
Do We Really Need Complicated Graph Learning Models? – A
Simple but Effective Baseline

Kaan Sancak∗

kaan@gatech.edu
Muhammed Fatih Balın∗

balin@gatech.edu
Ümit V. Çatalyürek†∗

umit@gatech.edu

Abstract
Despite advances in graph learning, increasingly complex models introduce
significant overheads, including prolonged preprocessing and training times,
excessive memory requirements, and numerous hyperparameters which often
limit their scalability to large datasets. Consequently, evaluating model effec-
tiveness in this rapidly growing field has become increasingly challenging. We
investigate whether the complicated methods are necessary if foundational and
scalable models can achieve better quality on large datasets. We first demonstrate
that Graph Convolutional Network (GCN) is able to achieve competitive quality
using skip connections on large datasets. Next, we argue that existing Graph
Neural Network (GNN) skip connections are incomplete, lacking neighborhood
embeddings within them. To address this, we introduce Neighbor Aware Skip
Connections (NASC), a novel skip connection with an adaptive weighting strat-
egy. Our evaluation show that GCN with NASC outperforms various baselines
on large datasets, including GNNs and Graph Transformers (GTs), with negli-
gible overheads, which we analyze both theoretically and empirically. We also
demonstrate that NASC can be integrated into GTs, boosting performance across
over 10 benchmark datasets with various properties and tasks. NASC empowers
researchers to establish a robust baseline performance for large datasets, eliminat-
ing the need for extensive hyperparameter tuning, while supporting mini-batch
training and seamless integration with popular graph learning libraries.

1 Introduction
Graph Neural Networks (GNNs) have become the de facto models for Graph Learning (GL) on
node [1], link [2] and graph [3] level tasks, spanning diverse domains, such as computer vision, natural
language processing, recommender systems, social network analysis, and material sciences [4]. GNNs
utilize a message-passing scheme, where node embeddings are iteratively updated by propagating
the embeddings of its neighbors followed by non-linear transformations. With l layers, the final
representation of a node captures the structural information of its l-hop neighborhood.

Despite their success, GNNs suffer from multiple problems. Many foundational GNNs [1, 5, 6]
achieve their best quality with 2/3-layer shallow networks. This is attributed to over-smoothing [7],
which occurs when the vertex representations converge and eventually become indistinguishable
as the model gets deeper. To overcome over-smoothing, various methods have incorporated skip
connections [8, 9] to GNNs [1, 7, 10–13]. Secondly, GNNs face limitations in capturing long-range
dependencies within graphs, where nodes need to exchange information over long distances [14].
This often leads to information over-squashing caused by repeated propagations [7, 15, 16]. Graph
Transformers (GTs) address this limitation [17–20] by attending to potential neighbors among the
entire set of nodes through self-attention [21]. However, GTs’ quadratic complexity hinders their

∗School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
†Amazon Web Services. This publication describes work performed at the Georgia Institute of Technology

and is not associated with AWS.

Sancak et al., Do We Really Need Complicated Graph Learning Models? – A Simple but Effective Baseline.
Proceedings of the Third Learning on Graphs Conference (LoG 2024), PMLR XXX, Virtual Event, November
26–29, 2024.

Do We Really Need Complicated Graph Learning Models? – A Simple but Effective Baseline

adoption for large datasets, limiting their application to small ones [14, 22–24]. Recent research has
focused on addressing the scalability limitation through node tokenization [25, 26], dimensionality
reduction [27], coarsening [28], and simplified attention mechanisms [29, 30].

The rapidly expanding field of GL necessitates effective baseline evaluation, yet this crucial task
is becoming increasingly challenging due to several factors. First, many codebases only include
dataloaders for specific datasets, requiring researchers to write new dataloaders and ensure data format
consistency when adding new datasets. Second, many increasingly complex models have unfeasible
time and memory requirements to large datasets, which is exacerbated when models are limited to
full-batch training. Third, methods requiring numerous hyperparameters to be tuned for each dataset
lead to a burdensome and time-consuming process, which becomes even more problematic for large
datasets, especially when additional preprocessing is required. Compounding these issues, some
codebases are not even available, and making it even more difficult to establish effective baselines.

In the current research landscape, we often overlook fundamental questions: Are we really making
progress? Do we really need complicated methods if fundamental GNN models can achieve higher
qualities while being scalable and widely available across GL frameworks? In this work, we first
take a step back and provide our own implementation of GCN with Residuals (GCN + Res) [31],
which combines skip connections [8] with Graph Convolution Network (GCN) [1]. We demonstrate
that this fundamental baseline from 2019, a single line addition to GCN, can achieve competitive
quality on large node prediction datasets, without additional hyper-parameters. Next, we observe
that existing GNNs skip connection methods neglect neighborhood embeddings, focusing solely on
individual vertex embeddings. Based on this insight, we propose Neighbor Aware Skip Connections
(NASC), a novel approach that leverages neighborhood embeddings along with individual vertex
embeddings in its skip connections with an adaptive weighting strategy. NASC can be applied to
various GL models with minimal adjustments. To illustrate, we integrate NASC into GCN, and a
recent GT, SGFormer [30], demonstrating consistent strong performance, often outperforming recent
models across multiple benchmark datasets, encompassing heterophily and homophily graphs with
node, graph, and link-level tasks. Furthermore, NASC requires only one additional hyper-parameter,
which we found can be fixed at a specific value to consistently produce the best quality, and incurs in
negligible overheads, which we discuss theoretically and validate empirically. Moreover, NASC is
highly scalable and supports efficient graph mini-batch training.

The main motivation of this work is to provide a widely applicable, and easily implementable baseline
that does not require extensive hyperparameter tuning, can be seamlessly integrated into any GL
framework, and serves as a standard reference point for evaluating the effectiveness on large datasets.

2 Background and Related Work
A graph G = (V,E) consist of vertices V and edges E ⊆ V ×V , where n = |V | and m = |E| denote
the number of vertices and edges. A ∈ Rn×n denotes the adjacency matrix of G, where a weighted
edge (u → v) ⊆ E exists between source u and target v if Au,v ̸= 0. The feature embedding matrix
X(l) ∈ Rn×d(l)

assigns a feature vector x(l)
v ∈ Rd(l)

to each vertex v at layer l, with X(0) referring
to input features. N(v) = {u | (u → v) ∈ E} denotes the incoming neighborhood set of v.

Graph Neural Networks (GNNs) can be represented under the framework of propagations (P) and
non-linear transformations (T), [5, 6, 32]. In P step, a node v applies a propagation function, PROP(·),
to the set of its neighborhood embeddings scaled by their edge weights to compute propagation
embedding hv ∈ Rd (layer notation omitted), as in Equation 1. In T step, v applies a non-linear
function, TRANS(·), to hv to generate xv, as in Equation 2. Under this framework, GCN [1] is
expressed as below and more details including illustrations are provided in Appendix B.2.

h(l)
v = PROP

(
{Âu,vx

(l−1)
u , u ∈ N(v) ∪ {v}}

)
=

∑
u∈N(v)∪{v}

Âu,vx
(l−1)
u (1)

x(l)
v = TRANS(h(l)

v ;W (l)) = σ
(
h(l)
v W (l)

)
(2)

where Â is normalized A, with W (l) ∈ Rd(l)×d(l+1)

, d(l) and σ(·) denoting layer weights, number of
hidden units, and non-linear activation function. GCNs [1] also explicitly include self-loops in A.

Skip Connections. The original GCN [1] includes a residual version, similar to those in ResNet [8],
which we refer to as traditional skip connection, see Equation 3. Skip connections enable input to

2

Do We Really Need Complicated Graph Learning Models? – A Simple but Effective Baseline

bypass non-linear layers and propagate directly to deeper layers. This improves training dynamics by
allowing gradients to flow directly between layers, addressing the vanishing gradients and improving
robustness to input perturbations [8]. A skip connection is called residual [8] when using summation
(+), and dense [9] when using concatenation, []. For more details, see Appendix B.1.

x(l)
v = TRANS(x(l−1)

v , h(l)
v ;W (l)) + x(l−1)

v = σ
(
h(l)
v W (l)

)
+ x(l−1)

v (3)

In GCN, a node equally contributes to h
(l)
v as of its neighbors, see Equation 1. This can be problematic

as a node’s own features could vanish in deeper layers due to repeated pooling. GraphSAGE [5]
tackles this by concatenating h

(l)
v and x

(l−1)
v before T and views it as a form of a skip connection:

h(l)
v = PROP

(
{Âu,vx

(l−1)
u , u ∈ N(v}

)
, x(l)

v = σ
(
[h(l)

v , x(l−1)
v]W (l)

)
(4)

Notice that this differs from traditional residuals that aim to improve training dynamics. In contrast,
this skip connection arises from GNNs’ inherent mechanism, enabling a node to treat its own
embeddings distinctively from its neighbors, by training x

(l−1)
v and h

(l)
v with separate weights unlike

Equation 3. We will refer these as topological skip connections.

