and auto-
regressive LLM decode, may be distributed across separate
GPUs [11], [12], edge serving executes all stages on a single
device. These stages exhibit heterogeneous resource demands,
inducing significant challenges to GPU resource management.
Besides, the short but bursty nature of agentic workloads

*Shengzhong Liu is the corresponding author.

makes it difficult to balance per-request latency with overall
system throughput.

Heterogeneous VLM stages pose significant challenges to
balancing throughput and latency, as prioritizing the vision en-
code or LLM prefill can severely slow down token generation,
while favoring LLM decode may lead to servere GPU under-
utilization. To address this issue, techniques like chunked
prefill [13] are proposed to divide LLM prefill into multiple
encode iterations by encoding one chunk at a time, parallelize
prefill with decode in a hybrid batch, and leverage their shared
model architecture and weights with homogeneous operators,
such that later requests in the waiting queue can receive their
first response within shorter time to first token (TTFT). How-
ever, they fall short in supporting agentic VLM workloads, as
the vision encoder and LLM modules are structurally sepa-
rated, hindering data-level cross-stage batching. Furthermore,
vision encode takes significantly longer than LLM prefill, e.g.,
over 2x in our measurements, making it the new bottleneck
beyond batching. Even operator-level optimizations like POD-
Attention [14] that do not require shared weights become
ineffective for overlapping vision and language stages. Under
high request load, this mismatch can cause even decode-
prioritized approaches, such as chunked prefill, to suffer from
decode starvation and resource underutilization.

These observations motivate us to rethink the system design
for agentic VLM serving. To this end, we propose Nova, a
pipeline-parallel, resource-aware serving framework designed
to address the stage heterogeneity and latency sensitivity of
agentic VLM inference. We begin by estimating the fea-
sibility of cross-stage pipelining through multi-kernel co-
execution. Unlike operator-level batching depending on shared
model weights [13], [14], kernel co-execution allows concur-
rent execution across structurally independent stages. While
prior work, such as NanoFlow [15], enables such parallelism
via fine-grained kernel re-implementation and customized
scheduling, we adopt a hardware-centric approach by explor-
ing GPU spatial sharing [16]-[18] as a more generalizable and
elastic solution. Our key insight is that the primary barrier
to parallelization arises from resource contention between
heterogeneous kernel launches. To address this, we exploit
streaming multiprocessor (SM) partitioning to enable multi-
stage co-execution on the GPU. Specifically, vision encode
and LLM decode often contend for limited registers and
shared memory, which inhibits concurrent kernel launches

https://arxiv.org/abs/2509.21301v1

despite their complementary compute and memory demands.
By assigning disjoint SM subsets to these inference stages,
their contention is alleviated and co-execution efficiency is
significantly improved.

Previous GPU sharing efforts have primarily focused on
maximizing the overall system throughput [18], [19] but
overlooked per-request inference latency. We instead propose
an adaptive SM allocation strategy that navigates the trade-
off between these two metrics in real time. Unlike static
partitioning that fails to accommodate real-time workload
variations, we model the resource demands of each stage and
dynamically calibrate GPU allocation based on the runtime
request load. Specifically, we leverage Pareto-optimal analysis
to guide SM partitioning that minimizes end-to-end latency
across varying conditions. This is particularly crucial under
bursty request patterns, where decode batching and front-
stage congestion must be jointly managed. Therefore, SM
partitioning not only achieves pipeline parallelism to reduce
latency but also exposes resource-level concurrency to improve
throughput. The stage-level scheduling aligns better with the
modular VLM structures than operator-level techniques and
achieves consistent improvement across varying workloads.

We further identify the GPU memory optimization space
in vision encoder inference in agentic VLMs, which compete
with the pre-allocated KV cache of LLM decode. This con-
tention can lead to cache eviction or recomputation [20], which
is problematic in memory-constrained serving scenarios. To
address this, we introduce a lightweight weight offloading
mechanism that asynchronously swaps vision encoder layers
between CPU and GPU memory. This approach alleviates
memory pressure with negligible latency overhead, preserving
KV cache space and improving system generalizability across
hardware configurations.

We implement Nova and evaluate its performance on mul-
tiple platforms using both synthetic workloads and real-world
workloads. The results show that Nova consistently achieves
lower end-to-end latency, outperforming the SOTA baselines
by up to 14.6% in average latency and 23.3% in maximum
latency, while sustaining no smaller throughput.

Overall, our main contributions are summarized as:

« We identify and address the unique system challenges in
serving agentic VLMs on a single GPU, which involve
heterogeneous and stage-wise workloads different from
standard LLM serving systems;

« We propose a stage-parallel execution framework based
on inter-SM GPU sharing, combined with an adaptive SM
partitioning strategy guided by Pareto-optimal analysis,
to dynamically balance per-request latency and overall
throughput under varying workloads;

« We design a lightweight weight offloading mechanism
for large vision encoders, mitigate GPU memory pressure
with minimal overhead;

« We conduct extensive experiments using both synthetic
and real-world datasets on multiple platforms to demon-
strate the effectiveness and scalability of our design.

User Instruction

“Navigate to the
park.”
Vision
Encoder

2L [#Cache
:#T=. . Screenshot KViCach=
Fig. 1: Framework of VLM-based GUI Agent.

Tokenize

LLM Module Decode,|terations

Command

Prefill

Downstream
Executor

TABLE I: Forward latency of different stages in VLM inference.

‘ Vision Encode ‘ LLM Prefill ‘ LLM Decode (Single Iter)
806.8 ms ‘ 324.1 ms ‘ 28.9 ms

Stage

Duration ‘

II. BACKGROUND AND MOTIVATIONS

A. GUI-based Agentic Vision-Language Model

A Vision-Language Model (VLM)-based agent is a mul-
timodal large language model (LLM) designed to interpret
graphical user interface (GUI) screens and generate executable
actions based on natural language instructions [2]. Its input
typically includes a screenshot of the current GUI state and
a user-issued instruction. The output is a structured action
command, such as <click button>, <scroll down>,
which an external controller can execute.

The architecture of a VLM-based agent, as shown in Fig-
ure 1, consists of two main components: a vision module
and an LLM module. The vision module uses a transformer-
based encoder (typically CLIP-pretrained Vision Transformer
(ViT) [21], [22]) to transform the image into visual embed-
dings, which are adapted to the LLM’s input format by a
lightweight adapter. Next, the LLM module concatenates the
visual embeddings with the tokenized instruction and performs
autoregressive generation to produce the textual responses
(i.e., sequence of text tokens). This process includes a prefill
stage, where the multi-modal input is processed to build a
key-value (KV) cache as context, and a decode stage, where
tokens are generated one at a time sequentially based on the
encoded context. The involvement of the KV cache improves
computation efficiency by avoiding repetitive computation
during sequential decode [20], [23]. As a reference, we report
the forward latency of different stages in VLM inference in
Table I, testing using cogAgent [2] on an NVIDIA RTX A6000
GPU. The results show that the forward latency of the vision
stage is significantly longer than that of the prefill stage.
Although a single decode iteration takes relatively little time,
the decode stage still accounts for the majority of the total end-
to-end latency (typically more than 50%) due to the repeated
execution over tens of token generation steps.

Difference from General-Purpose VLMs: To ensure the
quality of decision making, agentic VLMs differ from general-
purpose VLMs in the following aspect: Agentic VLMs typi-
cally accept higher-resolution images and employ larger model
sizes, as shown in Table II, to capture fine-grained visual
details, perform precise pixel-level grounding, and generate
reliable action commands for downstream execution. As a
result, the vision encoder of agentic VLMs incurs significantly
longer image processing time and places a substantially higher
workload on limited GPU memory.

TABLE II: Comparisons of model parameters and input sizes of VLMs.

VLM ‘ Type ‘ LLM Size ‘ VE Size ‘ Image Size
InternVL3-8B [24] General | 7 Billions | 0.3 Billions 448x448
LLAVA-Next-8B [25] | General | 8 Billions | 0.5 Billions 672x672

CogAgent-9B [2] Agentic | 9 Billions | 4 Billions | 1120x1120

TABLE III: Resource utilization profiles of different stages, measured with
Nsight Compute. The two values in each cell denote compute throughput (%)
and memory throughput (%)".

Stage ‘ Kernel
Linear Linear Linear Lincar Attention
(QKV) (0) UG) (D)

Vision | 83.5/57.0 | 73.7/52.0 | 87.7/59.2 | 89.9/58.7 | 74.4/36.3
Prefill | 74.5/585 | 87.4/73.9 | 92.3/58.9 | 88.0/70.1 | 73.8 /349
Decode | 26.0 / 86.4 | 26.6 / 88.2 | 26.6 /909 | 27.8/92.3 | 17.0/ 53.1

B. Characterizing Agentic VLM Inference Workload

The inference workload of a VLM-based GUI agent consists
of three distinct stages: (1) vision encode, (2) LLM prefill, and
(3) LLM decode. Each stage exhibits heterogeneous compute-
memory characteristics that influence the hardware utilization
and system scheduling strategy.

a) VLM Computation Stages: Both the vision encode
and LLM prefill stages exhibit compute-intensive behavior.
The vision stage processes high-resolution GUI screenshots
using a ViT model [22], requiring heavy computation due
to high image resolutions and model complexity. The LLM
prefill stage corresponds to the initial forward pass of the
language encoder with both visual and textual embeddings,
involving dense matrix multiplications and attention over a
long context, making the stage similarly compute-bound. In
contrast, the LLM decode stage is mostly memory-bound. It
performs auto-regressive token generation, where the LLM
predicts one token at a time using cached key-value (KV) pairs
from the prefill stage. Although the input length during decode
is much shorter, each iteration still requires loading the full
LLM weights from GPU memory to on-chip compute units,
e.g., streaming multiprocessors (SMs) on NVIDIA GPUs, as
well as accessing KV-cache, especially costly when serving
multiple concurrent user requests.

