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ABSTRACT

Recent text-to-video (T2V) diffusion models have made remarkable progress in
generating high-quality and diverse videos. However, they often struggle to align
with complex text prompts, particularly when multiple objects, attributes, or spatial
relations are specified. We introduce VIDEOREPAIR, the first self-correcting,
training-free, and model-agnostic video refinement framework that automatically
detects fine-grained text—video misalignments and performs targeted, localized
corrections. Our key insight is that even misaligned videos usually contain correctly
rendered regions that should be preserved rather than regenerated. Building on this
observation, VIDEOREPAIR proposes a novel region-preserving refinement strategy
with three stages: (i) misalignment detection, where systematic MLLM-based eval-
uation with automatically generated spatio-temporal questions identifies faithful
and misaligned regions; (ii) refinement planning, which preserves correctly gener-
ated entities, segments their regions across frames, and constructs targeted prompts
for misaligned areas; and (iii) localized refinement, which selectively regenerates
problematic regions while preserving faithful content through joint optimization
of preserved and newly generated areas. This self-correcting, region-preserving
strategy converts evaluation signals into actionable guidance for refinement, en-
abling efficient and interpretable corrections. On two challenging benchmarks,
EvalCrafter and T2V-CompBench, VIDEOREPAIR achieves substantial improve-
ments over recent baselines across diverse alignment metrics. Comprehensive
ablations further demonstrate the efficiency, robustness, and interpretability of our
framework. '

1 INTRODUCTION

Recent text-to-video (T2V) diffusion models (Ho et al., 2022; Singer et al., 2022; Esser et al., 2023;
Blattmann et al., 2023; Khachatryan et al., 2023; Wang et al., 2023a; Yang et al., 2024) have achieved
impressive photorealism and versatility across diverse domains. Despite these advances, current
models often struggle to faithfully follow input text prompts, especially when the prompt specifies
multiple objects and attributes. Typical errors include generating the wrong number of objects,
mismatched attribute bindings, or distorted regions.

To mitigate these issues, recent works (Yang & Wang, 2024; Tian et al., 2024) propose compositional
T2V techniques that improve text—video alignment. While these methods enhance compositionality,
they lack explicit feedback mechanisms to detect and correct misalignments, limiting their adaptability
and interpretability in real-world scenarios. In parallel, several image-based studies (Mafas et al.,
2024; Wu et al., 2024) have introduced training-free frameworks that refine outputs using guidance
from LLMs or MLLMs. However, these approaches are often computationally expensive, dependent
on external generators, or prone to visual inconsistencies and such challenges are exacerbated in
videos, where temporal coherence is essential.

To address these challenges, we introduce VIDEOREPAIR, the first self-correcting framework for
text-to-video generation that is compatible with any diffusion-based T2V backbone and requires

!Code and qualitative examples are provided in the supplementary materials.
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no additional training or architectural changes. Our key insight is that even when generated videos
contain misaligned or distorted objects, certain key elements are often accurately generated in specific
regions. Similar to how humans revise creative work by fixing only the errors while keeping what
is correct, VIDEOREPAIR preserves accurately generated regions and selectively refines only the
problematic ones. This region-preserving strategy leverages diffusion models’ natural ability to
regenerate content from noise while avoiding unnecessary changes to faithful areas. Moreover,
detecting correctly generated content via grounding and segmentation is substantially easier than
exhaustively enumerating all possible distortions, making our approach both reliable and efficient.

Building on this intuition, VIDEOREPAIR implements region-preserving refinement through three
mutually reinforcing processes: misalignment detection, refinement planning, and localized refine-
ment as illustrated in Fig. 1. Unlike prior refinement frameworks that operate on the entire video
indiscriminately, VIDEOREPAIR follows a self-correcting, region-preserving paradigm: it distin-
guishes correctly generated regions from misaligned ones and regenerates only the latter. This
transforms evaluation feedback into actionable generative guidance, allowing precise corrections
without discarding high-quality content and establishing a new paradigm for efficient, interpretable
video refinement. Specifically, spatio-temporal evaluation questions derived from the prompt expose
fine-grained errors; these signals guide the selection of entities to preserve and the construction of a
targeted refinement prompt; and localized regeneration is then harmonized with preserved regions to
yield perceptually seamless videos.

We validate VIDEOREPAIR on two challenging benchmarks, EvalCrafter (Liu et al., 2024b) and
T2V-CompBench (Sun et al., 2024a), which cover diverse prompt categories including object counts,
spatial relations, and global scene attributes. Empirically, VIDEOREPAIR substantially outperforms
existing refinement methods across a wide range of compositional prompts, while preserving global
quality aspects such as visual fidelity, motion smoothness, and temporal consistency. We further
provide detailed ablations on each component, error accumulation, inference latency, and robustness
to different MLLM replacements, underscoring the generality and reliability of our framework.

Our key contributions are as follows:

* We present the first self-correcting, training-free framework for text-to-video generation, compati-
ble with diffusion-based T2V backbones, that detects misalignments via MLLM-based evaluation
and plans targeted refinements.

* We introduce a region-preserving refinement strategy that transforms evaluation feedback into
actionable guidance, preserving correct regions while selectively regenerating misaligned ones,
offering both effective correction and interpretable feedback.

* We show that VIDEOREPAIR consistently improves text—video alignment across diverse models
and benchmarks, while maintaining fidelity, temporal coherence, and motion quality, outperforming
all prior training-free refinement approaches.

2 RELATED WORKS

Text-to-video generation with diffusion models. Text-to-video (T2V) diffusion models (Ho et al.,
2022; Hong et al., 2022; Singer et al., 2022; Esser et al., 2023; Wu et al., 2023b; Blattmann et al.,
2023; Luo et al., 2023) aim to produce videos describing given text prompts. VideoCrafter2 (Chen
et al., 2024) synthesizes low-quality videos with high-quality images through a joint training design
of spatial and temporal modules, obtaining high-quality videos. T2V-turbo (Li et al., 2024a) presents
a distilled video consistency model (Wang et al., 2023c; Song et al., 2023) for improved and rapid
video generation. A line of recent work also studies LLM-guided planning frameworks, where an
LLM first generates an overall plan (e.g., list of bounding boxes) then video diffusion models render
the scene following the plan (Lin et al., 2023; Lian et al., 2024; Lv et al., 2024). However, even the
recent T2V diffusion models suffer from misalignment problems. In the following, we discuss the
research direction of refining the image/video diffusion models, including VIDEOREPAIR.

Automatic refinement for image diffusion models. Recent works propose refinement frameworks
that automatically improve diffusion models’ text alignment (Sun et al., 2023; Li et al., 2024b;
Manas et al., 2024; Wu et al., 2024). A training-based approaches detect errors of a diffusion model,
generates training data, and then finetune the model to improve alignment (Sun et al., 2023; Li et al.,
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Figure 1: Illustration of VIDEOREPAIR. VIDEOREPAIR refines the generated video in three stages:
(1) misalignment detection (Sec. 3.1), (2) refinement planning (Sec. 3.2) and (3) localized refinement
(Sec. 3.3).