Following up, DenseGCNs [31], ResGCN and DenseGCN, straightforwardly combine Equations 4
and 3. JK-Nets, a DenseNet variant, applies a final aggregation to all intermediate embeddings [10].
MixHop proposes another DenseNet variant with dense connections to a fixed number of consecutive
layers, controlled by a hyper-parameter [33]. GCNII introduces residual connections from the initial
input to every intermediate output, with additional hyperparameters controlling the initial residual
and feature retention in subsequent layers [12]. For further details, please refer to Appendix B.2.

Categorization of GNNs. Most GNNs, inspired by GCN, can be categorized as coupled models [1,
5, 6, 10, 12, 31, 32], intertwine Ps and Ts, meaning that each P is strictly followed by a T. On the
other hand, decoupled models [11, 34, 35, 35–38], first adopted by SGC [35], simplifies the training
by first performing Ps as a preprocessing step followed by a single non-linearity (T) at the end. Thi
significantly reduces model complexity. However, its simplicity makes it less expressive and more
prone to overfitting [35]. In contrast, other models [11, 39] perform Ts followed by Ps. While this
simplifies the training, as the Ps are performed after Ts, they are still intertwined to some extent.

Graph Transformers (GTs) utilize Transformer architecture [21] within graphs. Its core component
is multi-head self-attention (MHA) is a map from the input X ∈ Rn×d to Rn×d as:

Attn(X) = Softmax

(
QKT

√
d

)
, y = SelfAttention(X) = Attn(H)V (5)

here Q,K, V are linear projections of the input, and Attn(H) captures pair-wise input similarities.
As Equation 5 neglects graph topology in the adjacency matrix, and various structural and positional
encodings have been proposed to incorporate graph topology into GTs [17, 18, 40–44]. Many of
these methods, including the hybrid ones like GraphGPS [20], use Equation 5, which is problematic
for large graphs due to quadratic time/space complexity O(n2) and prolonged preprocessing times.
Consequently, most GTs focus on small datasets like molecular ones [14, 22–24].

Recently, efforts have been made to simplify attention using linearized computations and dimen-
sionalities [27, 29, 30, 39, 45, 46], while others focus on coarsening [28], sparsification [47]. Some
approaches involve node tokenization [25, 26] to generate tokens as a preprocessing, and then apply
attention on the node tokens, which can be seen as a decoupled model variation [48]. Despite numer-
ous efforts on scalable GTs, the applicability them to large graphs remains questionable. Research
has consistently shown that many proposed methods achieve worse quality than state-of-the-art
GNNs [27, 29, 30]. In our work, we reveal that even a simple adjustment, as minimal as a single line,
the earliest foundational GNN model can outperform many GTs designed for large datasets.

3 Methodology
3.1 Motivation

The field of GL has experienced exponential growth in recent years, with a surge in submissions
to top machine learning conferences, where it has consistently ranked among the top 4 keywords,
indicating the field’s productivity. For supporting evidence, please refer to Appendix D. However,
despite this growth, we question whether effective models for large datasets are being developed.

3

Do We Really Need Complicated Graph Learning Models? – A Simple but Effective Baseline

2017 2018 2019 2020 2021 2022 2023 2024
Year

70.0

70.5

71.0

71.5

72.0

72.5

73.0

73.5

A
cc

ur
ac

y

GCN

GraphSAGE
GAT

GaAN

JKNet

APPNP
Cluster-GCN

MixHop

SIGN

DAGNN

GCNII

GAS-GCN

GraphZoom

DeeperGCNs GPR-GNN

ANS-GT

GraphGPS

GATv2

HSGT
Exphormer

GOAT

SGFormer

NAGphormer

PolyFormer

Polynormer

Polynormer-r

Anchor-GT

GCN + Res

Figure 1: Test accuracy with standard deviation on ogbn-arxiv dataset across models over years.

To investigate, in Figure 1 we examine the test accuracy of various methods on the popular ogbn-arxiv
benchmark over the years, with results gathered from the OGB leaderboard 3 and related work.
To ensure a fairness, we exclude methods employing additional tricks such as additional features
or correct and smooth [49]. For clarity, we focus on models achieving at least 70% accuracy, but
a comprehensive figure can be found Appendix D. Additionally, we implemented our own GCN
baseline with residuals (GCN + Res), as the OGB leaderboard’s version includes additional tricks.

Observe that models proposed after 2021 are predominantly GTs or hybrid GNN & GT, whereas
earlier models are mainly GNN-based. Notably, some of the earliest models outperform later ones.
Specifically, GCN + Res, a simple baseline with better scalability than most recent models, no
preprocessing and additional hyper-parameters compared to GCN, outperforms all baselines except
one without extensive tuning. While the recent Polynormer’s vanilla version underperforms GCN +
Res, its Polynormer-r variant is the only model achieving higher quality, possibly due to different
initialization and normalization strategies employed. Moreover, GCN + Res’s ceiling (mean + std)
is higher than all other baselines while maintaining a higher mean than majority. This raises the
following research question: (RQ1:) Do we really need complicated models?

3.2 Challenges in Baseline Evaluation

Answering RQ1 requires effective evaluation of the proposed models against comprehensive baselines
and datasets. However, as the field rapidly expands, establishing effective baseline evaluations is
becoming increasingly challenging as more models and datasets emerge. Surprisingly, recent works
evaluating on large node prediction datasets [25, 27, 28, 30, 47, 50, 51] often lack simple yet effective
baselines like GCN with residuals, which we demonstrated that can achieve higher test quality. This
observation raises concerns about the comprehensiveness of existing baseline comparisons. Moreover,
inconsistencies persist in the datasets and baselines included across different method evaluations,
further complicating the ability to draw reliable conclusions about model effectiveness.

To better understand the root causes hindering robust evaluation, we identify several key contributing
challenges: (C1): Codebases often only include dataloaders for specific datasets, requiring researchers
to write new dataloaders and ensure data format consistency for new datasets. (C2): Increasingly
complex models have unfeasible time and memory requirements. (C3): Methods requiring extensive
hyperparameter tuning for each dataset lead to a burdensome and time-consuming process, especially
for large datasets with additional preprocessing needs. (C4): Many models are limited to full-batch
training, compounding the challenges C2 and C3. (C5): Some codebases are unavailable, further
hindering effective evaluation. These challenges motivate (RQ2:) Can we establish accessible
baselines for effective evaluation without burdening researchers with excessive coding and tuning?

3https://ogb.stanford.edu/docs/leader_nodeprop

4

Do We Really Need Complicated Graph Learning Models? – A Simple but Effective Baseline

T +X

(a) ResNet

P T +X

(b) GCN + Res

P T[,]X

(c) GraphSAGE

+P T[,]X

(d) ResGCN

P TP T AP TP TX

(e) JK-Nets

P T+ P T+X

(f) GCNII

Figure 2: Model representations: (e), (f) 2 layers; others 1 layer. Dashed lines: layer boundaries.

3.3 An Effective, Scalable, Accessible yet Simple Baseline

To answer RQ2, we reconsider adaptation of skip connections in GNNs, which typically implement
traditional skip connections, where the single vertex embedding xv is added to the output, as shown
in Fig. 2. However, input to the GNN transformation not limited to xv , but also includes propagated
l-hop embeddings, hv , as shown in Eqs. 3 - 4. We argue hv , which captures the iteratively aggregated
neighborhood information can be leveraged as contextualized residuals to enhance model quality.