We report the resource utilization of four linear kernels
and the attention kernel in the Transformer [26] layers across
the three stages using nsight-compute [27], as shown in
Table III. It can be observed that the decode stage exhibits
significantly higher memory throughput compared to com-
pute throughput, whereas the vision and prefill stages show
the opposite trend, indicating highly heterogeneous resource
demands across different stages.

b) Agentic VLM Serving on a Single GPU: We focus
on deploying an agentic VLM serving system on an edge
server with a single GPU, motivated by the high bandwidth
cost of uploading screenshots and the need to preserve their
privacy. Unlike cloud settings where VLM inference stages can

'Both compute and memory throughput are aggregated metrics in Nsight
Compute. In our setting, they correspond to the tensor pipeline active rate and
the DRAM active rate, respectively.

be distributed across GPUs via high-bandwidth interconnects
such as NVLink [11], [28], all stages in our setting run
on a single GPU. Each request from a user device includes
an instruction text (prompt) and a screenshot image. For
multi-step tasks, the instruction may also contain historical
interactions to maintain continuity across steps.

Our serving system can be formulated as a multi-stage
queuing system. The objective is to minimize the end-to-
end latency of requests, which consists of the queuing delay
and processing time at each stage. Both average and tail
latencies affect the quality of service (QoS), with the latter
primarily caused by prolonged queuing delays directly tied to
system throughput. Since bounding the worst-case latency un-
der unpredictable request arrivals is challenging, we focus on
balancing per-request processing time and overall throughput,
thereby achieving favorable average and tail latencies.

¢) Scheduling Implications: The heterogeneous charac-
teristics of VLM inference introduce a fundamental trade-off
between system throughput and per-request latency. Prioritiz-
ing the vision and prefill stages first, followed by batching
decode requests, can significantly improve the overall request
processing throughput by maximizing compute utilization
and amortizing decode overhead, while reducing time-to-first-
token latency (TTFT). However, this strategy may lead to
increased or unstable time-between-token latency (TBT) in the
decode stage (i.e., interrupted token generation), which can
degrade the user-perceived response smoothness. Therefore,
achieving an optimal balance between overall throughput and
per-request latency is a key challenge in scheduling agentic
VLM workloads on a single GPU.

C. Limitations and Opportunities of LLM Serving Systems

1) Limitations of Chunked Prefill for VLM Inference:
Chunked prefill [13] is a widely adopted technique in LLM
serving systems aimed at reducing TBT and ensuring smooth
generations. It works by splitting the user-provided prompt
into smaller blocks, encoding them in multiple iterations,
and combining the prefill requests and additional decode
requests in a single batch, called hybrid batching. By do-
ing so, it implicitly leverages the complementary resource
demands of the prefill and decode stages to improve the
overall GPU utilization. This strategy is effective in LLMs
because prefill and decode stages share the same model
weights, while Transformer architectures [26] support batching
of mixed operations, including token-wise computation in
linear layers and optimized request-wise self-attention (e.g.,
POD-Attention [14]).

However, chunked prefill faces fundamental limitations
when applied to agentic VLM inference. The vision encoder
and LLM modules in VLMs correspond to separate model
parameters, making it infeasible to combine the vision encode
and LLM decode stages in a single batch. Moreover, the vision
encode stage runs significantly longer than LLM prefill, further
diminishing the benefits of chunked execution.

Vision/Prefill first, high utilization, bu

S

-
3
3
Y
®
5
2

<

)
<
S
5
®
°
8
3
e
s
F
3
o
=N
8
3
o
®
-+
E
3
S
=
[t
>
°
c
=4
o
3
a
Y
=Y
®
3
3
<

Request Timeline

'«— Parallel D and V/P —}

[vision [Prefill
Fig. 2: Timelines of two requests under different scheduling strategies.
By leveraging pipeline parallelization between the decode and vision/prefill
stages, the system achieves a better balance between GPU throughput and
request-level latency.

D Decode Batch Decode

Insight 1: Existing LLM serving frameworks overlook the
unique execution patterns of agentic VLMs and struggle to
balance their overall throughput and per-request latency.

2) Opportunities in Cross-Stage Parallelization: Unlike
operator-level parallelization techniques like chunked prefill,
we argue that cross-stage pipeline parallelization is more
effective for agentic VLM serving. First, it supports co-running
across any inference stages without restrictions on their weight
sharing. Second, it frees the scheduler from complex, manual
request-level splitting and merging. Third, it better exploits the
heterogeneous resource demands of different stages, leading to
improved GPU utilization.

With properly designed pipeline parallelization across
stages, it is possible to achieve a more favorable trade-off
between throughput and latency. As illustrated in Figure 2,
compared to traditional scheduling strategies that prioritize vi-
sion encode and LLM prefill stages, overlapping LLM decode
with long-running vision or prefill stages eliminates part of the
decode waiting time for the first request, thereby significantly
reducing its TBT. Moreover, by intra-device parallelization and
maintaining batching opportunities among decode requests, the
impact on request processing throughput is reduced.

Insight 2: Pipeline parallelization across VLM stages offers
a superior balance between throughput and latency compared
to rigid prefill-first or chunked prefill strategies.

3) Cross-Stage Parallelization and GPU Sharing: Effi-
cient stage parallelization relies on fine-grained GPU sharing
techniques. Recent works [17], [29] have explored GPU shar-
ing via spatial multiplexing of low-level resources such as
streaming multiprocessors (SMs), aiming to improve through-
put by co-locating multiple kernels or tasks on a single GPU.
However, most of these methods focus solely on maximizing
resource utilization but fail to address the latency requirements
of agentic VLM serving. Besides, integrating such low-level
resource scheduling with the complex request-level coordina-
tion in serving systems poses additional challenges.

In agentic VLM serving, cross-stage GPU sharing plays
two essential roles. First, it enables high-level request paral-
lelism, helping to reduce overall end-to-end latency. Second,
it promotes low-level GPU resource multiplexing by co-
locating heterogeneous kernels from different stages. This
co-location mitigates the throughput degradation caused by
reduced batching opportunities in the decode stage under

Schedule Framework @ Parallel Workers
| Request Queue : I T 1

)

@ Adaptive | /@Request ||| Vision Prefill | |Decode
SM Partitioner| | Scheduler

: ; 71))

H 1 1 1 1

1 1

: SM ¥ Mem.

I

© Vision Encoder
Memory Manager

GPU

Fig. 3: System Overview of Nova.

pipeline parallelism, as illustrated in Figure 2. Therefore, to
achieve low latency across varying workloads, effective GPU
sharing must account for both dynamic request fluctuations
and the distinct compute and memory characteristics of each
stage at the kernel level.

Insight 3: Effectively combining GPU sharing techniques
with VLM serving scheduling demands fine-grained, latency-
aware resource coordination and remains a non-trivial prob-
lem.

III. SYSTEM DESIGN

A. System Overview

Figure 3 illustrates the overall architecture of Nova. The
system is designed to efficiently serve agentic VLM requests
by optimizing GPU resource sharing, execution pipeline, and
memory management. The key components and design prin-
ciples are summarized as follows:

@ Adaptive GPU resource partitioner: Nova employs
inter-SM (Streaming Multiprocessor) co-running to enable
GPU spatial sharing between VLM stage workers. By co-
locating compute-intensive and memory-bound kernels,
and adaptively adjusting SM allocations based on work-
load, Nova improves heterogeneous resource utilization
and overall throughput.

9 Runtime pipelined request scheduler: A centralized
request scheduler is responsible for tracking the states of
active requests. It determines the request priorities and
batching strategies among requests to balance per-request
latency and overall throughput, particularly under varying
runtime workloads. The scheduler runs in a separate
control thread and communicates with each model worker
via asynchronous message queues.

o Vision encoder memory manager: To address the high
memory demands imposed by the large vision encoders in
agentic VLMs, Nova implements a layer-wise parameter
swapping strategy. This technique efficiently loads vision
encoder layers into GPU memory only when needed, thus
leaving a significantly smaller memory footprint.

@ Parallel model workers: The system consists of three
dedicated model workers: a vision encode worker, an
LLM prefill worker, and an LLM decode worker. These
workers operate concurrently in separate threads. Each
worker runs an event loop that continuously processes
incoming requests dispatched by the central scheduler.

TABLE IV: Solo/Corun time and kernel-level statistics of two linear operators
from the vision encoder and LLM decode.

Kemel ‘ DRAM SM Blocks | Total | Duration C"mpl(e“";‘ Time
eme Band. ' Throughput ' Per SM ' Blocks (ms) ms

| GBrs) | (@) | | | | Solo | Corun

Decode Linear | 639.78 | 3358 | 1 | 448 | 035 |699.8| 12418

Vision Linear | 273.14 | 87.63 | 1 | 3000 | 297 | 5883 | 680.6

g 2000- —e— Decode Linear
° Vision Linear

1S

i= 1500-

5 Seguential (1288.1) x
2 |

5 1000- I S R——

£ e o T o _ SoloDecode(699.8)
o

w
o
o

10 15 20 25 30 35
SM Assigned to Decode Linear
Fig. 4: Kernel completion time varies with different SM allocations. Through-

put improves over sequential execution when the decode linear kernel is
assigned between 18 and 36 SMs.

Note that the LLM prefill and LLM decode workers share
the same model parameters.

B. Spatial GPU Sharing For Different Stages

To enable parallel execution across VLM stages, we first
explore GPU spatial sharing techniques that allow different
kernels to corun efficiently. This section focuses on the under-
lying SM-level partitioning technique as a foundation for our
adaptive scheduling strategy.