2024b). However, these methods are often expensive and can make the model overfit to specific
domains of generated training data. Another line of work proposes training-free framework (Manas
et al., 2024; Wu et al., 2024). OPT2I (Manas et al., 2024) presents iterative prompt optimization,
where an LLM provides various variations of text prompts, T2I diffusion models generate images
from the prompts, and the images are ranked with a T2I alignment score (e.g., DSG (Cho et al.,
2024)) to provide the final image. Since no explicit feedback is given to the backbone generation
model, it usually takes long iterations (e.g., 30 LLM calls) to find a prompt that provides improved
alignment, making the framework expensive to use in practice. SLD (Wu et al., 2024) provides more
explicit guidance by generating a bounding-box level plan with an LLM, followed by operations such
as object addition, deletion, and repositioning. However, SLD depends on an external layout-guided
object generator (e.g., GLIGEN (Li et al., 2023)) to insert objects, and the added content often fails to
harmonize with the original image. Moreover, while bounding-box operations can be extended to
videos, SLD lacks mechanisms to enforce temporal coherence across frames, frequently leading to
inconsistent trajectories and motion artifacts. In contrast, VIDEOREPAIR is the first training-free
refinement framework that delivers fine-grained localized feedback and is compatible with any T2V
diffusion model, without relying on additional generators.

3 VIDEOREPAIR

We introduce VIDEOREPAIR, the first training-free, model-agnostic self-correcting framework for
text-to-video generation. Unlike prior refinement approaches that either use only prompt optimiza-
tion (Mafias et al., 2024) or rely on external generative models (Wu et al., 2024), our approach follows
a new principle: preserve the correct region, selectively repair where it is wrong. This principle
distinguishes VIDEOREPAIR from generic mask-based inpainting or editing: the preserved regions
are determined not by manual masks or heuristic rules, but by an automatic video evaluation and
planning process that identifies semantically aligned objects directly from the input prompt and the
generated video. By tightly coupling evaluation, planning, and refinement within the same T2V
backbone, VIDEOREPAIR enables localized regeneration that improves compositional fidelity while
maintaining temporal consistency and visual realism.

Problem Statement. Our goal is to improve text-video alignment using a pre-trained T2V diffusion
model f(-), without requiring any additional fine-tuning. Given a text prompt p and initial noise
€0 ~ N(0,I), we generate an initial video Vi = f(p, €g), where Vy € R3>*HXWXT and i, W,
and 7" denote the height, width, and number of frames, respectively. If ;) exhibits misaligned or
inaccurate content, we evaluate it using a set of questions derived from the prompt p and construct
a refinement plan. Then, we perform localized self-refinement with the same T2V model f(-),
producing a refined video V; that better aligns with the original prompt. We describe each stage in
detail below.
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3.1 MISALIGNMENT DETECTION

Generate video evaluation questions. To diagnose the initial video V;;, we generate video eval-
uation questions from p. Unlike prior question-based evaluations in the image domain (Hu et al.,
2023; Cho et al., 2024), these questions provide spatio-temporal feedback signals that directly guide
refinement planning. It goes beyond simple object-existence checks by explicitly capturing counts,
attributes, spatio-temporal relations, actions, and scene-level global properties, all of which are
critical for faithful video-text alignment. Given a prompt p, we first extract a semantic tuple 7, a
structured representation of entities, attributes, relationships, and actions relevant to the video. Using
this as guidance, we employ in-context learning with an LLM to generate a set of evaluation questions
Q. The resulting set () is divided into two disjoint subsets: (). (questions focused on object counting)
and Qomers (questions covering all other aspects, such as action, attributes, and scene-level global
properties), reflecting the distinct nature of count-based reasoning versus semantic understanding. To
better support fine-grained counting, we let the LLM generate count-specific questions for individual
objects (e.g., “Is there one bear?”) rather than merely verifying object existence (e.g., “Is there a
bear?”). Our ablation study (see Tab. 3) demonstrates that these evaluation questions provide more
effective refinement guidance compared to existing question-based evaluation methods. Additional
implementation details are provided in the Appendix.

Answering to identify video errors. We now evaluate V| to determine which region requires
refinement, as illustrated in Fig. 1 (top right). Given the entity set O (i.e., object or scene element)
from T, we group Q° = {Q2, Q%.s} C Q as the subset of questions that contain the name of O
Note that this entity captures not only localized object discrepancies but also global misalignments
between p and Vj To this end, we employ an MLLM to answer each predefined question set Q° with
binary judgments. For count-related questions ()2, we prompt the model to output both a binary
decision and an estimated object count, resulting in a triplet AZ = {b7, ng, ny }, where ng and nj
denote the number of instances of object o in the prompt p and the video V), respectively. The
binary answer b¢ is set to 1 if ny = ng, and 0 otherwise. For example, in Fig. 1, the question “Is

there one bear?” results in b>* = 1 when both the prompt and the video indicate a single bear (i.e.,

nzear = nb® = 1). For other type of questions Q%;..» we prompt the model to return only a binary
response Ay« = {0%ners }> Where b3, = 1 indicates alignment between the element in 1}, and p,
and b%;.... = 0 otherwise. If an entity disappears or becomes distorted across frames, we also regard

it as a misalignment case. We aggregate binary evaluation results into a video-level accuracy score
in the range [0, 1]. If the score is 1.0, we terminate the process early, as the initial video is already
fully correct. If the score is 0.0, we instead re-generate the video with a new random seed to avoid
uninformative outputs.

3.2 REFINEMENT PLANNING

Identifying visual content to retain. As mentioned earlier, VIDEOREPAIR aims to retain accurately
generated regions in the initial video while correcting only the mis-generated ones to ensure improved
text-video alignment. To this end, we first identify the key entity O* and determine the number N*
of its instances to be preserved. To select which entity should be retained, we prompt the MLLM
with question—answer pairs and Vj as input, allowing it to identify correctly generated entities to
preserve. For countable entities, the number of preserved instances N* is determined from the triplet
Ag = {b? 777'; s My }as

N* = ng* ifny <ngy, o

n?  otherwise,

v

where n;* < n9 indicates that excess instances should be removed, and n;’,* > n9 suggests that

additional instances are required. For example, in Fig. 1, if O* represents people with nz* = 2 and

ng* =1, we set N* = 1 to preserve one person. Note that multiple instances of O* may exist if there
are several plausible entities to retain. For global scene elements (e.g., background), which are not
inherently countable, we treat N* as a presence indicator, setting N* = 1 if the element is preserved.
This unified notation allows us to consistently handle both entity- and scene-level preservation within

the same refinement planning framework.
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Identifying regions to preserve. Based on the entity selection O*, we localize the regions corre-
sponding to correctly generated content within the video frames, as shown in Fig. 1 (top right). For
countable entities, given the set of preserved instances O* and their quantities [V *, we first construct
a pointing prompt using the template: “Point the biggest { N*} {O*}” (e.g., “Point the biggest 1
bear”). This prompt is used to obtain 2D coordinates indicating the spatial locations of O* in each
sampled frame. Using these coordinates as initialization, we apply a segmentation model to extract
entity-specific regions, resulting in binary segmentation masks M € R¥*W>T that preserve the
correctly generated entities. In practice, for global elements such as background, we simply preserve
the entire frame region or assign a broad background mask if the property is rendered correctly. By
combining these with the region-level masks, we obtain a dense, frame-aligned segmentation map M
that preserves both entity- and scene-level regions.

Prompt regeneration for regions requiring refinement. We additionally generate a local prompt
for refinement to enable distinct control over different regions during generation. To this end, we
prompt an LLM to produce a refinement-oriented prompt, p”, based on () but excluding any questions
related to O*. As illustrated in Fig. 1 step 1, this regenerated local prompt will be used to guide the
denoising process for specific areas to be refined during video generation in a later stage (will be
discussed in Sec. 3.3).

3.3 LOCALIZED REFINEMENT

At this stage, we refine the video to improve alignment while preserving coherence with the original
content. While video editing (Jiang et al., 2025; Yang et al., 2025) preserves masked regions and
enforces visual consistency, it is limited in its ability to freely introduce or correct entities misaligned
with the original prompts. Similarly, inpainting (Lugmayr et al., 2022; Bian et al., 2025) fills
missing regions with locally consistent textures but lacks mechanisms for semantically guided object
introduction or correction from textual input. (See Tab. 3) Instead of these approaches, we selectively
re-initialize noise only in misaligned regions and apply distinct text prompts to preserved and refined
areas, enabling targeted corrections while maintaining overall video consistency.