+P T[,]X

Figure 3: ResNet, GraphSAGE, NASC

Motivated by our insights, we introduce Neighbor Aware
Skip Connection (NASC), incorporating propagation em-
beddings into GNN skip connections via an adaptive
weighting strategy to adjust the residual terms. Including
propagation residuals allows preserve and propagate con-
textual neighborhood information across layers. NASC
can seamlessly integrate into various GL models, including GCN, GraphSAGE, SGFormer and others.
For example, GraphSAGE with NASC is expressed as:

x(l)
v = TRANS(h(l)

v , x(l−1)
v ;W (l)) + α(l)x(l−1)

v + (1− α(l))h(l)
v

= σ
(
[h(l)

v , x(l−1)
v]W (l)

)
+ α(l)x(l−1)

v + (1− α(l))h(l)
v

(6)

In the context of GNN residual connections, NASC follows the same principles as traditional skip
connections. Unlike GraphSAGE’s topological skip connection, NASC allows propagation embed-
dings to directly flow to deeper layers without going under non-linear transformations. Different
from decoupled models, in NASC transformations are still interviewed with neighborhood residuals.

Adaptive Weighting of Residuals. We express the residual term as a weighted sum controlled by α
to avoid doubling the hidden dimension at every layer, and prevent increased memory requirements
(@C2). We consider three forms of α: (1) Fixed scalar hyperparameter, or adaptively learned by:

α(l) = σsigmoid([x
(l−1)
v , h(l)

v]W (l)
α) (7)

where W
(l)
α ∈ R2d(l−1)×q(l−1)

is a learnable weight. (2) If q(l−1) = 1, α(l) is scalar scaling the
matrices as a whole. (3) If q(l−1) = d(l−1), it is a vector scaling the weights per hidden channel. The
choice depends on the dataset and model complexity. Fixed scalars may be better for small datasets
to avoid overfitting Wα, while learnable functions are better for larger and complex datasets.

Notably, NASC requires only one additional hyperparameter, α, compared to its backbone. Our
empirical evaluation further shows that fixing q = 1 works best for large datasets. Thus, tuning
NASC adds no extra hyperparameters or preprocessing to the backbone to practitioners (@C3).

Model Complexity and Overhead Analysis. In Appendix E, we break down single layer complexity
of various models, including GCN, GraphSAGE, ResGCN, all exhibiting the same O(nd2 + nm).
To analyze computational overhead, we examine the number of FLOPS per layer. GCN requires
md+ 2nd2 + nd FLOPS for sparse matrix-matrix multiplication (SpMM), general matrix-matrix
multiplication (GeMM), and activation. GraphSAGE adds 2nd2 FLOPS for concatenation, totaling
md+ 4nd2 + nd. ResGCN adds nd FLOPS with an extra summation, totaling md+ 4nd2 + 2nd.
NASC with fixed α, propagation residual summation adds nd FLOPS, totaling md+ 4nd2 + 3nd.
With a learnable α, extra overheads include: GeMM (2ndq), softmax (nd), and element-wise
multiplications (2nd), totaling md + 4nd2 + 4ndq + 5nd FLOPS. While q = 1, 7nd FLOPS
overhead is negligible since nd2 ≫ nd, and if q = d, 4nd2 + 3nd overhead is more considerable.

5

Do We Really Need Complicated Graph Learning Models? – A Simple but Effective Baseline

Importantly, as we implement NASC for mini-batch training (@C4), the n factor can be controlled,
further diminishing the overhead with smaller batches. Section 4.3 verifies our theoretical analysis
and demonstrates that NASC’s overhead is negligible, especially with smaller batch sizes (@C2,C4).

Integration with Graph Transformers. Many state-of-the-art (SOTA) GT combine local and
global modules including GraphGPS [20], Exphormer [47], Specformer [52], NodeFormer [29],
SGFormer [30]. Local modules, such as GNNs, leverage the adjacency matrix, while global modules
employ attention mechanisms, discarding the adjacency matrix. Notably, the skip connections of
these models do not incorporate propagation residuals. For instance, SGFormer is expressed as:

z(l)v = (1− θ)z(l)v + θGNN(x(l−1)
v , A), x(l)

v = FFN(z(l)v) (8)

where zv is the output of the global module, GNN is the local module, FFN is the final feed-forward
layer, and θ is a hyper-parameter controlling the importance of local and global information. GNN
can be an off-the-shelf GNN model, such as GCN (Eq. 3), making NASC a straightforward plug-in
(@C5), similar to our illustration in Eq. 6. Consequently, we integrate NASC into SGFormer and
conduct all the experiments from the original work in our evaluation.

Accessibility. To address the accessibility challenges in Section 3.2, we provide examples of NASC
integration in PyTorch-Geometric (PyG) and Deep Graph Learning Library (DGL), illustrating how
to plug it into various models with few lines of code (@C5). This enables NASC to work with
any dataset within these frameworks, and we provide additional datasets, such as Pokec (@C1).
Furthermore, NASC supports mini-batch training for large scale datasets (@C2,C4). Since NASC
requires no additional hyper-parameter tuning (with q = 1) or preprocessing (@C3), it serves as a
readily accessible, scalable, and effective baseline for researchers.

4 Evaluation
We benchmark NASC on diverse node-level tasks to assess its quality and scalability, including multi-
task learning, long-range dependence, heterophily, and homophily, using a NVIDIA DGX Station
80GB XA100 4 GPU machine. Our evaluation consists of two main components: (1) Evaluation on
standard large node level tasks with GNN backbone. (2) Evaluation on medium and large node level
tasks with SGFormer backbone. We further analyze NASC’s efficiency through ablation studies in
Section 4.3, and also provide additional evaluations for other graph tasks in Section 4.4.

Implementation. We provide multiple implementations to cater to different scenarios, including a
standalone full-batch training implementation using PyG, an integration with GraphBolt that enables
graph mini-batch training with examples using PyG and DGL libraries, and integrations with the
SGFormer and GraphGPS frameworks, offering flexibility and versatility for various use cases. We
have included a portion of our code in the supplementary material, and the complete codebase will be
made publicly available before or at the conclusion of the double-blind review process to ensure the
reproducibility of our results.

4.1 Large Scale Node Level Graph Datasets with GNN Backbone

Table 1: Test accuracy on large-scale node prediction benchmarks: the first, second, and third best
are highlighted. If available, we reuse the results from original papers [13, 37, 53, 54] and the OGB
Leaderboard [55], otherwise we present our own findings.

Dataset Flickr Arxiv Reddit Yelp Products
GCN 50.90± 0.12 71.74± 0.29 92.78± 0.11 40.08± 0.15 75.64± 0.21
SIGN 51.40± 0.10 71.95± 0.11 96.80 ± 0.00 63.10± 0.30 77.60± 0.13
GraphSAGE 53.72 ± 0.16 71.49± 0.27 96.50 ± 0.03 63.03 ± 0.20 78.70± 0.33
GIN 50.90± 0.12 71.74± 0.29 92.78± 0.11 40.08± 0.15 75.64± 0.21
GraphSaint 51.37± 0.21 67.95± 0.24 95.58± 0.07 29.42± 1.32 79.08± 0.24
ClusterGCN 48.10± 0.50 68.00± 0.59 95.40± 0.10 60.90± 0.50 78.97± 0.33
GAT 50.70± 0.32 71.59± 0.38 96.50± 0.14 61.58± 1.37 79.45 ± 0.59

ANG-GT NA 72.34± 0.50 95.30± 0.81 NA NA
HSGT 54.12± 0.51 72.58± 0.31 95.40± 0.10 63.47± 0.45 81.15± 0.13

GCN + Res 53.40 ± 0.17 72.86 ± 0.16 96.20± 0.03 63.40 ± 0.70 79.30 ± 0.45
GCN + NASC 54.84 ± 0.39 73.24 ± 0.21 96.60 ± 0.03 64.38 ± 0.09 80.50 ± 0.16

6

Do We Really Need Complicated Graph Learning Models? – A Simple but Effective Baseline

In Table 1, we first evaluate the efficacy of NASC on five large benchmark datasets commonly used
to assess the performance of GNNs, with up to 2.5M nodes. Due to the large graph sizes, many recent
GTs fail to run on these datasets. Therefore, our baselines for this comparison primarily include GNN
baselines. However, we also include two GTs where the data loaders and results are available. For
the arxiv and products datasets, we provide a more comprehensive table in the upcoming sections.