1) Infeasibility with multi-stream inference: A straight-
forward approach to exploit spatial sharing across different
inference stages is to use CUDA streams, which allow ker-
nels from different streams to execute concurrently on the
GPU. However, directly leveraging CUDA streams can lead
to severe GPU resource contention and unpredictable latency
fluctuations.

To demonstrate this, we select the two up-projection linear
kernels—the largest linear kernels—from the vision encode
and LLM decode, and execute them concurrently using CUDA
streams on RTX A6000. The LLM decode linear kernel is
repeated 2000 times, while the vision linear kernel is repeated
200 times. We also use nvidia-compute to profile the
kernel-level statistics of these two operations. The results
are summarized in Table IV. These two kernels are chosen
because linear operations constitute the majority of execution
time in both the vision encode and the LLM decode forward
pass—approximately 75% for LLM decode and 60% for vision
encode. The decode batch size is set to 3, as the output
sequences of agent-oriented VLMs are typically short, which
in turn limits the number of concurrent decode requests.

As shown in Table IV, the two linear operators exhibit
different run-time characteristics: the decode linear kernel
achieves high memory throughput, utilizing 83% of the
A6000’s peak memory bandwidth (768 GB/s), but shows
relatively low SM throughput—a metric that reflects compute
intensity, primarily indicating tensor core utilization in this
case. In contrast, the vision linear kernel is more compute-

intensive. However, running them concurrently results in only
marginal overall throughput improvement (1241.8 ms com-
pared to 1288.1 ms for sequential execution), while the decode
linear kernel experiences significant slowdowns.

The key reason for this performance limitation is severe
launch resource contention between the two kernels. As
shown in the table, both kernels launch significantly more
thread blocks than the number of available SMs on the A6000
(84), which limits inter-SM parallelism. Additionally, each
block consumes a substantial amount of per-SM resources
(e.g., registers and shared memory), allowing at most one
block to be scheduled per SM. This further restricts intra-SM
parallelism and reduces overall concurrency.

2) GPU spatial sharing via SM control: To overcome this
bottleneck, we adopt SM partitioning techniques to limit the
number of SMs visible to each kernel, thereby ensuring that
they can be launched concurrently. We use 1ibsmctrl [30]
to control the SM allocation for different kernels, as it offers
a more flexible and lightweight solution compared to other
SM partitioning methods such as MIG [31] and Green Con-
text [32]. We vary the number of SMs assigned to the two
linear kernels and use CUDA events to record their respective
completion times, as shown in Figure 4.

By leveraging inter-SM parallelism, we observe throughput
improvement: when the number of SMs allocated to the
decode linear kernel is between 18 and 36, the completion time
of the two co-running kernels is shorter than that of sequential
execution. The main reason for this improvement is that
memory-bound kernels like decode linear spend a significant
portion of their execution time waiting for memory reads
to complete. Since DRAM bandwidth and L2 cache—two
critical resources for memory access—are shared among SMs,
allocating too many SMs to memory-bound kernels leads to
contention among thread blocks from the same kernel for
memory access, causing frequent instruction stalls.

Using nvidia-compute, we observe that over 40%
linear kernel execution cycles of LLM decode are stalled
waiting for global memory access (as indicated by the Stall
Long Scoreboard metric). As a result, its execution latency in-
creases more slowly as the number of assigned SMs decreases,
compared to compute-bound kernels like the vision linear.
Therefore, co-running these two kernels can improve overall
throughput. Besides, we also observe that in corun scenarios,
the latency of both kernels is higher than their respective solo
runs, even when sufficient SMs are allocated. This is due to
contention for memory resources, such as DRAM bandwidth
and L2 cache. Thus, inter-SM parallelism improves throughput
at the cost of potential latency degradation.

3) Why not intra-SM parallelization for spatial sharing:
Many prior works [19], [33] leverage intra-SM parallelism
to alleviate launch resource contention between GPU ker-
nels. Inspired by these efforts, we apply two techniques to
reduce the launch resource consumption of linear kernels:
For vision linear, we use CUTLASS [34] to tune tile sizes
and pipeline stages, significantly reducing register and shared
memory usage with negligible performance degradation. For

Ideal pipeline, no waiting time, no pipeline bubbles

o || TTTTTTTTTITTTITTTT
£ T VPPPPA T TP
g 1 4 Time
E Waiting latency caused by request burst
8 / N\
3 [AT TN T T T T A
K> [| AN
1 1 f bl 828 Time

TReq Arrival [___Wait []Vvision [[Prefill [JDecode [IBatch decode
Fig. 5: Waiting latency caused by request burst.

decode linear, which typically operate on small batch sizes,
we reimplement them using CUDA without shared memory
allocation and configure them to use CUDA cores instead of
tensor cores, thereby avoiding compute unit contention with
vision linear layers. With these kernel-level optimizations, we
observe throughput improvements even slightly exceeding that
of inter-SM parallelism when co-running kernels.

However, intra-SM parallelism depends heavily on the
GPU’s internal scheduling behavior, which results in unstable
kernel completion times due to the lack of control over kernel
launch and collocation within the same SM. This instabil-
ity persists even when combined with inter-SM techniques,
making it hard to perform dynamic resource partitioning.
Therefore, we argue that intra-SM parallelism is more suitable
for throughput-oriented applications, but is less appropriate for
our scenario, where a fine-grained balance between throughput
and latency is critical. For this reason, we opt to only use the
inter-SM parallelization strategy in this paper.

C. Adaptive SM Partition

Another important question is how to partition SMs among
requests in different stages to achieve the best latency-
throughput trade-off. We first consider this problem in an
idealized scenario, i.e., all requests are scheduled with perfect
pipeline parallelism, without any waiting time in the vision
encode/LLM prefill stages or pipeline bubbles, as illustrated
in the upper example of Figure 5.

1) End-to-end request latency and SM partition: Assume
the SM partitions for decode-vision and decode-prefill co-
running are P, and P, respectively. Let the forward duration
of LLM decode under these two co-running configurations
be tq4(P,) and t4(P,), and let ¢,(P,) and t,(P,) denote the
durations for the vision encode and LLM prefill stages when
co-running with decode, respectively. Assuming an token
generation length of L, the expectation of the end-to-end
latency t.2. in this ideal scenario is:

Eltese] = to(Py) + tp(Pp) +
(propy - ta(Py) + propy - ta(Pp)) - L,

where prop, and prop, denote the proportion of co-running
time with vision encode or LLM prefill during the entire
decode iterations:

propy = tu(Py)/ (to(Po) + tp(Fp)),
propp = tp(Pp)/(tv(Pv) + tp(Pp))-

After profiling the forward durations under different SM
partitions and the average output length for token generation,

(D

2

we perform an enumeration search to determine the optimal
SM partitions P, and P, that minimize the end-to-end latency
in the ideal scenario, i.e.,

min Elteo.],
el (3)
s.t. Py, Pp € Pavai,

where P, denotes the set of valid SM partitionsz. Assuming
the total number of SMs is N, the time complexity of
profiling is O(N), and the complexity of searching for the
optimal partition configuration is O(N?), which is lightweight
given that modern GPUs typically have between tens and low
hundreds of SMs.

2) Adaptive SM partition strategy: However, static SM
partitioning is inadequate for handling dynamic workloads,
particularly during request surges. The optimal static config-
uration typically allocates relatively more SMs to the decode
stage, though still fewer than those required to fully accelerate
the vision encode or LLM prefill stages, to reduce iterative
token generation latency. However, this leads to longer exe-
cution times for the vision encode and LLM prefill stages.
As explained in the lower example of Figure 5, during burst
periods, the waiting time for requests in the vision encode and
LLM prefill stages is significantly prolonged, as these stages
exhibit no acceleration with request batching.

This motivates us to further analyze the throughput-latency
trade-off introduced by SM partitioning. The end-to-end la-
tency under a given SM partition configuration is given in
Equation (1), while the corresponding throughput T'hr can be
approximated as:

1

L T) @
This is because the vision encode and LLM prefill are executed
sequentially, whereas decode requests can be batched and
executed in parallel with prefill and vision. Moreover, the
latency of a decode iteration remains relatively stable as batch
size increases. For instance, when the batch size increases from
1 to 10, the latency only rises slightly from 28.9 ms to 30.6 ms.
In our serving scenarios, the decode batch size typically
remains below 5 (reported in Section V-C). Therefore, the ideal
throughput is largely unaffected by the decode latency.

We report the latency and throughput under different SM
partition configurations in Figure 6(a)’, and plot the Pareto
frontier to identify the optimal trade-offs between latency
and throughput. Furthermore, we illustrate the optimal SM
partition configurations on the Pareto frontier corresponding
to different throughput levels—i.e., , request rates in serving
scenarios—in Figure 6(b). It can be observed that as the
request rate increases, the optimal strategy gradually allocates

2We only consider assigning SMs with continuous indices, as non-
contiguous partitions offer no performance benefit.

3We use the average output length on the dataset, which are typically
between 40-60 due to structured formatting in agentic VLM responses,
justifying the use of the average.

o
[
)

a —
o
L
< 0.7-
2 .
2 All Points
£0.6- e Pareto Points
o
< = Pareto Front
'_

0.5

5000 5500 6000

Latency (ms)

4500

(a) Latency-Throughput trade-off with Pareto front.

w
o
'

—e— Decode-Vision Corun
Decode-Prefill Corun

N
(%2}
|

g *r—eo—i
o
T 20
]
0 15- \\/\/\[\ /\
107\ U U U U
0.55 0.60 0.65 0.70 0.75

Request Rate (req/s)

(b) SM partition configurations under Pareto front.

Fig. 6: Latency-Throughput trade-off under Pareto front.

fewer SMs to the decode stage, following an approximately
linear decreasing trend.