Localized noise re-initialization. We adopt a mask-based strategy in which only regions marked
for refinement are re-initialized with newly sampled noise €, ~ N (0, I), while preserved regions
retain their original noise €y. This selective resampling maintains consistency in faithful areas while
allowing controlled updates in misaligned ones. To transform the pixel-level, multi-frame mask M
into the latent space, we apply block averaging (pooling), yielding a hybrid noise map:

€5 = (€0 ® pool(M, d)) + (€ @ (1 — pool(M, d))), )

where pool(+, d) downsamples the mask and ® denotes element-wise multiplication. This noise map
€ is then used with localized prompts to guide the frozen diffusion model.

Localized text guidance. Afterward, we apply distinct text prompts to different spatial regions
of the video based on their noise re-initialization status, using the binary segmentation mask M
to separate preserved (M) and re-initialized (Miene = 1 — M) areas. For the re-initialized
regions, we guide generation in the latent space using regenerated prompts p” (See Sec. 3.2) tailored
to those areas. In parallel, motivated by recent findings on noise bias (Sun et al., 2024b; Ban et al.,
2024; Qi et al., 2024), we reuse the original prompt p to preserve features related to O* in the
retained regions. This regionalized decomposition of the original prompt allows for the addition or
modification of objects in re-initialized areas, while maintaining the integrity of correctly generated
content in preserved regions.

Harmony with original elements. To further ensure global coherence between preserved and
refined regions, we regenerate all pixels through two separate diffusion paths and fuse them via
joint optimization. Specifically, at each denoising step ¢, we run the diffusion model f(-) twice with

different prompts and noises: me = f(V4, p, €o) for the preserved regions, and Viefine = f(Vi,p", €)

for the refined regions. The final fused output V' is obtained by solving:
2

~ ~ 2 ~ ~
Vl = arg}nin HMpres (24 (V - V})res) ’ + HMreﬁne ® (V - VI‘eﬁne) ) (3)
14
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Table 1: Evaluation results on EvalCrafter with other baselines. Note that we focus on these four
splits, whereas the official website reports the average across all splits. We highlight the quality and
consistency performance in red if it deteriorates by more than 1% from the original performance.

Text-Video Alignment Visual Motion Temporal
Method lit Qualit Consist
Count Color Action Others Average Quality uality onsistency
VideoCrafter2 4752 4628 44.07 46.02 45.97 61.8 62.6 62.9
+ LLM paraphrasing 4587 4781 4441 45.16 45.81 62.4 62.7 62.7
+ SLD (Wu et al., 2024) 4447 4645 39.89  44.06 43.72 52.5 62.2 44.4
+ OPT2I (Manas et al., 2024)  47.69 47.67 45.04  44.65 46.26 62.1 62.6 62.8
+ VIDEOREPAIR (Ours) 49.84 51.57 45.78 48.12 48.83 62.1 62.4 62.0
T2V-turbo 46.14 43.06 4142 43.16 43.94 63.3 57.8 61.6
+ LLM paraphrasing 4949 4316 4132 4475 44.68 62.9 52.9 61.9
+ SLD (Wu et al., 2024) 4739 4399 42,13 4328 44.20 56.6 58.2 49.2
+ OPT2I (Manas et al., 2024)  47.44 45.00 44.64 45.54 45.66 63.3 56.4 48.9
+ VIDEOREPAIR (Ours) 51.27 46.66 4581 4545 47.30 63.2 57.9 61.8
CogVideoX-5B 47.88 49.63 3776 4478 45.01 65.8 61.0 61.8
+ LLM paraphrasing 4558 46.56 37.17 43.18 43.12 58.4 61.1 61.7
+ SLD (Wu et al., 2024) 47773 4627 39.55 435 44.33 49.6 51.2 21.0
+ OPT2I (Manas et al., 2024)  48.62 4889 41.39  43.62 45.63 59.7 60.9 61.9
+ VIDEOREPAIR (Ours) 49.63 4994 40.69 45.36 46.41 64.8 61.1 61.9

This joint optimization allows V to seamlessly blend preserved and refined regions, reducing mis-
matches at region boundaries and producing perceptually smooth, globally coherent videos.

Video ranking. Similar to generating multiple candidate prompts in (Mafas et al., 2024), we
produce K refined videos using different random seeds and select the best one based on our video
scores, as obtained in Sec. 3.1, thus avoiding additional computations or resource burdens. If multiple
videos receive a tied video score, we select the video with the highest BLIP-BLEU score (Liu et al.,
2024b) among them. Note that VIDEOREPAIR does not depend on ranking process (see Tab. 4)

4 EXPERIMENTS

4.1 EXPERIMENT SETUPS

Benchmarks and evaluation metrics. We evaluate our method on two text-to-video generation
benchmarks: EvalCrafter (Liu et al., 2024b) and T2V-CompBench (Sun et al., 2024a). 2

(1) EvalCrafter. We follow the official metadata® to split prompts by attributes into four sections:
count, color, action, and others. The others category includes scenery-related prompts, such as
Camera movement (e.g., "Zoom in"), Landscape (e.g., "A bustling street in Paris"), and Style (e.g.,
"Polaroid style"). For evaluation metrics, we report four groups: text-video alignment, video quality,
motion quality, and temporal consistency. Details of the evaluation metrics are provided in the
appendix.

(2) T2V-CompBench (ver.1). We adopt three compositional reasoning categories from this bench-
mark: spatial relationships, generative numeracy, and consistent attribute binding, with 100 prompts
in each category. We use ImageGrid-LLaVA (Liu et al., 2024a) for consistent attribute binding
evaluation and GroundingDINO (Liu et al., 2023) for the other two dimensions. Further details are
provided in the appendix.

Implementation details. We implement VIDEOREPAIR on three recent T2V models: T2V-turbo (Li
et al., 2024a), VideoCrafter2 (Chen et al., 2024), and CogVideoX-5B (Yang et al., 2024). T2V-Turbo
and VideoCrafter2 generate 16 frames, while CogVideoX-5B generates 81 frames. Unless otherwise
specified, all experiments use K = 5 with a single iteration. For MLLM and LLM components, we
primarily use GPT-40, and for segmentation we employ Semantic-SAM (L). Additional details are
provided in the appendix.

2All reported results are based on our own experiments.
3https ://github.com/evalcrafter/EvalCrafter/blob/master/metadata. json
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Baselines. We compare VIDEOREPAIR against recent refinement frameworks, OPT2I (Mafias et al.,
2024) and SLD (Wu et al., 2024), on the same three T2V models described above. Although these
baselines were originally proposed for text-to-image refinement, we extend their implementations
to the video setting. For OPT2I, we score the videos using the original DSG (Cho et al., 2024)
and iteratively generate five prompt candidates. For SLD, since its refinement model is based on
LMD+ (Lian et al., 2023), we apply SLD frame-by-frame to the initial outputs of T2V models.
We also include LLM paraphrasing as a baseline, where GPT-4 generates diverse paraphrases of
the initial prompt. To ensure fairness, we unify random seeds across all experiments so that all
methods refine the same initial videos. In addition, we compare VIDEOREPAIR with state-of-the-art
(SoTA) T2V models, including ModelScope (Wang et al., 2023a), ZeroScope (huggingface, 2023),
Latte (Ma et al., 2024), Show-1 (Zhang et al., 2024), Open-Sora-Plan v1.1.0 (PKU-Yuan Lab etc,
2023), VideoTetris (Tian et al., 2024), and Vico (Yang & Wang, 2024). Further details are provided
in the appendix.