Although the vanilla GCN seems to underperform in some cases, simply adding residual connections
(GCN + Res) achieves competitive results compared to more recent models, despite having lower com-
putational complexity and being overlooked in other works’ evaluations. Furthermore, the addition
of neighborhood residuals (GCN + NASC) further improves the vanilla GCN’s performance across
all datasets, a simple modification without extensive hyperparameter tuning or preprocessing steps
required by methods like ANS-GT, HSGT, or ClusterGCN. Notably, in some cases such as Reddit,
where the dataset is highly saturated in terms of accuracy, recent works often report insignificant
improvements with highly overlapping confidence intervals, and models such as GraphSAGE perform
very competitively. While previous studies suggested complex models are necessary for better quality,
our findings demonstrate that simple and scalable baselines, with proper components such as residual
connections, can still achieve top performance, setting new thresholds for model evaluation. Our
results highlight that algorithmic complexity is not always required. To the best of our knowledge,
our score on the Flickr is currently one of the best reported accuracies with a vanilla GCN backbone,
all while having insignificant overhead.

4.2 Medium and Large Scale Node Level Graph Datasets with GT Backbone

We integrate NASC into recent GT called SGFormer, and reproduce its experiments. We follow the
exact setup including dataset splits used by SGFormer to produce consistent results.

Table 2: Test accuracy on medium-scale node prediction benchmarks: The first, second, and third
best are highlighted.

Dataset Cora CiteSeer PubMed Actor Squirrel Chameleon Deezer
Nodes 2,708 3,327 19,717 7,600 2223 890 28,281
Edges 5,278 4,552 44,324 29,926 46,998 8,854 92,752

Property Homophilic Homophilic Homophilic Heterophilic Heterophilic Heterophilic Heterophilic

GCN 81.6± 0.4 71.6± 0.4 78.8± 0.6 30.1± 0.2 38.6± 1.8 41.3± 3.0 62.7± 0.7
GAT 83.0± 0.7 72.1± 1.1 79.0± 0.4 29.8± 0.6 35.6± 2.1 39.2± 3.1 61.7± 0.8
SGC 80.1± 0.2 71.9± 0.1 78.7± 0.1 27.0± 0.9 39.3± 2.3 39.0± 3.3 62.3± 0.4
JKNet 81.8± 0.5 70.7± 0.7 78.8± 0.7 30.8± 0.7 39.4± 1.6 39.4± 3.8 61.5± 0.4
APPNP 83.3± 0.5 71.8± 0.5 80.1± 0.2 31.3± 1.5 35.3± 1.9 38.4± 3.5 66.1± 0.6
H2GCN 82.5± 0.8 71.4± 0.7 79.4± 0.4 34.4± 1.7 35.1± 1.2 38.1± 4.0 66.2± 0.8
SIGN 82.1± 0.3 72.4± 0.8 79.5± 0.5 36.5± 1.0 40.7± 2.5 41.7± 2.2 66.3± 0.3
CPGNN 80.8± 0.4 71.6± 0.4 78.5± 0.7 34.5± 0.7 38.9± 1.2 40.8± 2.0 65.8± 0.3
GloGNN 81.9± 0.4 72.1± 0.6 78.9± 0.4 36.4± 1.6 35.7± 1.3 40.2± 3.9 65.8± 0.8

GraphormerSMALL OOM OOM OOM OOM OOM OOM OOM
GraphormerSMALLER 75.8± 1.1 65.6± 0.6 OOM OOM 40.9± 2.5 41.9± 2.8 OOM
GraphormerULTRASSMALL 74.2± 0.9 63.6± 1.0 OOM 33.9± 1.4 39.9± 2.4 41.3± 2.8 OOM
GraphTransSMALL 80.7± 0.9 69.5± 0.7 OOM 32.6± 0.7 41.0± 2.8 42.8± 3.3 OOM
GraphTransULTRASSMALL 81.7± 0.6 70.2± 0.8 77.4± 0.5 32.1± 0.8 40.6± 2.4 42.2± 2.9 OOM
NodeFormer 82.2± 0.9 72.5± 1.1 79.9± 1.0 36.9± 1.0 38.5± 1.5 34.7± 4.1 66.4± 0.7
SGFormer 84.5 ± 0.8 72.6 ± 0.2 80.3 ± 0.6 37.9 ± 1.1 41.8 ± 2.2 44.9 ± 3.9 67.1 ± 1.1

GCN + NASC 83.7 ± 0.9 72.4 ± 0.4 80.1 ± 0.6 36.22 ± 2.53 43.7 ± 1.5 46.8 ± 3.4 72.8 ± 4.9
SGFormer + NASC 85.1 ± 1.0 73.5 ± 0.3 80.9 ± 0.2 39.82 ± 1.40 43.9 ± 1.7 50.8 ± 5.6 75.3 ± 2.3

Discussion on Medium Scale Datasets. In Table 2, we first evaluate the efficacy of NASC on
medium-scale datasets with number of nodes ranging from 2k-30k, compared to both GNN and
GT baselines. Incorporating NASC in SGFormer consistently yields accuracy improvements across
all datasets. Notably, on heterophilic datasets like Actor, Squirrel, Chameleon, and Deezer, the
enhancements are more pronounced, with improvements up-to 8.1% on the largest graph, Deezer.
This shows that integrating NASC into local component of GTs can lead to significant quality boosts.

Discussion on Large Scale Datasets. Next, in Table 3, we evaluate the efficacy of NASC on large-
scale datasets with number of nodes ranging from 130K to 2.5M. Consistently, NASC enhances the
performance of SGFormer with minimal modifications, requiring only a few lines of code, and without
additional hyperparameters or preprocessing beyond the backbone model. Although improvements
are modest in Amazon2m, with overlapping confidence intervals, NASC maintains quality even in
the worst case. Moreover, across all other datasets, NASC consistently demonstrates improvements,
with its lower bound (mean - std) surpassing the upper bound (mean + std) of other models.

7

Do We Really Need Complicated Graph Learning Models? – A Simple but Effective Baseline

Table 3: Test accuracy on large-scale node prediction benchmarks: the first, second, and third best
are highlighted.

Method Proteins Amazon2m Pokec Arxiv
nodes 132,534 2,449,029 1,632,803 169,343
edges 39,561,252 61,859,140 30,622,564 1,166,243

Property Multi-task Long-range Depedence Heterophilic Homophilous

MLP 72.04± 0.48 63.46± 0.10 60.15± 0.03 55.50± 0.23
GCN 72.51± 0.35 83.90± 0.10 62.31± 1.13 71.74± 0.29
SGC 70.31± 0.23 81.21± 0.12 52.03± 0.84 67.79± 0.27
GCN-NSampler 73.51± 1.31 83.84± 0.42 63.75± 0.77 68.50± 0.23
GAT-NSampler 74.63± 1.24 85.17± 0.32 62.32± 0.65 67.63± 0.23
SIGN 71.24± 0.46 80.98± 0.31 68.01± 0.25 70.28± 0.25
NodeFormer 77.45± 1.15 87.85± 0.24 70.32± 0.45 59.90± 0.42
SGFormer 79.53 ± 0.38 89.09 ± 0.10 73.76 ± 0.24 72.63 ± 0.13

GCN + NASC 80.53 ± 0.53 89.18 ± 0.07 75.02 ± 0.14 73.24 ± 0.21
SGFormer + NASC 80.46 ± 0.62 89.15 ± 0.17 74.74 ± 0.52 73.31 ± 0.10

4.3 Ablation Study on Computational Overhead

Table 4: Overhead comparison of GCN + Res and GCN + NASC at batch sizes 1024 and 4096.
Overheads are relative to the GCN + Res baseline, covering time/epoch, power, and peak memory.