Since the real-time request rate is difficult to measure
directly, we instead use the number of pending requests, i.e.,
those currently in the vision encode or LLM prefill stages,
as an estimate of the current request rate and system load.
Based on this, we design a dynamic strategy that adjusts the
SM partitioning according to the number of pending requests:
more SMs are allocated to the vision and prefill stages when
the number of pending requests increases. The number of SMs
assigned to the LLM decode stage is determined as follows:

SMdec = max (SMmin7 SMop — Q- (Npend - 1)) 5 (5)

where SM,, (calculated as equation (3)) denotes the default
number of SMs allocated to the decode worker when only one
request is active in the vision or prefill stage, and Npeyq is
the number of requests currently in those stages. A minimum
threshold SM,,;,, is enforced to bound the TBT and prevent
excessive variability in token generation latency.

With this adaptive SM partitioning strategy, the scheduler
can better balance overall throughput and per-request latency
metrics. When the number of pending requests is high, i.e.,
under heavy system load, reducing the resources allocated to
decode and accelerating the processing of vision encode/LLM
prefill stages provides two key benefits:

« It reduces the waiting time for requests in the vision encode
and LLM prefill queues, preventing severe accumulation of
pending requests.

o It allows earlier LLM decode requests to “wait” for later
ones, thereby increasing opportunities for batching decode
requests and improving overall system throughput, espe-
cially advantageous under high load conditions.

D. Piepeline Request Scheduling

We now introduce our request pipeline scheduling algorithm
with adaptive inter-SM spatial GPU sharing. The scheduler
decides the priorities of different requests, the batch choices
among requests, and the number of SMs assigned to model
workers of different VLM stages to balance per-request latency
and the overall system throughput.

Priority of Requests: For requests within the same
stage, we adopt a FIFO scheduling policy. Between stages,
requests in the LLM decode stage are assigned the highest
priority and are scheduled promptly. They can be executed in

Algorithm 1: Adaptive Request Scheduling Algorithm

Data: Request queue (Q; Suspending decode request queue
Qq; Suspending vision request queue)y, .

1 while True do

2 req := get new request from Q;

3 Update the number of requests in different stages;

4 Adjust the SM partition according to eq (5);

5 if req is finished then send req to the output queue;

6 if req is prefill then send req to the prefill worker;

7 if req is decode then

8 if there is decode running then)4.append(Req);

9 else send Merge(Q4, req) to decode worker;

10 end

11 if req is vision then

12 if no running vision and prefill requests then
13 Send req to vision worker;

14 else), .append(req);

15 end

16 end

parallel with vision encode or LLM prefill requests to ensure
consistent token generation and maximize GPU utilization. In
contrast, vision encode and LLM prefill requests do not run
in parallel, as both are compute-bound and would contend
for GPU resources. We prioritize LLM prefill requests over
vision encode requests because of shorter durations. Moreover,
completing the LLM prefill stage enables the generation of
new LLM decode requests, which can then be batched on the
fly to improve overall throughput.

Batch Decision: We do not batch LLM prefill or vision
encode requests, as both stages are highly compute-bound.
Batching them does not improve throughput but instead in-
creases the per-request latency. In contrast, we always batch
LLM decode requests, whose batching significantly improves
request throughput with minimal impact on per-request la-
tency. Similar to existing LLM serving systems, we adopt an
in-flight batching strategy [23]. When a new LLM decode
request arrives, if there is an ongoing LLM decode batch,
the request waits until the current running batch finishes and
then joins the next batch to be dispatched. This wait time is
typically short, as LLM decode latency is generally low.

The request scheduling loop of Nova is detailed in Al-
gorithm 1. The request queue contains both newly arriving
requests and those already being processed by model workers.
The scheduler maintains two waiting queues: decode requests
may be suspended to wait for forming an in-flight batch,
and vision requests may be suspended to avoid blocking

prefill requests. At the start of each scheduling iteration, the
scheduler checks the status of active requests and adjusts
the SM partition accordingly (Lines 2 to 4). For requests
at different stages, the scheduler decides whether to dispatch
them to model workers immediately or suspend them based
on their priority and batching decisions (Lines 5 to 15).

We next describe the granularity of SM assignment cali-
bration. Since the request scheduler and model workers run
concurrently on separate threads, each SM re-assignment re-
quires synchronization. Possible granularities include forward-
pass-level (i.e., adjusting SM allocation per forward pass) and
kernel-level (i.e., adjusting before each GPU kernel launch).
While finer-grained control allows more precise partitioning, it
also incurs higher synchronization overhead. As most kernels
are short, frequent reassignments can cause significant CPU
blocking and hinder asynchronous GPU execution. Therefore,
we adopt a coarse granularity by adjusting SM partitions
before each forward pass within the model worker.

Queueing Behavior: Under Nova scheduling, an incoming
request first waits in the vision worker’s queue. After vision
encoding, it is immediately processed by the prefill worker
without interruption from other vision-stage requests. The
decode worker runs continuously, and a request only waits
in its queue during the first iteration to join the in-flight
batch—a typically negligible delay. Thus, the queueing delay
is dominated by the vision worker’s queue, which can be
modeled as a single-capacity queue, since requests in vision
encoding and LLM prefill are not parallelized or batched.
Assuming that request arrivals follow a Poisson process, the
queueing delay can be modeled with an M/G/1 queue, where
the service time 7' consists of the vision encode and LLM
prefill durations, i.e., T' = t,, +t,. Under an arrival rate)\, the
expected queueing delay W, is given by:

_ _ \E[T7]
~ 2x (1-AE[T))’

E. Efficient Weight Offloading for Vision Encoder

E[W,] ©6)

As discussed in Section II-A, agentic VLMs have signifi-
cantly larger vision encoder model sizes compared to general-
purpose VLMs, causing higher memory pressure on GPU
devices. Existing LLM serving systems typically preallocate
memory for KV-cache storage [20]; thus, the enlarged model
size reduces the available KV-cache capacity, potentially de-
grading both system throughput and serving quality. To ad-
dress this challenge, we propose an efficient layer-wise weight
offloading and swap-in strategy between GPU memory and
CPU memory, leveraging compute and data transfer overlap-
ping to minimize performance overhead.

Mainstream vision encoders typically adopt the ViT [22]
architecture, comprising a stack of Transformer layers. Ex-
isting serving systems load all L layers into GPU memory at
initialization, leading to significant memory waste. In contrast,
Nova only allocates GPU memory for K layers (called phys-
ical layers), where 2 < K < L, and initializes weights for
only the first K layers. Each physical layer acts as a reusable

¢ PCIe Model layer 1
A h Model layer 2
i synchronous|
GPU Fipgiee] v 4 3l$wap-in Model layer 3
Mem. | Physical layer2 f}. Model layer 4 CPU
- - Model layer 5
Physical layer 3 Mem.
Model layer 6
Model layer 7
Forl\-Nardmg Sync. Load 8 Mo:je.l I.ayer 3
ayen Completion

Fig. 7: Weight swap-in between CPU and GPU memory. Physical layers and
their corresponding model layers are marked with matching colors. The system
is currently forwarding physical layer 3, which corresponds to model layer 6,
while model layers 7 and 8 are being asynchronously swapped in.

buffer that holds the weights of multiple logical layers over
time, as illustrated in Figure 7. During inference, once a model
layer completes the forward pass, we asynchronously swap
in the weights for the next logical model layer. Assume the
current logical model layer ID stored in the physical layer is
cur_layer, the next logical layer to be loaded is:

nxt_layer = (cur_layer + K) mod L. @)

Directly adopting weight offloading may incur significant
memory transfer overhead. To reduce this, we apply three op-
timizations: (1) Forward computation and weight swap-in are
placed in separate CUDA streams to enable compute—transfer
overlap. (2) Pinned (page-locked) CPU memory is used for
offloaded weights, allowing zero-copy DMA transfers between
host and device. (3) Synchronization between the forward and
weight-loading streams is coordinated using CUDA events.
Specifically, each physical layer is associated with a CUDA
event, and synchronization is performed before the layer is
either executed or its weights are swapped in.

Condition Analysis: We now analyze the latency intro-
duced by model weight loading and derive the memory
bandwidth required for zero-overhead swap-in. Let S be the
total model size, T be the single forward latency, and B be the
memory bandwidth. During a forward pass, the first K layers
are preloaded into GPU memory. The initial preload occurs
at system startup, while subsequent asynchronous swaps are
overlapped with computation to hide their latency.. When
forwarding the [-th layer (I > K), at least % - S bytes
must have been have been loaded into GPU memory. The
available time window is I’TQ - T, since swap-in starts only
after the first layer’s execution completes. To avoid stalling,
the required memory bandwidth B must satisfy:

-2 S I-K

7 T > = 7 ®)
This condition must hold for all | € [K + 1, L], yielding
that B > 2 . L=K ~ 2 when L > K. The analysis
for consecutive forward passes yields a similar result, in-
dicating that the required bandwidth is independent of K.
In practice, CogAgent’s vision encoder (8 GB) takes 500-
800ms per forward pass on an RTX A6000 or RTX 4090,
requiring at most 16 GB/s bandwidth—well below the typical

peak bandwidth of PCIe 4.0x16 (32 GB/s), as commonly used

for GPU interconnect. Therefore, the runtime weight swap-in
introduces negligible latency overhead.

Limitations and Potential Extensions: Weight offloading
is less effective for the LLM module due to the shared
model weights between prefill and decode stages. Since each
decode step is short, there is little opportunity to overlap
weight loading with computation. However, prior work has
proposed disaggregating prefill and decode [11], [12], allowing
offloading to be applied on the prefill side. Additionally,
on compute-rich but memory-constrained devices, increasing
batch size can extend forward latency and help hide memory
transfer overhead.