4.2 QUANTITATIVE RESULTS

As shown in Tab. I and Tab. 2, Table 2: Evaluation results on T2V-CompBench.
VIDEOREPAIR consistently outper-

forms other refinement baselines
(OPT2I, SLD) as well as strong

Consist-Attr ~ Spatial  Numeracy — Avg.
et al., 2023a) 0.5148 0.4118 0.1986 0.3750

ModelScope (Wa

compositional T2V models (e.g.,  ZeroScope (huge . 04011 04287 02408 03568
Vico, VideoTetris) across both bench-  Latie (Mactal., 2024) 04713 04340 02320 03791
Show-1 (Zhang et al., 2024) 0.5670 0.4544 0.3086 0.4433
marks. On EvalCrafter, VIDEORE- o qoroplan (kU vun Labeic, 2023 04246 04520 02331 0.3699
PAIR achieves relative alignment gains  vico (vang & Wang, 2024) 06470 05425 02762 04886
VideoTetris (Tian et al., 2024) 0.6211 0.4832 0.3467 0.4836

of +6.22%, +7.65%, and +3.11%
over VideoCrafter2, T2V-turbo, and  VideoCrafter2 06812 05214 02906 04977
. . + VIDEOREPAIR (Ours) 0.7275 0.5690 0.3278 0.5383
CogV1deo?(-5B, respectively. Forthe 1, 07025 05492 02496  0.5004
Other section, we further break down 4 vipeoREpAIR (Ours) 07675 05807 02709  0.5439
the results into camera movement, CogVideoX-5B 0.6220 0.4988 0.2228 0.4479
+ VIDEOREPAIR (Ours) 0.6725 0.5811 0.3034 0.5190

landscape, and style prompts; see
Tab. 6 in the appendix for details. On
T2V-CompBench, VIDEOREPAIR fur-
ther improves spatial relationships, numeracy, and attribute binding, with relative gains of +8.16 %,
+8.69%, and +15.87%. These results demonstrate that VIDEOREPAIR effectively corrects fine-
grained spatial and temporal misalignments while preserving visual fidelity (std. deviation of visual
quality scores: 0.55), establishing a robust refinement framework across diverse T2V models and
benchmarks. By contrast, SLD underperforms particularly in the action and count categories because
its frame-level latent fusion fails to maintain consistent object counts and spatial layouts over time.
OPT2I shows only modest gains: although it searches optimized prompts with DSG, it operates
entirely in text space without spatial or temporal guidance, limiting its ability to fix localized misalign-
ments. Unlike these approaches, VIDEOREPAIR directly evaluates and refines misaligned regions,
enabling targeted corrections without degrading overall video quality.

4.3 QUALITATIVE RESULTS

Fig. 3 presents qualitative comparisons of other refinement frameworks (OPT2I, SLD, and VIDEORE-
PAIR) applied to three T2V models. These examples demonstrate the effectiveness of VIDEOREPAIR
in addressing object and attribute misalignment more reliably than existing methods. In the leftmost
example from VideoCrafter2, VIDEOREPAIR accurately generates the specified color attribute (green
horse) while preserving the running dog. In the middle example from T2V-turbo, VIDEOREPAIR
improves the incorrect count of three dogs, whereas other baselines either fail to do so (OPT2I)
or introduce artificial distortions (SLD). Finally, in the rightmost example from CogVideoX-5B,
VIDEOREPAIR successfully captures spatial relationships (positioning the car behind the pig) while
maintaining the integrity of multi-object generation.

4.4 ADDITIONAL ANALYSIS

In this section, we conduct ablations on model components and ranking, analyze error accumulation
with human oracle and Qwen2.5-VL (7B) backbones, and present iterative refinement results to
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Table 3: Ablations of different VIDEOREPAIR Table 4: Ablations on the video ranking. We
components. vary the number of video candidates (K) and
metrics during the video ranking.

Eval. Question  Planning  Video Refinement

Avg.
(Sec. 3.1) (Sec. 3.2) (Sec. 3.3) Ve Method # of video Ranking Text-Video
_ _ _ 43.54 etho candidates (K) metric Alignment
DSG random Ours 45.18 T2V-turbo - - 43.54
Ours random Ours 46.92 5 Ours 44.68
Ours M, p" Ours 47.91 + VIDEOREPAIR 1 Ours 46.53
Ours M VideoGrain 40.52 5 Ours 47.91
Ours M VACE 46.77 5 CLIP 45.85
Ours M, p" VACE 44.88 5 BLIP-BLEU 4677
Table 5: Error accumulation analysis comparing GPT40 wl R
with a human-annotated oracle and Qwen2.5-VL (7B). £,
5 474
2 oPT2I
Video Eval.  Planning . <461 6}

(SCC. 3. 1) (Sec. 32) Count Color Action AVg g 45 LLM Paraphrasing SLD
Human  Human 5254 4991 4460 4905 £ | v ©
Human GPT40 51.79 4894 44.66 48.46 P
GPT4o GPT40 5127 46.66 4581 47.91 43 , . .

Qwen GPT40 5023 48.08 47.53 4861 0 100 erence vy o %0
Qwen Qwen 47.84 46.64 4437 46.28

Figure 2: Inference latency compared
with refinement baselines.

mitigate propagated errors. All ablations are conducted on the Count, Color, and Action splits of
EvalCrafter using T2V-turbo, and we report the average text-video alignment performance across
these three categories. In each table, our default setup is highlighted with a blue background.

Ablations on the component of VIDEOREPAIR. In Tab. 3, we analyze the contributions of different
components of VIDEOREPAIR, including the type of evaluation questions, planning strategy, and
refinement method. For evaluation questions (Sec. 3.1), we compare the original DSG questions with
ours. For object selection (Sec. 3.2), we evaluate random planning against our approach that leverages
M and p". For video refinement (Sec. 3.3), we assess the effectiveness of our localized refinement
module by comparing it with state-of-the-art Video-to-Video (V2V) editing models (Jiang et al.,
2025; Yang et al., 2025), using our planning outputs (M and p") as editing guidance. Specifically,
using M alone corresponds to masked V2V editing, while using both M and p” incorporates GPT4o
to generate an editing prompt from p”, which is then provided to the V2V masked editing model.
Overall, the results confirm that the combination of our evaluation questions, planning with M and
p", and localized refinement achieves the best performance, surpassing both random planning and
existing V2V editing baselines.

Ablations on the video ranking. Tab. 4 shows the effect of varying the number of video candidates
(K) and the choice of ranking metric. While simply increasing K from the initial T2V-turbo
output does not yield consistent gains (44.68 vs. 43.54). Using alternative metrics such as CLIP
or BLIP-BLEU also improves over the baseline but falls short of VIDEOREPAIR, highlighting that
VIDEOREPAIR provides more reliable guidance for ranking candidate videos.

Error accumulation. We analyze the error accumulation replacing VIDEOREPAIR’s components
with varying evaluation and planning parts with human annotation and Qwen2.5-VL (7B) (Bai et al.,
2025). As shown in Tab. 5, replacing the oracle with GPT4o yields only a modest drop (49.05 —
48.46, 47.91). Interestingly, combining Qwen2.5-VL for video evaluation with GPT4o for planning
achieves competitive results (48.61), even outperforming the configuration where GPT4o is used for
both steps in the action split. These results highlight the robustness and modularity of our framework,
showing that it can reliably operate even with weaker open-source models while flexibly benefiting
from stronger ones when available.
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Figure 3: Videos generated from T2V-turbo, VideoCrafter2 and CogVideoX with refinement
frameworks (OPT2I/SLD / VIDEOREPAIR). VIDEOREPAIR successfully addresses object and
attribute misalignment issues (e.g., numeracy, spatial relationship, attribute blending) compared to
T2V-turbo and other refinement methods.