Batch Size Model q Time/Epoch Watt/it Peak Mem. (MB)

4096

GCN + Res - 3.29 134.73 4011

Fixed +3.34% +3.24% +2.34%
GCN + NASC 1 +6.99% +11.47% +17.51%

256 +7.90% +18.43% +24.52%

1024

GCN + Res - 13.18 87.18 2903

Fixed −0.46% +0.03% +1.72%
GCN + NASC 1 +3.57% +0.20% +7.45%

256 +7.13% +2.18% +13.64%

In Table 4, we compare GraphSAGE with residual connections (ResGCN) and NASC on the ogbn-
products dataset, one of the largest node-level benchmarks. We use a 3-layer model with a hidden
size of 256 and sample 10 neighbors per layer with two batch sizes: 1024 and 4096. For NASC, we
evaluate three variants: fixed scalar q, learnable q=1, and q=hidden dim. All models are trained for
1000 epochs on a cluster with four 80GB A100 GPUs. We discard the first 20% of epochs as warmup
and report the mean and std of the remaining runs. Our analysis includes time per epoch, GPU power
consumption per iteration, and peak GPU memory allocation during training.

The results indicate that the runtime overhead of using NASC with a fixed q is negligible. For a batch
size of 4096, the overhead is only just 3.34%. Even when we scale the residuals as a whole (q = 1),
the overhead is only 6.99%. In the worst case, when q = 256, the overhead reaches around 7.90%.
Power consumption follows a similar trend. Peak memory usage of ResGCN and NASC with fixed
q is nearly identical, while other versions incur 600-800MB (17.51% and 24.52%) overheads for a
batch size of 4096; however, they still only allocate a very small portion of the available resources.
Moreover, as NASC is implemented for minibatch training, reducing the batch size further minimizes
the overhead. This is evident in the results for a batch size of 1024. GCN + Res and NASC with
constant q yield nearly identical results across all metrics, while overheads for q=1 and q=256
decrease. Specifically, the memory overhead drops to 7.45% and 13.64%, with watt/it remaining
within the same confidence intervals. Our findings confirm the analysis in Sec. 3.3, demonstrating
that NASC does not incur significant overheads. Notably, our best results on large datasets are
consistently achieved with q=1.

4.4 Further Evaluations

Graph Level Tasks. To demonstrate that NASC benefits other tasks beyond node classification,
we extend our evaluation to graph-level tasks from the LRGB benchmark [14]: peptides-struct

8

Do We Really Need Complicated Graph Learning Models? – A Simple but Effective Baseline

Table 5: Evaluation on Graph Level Tasks [14].

Method Pep.-Func (AP ↑) Pep.-Struct (MAE↓)

Transformer 0.6326 ± 0.0126 0.2529 ± 0.0016
SAN 0.6439 ± 0.0075 0.2545 ± 0.0012

GINE 0.5498 ± 0.0079 0.3547 ± 0.0045
+ Tuning 0.6621 ± 0.0067 0.2473 ± 0.0017

GatedGCN 0.6069 ± 0.0035 0.3357 ± 0.0006
+ Tuning 0.6765 ± 0.0047 0.2477 ± 0.0009

GPS 0.6535 ± 0.0041 0.2500 ± 0.0005
+ Tuning 0.6534 ± 0.0091 0.2509 ± 0.0014

GCN 0.5930 ± 0.0023 0.3496 ± 0.0013
+ Tuning 0.6860 ± 0.0050 0.2460 ± 0.0007
+ NASC 0.7079 ± 0.0029 0.2440 ± 0.0007

Table 6: Evaluation on PPI.

Model Micro-F1

GraphSAGE 61.20
GAT 97.30
JKNet 97.60
GeniePath 98.50
GaAN 98.71
Cluster-GCN 99.36
SAGE + Res (ResGCN) 98.25

SAGE + NASC 99.39

(graph regression) and peptides-func (graph classification), which have been utilized in various
works [20, 47, 56]. Our implementation is based on a recent benchmark [5] that showed simple
GNNs can achieve competitive performance compared to complex ones like GTs.

Table 5 indicates that graph-level tasks can indeed benefit from neighbor residuals, with a significant
improvement observed on peptides-func. Notably, our model employs a simple GCN backbone, in
contrast to computationally intensive baselines like GraphGPS that use dense attention mechanisms.
This graph-level evaluation complements our main focus on node-level tasks, illustrating the versatility
of NASC across different graph learning paradigms.

Inductive Setting. In Table 6, we further extend our evaluations to the inductive setting. We
report the micro-averaged F1 scores on the nodes of the two test graphs. For ResGCN and NASC,
we average over 10 runs using the parameters with the highest validation accuracy. For others, we
reuse the results reported in [5, 6, 10, 12, 54, 57, 58]. Our study demonstrates that incorporating
propagation embeddings in the residuals improves the performance of deep GNNs in the inductive
setting as well. NASC outperforms its counterpart ResGCN, specifically improving performance by
0.85%. This improvement highlights the effectiveness of NASC in generalizing to unseen graphs, a
critical aspect of many real-world applications.

Table 7: Comparison of NASC and NASC⊕ on PPI and Arxiv.

Method PPI Arxiv

NASC 99.39± 0.01 73.24± 0.21
NASC⊕ 99.44± 0.01 73.18± 0.22

Residual vs Dense NASC. In Table 7, we implement a dense version of NASC, called NASC⊕ and
compare the two architectures. We have observed that NASC and NASC⊕ achieve similar results for
both Arxiv and PPI datasets. With similar performance, one might question which model is a better
choice. To answer this question, we have examined the number of parameters used by each model
and found that NASC⊕ can achieve similar results to NASC using 25% fewer parameters, despite
both configurations using the same number of layers and the width of NASC⊕ increases linearly.
This is because NASC⊕ is able to match NASC using a smaller number of hidden units.

5 Conclusion
In this work, we introduced Neighbor Aware Skip Connections (NASC), which utilizes propagation
embeddings in its skip connections. Through experimental evaluations on multiple benchmark
datasets, we showed that NASC consistently outperforms traditional GNN residual methods and
various baselines, particularly on larger datasets where training takes longer. Despite its seemingly
modest nature, our approach has surprisingly been overlooked in the literature. If the proposed
method consistently improves performance without any negative effects, then it should be preferred
over existing methods. The future direction includes adding support for other GNN backbones.

9

Do We Really Need Complicated Graph Learning Models? – A Simple but Effective Baseline

Acknowledgements
We would like to thank Jay Wang and Elif Ceren Fitoz for their support and feedback. This work was
partially supported by the NSF grant CCF-1919021.

References
[1] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional

networks. In International Conference on Learning Representations, 2017. 1, 2, 3, 14

[2] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in
neural information processing systems, 31, 2018. 1

[3] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018. 1

[4] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020. 1

[5] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017. 1, 2, 3, 9, 17

[6] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. 1, 2, 3, 9

[7] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Thirty-Second AAAI conference on artificial intelligence, 2018.
1

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016. 1, 2, 3, 14

[9] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017. 1, 3, 14, 15

[10] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
International conference on machine learning, pages 5453–5462. PMLR, 2018. 1, 3, 9, 15

[11] Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 338–348, 2020. 3

[12] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning, pages 1725–1735.
PMLR, 2020. 3, 9, 15

[13] Wentao Zhang, Zeang Sheng, Ziqi Yin, Yuezihan Jiang, Yikuan Xia, Jun Gao, Zhi Yang, and
Bin Cui. Model degradation hinders deep graph neural networks. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 2493–2503, 2022.
1, 6

[14] Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. Advances in Neural Information
Processing Systems, 35:22326–22340, 2022. 1, 2, 3, 8, 9

[15] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. In International Conference on Learning Representations, 2020. 1

[16] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.
In International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=7UmjRGzp-A. 1

10

https://openreview.net/forum?id=7UmjRGzp-A
https://openreview.net/forum?id=7UmjRGzp-A

Do We Really Need Complicated Graph Learning Models? – A Simple but Effective Baseline

[17] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020. 1, 3

[18] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? In A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, 2021. URL https://openreview.net/forum?id=OeWooOxFwDa. 3

[19] Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion
Stoica. Representing long-range context for graph neural networks with global attention.
Advances in Neural Information Processing Systems, 34:13266–13279, 2021.