IV. IMPLEMENTATION

We implemented the Nova framework with ~2K lines of
Python code, using PyTorch [35] as the backend library. The
scheduler and the three parallel model workers run in separate
threads and communicate via message queues. Each model
worker performs forward passes in its own CUDA stream,
with all streams configured to the same priority level. SM
partitioning is implemented by adding a Python interface
to libsmctrl [30], assigning SMs to each stream with
contiguous indices to each specific stage. We apply kernel
fusion techniques for operators such as RoPE [36] and RM-
SNorm [37], and use FlashInfer [38] for attention kernels.

V. EVALUATION
A. Experimental Setup

1) Hardware Platform: We mainly conduct experiments on
a server equipped with an AMD EPYC 7K62 48-core CPU,
an NVIDIA RTX A6000 GPU, and 256 GB of host memory.
We also test Nova on an RTX 4090 GPU. The RTX A6000
features 84 SMs and 48 GB of VRAM, whereas the RTX 4090
offers 128 SMs and 24 GB of VRAM.

2) VLM Model: We use cogAgent [2], a state-of-the-art
agentic VLM. The model consists of a vision encoder, imple-
mented as a 64-layer ViT [22] with 4B parameters, and an
LLM module, which is a 40-layer Transformer model with
9B parameters. The model precision is set to bf16, requiring
approximately 9 GB of GPU memory for vision encoding and
18 GB for LLM prefill/decode. The KV-cache for a single
request occupies about 70 MB of GPU memory.

3) Dataset: We adopt the Android Instruction Dataset
from AndroidLab [39], which contains GUI interaction data
collected from 138 tasks across nine Android applications
running on virtual devices. Each sample includes a screenshot
and a corresponding user instruction. The typical output length
ranges from 30 to 80 tokens.

4) Workloads: Due to the lack of public agentic VLM
serving traces, we simulate request arrivals using a Poisson
distribution. By adjusting the parameter A, we emulate various
average request rates. Since the vision and prefill stages of
each request take approximately 1.1s to complete, we limit
the maximum average arrival rate to 0.8 requests per second
to avoid severe system overload. Additionally, for experiments
on the RTX 4090, we use private trace data collected from

real-world serving scenarios to evaluate performance under
practical workloads. To simulate varying load conditions, we
scale the request arrival intervals of the trace to generate
different request rates.

5) Hyperparameter Setting: As introduced in Section III-C,
we determine SM,, through enumeration based on profiling
results under various SM partition configurations (reported
in Section V-B). The optimal SM,, values are 24 for de-
code—vision co-running and 30 for decode—prefill co-running.
For both cases, we set SM,,;, to 12, which ensures that
the theoretical maximum TBT remains below 80ms. We set
the a values for decode—vision and decode—prefill co-running
to 4 and 6, respectively*, meaning that SMy.. will drop to
SMy,in when the number of pending requests reaches 4.
The values of « are determined through offline profiling. We
evaluated various « settings between 2 and 8 and observed
stable performance across these configurations.

6) Metrics: We focus on two main categories of metrics.

o Latency Metrics: We primarily consider end-to-end (E2E)
request latency, as it directly impacts the responsiveness
perceived by downstream executors in agent scenarios. We
report both the average and maximum E2E latencies ob-
served in our experiments. Additionally, we report latency
breakdown metrics, including time-to-first-token (TTFT)
and time-between-tokens (TBT), as commonly adopted in
standard LLM serving systems.

Throughput Metrics: While prior works on LLM serving
typically measure throughput using the rate of processed
or generated tokens [15], this approach is less suitable for
VLM agent serving, where the vision stage accounts for
a significant portion of the total execution time but does
not involve token generation. Therefore, we instead adopt
request throughput (i.e., number of processed requests per
second) as our throughput metric.

7) Baselines: Nova is compared with three approaches:
PF-Limit: Prefill-first scheduling is a widely adopted strat-
egy in existing LLM serving systems such as vLLM [20]
and SGLang [40], which prioritizes the vision encode
and LLM prefill stages to maximize system throughput.
Since naive prefill-first scheduling suffers from poor latency
performance due to prolonged waiting times in the LLM
decode queue, we introduce a threshold-based modification:
LLM decode requests are scheduled when the number
of waiting LLM decode requests exceeds a predefined
threshold (set to 5 in our experiments).

Chunk [13]: Chunked prefill splits a LLM prefill request
into several chunks and batches these chunks with LLM
decode requests, thus reducing LLM decode latency. It also
achieves better GPU utilization by locating compute-bound
LLM prefill and memory-bound LLM decode requests in
the same batch [41]. We evaluate various token budget
settings and select 128 as the optimal value.
Multi-Stream: Similar to Nova, multi-stream scheduling
allows kernels from different stages to execute concurrently

4libsmctrl only supports SM adjustments in units of 2, as each TPC
(thread processing cluster) on the RTX A6000 consists of 2 SMs.

141 —e— Vision+Decode Corun
’ Prefill+Decode Corun

1.2-

Throughput Improvement

15 20 25 30 35 40 45
SMs Assigned to Decode

Fig. 8: Corun throughput improvement under different SM allocations.

0 3.0- “w=a— Decode (Corun with Vision) Decode (Corun with Prefill)
§ Vision —— Prefill L
52.5-
<
2.0
c
2
81.5- ~
15 20 25 30 35 40 45

SMs Assigned to Decode

Fig. 9: Corun latency increase under different SM allocations.

on the GPU. However, it relies on CUDA’s default multi-
stream scheduling policy for GPU resource partitioning.

B. Impact of SM Partition

We first evaluate the performance of co-running requests
from different stages under various SM partition configura-
tions. We report both the overall throughput improvements
and the corresponding single-pass latency increase introduced
by co-running in Figure 8 and Figure 9. The main ob-
servations include: First, co-running LLM decode requests
with either vision encode or LLM prefill requests improves
overall throughput, with moderate variation across different
SM allocations. We observe that its co-running with vision
encode yields higher throughput improvement, because of the
higher memory bandwidth contention between LLM prefill
and LLM decode stages. Although the LLM prefill is shorter in
duration than vision encode, it involves loading larger model
weights, resulting in greater bandwidth usage. Second, the
latency increase for both decode—vision and decode—prefill
co-running exhibits similar trends. However, the vision stage
requires more SMs to maintain low latency, as it exhibits more
compute-intensive properties.

C. Overall Performance

Next, we compare the end-to-end performance under dif-
ferent request rates. The request trace length is set to 500,
spanning tens of minutes and capturing the stationary system
behavior under sustainable request rates. We report both end-
to-end latency and throughput in Figure 10, and provide a
latency breakdown in Figure 11. Nova demonstrates the best
performance in both average and maximum end-to-end laten-
cies, critical to downstream command executors. As shown
in the latency breakdown, Nova maintains a low TBT through
steady token generation by parallelizing LLM decode requests
with other request types. While chunked prefill enables paral-
lelization between LLM prefill and decode stages, overlooking
vision encode requests can still block LLM decode requests.
Multi-Stream relies on internal black-box GPU scheduling,
tending to prioritize LLM prefill/vision encode over LLM

—e— PF-Limit z.3
n

0O-F 1
0.30.4 0.5 0.6 0.7 0.8
Request Rate (req/s)

MuIti-Strear’g8 —— Nova

507.__,,444’/
0.30.40.50.6 0.7 0.8
Request Rate (req/s)

100-

50-

ax. E2E Latency
=
o
o
Throughput (reg/s
,C> o
> o

Avg E2E Latency (s)

0.30.40.50.60.70.8
Request Rate (req/s)

Fig. 10: E2E latency and throughput under different request rates.

100- PF-Limit Chunk Multi-Stream} —o— Nova
. 0.12- .
= 73 o 0.10- Z
i e b2

50 - o 2
E F 0.08- F L o o
o g’ wol-
z 25- Z 0.06- ¢ g

0.04- 0 ———o—0—0

0 REEASRASRIRER
0.3 0.4 0.5 0.6 0.7 0.8
Request Rate (req/s)

0.‘3 0.‘4 0.‘5 0.‘6 0.‘7 0.‘8
Request Rate (req/s)

0.‘3 0.‘4 0.‘5 0.‘6 0‘.7 0‘.8
Request Rate (req/s)

Fig. 11: Latency breakdown under different request rates.

decode as they launch significantly more thread blocks. The
phenomenon results in severe blocking of decode execution,
yielding low TTFT but high TBT.

To better understand the throughput gain brought by spatial
gpu sharing, we report the average LLM decode batch sizes
under different scheduling approaches in Figure 12. Chunked
prefill maintains throughput by creating more opportunities to
batch LLM decode requests and batching LLM prefill chunks
with LLM decode requests, thereby avoiding the SM under-
utilization caused by solo LLM decode runs. Nova exhibits
the lowest average decode batch size due to its consistent
token generation strategy, which keeps the number of active
decode requests low. Nevertheless, it still achieves comparable
throughput because of its integrated GPU spatial sharing
strategy.

We also report the queueing delays under Nova scheduling
and compare them with the theoretical predictions from the
M/G/1 model given in equation (6), as summarized in Table V.
The system utilization is defined as AT. At a request rate
of 0.8, the system is overloaded with utilization exceeding
1. It can be observed that the measured queueing delays
closely match the theoretical predictions, indicating that Nova
scheduling aligns well with the M/G/1 queue model. At a
request rate of 0.7, the discrepancy is relatively larger, as the
system is nearly saturated.

D. Impact of Weight Offloading

Here we report the impact of weight offloading on the vision
encoder. We evaluate on both the single forward pass and the
end-to-end impact when integrated into request scheduling.
As summarized in Table VI, only 2 physical layers in GPU
memory are sufficient to hide the latency of weight swapping,
enabling over 90% memory reduction for the vision encoder,
with negligible overhead in both single-pass and end-to-end
serving scenarios. Increasing the number of physical layers
K slightly raises the overhead, because of the increased
synchronization complexity between model computing and
weight swapping, as each physical layer requires a dedicated
CUDA event for synchronization.