Computational cost. Fig. 2 compares text-video alignment scores against inference latency for
different refinement frameworks. OPT2I and SLD incur 3-5x longer runtimes without surpassing our
performance. In contrast, VIDEOREPAIR offers the best trade-off between accuracy and efficiency
with moderate computational overhead.

Refinement Iteration

Iterative refinement. We further explore
iterative refinement to progressively enhance
text-video alignment, as a single refinement
step of VIDEOREPAIR may not fully resolve
all inconsistencies with the prompt. As illus- 4 family offour set up & tent and build a campiir,
trated in Fig. 4, the first refinement partially enjoyinga night of camping under the stars

corrects the misalignment by generating a
scene of a night of camping under the stars,
but some family members disappear. In the
second iteration, VIDEOREPAIR recovers all
four family members while preserving the
rest of the scene. Similarly, in the bottom ex-  Figure 4: The iterative refinement with VIDEORE-
ample of Fig. 4, iterative refinement success- pAIR. Videos in each column represent the outputs
fully produces the intended output of seven  of successive refinement iterations, where the output

puppies. Additional qualitative examples are  from the previous step serves as the input.
provided in the appendix.

Seven lively puppies playing and tumbling together.

5 CONCLUSION

We propose VIDEOREPAIR, a novel training-free, model-agnostic video refinement framework that
improves T2V alignment through automatic detection and correction of fine-grained misalignments.
VIDEOREPAIR operates in three stages: (1) misalignment detection identifies misalignments by
generating evaluation questions and answers. Next, (2) refinement planning identify key objects
to preserve and produces localized prompts for refinement. Finally, (3) localized refinement step
enables targeted regeneration of misaligned areas while maintaining accurate content. VIDEOREPAIR
substantially outperforms recent baselines across various text-video alignment metrics. We provide a
comprehensive analysis of VIDEOREPAIR components and qualitative examples.

REPRODUCIBILITY STATEMENT

We provide the data and code in the supplementary. Details of the data and model implementations,
as well as all hyperparameters, can be found in the Appendix.
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A VIDEOREPAIR IMPLEMENTATION DETAILS

A.1 DETAILS OF VIDEO EVALUATION QUESTION GENERATION

Given the initial prompt, we construct a semantic tuple 7, similar to DSG (Cho et al., 2024) that
contains entities (subjects), attributes, and relationships. Here, attributes are expressed in 2-tuples
(subjects, its attribute, (e.g., {bed, blue}), and relationships are in 3-tuples (subject entity, object
entity, and their relationship, (e.g., {people, pizza, make}). Based on 7, which covers all
scene-relevant information, we generate questions @) using GPT-4-0125 (OpenAl, 2024). Note that
although DSG does not account for object counts by design, we can incorporate assessments for
whether the generated videos contain the correct number of target objects, thereby guiding automatic
refinement with greater accuracy. For example, given a prompt ‘there is a bear’, DSG only generates
an evaluation question “is there a bear?”, which only checks the bear’s existence, but does not penalize
when more than one bear is generated.

A.2 VIDEO OBJECT EVALUATION
To evaluate the generated videos, we utilize GPT-40 to answer both count-related (¢?) and attribute-

related (Q9) questions, as illustrated in Fig. 23. For Q¢ prompts, we guide GPT-4o through four steps:
reasoning, answering, counting the predicted number of objects (n;), and verifying the true count

14
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Figure 5: Comparison of different refinement methods for alignment. (a) Prompt optimization (Mafas
et al., 2024) presents LLM-based prompt rewriting without visual/fine-grained feedback. (b) Localized feedback
method (Wu et al., 2024) supports visual guidance but relies on an external layout-guided generation module. (c)
VIDEOREPAIR is a training-free, model-agnostic refinement method with localized visual guidance based on
automatic video evaluation.

(n). These steps yield an answer triplet A7 = {b2,ng,ng}. To ensure valid responses, we account
for dependencies among questions, following the methodology of DSG (Cho et al., 2024). Each
question is sequentially presented to GPT-40, and the video score is computed as the proportion of
correctly answered binary questions across all VQA tasks. If the video score reaches 1.0 (indicating a
perfect score), the VIDEOREPAIR process is terminated.

A.3 KEY OBJECT EXTRACTION

To extract the key concept O* from the initial videos Vj, we sampled frames of V; and the list of
question-answer pairs for each object to GPT4o as shown in Fig. 24. Here, we prioritize selecting
objects with a higher number of 1.0 video scores. Moreover, we force GPT40 to select ‘object’
instead of ‘background’ elements to improve the accuracy of region decomposition by pointing.

A.4 REFINEMENT PROMPT GENERATION

To produce a refinement prompt p”, we use GPT4 with instruction as shown in Fig. 25. After getting
O*, we can decompose the whole question set () as (Q°* and others depending on whether the O*
keyword is included in the question. To generate p” from specific question sets, we utilize five
manually crafted in-context examples to ensure the accuracy of the generation process. If the video
score is 0.0 (indicating a complete failure from VQA) and the key object O* cannot be identified,
we consider the T2V model to have failed in generating any object correctly. In such cases, we
paraphrase () directly into p” using a large language model (LLM).

B ADDITIONAL BASELINE DETAILS

LLM Paraphrasing. Following (Mafas et al., 2024), we compare VIDEOREPAIR with paraphrasing
prompts from LLM. Here, we ask GPT4 to generate diverse paraphrases of each prompt, without any
context about the consistency of the images generated from it. The prompt used to obtain paraphrases
is provided in Fig. 26.

OPT2I. Since OPT2I (Manas et al., 2024) aims to improve text-image consistency for T2I models,
we reimplement OPT2I for T2V setup. Specifically, we replace the original T2I model part with
T2V models (T2V-Turbo and VideoCrafter2) to generate outputs. Using GPT-40, we then pose
DSG questions to these outputs. For prompts, we directly adopt the ones provided in the original
OPT2I paper. For LLM, we use GPT4 as VIDEOREPAIR. Finally, we perform iterative refinement,
running 10 iterations for T2V-Turbo and 5 iterations for VideoCrafter2, with five video candidates
per iteration.

SLD. To adapt SLD (Wu et al., 2024) to the T2V setup, we apply their official code to individual
video frames and maintain their default setup. Note that SLD is a GLIGEN (Li et al., 2023)-based
T2I model, which poses challenges for direct extension to video generation. Since SLD operates
using DDIM inversion, we use the initial videos generated by T2V-Turbo and VideoCrafter2 as inputs,
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enabling the implementation of their noise composition method. Here, we use one iteration for SLD
and GPT4 for LLM.

C ADDITIONAL EVALUATION DETAILS

EvalCrafter. To evaluate the effectiveness of VIDEOREPAIR across different prompt dimensions,
we decompose EvalCrafter (Liu et al., 2024b) using the official metadata. json. Specifically,
we utilize the attributes key for each prompt and categorize the dataset into ‘count’, ‘color’,
‘action’, ‘text’, ‘face’, and ‘amp (camera motion)’. Prompts without explicit attributes are grouped
into an ‘others’ category. Among these dimensions, we focus on ‘count’, ‘color’, ‘action’, and
‘others’, excluding ‘text’, ‘face’, and ‘amp’. This decision is based on our observation that video
errors related to text prompts (e.g., “the words ‘KEEP OFF THE GRASS”), face prompts (e.g.,
“Kanye West eating spaghetti”), and amp prompts (e.g., “A Vietnam map, large motion”) cannot be
reliably detected through GPT-40 question-answering, therefore hard to proceed VIDEOREPAIR.