[20] Ladislav Rampasek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Informa-
tion Processing Systems, 2022. URL https://openreview.net/forum?id=lMMaNf6oxKM.
1, 3, 6, 9

[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017. 1, 3

[22] Scott Freitas, Yuxiao Dong, Joshua Neil, and Duen Horng Chau. A large-scale database for
graph representation learning. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 1), 2021. URL https://openreview.net/
forum?id=1xDTDk3XPW. 2, 3

[23] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec.
Ogb-lsc: A large-scale challenge for machine learning on graphs. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

[24] Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning
Research, 24(43):1–48, 2023. 2, 3

[25] Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. NAGphormer: A tokenized graph
transformer for node classification in large graphs. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=8KYeilT3Ow.
2, 3, 4

[26] Dongqi Fu, Zhigang Hua, Yan Xie, Jin Fang, Si Zhang, Kaan Sancak, Hao Wu, Andrey
Malevich, Jingrui He, and Bo Long. VCR-graphormer: A mini-batch graph transformer via
virtual connections. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=SUUrkC3STJ. 2, 3

[27] Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C. Bayan Bruss, and Tom Goldstein.
GOAT: A global transformer on large-scale graphs. In Proceedings of the 40th International
Conference on Machine Learning. PMLR, 2023. 2, 3, 4

[28] Wenhao Zhu, Tianyu Wen, Guojie Song, Xiaojun Ma, and Liang Wang. Hierarchical transformer
for scalable graph learning. arXiv preprint arXiv:2305.02866, 2023. 2, 3, 4

[29] Qitian Wu, Wentao Zhao, Zenan Li, David Wipf, and Junchi Yan. Nodeformer: A scalable
graph structure learning transformer for node classification. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/forum?id=sMezXGG5So. 2, 3, 6

[30] Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao
Bian, and Junchi Yan. Sgformer: Simplifying and empowering transformers for large-graph
representations. In Advances in Neural Information Processing Systems (NeurIPS), 2023. 2, 3,
4, 6, 17

[31] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep
as cnns? In Proceedings of the IEEE/CVF international conference on computer vision, pages
9267–9276, 2019. 2, 3, 15

[32] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. 2, 3

11

https://openreview.net/forum?id=OeWooOxFwDa
https://openreview.net/forum?id=lMMaNf6oxKM
https://openreview.net/forum?id=1xDTDk3XPW
https://openreview.net/forum?id=1xDTDk3XPW
https://openreview.net/forum?id=8KYeilT3Ow
https://openreview.net/forum?id=SUUrkC3STJ
https://openreview.net/forum?id=sMezXGG5So

Do We Really Need Complicated Graph Learning Models? – A Simple but Effective Baseline

[33] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In international conference on machine
learning, pages 21–29. PMLR, 2019. 3

[34] Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi, Amol Kapoor, Martin Blais,
Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. Scaling graph neural
networks with approximate pagerank. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 2464–2473, 2020. 3

[35] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In International conference on machine learning,
pages 6861–6871. PMLR, 2019. 3

[36] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, 2019.

[37] Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael M. Bronstein, and
Federico Monti. Sign: Scalable inception graph neural networks. CoRR, 2020. 6

[38] Wentao Zhang, Zeang Sheng, Mingyu Yang, Yang Li, Yu Shen, Zhi Yang, and Bin Cui. Nafs: A
simple yet tough-to-beat baseline for graph representation learning. In International Conference
on Machine Learning, pages 26467–26483. PMLR, 2022. 3

[39] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. In International Conference on Learning Representations,
2021. 3

[40] Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio
Tossou. Rethinking graph transformers with spectral attention. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=huAdB-Tj4yG. 3

[41] Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers. arXiv preprint arXiv:2106.05667, 2021.

[42] Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In International Conference on Machine Learning, pages 3469–3489.
PMLR, 2022.

[43] Haiteng Zhao, Shuming Ma, Dongdong Zhang, Zhi-Hong Deng, and Furu Wei. Are more
layers beneficial to graph transformers? In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=uagC-X9XMi8.

[44] Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates,
Philip Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing.
In International Conference on Machine Learning, pages 23321–23337. PMLR, 2023. 3

[45] Krzysztof Choromanski, Han Lin, Haoxian Chen, Tianyi Zhang, Arijit Sehanobish, Valerii
Likhosherstov, Jack Parker-Holder, Tamas Sarlos, Adrian Weller, and Thomas Weingarten.
From block-toeplitz matrices to differential equations on graphs: towards a general theory
for scalable masked transformers. In International Conference on Machine Learning, pages
3962–3983. PMLR, 2022. 3

[46] Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. Difformer:
Scalable (graph) transformers induced by energy constrained diffusion. In The Eleventh
International Conference on Learning Representations, 2022. 3

[47] Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs. In International Conference on Machine
Learning, 2023. 3, 4, 6, 9

[48] Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
sequence modeling. In International Conference on Learning Representations, 2023. 3

[49] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin Benson. Combining label
propagation and simple models out-performs graph neural networks. In International Con-
ference on Learning Representations, 2021. URL https://openreview.net/forum?id=
8E1-f3VhX1o. 4

12

https://openreview.net/forum?id=huAdB-Tj4yG
https://openreview.net/forum?id=uagC-X9XMi8
https://openreview.net/forum?id=8E1-f3VhX1o
https://openreview.net/forum?id=8E1-f3VhX1o

Do We Really Need Complicated Graph Learning Models? – A Simple but Effective Baseline

[50] Wenhao Zhu, Guojie Song, Liang Wang, and Shaoguo Liu. Anchorgt: Efficient and flexible
attention architecture for scalable graph transformers. arXiv preprint arXiv:2405.03481, 2024.
4

[51] Chenhui Deng, Zichao Yue, and Zhiru Zhang. Polynormer: Polynomial-expressive graph
transformer in linear time. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=hmv1LpNfXa. 4

[52] Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks
meet transformers. In The Eleventh International Conference on Learning Representations,
2022. 6

[53] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna.
Graphsaint: Graph sampling based inductive learning method. In International Conference on
Learning Representations, 2020. URL https://openreview.net/forum?id=BJe8pkHFwS.
6, 17

[54] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:
An efficient algorithm for training deep and large graph convolutional networks. In Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery & data mining,
pages 257–266, 2019. 6, 9

[55] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118–22133, 2020. 6, 16

[56] Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A
generalization of vit/mlp-mixer to graphs. In International Conference on Machine Learning,
pages 12724–12745. PMLR, 2023. 9

[57] Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, Le Song, and Yuan Qi. Geniepath:
Graph neural networks with adaptive receptive paths. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 4424–4431, 2019. 9

[58] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung. Gaan:
Gated attention networks for learning on large and spatiotemporal graphs. arXiv preprint
arXiv:1803.07294, 2018. 9

[59] Yann LeCun, Y. Bengio, and Geoffrey Hinton. Deep learning. Nature, 2015. 14

[60] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via spectral
graph theory. Applied and Computational Harmonic Analysis, 2011. 14

[61] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. Advances in neural information processing
systems, 29, 2016. 14

[62] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR, 2017. 14

[63] Tianjun Yao, Jiaqi Sun, Defu Cao, Kun Zhang, and Guangyi Chen. Mugsi: Distilling gnns with
multi-granularity structural information for graph classification. In Proceedings of the ACM on
Web Conference 2024, pages 709–720, 2024. 15

[64] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In International conference on machine learning, pages 40–48. PMLR,
2016. 15

[65] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018. 16

[66] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul
Kanakia. Microsoft Academic Graph: When experts are not enough. Quantitative Science
Studies, 1(1), 2020. 16

[67] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. PMLR, 2015. 16

13

https://openreview.net/forum?id=hmv1LpNfXa
https://openreview.net/forum?id=BJe8pkHFwS

Do We Really Need Complicated Graph Learning Models? – A Simple but Effective Baseline

[68] Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):i190–i198, 2017. 17

[69] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019. 17

A Appendix

B Background Details
B.1 Skip Connections in Neural Networks

σf(x)x
(a) Regular

σ+x

x

f(x)

(b) Residual

[,] σx

x

f(x)

(c) Dense

Figure 4: Representation of different neural network blocks: (a) a regular block, (b) a residual block
where the input is added to the output, and (c) a dense block where each intermediate output is
concatenated, denoted by []. The function f(x) represents the composite function applied to the input.
Given an input X(0), a feed-forward convolutional neural network (CNN) [59] consisting of L
layers applies a non-linear transformation f (l)(·) to X(l) to produce output X(l+1) at each layer l,
l ∈ {1, 2, ..., L}. The function f (l) is parameterized by a weight matrix W (l). This transformation
typically includes a composite function f (l)(·) such as linear, convolution, pooling, normalization,
dropout, and other layers (see Figure 4(a)). Ignoring biases for simplicity, the feed-forward process
can be represented by:

X(l) = f (l)(X(l−1);W (l)) (9)

allow input to bypass one or multiple layers, and directly propagate to a deeper layer. In the case of
ResNets, the skip connection, also called residual connection, is an identity mapping [8]. The input
to the layer is added to the output of the layer, bypassing the non-linear transformation via identity
mapping, as shown in Figure 4(b). Hence, we obtain:

X(l) = f (l)(X(l−1);W (l)) +X(l−1) (10)

Residual connections improve training dynamics by allowing gradients to flow directly between
layers, addressing the vanishing gradient problem and improving robustness to input perturbations [8].