FEAE PF-Limit

47 N Chunk
B Multi-Stream
EZE Nova

N
'

Avg. Decode Batch Size

o
|

Request Rate (req/s)

Fig. 12: Average decode batch size under different approaches.

TABLE V: Measured queueing delays under Nova scheduling versus theoret-
ical predictions from the M/G/1 model.

Request Rate A ‘ 03 04 05 06 0.7 0.8
Average Processing Time T’ (s) ‘ 139 144 143 142 138 1.35
System Utilization ‘ 042 058 072 086 097 1.08
Average Measured 060 1.14 206 382 849 33.57
Queueing Latency (s)
Theoretical M/G/1 Queueing 100 186 432 20.99 \

Latency Prediction (s) ‘ 01

TABLE VI: Weight offloading impact on compute and memory efficiency.

‘ Vision Encode w/ Layer Offload
| K=2 | K=3 | K=4 | K=5

Model Raw

Forward Latency |, ‘ 798.6 ‘ 802.2 ‘ 804.8 ‘ 805.8

Single Forward ‘

(ms) ‘
GPU Mem.
‘ Usage (MB) ‘ 8595.2 ‘ 692.1 ‘ 821.6 ‘ 951.1 ‘ 1080.7
Avg E2E
Serving Scenario Latency (s) ‘ 11.96 ‘ 11.85 ‘ 12.35 ‘ 1221 ‘ 12.20
Maximum E2E ‘ 21.94 ‘ 21.83 ‘ 22.62 ‘ 22.39 ‘ 22.37

Latency (s)

E. Contribution of Adaptive SM Partition

We further analyze the adaptive SM partition strategy by
comparing Nova with static SM partition strategies, where
fixed SMs are allocated to LLM decode requests when co-
running with LLM prefill or vision encode stages. As shown
in Figure 13, the proposed adaptive strategy consistently
outperforms static counterparts across varying request rates,
particularly when the request rate increases and request bursts
become more frequent. Under high load, allocating too many
SMs to LLM decode causes LLM prefill and vision encode
requests to experience longer waiting times, further increasing
end-to-end latency. In addition, static SM partitioning struggles
to globally balance the system throughput between cross-stage
co-running and LLM decode request batching. Over-allocating
SMs to LLM decode reduces batching opportunities, as early
LLM decode requests finish soon to wait for others.

We also visualize the scheduling timeline of Nova during
a request burst in Figure 14. The figure shows the latency
changes of individual forward passes for LLM decode and vi-
sion encode requests, along with the fluctuation in the number
of pending requests. Latency values are normalized between
0 and 1 for comparability. We find that when the number of
pending requests increases, the scheduler dynamically allo-
cates more SMs to vision encode requests to accelerate their
processing. This adaptive behavior helps prevent the accu-
mulation of pending requests and mitigates excessive waiting

—e— Static Nova

275- 21301 207
> > =3
g < g
£50- £100- bt —
w w <

o~ (=]
o 25- o 50- S
o X g
Z g] F

0- I
03 04 05 0.6 0.7

Request Rate (req/s)

03 0.4 05 0.6 0.7
Request Rate (req/s)

03 0.4 05 0.6 0.7
Request Rate (req/s)
Fig. 13: E2E latency and throughput comparison between adaptive and static

SM partition.

— Vision Decode Pending Num

T

Normalized Duration
o =
w (=)
N J>
Pendmg Num

o
=)
i

25
Time (s)

|_.

Fig. 14: Practical adaptive SM partition example when requests burst.

—e— PF-Limit —#— Chunk Multi-Stream —o— Nova
“10- 2 9 1.0-
g 4. T125- g
2 /' 2 = 0.8-
® 6. A 810.0- 3
o v w 0.6
Qo4 m 7.57//.;:—/ g
g 3 o fea
< 04 06 08 10 12= 0.4 0.6 0.8 1.0 1.2 0.4 06 0.8 1.0 1.2
Request Rate (req/s) Request Rate (req/s) Request Rate (req/s)
Fig. 15: Performance on RTX 4090 using real-world trace data.
1.00- —
0.75-
&
8 0.50-
0.25- —— Scheduler Overhead
Worker Overhead
0'007\ = U U U U U U U
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175

Overhead (ms)

Fig. 16: Overhead CDF of scheduler and model worker.

delays, ultimately improving overall system responsiveness.

F. Scalability and Generalization Test

To evaluate the generalization of Nova into GPU models
with smaller memories and real-world request distributions,
we conduct additional experiments on an RTX 4090 using
real-world traces from a production VLM agent, whose results
are given in Figure 15. Note CogAgent has 13 B model
parameters, and the model alone consumes approximately
27 GB of GPU memory in BF16 precision, exceeding the
24 GB memory capacity of RTX 4090. Therefore, we adopt
weight offloading for the vision encoder in all approaches.
The results show a similar trend to those on RTX A6000:
Nova consistently outperforms other baselines in terms of
end-to-end latency while maintaining comparable throughput,
demonstrating its scalability and cross-platform compatibility.

G. Overhead Analysis

We finally report the scheduling overhead of Nova, which
mainly comes from the synchronization between the scheduler

and model workers for SM partition adjustments. As shown
in Figure 16, we present the cumulative distribution func-
tion (CDF) of overhead. The overhead remains lightweight
compared to the overall model inference latency. Specifically,
the model worker performs synchronization and performs the
SM re-partition only once before each model forward pass.
Moreover, since the scheduler runs in a separate thread and the
model worker continues inference concurrently during request
scheduling, the scheduling overhead is further minimized.

VI. DISCUSSION

Extensions to Additional VLMs and Edge Devices: Typ-
ical VLMs and other multi-modal LLMs use separate modal-
ity encoders with LLM modules [42], [43]. Our hardware-
level spatial sharing and pipelining approach is broadly ap-
plicable: Prefill-decode co-running remains effective, while
vision-decode co-running benefits depend on model size and
image resolution, which affect hyperparameter tuning. When
deploying large-scale VLMs on resource-constrained devices,
the efficiency of weight offloading is primarily determined by
the ratio between device compute capability and main memory
bandwidth. Our experiments indicate that PCle 3.0 bandwidth
is sufficient to hide weight transfer latency. Nevertheless,
further improvements in model quantization [44]-[46] are
needed, since quantizing the vision encoder can lead to sig-
nificant accuracy degradation. Complementary strategies, such
as self-speculative decoding [47]-[49], may also be employed
to improve LLM inference efficiency.

Exploiting Frame Similarity: One promising direction to
improve efficiency is exploiting frame similarity across re-
quests, especially when Nova is employed in video processing
with high temporal redundancy. Currently, Nova does not use
similarity-based batching or region skipping, as cross-attention
over all image patches or tokens makes reusing intermediate
features potentially harmful to accuracy. However, there are
two potential ways to exploit. First, the vision encoder can be
accelerated by skipping redundant regions with high similarity,
for example by merging or pruning tokens that are highly
similar [50]-[52]. Second, the KV-cache of image tokens
corresponding to similar regions can be reused in the LLM,
while carefully retaining important tokens for recomputation
to preserve accuracy [53], [54].

VII. RELATED WORKS

Efficient LLM Serving Systems. Prior work on LLM
serving falls broadly into three categories. First, memory
efficiency, particularly targeting at alleviating KV-cache bot-
tlenecks [20], [40], [55]-[62]. For example, PagedAtten-
tion [20] reduces fragmentation via block-level cache man-
agement, while SGLang [40] improves cache reuse with
RadixCache. Second, GPU utilization and throughput, tar-
geting better resource efficiency [11]-[15], [23], [63], [64].
DistServe [11] disaggregates prefill and decode across devices,
and NanoFlow [15] overlaps heterogeneous kernels via fine-
grained mini-batching. Third, quality of service, which aims
to meet latency metrics such as TTFT and TBT [65]-[68].

Despite these efforts, most approaches overlook the distinct
execution patterns of multi-modal LLMs, especially agentic
VLMs. Specifically, they do not account for the heterogeneous
compute and memory demands, nor the stage-level modularity,
present in VLM agent workloads. To the best of our knowl-
edge, no dominant serving framework has yet been proposed
to systematically address the challenges of efficient and low-
latency agentic VLM inference.

GPU Resource Sharing. GPU sharing techniques aim to
improve utilization and support concurrent execution. For
DNN inference, both temporal and spatial sharing have been
explored to reduce idleness and enable parallelism [17], [18],
[29], [69]-[72], typically by leveraging heterogeneous re-
source demands for co-scheduling. Low-level GPU partition-
ing has also been studied to support kernel co-execution [19],
[30]-[33], [73]-[76], and can be categorized into inter-SM
and intra-SM approaches. Intra-SM techniques, such as elastic
kernels [19], [33], provide fine-grained sharing but often
suffer from unstable performance due to opaque scheduling.
Moreover, intra-SM partitioning tends to prioritize throughput
improvements without providing sufficient flexibility for fine-
grained, latency-aware scheduling, making it less suitable for
dynamic, multi-stage VLM serving workloads. In contrast,
inter-SM partitioning offers more stable performance and bet-
ter compatibility with adaptive scheduling policies. Therefore,
we adopt inter-SM sharing techniques to support adaptive,
latency-aware resource allocation in VLM agent serving.