For evaluation metrics, we mainly adopt the average text-video alignment score they proposed.
Among their all text-video alignment scores (CLIP-Score, SD-Score, BLIP-BLEU, Detection-Score,
Count-Score, Color-Score, Celebrity ID Score, and OCR-Score) we exclude Celebrity ID Score
and OCR-Score since they are related to ‘face’ and ‘text’ categories. Therefore, we calculate the
text-video alignment score as Avg(CLIP-Score, SD-Score, BLIP-BLEU, DetectionScore,
CountScore, ColorScore). For overall video quality, we directly adopt their metrics including Incep-
tion Score (Salimans et al., 2016) and Video Quality Assessment (VQA 4, VQA7) (Wu et al., 2023a).
For the motion quality score, we calculate the weighted average score of the Action Recognition
score (from VideoMAE (Wang et al., 2023b)) and Average Flow score (Teed & Deng, 2020) from the
official EvalCrafter code. For the temporal consistency score, we also calculate the weighted average
score of Warping Error from optical flow (Wang et al., 2023b) and CLIP-Temp (Radford et al., 2021).
For the others section of CogVideoX-5B, we report results on only 100 randomly sampled videos, as
other baselines (e.g., OPT2I) require a significantly long refinement time (around 5h per one video
refinement).

T2V-Compbench. Since VIDEOREPAIR has strength in compositional generation, we adopt T2V-
Compbench (Sun et al., 2024a) and evaluate three dimensions: spatial relationships, generative
numeracy, and consistent attribute binding. ‘Spatial relationships’ requires the model to generate at
least two objects while maintaining accurate spatial relationships (e.g. ‘to the left of’, ‘to the right of’,
‘above’, ‘below’, ‘in front of”) throughout the dynamic video. ‘Generative numeracy’ specifies one or
two object types, with quantities ranging from one to eight. ‘Consistent attribute binding’ contains
color, shape, and texture attributes among two objects.

Following (Sun et al., 2024a), we adopt Video LLM-based metrics for consistent attribute binding
and detection-based metrics for spatial Relationships and numeracy.

Error Analysis. We include screenshots of the evaluation questionnaire and labeling instructions in
Figs. 13 and 14, respectively. For error analysis, we enlist three Al experts to assess the correctness of
each step in the VIDEOREPAIR, including video evaluation, key object selection, and segmentation.
For video evaluation, we present the initial text prompt and the corresponding video outputs generated
by T2V-Turbo, displayed as a sequence of connected frames. In addition, we provide each question
and its corresponding answer derived from the video evaluation results. Annotators are instructed
to mark a generation as ‘incorrect’ if the number of generated objects does not exactly match the
specified count in the initial prompt. For key object selection, we provide the object selection results
produced by GPT-40 and ask annotators to verify whether the identified objects O* and N* are correct.
For segmentation evaluation, we present a pointing prompt (e.g., “Point to the largest umbrella and
one picnic blanket”) along with the corresponding segmentation map, and ask annotators to judge
whether the segmentation accurately aligns with the prompt.

D ADDITIONAL QUANTITATIVE ANALYSIS

In this section, we present additional quantitative results to provide a deeper understanding. Specifi-
cally, we demonstrate that VIDEOREPAIR achieves superior efficiency in inference time compared to
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Test-video alignment score per k
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50
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48 Action
46
1 5 10 20

# of video candidates (K)

Figure 6: Impact of the number of video candidates. We vary the number of video candidates K
as 1, 5, 10, and 20 for ranking.

Table 6: VIDEOREPAIR performance on the EvalCrafter ‘Other’ section. VIDEOREPAIR consis-
tently improves video quality in camera movement, landscape, and style categories over the initial
T2V-turbo generations.

Camera movement Landscape  Style

Initial video (T2V-turbo) 44.02 48.94 42.70
+ VIDEOREPAIR 45.23 50.71 43.63

other baselines, while also highlighting the impact of iterative refinement and the effect of varying
the number of video candidates.

D.1 INCREASING # OF VIDEO CANDIDATES

To evaluate the impact of video ranking, we vary the number of video candidates as K =
1,5,10,and 20 during the ranking process. The variation among video candidates arises from
different random seeds used to initialize ;. For example, video ranking is not applied when K = 1,
and only one refinement is produced using a single random seed noise €. For ranking metrics, we
rely on the video score across all ablation studies. As depicted in Fig. 6, higher K values (5, 10,
and 20) consistently yield higher scores across all categories than K = 1. This trend is particularly
prominent in the ‘count’ category, where increasing K leads to noticeable performance improvements,
highlighting the importance of considering multiple candidates for ranking.

D.2 IMPACT OF GLOBAL REFINEMENT

Tab. 6 reports results on the Other section of EvalCrafter, which includes camera movement, land-
scape, and style prompts. Applying VIDEOREPAIR yields consistent improvements across all three
categories, with gains of +1.21 in camera movement, +1.77 in landscape, and +0.93 in style. These
results highlight that VIDEOREPAIR not only enhances core compositional attributes (e.g., count,
color, action) but also extends effectively to broader aspects of video quality such as dynamics,
scenery, and artistic style.

D.3 IMPACT OF ITERATIVE REFINEMENT

We experiment with iteratively performing VIDEOREPAIR to further improve the text-video align-
ments. We monitor the video score and terminate the iterative refinement when it reaches 1.0 (max
score), and use video ranking with K=5 candidates. As illustrated in Fig. 8, iterative refinement
benefits all three prompt splits (count / color / action) of EvalCrafter. Additional iterative refinement
examples are provided in Fig. 22.
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88.41% 3 Correct IR Incorrect

80.0% 81.67%

20.0% 18.33%
11.59%

0%

Video Evaluation Key Object Selection Segmentation

Figure 7: Error analysis results. VIDEOREPAIR consistently achieves approximately 80% correctness across
all components of the framework.

Video score per iteration Text-video alignment score per iteration
0.8
52
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48
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46
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44
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Action 42
1 2 3 4 Initial video 1 2 3 4
Iteration Iteration

Figure 8: Impact of iterative refinement. Iterative refinement gradually improves the video score
and text-video alignment score on all three prompt categories (count/color/action) of EvalCrafter.
The ‘initial video’ refers to a video from T2V-turbo. We use video ranking with K=5 candidates.

D.4 ERROR ANALYSIS OF VIDEOREPAIR.

We conduct human evaluations to assess the alignment of each step in VIDEOREPAIR with human
judgments. Specifically, for video object evaluation, we present annotators with the initial video
and corresponding MLLM-generated question-answer pairs, asking them to determine whether
the answers are correct. For key object selection, we ask annotators to assess the correctness of
the selected key object O*. For pointing and segmentation, we evaluate whether the generated
segmentation masks are well-localized with respect to the provided pointing prompts. As illustrated
in Fig. 7, VIDEOREPAIR consistently achieves approximately 80% correctness across all components
of the framework. While errors are observed at each step, we attribute these limitations to the current
backbone model. We anticipate that future integration of more advanced backbones will lead to
improved performance. The inter-annotator agreement for our evaluation is 93.18%, indicating strong
consistency among human raters.

E ADDITIONAL QUALITATIVE EXAMPLES

Moving key objects in VIDEOREPAIR. In long videos (e.g., CogVideoX-generated videos with
81 frames), key objects may disappear or newly appear across different frames. As shown in Fig. 10,
VIDEOREPAIR effectively captures moving key objects O* using frame-wise masks M. This example
illustrates how frame-wise masks help handle changes in object count and attributes - preserving
disappearing objects (car) while incorporating previously missed objects (house).