Densely Connected Networks (DenseNets) [9] utilize concatenation, denoted by [], instead of
summation, as in Figure 4(c). DenseNet layers receive inputs from all the previous layers, allowing
features to be reused in subsequent layers. DenseNets are expressed as:

X(l) = [f (l)(X(l−1);W (l)), X(l−1)] (11)

B.2 Graph Neural Networks (GNNs)

Graph Convolutional Networks (GCNs).

Motivated by spectral graph convolutions [60, 61], Graph Convolutional Networks (GCNs) [1] are a
specific form of Message Passing Neural Networks (MPNNs) [62]. GCNs use standard neural network
optimization techniques which are generally faster and more scalable than traditional spectral methods
based on eigen-decomposition. The l-th layer of a GCN can be expressed as in Equations 1 and 2,
where Â is the normalized adjacency matrix, which usually comes in two forms: Â = 1√

D−A 1√
D+

or Â = 1
D−A, but other normalization can be integrated as well.

The propagation (P) and transformation (T) framework of GNNs can be can be interpreted at both the
graph and node levels. In Section2, we provide a node level interpretation, which is also illustrated in
the bottom part of Figure 5. At a graph level, a sparse matrix-matrix multiplication (SpMM) between
Â and X(l−1) computes P, which is followed by T, as illustrated in the top part of Figure 5.

14

Do We Really Need Complicated Graph Learning Models? – A Simple but Effective Baseline

P

Input: A, X Output: A, X
(l + 1)GCN Layer

T
H

X = H W

TRANS(;W)

(l) (l)
(l)

(l) (l)
H = A X (l)

Figure 5: GNN representations: Graph (top) and node (bottom) levels

DeepGCNs. Inspired by ResNets, ResGCN [31] is expressed as:

h(l)
v = PROP

(
{Âu,vx

(l−1)
u , u ∈ N(v}

)
x(l)
v = TRANS(h(l)

v , x(l−1)
v ;W (l)) + x(l−1)

v

= σ
(
[h(l)

v , x(l−1)
v]W (l)

)
+ x(l−1)

v

(12)

ResGCN combines the skip connection schemes from Equation 4 and Equation 3 by allowing
intermediate representations to have a path to both identity mapping and transformation through
concatenation. Similarly, inspired by DenseNets [9], DenseGCN [31] uses concatenation over
summation enabling reuse of intermediate representations in subsequent layers.

h(l)
v = PROP

(
{Âu,vx

(l−1)
u , u ∈ N(v}

)
x(l)
v =

[
TRANS(h(l)

v , x(l−1)
v ;W (l)), x(l−1)

v

]
=

[
σ
(
[h(l)

v , x(l−1)
v]W (l)

)
, x(l−1)

v

] (13)

JK-Nets, a variant of DenseNet, applies a final aggregation, referred to as PROP-FINAL, to all the
intermediate embeddings, regardless of the specific PROP and TRANS functions used [10]. The
PROP-FINAL function can be a concatenation, max-pooling, or LSTM-attention.

x(L+1)
v = PROP-FINAL

(
{x(1)

v , x(2)
v , . . . , x(L)

v }
)

(14)

GCNII [12] is expressed as:

h(l)
v = P-GCN

(
{Âu,vx

(l−1)
u , u ∈ N(v) ∪ {v}}

)
x(l)
v = TRANS(h(l)

v , x(l−1)
v ;W (l))

= σ
(
(1− α(l))h(l)

v + α(l)x(0)
v)((1− β(l))I + β(l)W (l))

) (15)

Here, α(l) is a hyperparameter that regulates the initial residual and controls the proportion of input
features retained in subsequent layers. βl follow a decay function βl =

λ
l where λ is a hyperparameter.

While the authors claim that I establishes an identity mapping similar to the ones in ResNet, we
argue that this is not exact case, as the residual is applied to the weights before the activation, unlike
in ResNet. Furthermore, we note that β(l) helps with the initialization of W (l) by setting the diagonal
of W (l) to (1− β(l)). This decaying β(l) ensures that later layers are initialized close to I , which can
be beneficial on very small datasets where overfitting occurs quickly. In these scenarios, the model
will not perturb the initial features from earlier layers in the later layers.

Some other recent related work includes MuGSI [63] which introduces a framework for distilling
knowledge from GNNs to MLPs specifically for graph classification tasks. This approach allows
for efficient structural knowledge distillation at different levels of granularity, including graph-level,
subgraph-level, and node-level distillation.

15

Do We Really Need Complicated Graph Learning Models? – A Simple but Effective Baseline

Table 8: Properties of benchmark datasets.

DATASET n m m
n

d(0) d(L)

CORA 2.7K 5.4K 2.03 1.4K 7
CITESEER 3.3K 4.7K 1.42 3.7K 6
PUBMED 20K 44K 2.25 500 3
PHOTO 7.5K 119K 15.90 745 8
COMPUTERS 13K 246K 18.36 767 10
PPI 57K 820K 14.38 50 121
FLICKR 90K 900K 10.08 500 7
ARXIV 170K 1.2M 6.89 128 40
REDDIT 233K 115M 492 602 41
YELP 717K 14M 19.5 300 100
PRODUCTS 2.5M 62M 25.26 100 47

C Experimental Details

C.1 Platenoid Datasets

Details This is a collection of three datasets (Cora, CiteSeer, PubMed) that are commonly used for
GNN evaluation. The task is to classify the subjects of the documents. The nodes and edges represent
academic papers and citations respectively. The feature vectors are bag of words representations of
the respective papers. We apply the standard training, validation, and test split as outlined in [64] for
the datasets under examination. The split consists of 20 nodes per class for training, 500 nodes for
validation, and 1000 nodes for testing.

Hyperparameter Tuning. We conducted a comprehensive hyperparameter search optimizing the
accuracy on validation nodes over 1000 trials for each method, including the learning rate, dropout
rate, number of hidden units, and weight decay per layer. For NASC, we drop α(l) and compute and
compute x

(l)
v = TRANS(h

(l)
v , x

(l−1)
v ;W (l)) + x

(l−1)
v + h

(l)
v due to the small volume of the data.

C.2 Amazon

This is a collection of two datasets from Amazon co-purchase network, where nodes represent
products and edges are present between two nodes if they are frequently bought together, and the
task is to classify the categories [65]. The node features are bag of word representations of the user
reviews. To the best of our knowledge, there is no standard fix splits for Amazon datasets. Therefore,
following the traditional practice in the community, we use random splits with 20 training and 30
validation nodes per class, and the rest is used for testing. In specific, for each evaluation and tuning
run, we use different random seeds to have a fair comparison.

Hyperparameter Tuning. We conduct a comprehensive hyperparameter search optimizing the accu-
racy on validation nodes over 1000 trials for GCN, GCNII, NASC/NASC⊕, and ResGCN/DenseGCN,
including the number of layers, learning rate, dropout rate, weight decay and number of hidden units.
For GCNII, we also tune α, λ, and additional weight decay for the linear layers at the beginning and
end of the network. For each tuning trial, we use 20 random splits. Similar to Platenoid datasets, for
NASC, we drop α(l) and compute x

(l)
v = TRANS(h

(l)
v , x

(l−1)
v ;W (l)) + x

(l−1)
v + h

(l)
v .