VIII. CONCLUSION

We presented Nova, a real-time scheduling framework
tailored for multi-stage agentic vision-language model serv-
ing on a single GPU. Nova integrates adaptive cross-stage
pipeline parallelization with fine-grained SM partitioning to
fully exploit GPU resources, and employs a lightweight weight
offloading strategy to alleviate memory constraints by high-
resolution vision encoders. Through dynamic scheduling based
on a latency—throughput Pareto frontier, Nova ensures con-
sistent responsiveness under diverse and bursty workloads.
Extensive experiments on both synthetic and real-world agent
tasks demonstrate Nova’s superiority in terms of end-to-end
latency, throughput, and GPU memory efficiency.

ACKNOWLEDGEMENT

This work was sponsored in part by the National Key R&D
Program of China (No. 2022ZD0119100), in part by China
NSF grant No. 62472278, 62025204, 62432007, 62441236,
62332014, and 62332013, in part by the Taishan Industrial
Experts Program, in part by Alibaba Group through Alibaba
Innovation Research Program, and in part by Tencent Rhino
Bird Key Research Project. This work was partially supported
by SJTU Kunpeng & Ascend Center of Excellence. The
opinions, findings, conclusions, and recommendations in this
paper are those of the authors and do not necessarily reflect
the views of the funding agencies or the government.

[1]

[3]

[4]

[5]

[6]

[7]

[8]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

J. Wang, H. Xu, J. Ye, M. Yan, W. Shen, J. Zhang, F. Huang, and
J. Sang, “Mobile-agent: Autonomous multi-modal mobile device agent
with visual perception,” arXiv preprint arXiv:2401.16158, 2024.

W. Hong, W. Wang, Q. Lv, J. Xu, W. Yu, J. Ji, Y. Wang, Z. Wang,
Y. Dong, M. Ding et al., “Cogagent: A visual language model for
gui agents,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2024, pp. 14281-14290.

J. Zhang, J. Huang, S. Jin, and S. Lu, “Vision-language models for vision
tasks: A survey,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

D. Zhu, J. Chen, X. Shen, X. Li, and M. Elhoseiny, “Minigpt-4:
Enhancing vision-language understanding with advanced large language
models,” arXiv preprint arXiv:2304.10592, 2023.

R. Niu, J. Li, S. Wang, Y. Fu, X. Hu, X. Leng, H. Kong, Y. Chang,
and Q. Wang, “Screenagent: A vision language model-driven computer
control agent,” arXiv preprint arXiv:2402.07945, 2024.

S. Zhai, H. Bai, Z. Lin, J. Pan, P. Tong, Y. Zhou, A. Suhr, S. Xie,
Y. LeCun, Y. Ma et al., “Fine-tuning large vision-language models as
decision-making agents via reinforcement learning,” Advances in neural
information processing systems, vol. 37, pp. 110935-110971, 2024.
M. Zhao, S. Liu, F. Wu, and G. Chen, “Responsive dnn adaptation
for video analytics against environment shift via hierarchical mobile-
cloud collaborations,” in Proceedings of the 23rd ACM Conference on
Embedded Networked Sensor Systems, 2025, pp. 317-331.

Y. Li, H. Wen, W. Wang, X. Li, Y. Yuan, G. Liu, J. Liu, W. Xu,
X. Wang, Y. Sun et al., “Personal 1lm agents: Insights and survey about
the capability, efficiency and security,” arXiv preprint arXiv:2401.05459,
2024.

M. A. Ferrag, N. Tihanyi, and M. Debbah, “From Ilm reasoning
to autonomous ai agents: A comprehensive review,” arXiv preprint
arXiv:2504.19678, 2025.

X. Dong, X. Zhang, W. Bu, D. Zhang, and F. Cao, “A survey of Ilm-
based agents: Theories, technologies, applications and suggestions,” in
2024 3rd International Conference on Artificial Intelligence, Internet of
Things and Cloud Computing Technology (AloTC). 1EEE, 2024, pp.
407-413.

Y. Zhong, S. Liu, J. Chen, J. Hu, Y. Zhu, X. Liu, X. Jin, and
H. Zhang, “{DistServe}: Disaggregating prefill and decoding for
goodput-optimized large language model serving,” in 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
24), 2024, pp. 193-210.

P. Patel, E. Choukse, C. Zhang, A. Shah, I. Goiri, S. Maleki, and
R. Bianchini, “Splitwise: Efficient generative 1lm inference using phase
splitting,” in 2024 ACM/IEEE 51st Annual International Symposium on
Computer Architecture (ISCA). 1EEE, 2024, pp. 118-132.

A. Agrawal, N. Kedia, A. Panwar, J. Mohan, N. Kwatra, B. Gulavani,
A. Tumanov, and R. Ramjee, “Taming {Throughput-Latency} tradeoff
in {LLM} inference with {Sarathi-Serve},” in 18th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 24), 2024, pp.
117-134.

A. K. Kamath, R. Prabhu, J. Mohan, S. Peter, R. Ramjee, and A. Panwar,
“Pod-attention: Unlocking full prefill-decode overlap for faster 1lm
inference,” in Proceedings of the 30th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2, 2025, pp. 897-912.

K. Zhu, Y. Zhao, L. Zhao, G. Zuo, Y. Gu, D. Xie, Y. Gao, Q. Xu, T. Tang,
Z. Ye et al., “Nanoflow: Towards optimal large language model serving
throughput,” arXiv preprint arXiv:2408.12757, 2024.

P. Yu and M. Chowdhury, “Fine-grained gpu sharing primitives for deep
learning applications,” Proceedings of Machine Learning and Systems,
vol. 2, pp. 98111, 2020.

F. Strati, X. Ma, and A. Klimovic, “Orion: Interference-aware, fine-
grained gpu sharing for ml applications,” in Proceedings of the Nine-
teenth European Conference on Computer Systems, 2024, pp. 1075-
1092.

B. Wu, Z. Zhang, Z. Bai, X. Liu, and X. Jin, “Transparent {GPU}
sharing in container clouds for deep learning workloads,” in 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23), 2023, pp. 69-85.

H. Zhao, W. Cui, Q. Chen, J. Zhao, J. Leng, and M. Guo, “Exploiting

intra-sm parallelism in g?us via persistent and elastic blocks,” in 2021
IEEE 39th International Conference on Computer Design (ICCD).

IEEE, 2021, pp. 290-298.

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

(37]

[38]

[39]

[40]

W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez,
H. Zhang, and I. Stoica, “Efficient memory management for large
language model serving with pagedattention,” in Proceedings of the 29th
Symposium on Operating Systems Principles, 2023, pp. 611-626.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable
visual models from natural language supervision,” in International
conference on machine learning. PmLR, 2021, pp. 8748-8763.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

G.-I. Yu, J. S. Jeong, G.-W. Kim, S. Kim, and B.-G. Chun, “Orca: A
distributed serving system for { Transformer-Based} generative models,”
in 16th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), 2022, pp. 521-538.

Z. Chen, J. Wu, W. Wang, W. Su, G. Chen, S. Xing, M. Zhong, Q. Zhang,
X. Zhu, L. Lu et al., “Internvl: Scaling up vision foundation models
and aligning for generic visual-linguistic tasks,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2024,
pp. 24 185-24198.

F. Li, R. Zhang, H. Zhang, Y. Zhang, B. Li, W. Li, Z. Ma, and C. Li,
“Llava-next-interleave: Tackling multi-image, video, and 3d in large
multimodal models,” arXiv preprint arXiv:2407.07895, 2024.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

“NVIDIA Nsight Compute — developer.nvidia.com,” https://developer.
nvidia.com/nsight-compute.

A.Li, S. L. Song, J. Chen, J. Li, X. Liu, N. R. Tallent, and K. J. Barker,
“Evaluating modern gpu interconnect: Pcie, nvlink, nv-sli, nvswitch and
gpudirect,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 1, pp. 94-110, 2019.

B.-S. Han, T. Paul, Z. Liu, and A. Gandhi, “Kace: Kernel-aware
colocation for efficient gpu spatial sharing,” in Proceedings of the 2024
ACM Symposium on Cloud Computing, 2024, pp. 460—469.

J. Bakita and J. H. Anderson, “Hardware compute partitioning on nvidia
gpus,” in 2023 IEEE 29th Real-Time and Embedded Technology and
Applications Symposium (RTAS). 1EEE, 2023, pp. 54-66.

NVIDIA, “NVIDIA Multi-Instance GPU (MIG) — nvidia.com,” https:
/lwww.nvidia.com/en-us/technologies/multi-instance-gpu/, 2025, [Ac-
cessed 09-05-2025].

NVIDIA, “CUDA Driver API CUDA Toolkit Documenta-
tion — docs.nvidia.com,” https://docs.nvidia.com/cuda/cuda-driver-api/
group__CUDA__GREEN__CONTEXTS.html, [Accessed 09-05-2025].
S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Improving gpgpu
concurrency with elastic kernels,” ACM SIGARCH Computer Architec-
ture News, vol. 41, no. 1, pp. 407-418, 2013.

V. Thakkar, P. Ramani, C. Cecka, A. Shivam, H. Lu, E. Yan,
J. Kosaian, M. Hoemmen, H. Wu, A. Kerr, M. Nicely, D. Merrill,
D. Blasig, F. Qiao, P. Majcher, P. Springer, M. Hohnerbach,
J. Wang, and M. Gupta, “CUTLASS,” Jan. 2023. [Online]. Available:
https://github.com/NVIDIA/cutlass

A. Paszke, “Pytorch: An imperative style, high-performance deep learn-
ing library,” arXiv preprint arXiv:1912.01703, 2019.

J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu, “Roformer: En-
hanced transformer with rotary position embedding,” Neurocomputing,
vol. 568, p. 127063, 2024.

B. Zhang and R. Sennrich, “Root mean square layer normalization,”
Advances in Neural Information Processing Systems, vol. 32, 2019.