E.1 COMPARISON WITH BASELINES

We present additional qualitative comparisons with baseline methods (OPT2I (Maias et al., 2024),
SLD (Wu et al., 2024), and Vico (Yang & Wang, 2024)) in Figs. 15 to 21. These examples address a
variety of failure cases commonly observed in T2V models, including inaccuracies in object count
and attribute depiction, as highlighted in our main paper. Figs. 15 to 18 correspond to results from
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T2V-Turbo, while Figs. 19 to 21 showcase examples from VideoCrafter2. Additionally, we provide
binary segmentation masks that identify preserved areas (in black) and updated areas (in white).

Across these examples, VIDEOREPAIR effectively preserves the O™* areas while refining the remaining
regions using p”. For instance, in Fig. 15, the camel from the original T2V-Turbo video is preserved,
and a snowman is successfully added. In contrast, while SLD also leverages DDIM inversion to
preserve objects, it often fails to integrate new objects seamlessly.

E.2 ITERATIVE REFINEMENT

We also demonstrate the results of iterative refinement in Fig. 22, showing the initial video alongside
the first and second refinements generated from T2V-Turbo. Overall, VIDEOREPAIR progressively
enhances text-video alignment with each refinement step.

For numeracy-related cases (e.g., six dancers and five cows), VIDEOREPAIR iteratively adds or
removes specific objects, ensuring alignment with the given prompts. In cases of missing objects (e.g.,
biologists and ducks), VIDEOREPAIR successfully generates additional biologists and multiple ducks
while preserving the context of the initial video. Additionally, for attribute-related prompts (e.g.,
yellow umbrella and blue cup), VIDEOREPAIR effectively refines object attributes, such as adding a
wooden handle to the umbrella and enhancing the cup’s blue color. These results demonstrate our
ability to iteratively improve both object count and attribute alignment with high fidelity.

E.3 OBIJECT SELECTION IN VIDEOREPAIR

In step 2, we select the largest candidate among the correct objects. This approach can be seamlessly
extended to select multiple correct objects when the number of objects in the initial video (ng*) meets
or exceeds the prompt’s specification (ng*). During the rebuttal, we implemented this extension
to enable the formulation of object-wise pointing prompts and the generation of multiple masks
to preserve these objects. As shown in Fig. 9, this version can preserve a bear and a man while
automatically refining the video to add an additional person.

E.4 STEP-BY-STEP ILLUSTRATION OF VIDEOREPAIR

In Figs. 11 and 12, we provide detailed illustrations of all three VIDEOREPAIR steps.

F LIMITATIONS

We introduce VIDEOREPAIR, a training-free and model-agnostic framework for evaluating and
refining initially generated videos. Occasional hallucinations may arise in intermediate steps, as the
overall performance is influenced by the quality of the underlying pre-trained backbones, including
the LLM and MLLM. However, we note that VIDEOREPAIR is expected to improve further with
future advancements in LLM and MLLM architectures.

G LICENSES

* VideoCrafter2

* EvalCrafter

* T2V-Compbench
¢ Semantic-SAM
* Molmo

* CogVideoX
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T2V-turbo

+VideoRepair (w/ Single-object mask) + VideoRepair (w/ Multi-object masks)

r"' s > Uy

Prompt: bear and Zeople making pizza

Figure 9: Single-object mask vs. Multi-object mask.

Prompt: One man drove away nearby a house and disappeared into the horizon

)
v
<
S
(5
2
)
O
o

+ VideoRepair

(VideoRepair generated)

Frame 0 Frame 20 Frame 40 Frame 60 Frame 80

Figure 10: Refining videos when the key object disappears. VIDEOREPAIR successfully preserves
disappearing objects (car) while incorporating previously missed objects (house).

Step1. Misalighment Detection

{'Q': 'Is there one camel?', 'A': 1.0,
'reasoning': 'There is one visible camel in the image.', 'obj_in_prompt': 1, 'obj_in_img': 1}
{'Q': 'Is there one snowman?', 'A': 0.0, 'reasoning': 'There are no snowmen in the image.',

'obj_in_prompt': 1, 'obj_in_img': 0}

{'Q': 'Is the camel lounging?', 'A': 1.0}

{'Q': 'Is the camel in front of the snowman?', 'A': 0.0}
Step2. Refinement Planning

[Object decision] Preserved object : camel | Preserved num : 1

Regenerating prompt : One snowman.

Step3. Localized Refinement

\

Region to keep

Top-ranked video

Figure 11: Output from each step of VIDEOREPAIR. We illustrate whole outputs from each step of
VIDEOREPAIR.
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Step1. Misalighment Detection

{'Q': 'Are there four children?', 'A': 1.0, 'reasoning': 'There are four visible children in the
image.', 'obj_1in_prompt': 4, 'obj_in_img': 4}
{'Q': 'Are there three dogs?', 'A': 0.0, 'reasoning': 'There is only one dog visible in the image.',

'obj_in_prompt': 3, 'obj_in_img': 1}

‘Q': 'Is there a picnic?', 'A': 1.0}

‘Q': 'Is there a park?', 'A': 1.0}

'‘Q': 'Are the children having a picnic?', 'A': 1.0}
'‘Q': 'Are the children in the picnic?', 'A': 1.0}
'‘Q': 'Are the dogs in the picnic?', 'A': 0.0}

'‘Q': 'Is the picnic in the park?', 'A': 1.0}

Step2. Refinement Planning

[Object decision] Preserved object : children | Preserved num : 4

Regenerating prompt : Three dogs at a picnic in the park.

Step3. Localized Refinement

Regonﬁokeep
Top-ranked video

Figure 12: Output from each step of VIDEOREPAIR. We illustrate whole outputs from each step of

VIDEOREPAIR.
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VideoRepair Human Evaluation

# Task Overview

In this evaluation, you will be shown video frames, questions, GPT-
4o-generated answers, selected objects, and segmentation maps. Your
task is to evaluate whether the outputs provided by the model are
correct based on the visual inputs.

Please answer each gquestion with Correct or Incorrect based solely
on the visual evidence shown.

All of tasks can take 25~38 min. Thank you in advance!

% Guidance / Information

1) We uniformed 16 frames videos from T2V-turbo at 4 step and make connected
images. (4 images are one video)

2) If the case about
Input prompt: Girl in pink sweater holding a goiden trophy
Model response: [Q: Is there one trophy? A: Yes]

Correct

Incorrect

If there are multiple trophy like below, please select 'Incorrect’
(since we should have only ONE trophy based on initial prompt. )

3) For the segmentation part, please decide whether black area faithfully
representing provided pointing prompt. (regardless of this pointing prompt looks
reasonable or not)

For example, if pointing prompt is

=== Pointing Prompt ===

Point the biggest 6 horses

and the segmentation is like below, please select 'Correct’ .

dofetitn dofolite dofefite dofolite

Next

Page 1 of 21 Clear form

Figure 13: A screenshot of questionnaires for error analysis.
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Input prompt: Blue umbrella shielding a pink picnic blanket

1
Based on the given video frames, is the answer provided by GPT-40
correct?

Is below answering correct?

Q: Is there one blue umbrella?
A:No

QO Ccorrect

O Incorrect

Q: Is there one pink picnic blanket?
A:Yes

O Correct

QO 1Incorrect

Q: Is the umbrella shielding the picnic blanket?
A: No

O Correct

QO 1Incorrect

Input prompt: Blue umbrella shielding a pink picnic blanket

Based on the video frames and the selection prompt, are the objects selected by
GPT-4o correct and appropriate?