C.3 Arxiv and Products

Arxiv is a citation network from Open Graph Benchmark (OGB) [55] node prediction datasets that
consists of CS arxiv papers by Microsoft Academic Graph (MAG) [66]. Similarly, the nodes and
edges represent academic papers and citations respectively. The feature vectors are bag of words
representations of the respective papers. We apply the standard 54%-18%-28% split for training,
validation and testing. For NASC, we simultaneously learn vector α(l) with the model training. The
Products dataset, on the other hand, is a co-purchase network extracted from Amazon. Features are
bag-of-words representations of the product descriptions, and they are reduced to 100 dimensions
using Principal Component Analysis Nodes represent various products, and edges signify products
that are frequently bought together. The task is to identify the product category.

16

Do We Really Need Complicated Graph Learning Models? – A Simple but Effective Baseline

Hyperparameter Tuning. We conduct a comprehensive hyperparameter search optimizing the
accuracy on validation nodes over 1000 trials for GCN, NASC/NASC⊕, and ResGCN/DenseGCN,
including the number of layers, learning rate, dropout rate and number of hidden units. Our best
performing method, NASC is trained on 6 layers with 716 hidden units using Adam optimizer
with 0.00136 learning rate and no weight decay and a dropout rate of 0.48. We also apply batch
normalization [67].

C.4 Flickr and Yelp

The Flickr and Yelp datasets are acquired from their corresponding networks [53]. In the Flickr dataset,
nodes represent uploaded images, and connections occur between nodes with shared properties. The
Yelp dataset connects nodes that are considered friends within the social network. We use publicly
available standard split for both of the datasets. We follow the same hyperparameter tuning procedure
as Arxiv.

C.5 Reddit

The Reddit dataset [5] is sourced from Reddit posts, where each node represents a post, and connec-
tions exist between posts commented on by the same user. The task involves classifying posts into
their respective subreddits (communities). We use publicly available standard split. We follow the
same hyperparameter tuning procedure as Arxiv.

C.6 PPI

The protein-protein interaction (PPI) dataset consists of graphs representing human tissues [68].
Following the previous work [5], we use 20 graphs for training, 2 for validation and 2 for testing. For
NASC, we simultaneously learn vector α(l) with the model training.

Hyperparameter Tuning. We conduct a comprehensive hyperparameter search optimizing the
accuracy on validation nodes over 1000 trials for GCN, NASC and NASC⊕ including the number of
layers, learning rate, dropout rate and number of hidden units. Our best performing method, NASC⊕

is trained on 6 layers with 2048 hidden units using Adam optimizer with 0.01 learning rate and no
weight decay. We also apply a dropout rate of 0.4. For GCNII, we use the hyperparameters suggested
by the authors and utilize the open-source code available at PyTorch-Geometric (PyG) library [69].

C.7 Other Datasets

For other datasets, we follow the exact setup in SGFormer [30].

D Motivation Details

2021 2022 2023 2024
0

50

100

150

200

250

300

N
um

be
r o

f S
ub

m
is

si
on

s

ICLR Submissions
NeurIPS Accepted

Figure 6: ICLR submitted and NeurIPS accepted submissions over years

17

Do We Really Need Complicated Graph Learning Models? – A Simple but Effective Baseline

E Complexity Analysis
In this analysis, we evaluate the computation overhead of NASC compared to traditional counterparts
for different choices of α(l). To begin, let’s break down Equations 1 and 2 into its three components:
T, P, and σ. The T step involves a Generalized Matrix Matrix Multiplication (GeMM) between
X(l) ∈ Rn×d and W (l) ∈ Rd×d, resulting in a complexity of O(nd2). The P step can be calculated
using a GeMM between A ∈ Rn×n and the output of T, Z(l+1) ∈ Rn×d, resulting in a complexity
of O(n2d). However, since real-world graphs are usually sparse (m ≪ n2), we can utilize Sparse
Matrix Matrix Multiplication (SpMM) to compute the P step, reducing the complexity to O(md).
The element-wise operation σ on X(l+1) ∈ Rn×d introduces a complexity of O(nd). Therefore,
the overall complexity of GCN is O(nd2 +md + nd) = O(nd2 +md). GraphSAGE introduces
concatenation but maintains the same complexity as GCN. It changes the T complexity to O(2nd2) =
O(nd2), while the overall complexity remains unchanged. ResGCN incorporates vertex embeddings
in its residual, requiring an additional pass over X(l). However, this doesn’t affect the complexity,
and it remains the same as GraphSAGE. For NASC, when α is determined by a fixed scalar, the
only additional computation needed is the summation of X(l) and AX(l−1) ∈ Rn×d. The overall
complexity remains the same: O(nd2 +md+ nd+ nd) = O(nd2 +md). When α(l) is determined
by a vector, an additional GeMM is performed between W

(l)
α and [X(l), AX(l−1)], followed by a

softmax operation. The additional GeMM yields O(2ndq) = O(ndq), and the softmax operation
yields O(nq). Once α(l) is calculated, an element-wise multiplication is performed between α(l)

and the residual terms as shown in Equation 6, resulting in a complexity of O(nd+ nd) = O(nd).
Additionally, the summation requires extra passes over the residual terms. The overall complexity of
NASC is O(nd2 + nm+ nd+ nq + nd) = O(nd2 + nm+ nq + nd). Notably, for both choices of
q = 1 or q = d, the complexity of NASC reduces to O(nd2 + nm).

F Additional Experiments

Flickr Arxiv Reddit Yelp Products
0.00

0.01

0.02

0.03

0.04

0.05

P-
va

lu
e GCN vs GCN + Res

GCN vs GCN + NASC
GCN + Res vs GCN + NASC
Significance level (0.05)

Figure 7: P-values Across Datasets for Each
Model Comparison for Table 1

Proteins Amazon2m Pokec Arxiv
0.00

0.01

0.02

0.03

0.04

0.05

P-
va

lu
e GCN vs SGFormer

SGFormer vs GCN-NASC
Significance level (0.05)

Figure 8: P-values Across Datasets for Each
Model Comparison for Table 3

Table 9: P-values for Pairwise Comparisons of Model Performance

Dataset GCN vs GCN + Res GCN vs GCN + NASC GCN + Res vs GCN + NASC

Flickr 9.58e-12 2.96e-17 1.36e-07
Arxiv 3.50e-10 4.01e-08 2.90e-04
Reddit 5.00e-17 1.57e-16 8.95e-17
Yelp 9.42e-32 3.10e-16 1.61e-03
Products 7.79e-21 7.90e-12 6.09e-06

When we look at the t-statistics using Anova, pairwise model accuracy comparisons for each dataset
indicates that the performance are significantly different between compared models. For Table 9, we
see that NASC significantly improves GCN and GCN + RES. Moreover, when we look at Table 10,
SGFormer improves upon GCN, and GCN + NASC significantly outperforms SGFormer across all
datasets.

18

Do We Really Need Complicated Graph Learning Models? – A Simple but Effective Baseline

Table 10: P-values for Pairwise Comparisons of Model Performance

Dataset GCN vs GCN-NASC GCN vs SGFormer GCN-NASC vs SGFormer

Proteins 3.95e-17 1.70e-19 1.68e-04
Amazon2m 3.96e-26 2.49e-27 3.30e-02
Pokec 3.33e-11 3.65e-11 5.84e-10
Arxiv 3.50e-10 9.82e-07 1.15e-06

19

	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Motivation
	3.2 Challenges in Baseline Evaluation
	3.3 An Effective, Scalable, Accessible yet Simple Baseline

	4 Evaluation
	4.1 Large Scale Node Level Graph Datasets with GNN Backbone
	4.2 Medium and Large Scale Node Level Graph Datasets with GT Backbone
	4.3 Ablation Study on Computational Overhead
	4.4 Further Evaluations

	5 Conclusion
	A Appendix
	B Background Details
	B.1 Skip Connections in Neural Networks
	B.2 Graph Neural Networks (GNNs)

	C Experimental Details
	C.1 Platenoid Datasets
	C.2 Amazon
	C.3 Arxiv and Products
	C.4 Flickr and Yelp
	C.5 Reddit
	C.6 PPI
	C.7 Other Datasets

	D Motivation Details
	E Complexity Analysis
	F Additional Experiments