Z. Ye, L. Chen, R. Lai, W. Lin, Y. Zhang, S. Wang, T. Chen,
B. Kasikci, V. Grover, A. Krishnamurthy, and L. Ceze, “Flashinfer:
Efficient and customizable attention engine for llm inference serving,”
arXiv preprint arXiv:2501.01005, 2025. [Online]. Available: https:
/farxiv.org/abs/2501.01005

Y. Xu, X. Liu, X. Sun, S. Cheng, H. Yu, H. Lai, S. Zhang, D. Zhang,
J. Tang, and Y. Dong, “Androidlab: Training and systematic benchmark-
ing of android autonomous agents,” arXiv preprint arXiv:2410.24024,
2024.

L. Zheng, L. Yin, Z. Xie, C. L. Sun, J. Huang, C. H. Yu, S. Cao,
C. Kozyrakis, 1. Stoica, J. E. Gonzalez et al., “Sglang: Efficient ex-
ecution of structured language model programs,” Advances in Neural
Information Processing Systems, vol. 37, pp. 62557-62 583, 2024.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

“Performance and tuning 2014; vllm — docs.vllm.ai,” https://docs.vlim.
ai/en/v0.4.2/models/performance.html.

C. Lyu, M. Wu, L. Wang, X. Huang, B. Liu, Z. Du, S. Shi, and Z. Tu,
“Macaw-1lm: Multi-modal language modeling with image, audio, video,
and text integration,” arXiv preprint arXiv:2306.09093, 2023.

F. Shu, L. Zhang, H. Jiang, and C. Xie, “Audio-visual 1lm for video
understanding,” arXiv preprint arXiv:2312.06720, 2023.

E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “Gptq: Accurate
post-training quantization for generative pre-trained transformers,” arXiv
preprint arXiv:2210.17323, 2022.

J. Lin, J. Tang, H. Tang, S. Yang, W.-M. Chen, W.-C. Wang, G. Xiao,
X. Dang, C. Gan, and S. Han, “Awq: Activation-aware weight quanti-
zation for on-device 1lm compression and acceleration,” Proceedings of
machine learning and systems, vol. 6, pp. 87-100, 2024.

T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer, “Gpt3. int8 ():
8-bit matrix multiplication for transformers at scale,” Advances in neural
information processing systems, vol. 35, pp. 30318-30332, 2022.

Z. Zhou, X. Ning, K. Hong, T. Fu, J. Xu, S. Li, Y. Lou, L. Wang,
Z. Yuan, X. Li et al., “A survey on efficient inference for large language
models,” arXiv preprint arXiv:2404.14294, 2024.

J. Zhang, J. Wang, H. Li, L. Shou, K. Chen, G. Chen, and S. Mehrotra,
“Draft & verify: Lossless large language model acceleration via self-
speculative decoding,” arXiv preprint arXiv:2309.08168, 2023.

M. Elhoushi, A. Shrivastava, D. Liskovich, B. Hosmer, B. Wasti, L. Lai,
A. Mahmoud, B. Acun, S. Agarwal, A. Roman et al., “Layerskip:
Enabling early exit inference and self-speculative decoding,” arXiv
preprint arXiv:2404.16710, 2024.

Z. Song, C. Qi, FE. Liu, N. Jing, and X. Liang, “Cmc: Video transformer
acceleration via codec assisted matrix condensing,” in Proceedings of
the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, 2024, pp.
201-215.

S. Lee, S. H. Hwang, S. Oh, B. J. Park, and Y. Cho, “Multi-input
vision transformer with similarity matching,” in International Workshop
on PRedictive Intelligence In MEdicine. Springer, 2023, pp. 184-193.
S. Black, A. Stylianou, R. Pless, and R. Souvenir, “Visualizing paired
image similarity in transformer networks,” in Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision,
2022, pp. 3164-3173.

J. Yao, H. Li, Y. Liu, S. Ray, Y. Cheng, Q. Zhang, K. Du, S. Lu, and
J. Jiang, “Cacheblend: Fast large language model serving for rag with
cached knowledge fusion,” in Proceedings of the Twentieth European
Conference on Computer Systems, 2025, pp. 94-109.

J. Yang, B. Hou, W. Wei, Y. Bao, and S. Chang, “Kvlink: Accelerating
large language models via efficient kv cache reuse,” arXiv preprint
arXiv:2502.16002, 2025.

M. Ji, S. Yi, C. Koo, S. Ahn, D. Seo, N. Dutt, and J.-C. Kim, “Demand
layering for real-time dnn inference with minimized memory usage,” in
2022 IEEE Real-Time Systems Symposium (RTSS), 2022, pp. 291-304.
I. Rehg, “Kv-compress: Paged kv-cache compression with variable
compression rates per attention head,” arXiv preprint arXiv:2410.00161,
2024.

W. Lee, J. Lee, J. Seo, and J. Sim, “{InfiniGen}: Efficient generative
inference of large language models with dynamic {KV} cache manage-
ment,” in 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24), 2024, pp. 155-172.

B. Lin, C. Zhang, T. Peng, H. Zhao, W. Xiao, M. Sun, A. Liu,
Z. Zhang, L. Li, X. Qiu et al., “Infinite-llm: Efficient llm service for
long context with distattention and distributed kvcache,” arXiv preprint
arXiv:2401.02669, 2024.

X. Li, Y. Li, Y. Li, T. Cao, and Y. Liu, “Flexnn: Efficient and adaptive
dnn inference on memory-constrained edge devices,” in Proceedings of
the 30th Annual International Conference on Mobile Computing and
Networking, 2024, pp. 709-723.

W. Kang, J. Lee, Y. Lee, S. Oh, K. Lee, and H. S. Chwa, “Rt-
swap: Addressing gpu memory bottlenecks for real-time multi-dnn

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

inference,” in 2024 IEEE 30th Real-Time and Embedded Technology
and Applications Symposium (RTAS). 1EEE, 2024, pp. 373-385.

R. Giannessi, A. Biondi, and A. Biasci, “Rt-mimalloc: A new look
at dynamic memory allocation for real-time systems,” in 2024 [EEE
30th Real-Time and Embedded Technology and Applications Symposium
(RTAS). 1EEE, 2024, pp. 173-185.

R. Prabhu, A. Nayak, J. Mohan, R. Ramjee, and A. Panwar, “vattention:

Dynamic memory management for serving llms without pagedattention,”
in Proceedings of the 30th ACM International Conference on Archi-

tectural Support for Programming Languages and Operating Systems,
Volume 1, 2025, pp. 1133-1150.

J. Bakita and J. H. Anderson, “Demystifying nvidia gpu internals to
enable reliable gpu management,” in 2024 IEEE 30th Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2024, pp.
294-305.

J. Chen, S. Bai, Z. Wang, S. Wu, C. Du, H. Yang, R. Gong,
S. Liu, E Wu, and G. Chen, “Pre3: Enabling deterministic
pushdown automata for faster structured LLM generation,” in
Proceedings of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), W. Che,
J. Nabende, E. Shutova, and M. T. Pilehvar, Eds. Vienna, Austria:
Association for Computational Linguistics, Jul. 2025, pp. 11253-11267.
[Online]. Available: https://aclanthology.org/2025.acl-long.551/

K. Cheng, Z. Wang, W. Hu, T. Yang, J. Li, and S. Zhang, “Towards
slo-optimized 1lm serving via automatic inference engine tuning,” arXiv
preprint arXiv:2408.04323, 2024.

Y. Lin, S. Peng, S. Wu, Y. Li, C. Lu, C. Xu, and K. Ye, “Planck:
Optimizing llm inference performance in pipeline parallelism with fine-
grained slo constraint,” in 2024 IEEE International Conference on Web
Services (ICWS). 1EEE, 2024, pp. 1306-1313.

Y. Li, Z. Li, W. Yang, and C. Liu, “Rt-lm: Uncertainty-aware resource
management for real-time inference of language models,” in 2023 IEEE
Real-Time Systems Symposium (RTSS), 2023, pp. 158-171.

R. Wang, H. Liu, J. Qiu, M. Xu, R. Guérin, and C. Lu, “Progressive neu-
ral compression for adaptive image offloading under timing constraints,”
in 2023 IEEE Real-Time Systems Symposium (RTSS). 1EEE, 2023, pp.
118-130.

W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng, W. Lin,
and Y. Jia, “{AntMan}: Dynamic scaling on {GPU} clusters for deep
learning,” in /4th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), 2020, pp. 533-548.

P. Yu and M. Chowdhury, “Fine-grained gpu sharing primitives for deep
learning applications,” Proceedings of Machine Learning and Systems,
vol. 2, pp. 98-111, 2020.

M. Han, H. Zhang, R. Chen, and H. Chen, “Microsecond-scale pre-
emption for concurrent {GPU-accelerated } {DNN} inferences,” in 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22), 2022, pp. 539-558.

Y. Xu, Z. Liu, X. Fu, S. Liu, F. Wu, and G. Chen, “Flex: Adaptive
task batch scheduling with elastic fusion in multi-modal multi-view
machine perception,” in 2024 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 2024, pp. 294-307.

M. Chow, A. Jahanshahi, and D. Wong, “Krisp: Enabling kernel-wise
right-sizing for spatial partitioned gpu inference servers,” in 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). 1IEEE, 2023, pp. 624-637.

K. Gupta, J. A. Stuart, and J. D. Owens, A study of persistent threads
style GPU programming for GPGPU workloads. 1EEE, 2012.
NVIDIA, “Multi-Process Service — docs.nvidia.com,” https://docs.
nvidia.com/deploy/mps/index.html, 2025, [Accessed 09-05-2025].

S. Jain, I. Baek, S. Wang, and R. Rajkumar, “Fractional gpus: Software-
based compute and memory bandwidth reservation for gpus,” in 2019
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS). 1IEEE, 2019, pp. 29-41.