=== Object Decision ===
Input prompt: Blue umbrella shielding a pink picnic blanket

Object we can preserve (correctly-generated object): {'umbrella”: 1, 'picnic
blanket’: 1}

O Correct

(O Incorrect
- - o o
. 4 . 4 . 4

3.
Based on the input frame and the provided prompt, is the segmentation map
accurate and correctly aligned with the described object(s)?

=== Pointing Prompt ===
Point the biggest 1 umbrella and 1 picnic blanket.

O Correct

O Incorrect

Back Next IS  Page 2 of 21 Clear form

23

Figure 14: A screenshot of questionnaires for error analysis.
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orange traffic cone: A camel lounging in front of a snowman
- v

Pink motorcycle weaving throu,

2

OPT2I
(lter=10)  T2V-turbo

SLD

(Iter=1)

Vico

(Iter=1)

VideoRepair

Frame 1 Frame 8 Frame 16 Frame 1 Frame 8 Frame 16

Figure 15: Qualitative examples from T2V-turbo.

Teddy bear and 3 real bear

1 bear and 2 people making pizza

OPT2I
(lter=10)  T2V-turbo

SLD

(Iter=1)

Vico

(Iter=1)

VideoRepair

Frame 1 Frame 8 Frame 16 Frame 1 Frame 8 Frame 16

Figure 16: Qualitative examples from T2V-turbo.
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Yellow rose swaying near a green bench

A blue car parked next to a red fire hydrant on the street.
P T 3 X sy = S 1 e

OPT2I
(lter=10)  T2V-turbo

SLD

(Iter=1)

Vico

(Iter=1)

VideoRepair

-

Frame 8 Frame 16 Frame 1 Frame 8 Frame 16

Frame 1

Figure 17: Qualitative examples from T2V-turbo.

five aliens in a forest ) Five colorful parrots perch on a branch, squawking loudlat each other.

OPT2I
(lter=10)  T2V-turbo

SLD

(Iter=1)

Vico

(Iter=1)

VideoRepair

Frame 1 Frame 8 Frame 16 Frame 1 Frame 8 Frame 16

Figure 18: Qualitative examples from T2V-turbo.
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OFT2I

SLD

(Iter=1)

VideoRepair

OFT2I
(lter=10) VideoCrafter2

SLD

(Iter=1)

VideoRepair

A silver cell phone lays next to a red fire hydrant.

A penguin standing on the right side of a cactus in a desert

(lter=10) VideoCrafter2

Vico

(Iter=1)

Frame 1 Frame 8 Frame 16

Figure 19: Qualitative examples from VideoCrafter2.

A dog sitting under a umbrella on a sunny beach With the style of pointilism, A green apple and a black backpack.

Vico

Frame 1 Frame 8 Frame 16 Frame 1 meés Frame 16

(Iter=1)

Figure 20: Qualitative examples from VideoCrafter2.
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three foxes in a snowy forest A basket placed below a television

(Iter=10) VideoCrafter2

SLD OPT2I
(lter=1)

Vico

VideoRepair
(Iter=1)

Frame 1 Frame 8 Frame 16 Frame 1 Frame 8 Frame 16

Figure 21: Qualitative examples from VideoCrafter2.

Iteration 1~3 Iteration 1~3

b

NN BRI
oD yaie e ‘
4 St P el Uit e i o
A team of two marine biologists study a colony of penguins, A group of six dancers perform a ballet on stage,

monitoring their breeding habits. their movements synchronized and graceful.

Five cows graze lazily in a green meadow on a perfect spring day. A blue cup and a green cell phone, with the style of pencil drawing
Figure 22: Videos generated using iterative refinement with VIDEOREPAIR. We depict iterative

refinement results generated from T2V-Turbo. Overall, VIDEOREPAIR progressively enhances text-
video alignment with each refinement step.
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1. Given the question: "{cur_question}", provide a brief reasoning (up to two sentences) to determine the
accurate answer.

2. Respond to the question using binary values: 1.0 for "Yes" and 0.0 for "No". If the answer 1is uncertain
or unnatural due to image distortion or other 1issues, respond with 0.0 ("No").

3. Return the number of "{key objects}" (as an integer) mentioned in the initial prompt "{cur_question}".

4. Return the number of "{key objects}" (as an integer) in the provided image.

Return the result as a dictionary in the following format (not in JSON format):

£{"Q": "<question>",
"A": <binary answer>,
"reasoning": "<brief reasoning>",

"obj_1in_prompt": <number of key object mentioned in the initial prompt>,
"obj_1in_img": <number of key object in the image>}}

Example:
"Is there one robot?",
"A": 0.0,
"reasoning": "There are two visible robots in the image.",

"obj_in_prompt": 1,
“obj_in_img": 2}}

Please provide only the dictionary as the output without any additional text or explanation.

Respond to "{cur_question}" using binary values: 1.0 for Yes and 0.0 for No.

If the answer is uncertain due to image distortion or other issues, respond with 0.0 (No). \
Return the result as a dictionary in the following format (not in JSON format): \

{{"Q": "<question>", "A": <binary answer>}} \

(e.g., {{"Q": "Is there one robot?", "A": 0.0}}) \

Provide only the dictionary as the output, without any additional text or explanations.

Figure 23: Prompts to perform visual question answering in video evaluation steps. Top: The
prompt for Q¢ (count-related question), Bottom: prompt for Q3. (attribute-related question).
cur_qguestion means each video evaluation question and key_ob ject s means entity word in
each question.

Given the image which compose of multiple concatenated frames from a video and the list of question-
answer pairs for each object, represented as {object_wise_dict}, choose all the accurately or visibly
generated objects from the list {objects_from_Question}. Prioritize selecting objects with a high
number of answers rated 1.0 for each question. Select the object that is both large and clearly
visible, prioritizing prominent objects (such as animals, humans, or specific items) over background
elements (like ocean or city). Return only the name of the best object to keep from the list, without
additional explanation (e.g., dog)

Figure 24: Prompt to choose which object(s) to preserve. We ask GPT4o to select objects to
preserve in the scene.

Given the following list of questions , create a single descriptive sentence that combines
the meaning of each question into a natural, affirmative statement that provides a full, concise summary.

Examples:

- Example 1

Question list: ['Is there a bed?', 'Is the bed blue?', 'Are the pillows beige?', 'Are the pillows with the
bed?']

Answer: "Blue bed with beige pillows."

- Example 2
Question list: [Are there three real bears?]
Answer: "Three real bears."

- Example 3
Question list: [Are there two people?, Are the people making pizza?]
Answer: "Two people making pizza.

- Example 4

Question list: [Is there a family?, Is there one cat?, Is there a park?, Is the family taking a walk?, Is
the cat walking?, Is the family enjoying?, Is the family breathing fresh air?, Is the family exercising?]
Answer: "A family and a cat are walking in the park."

- Example 5
Question list: [Is there a green bench?, Is there an orange tree?, Is the bench green?, Is the tree
orange?]

Answer: "Green bench and orange tree."

Your Current Task: Your response should be a concise 1 phrase, without additional explanation
(e.g., "a small bear")

Figure 25: Prompt to plan how to refine the other regions. We use five in-context examples to
create the refinement prompt from the question related to other objects.
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Generate 1 paraphrase of the following image description

while keeping the semantic meaning: "{init _prompt}".

Provide your response as a single phrase without any explanation.
Format it as: <PROMPT> ... </PROMPT>.

(e.g., <PROMPT>Two dogs and a whale embark on a sea adventure.</PROMPT>)

Figure 26: Prompt for LLM paraphrasing. Following OPT2I (Mafas et al., 2024), we ask GPT4 to
generate diverse paraphrases of each prompt for LLM paraphrasing baseline experiments.
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